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Preface to ”Wind Power Integration into Power

Systems: Stability and Control Aspects”

Power network operators are rapidly incorporating wind power generation into their power

grids to meet the widely accepted carbon neutrality targets and facilitate the transition from

conventional fossil-fuel energy sources to clean and low-carbon renewable energy sources. Complex

stability issues, such as frequency, voltage, and oscillatory instability, are frequently reported in

the power grids of many countries and regions (e.g., Germany, Denmark, Ireland, and South

Australia) due to the substantially increased wind power generation. Control techniques, such as

virtual/emulated inertia and damping controls, could be developed to address these stability issues,

and additional devices, such as energy storage systems, can also be deployed to mitigate the adverse

impact of high wind power generation on various system stability problems. Moreover, other wind

power integration aspects, such as capacity planning and the short- and long-term forecasting of

wind power generation, also require careful attention to ensure grid security and reliability. This

book includes fourteen novel research articles published in this Energies Special Issue on Wind Power

Integration into Power Systems: Stability and Control Aspects, with topics ranging from stability and

control to system capacity planning and forecasting.

Lasantha Meegahapola, Siqi Bu

Editors
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Power network operators are rapidly incorporating wind power generation into
their power grids to meet the widely accepted carbon neutrality targets and facilitate
the transition from conventional fossil-fuel energy sources to the clean and low-carbon
renewable energy sources. Complex stability issues, such as frequency, voltage, and
oscillatory instability, are frequently reported in the power grid of many countries and
regions (e.g., Germany, Denmark, Ireland, South Australia) with the substantially increased
wind power generation. Control techniques, such as virtual/emulated inertia and damping
controls, could be developed to address these stability issues, and additional devices,
such as energy storage systems, can also be deployed to mitigate the adverse impact
of high wind power generation on various system stability problems. This Special Issue
includes 14 novel research articles mainly covering various stability analyses and associated
control techniques of modern power systems as affected by high penetration of wind
power generation.

Tu et al. [1] proposed a doubly fed induction generator (DFIG)–energy storage (ES)
based hybrid system to improve the fast frequency response from wind farms. The ES
system was designed to provide a similar inertial response as a synchronous generator of
a similar rating as the wind farm. The authors have also proposed a coordinated virtual
inertial response scheme for the DFIG-ES system to provide frequency response during
frequency excursions. The proposed scheme was based on a fuzzy logic scheme, and it
could improve the frequency nadir and also could alleviate the secondary frequency dip.
Therefore, the proposed scheme is a very useful control scheme to improve the frequency
response from wind farms.

Li et al. [2] proposed a multi-model predictive control algorithm based on a clustering
approach to deal with the randomness and uncertainty of wind power generation. The
authors developed the multi-model prediction model by first clustering the measured
data and then applying the forgetting factor recursive least square method. The model
predictive controller was developed to control the pitch-angle to vary the power output
of the wind generator. The accuracy of the developed model was verified by using a
DFIG-based wind farm in Western China by applying field-measured wind speed data.
The proposed model predictive controller has shown a high prediction accuracy compared
with the methods reported in the literature.

Jiao et al. [3] presented a sub-synchronous resonance (SSR) analysis and mitigation
strategy for a DFIG operated as a virtual synchronous generator (VSG). Since the weak
network phenomenon is more prominent in most of the present power grids, the VSG
control method is used in power-electronic converter interfaced sources, such as the DFIG.
Therefore, this paper presented an impedance-based analysis to characterise the sub-
synchronous resonance (SSR) phenomenon for a DFIG-based wind farm controlled in VSG
mode connected to the grid by a series-compensated line. According to the study, damping
of reactive power plays a major role in mitigating the SSR phenomenon in DFIG wind
generators controlled in VSG mode.
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Wen et al. [4] presented a probabilistic assessment of the regional rate-of-change-of-
frequency (RoCoF) for operational planning of high renewable penetrated power systems.
Regional RoCoF is becoming an imperative factor in system planning and operation
studies. Large-scale power-electronic converter interfaced generation sources are installed
in regional areas of the power networks, which do not naturally respond to frequency
excursions. This paper established an analytical sensitivity of regional RoCoF to the
stochastic output of RES and subsequently, a linear sensitivity-based analytical method was
proposed to calculate the regional RoCoF and the corresponding probabilistic distribution.
The proposed method appears to be less time consuming than the existing methods.

Wang et al. [5] presented capacity planning of distributed wind power based on a
variable-structure copula involving energy storage systems. Since some countries (e.g.,
China) require distributed wind power to be consumed within sub-transmission level, the
distributed wind power capacity should be planned carefully while ensuring the entire
distributed generation capacity is consumed within the network. Authors have developed
a load and wind power prediction model based on the autoregressive moving average
(ARMA) model, and subsequently, variable-structure copula models are established based
on different time segment strategies to correlate the wind power and load. Finally, the
capacity planning model was proposed based on the investment and operation cost, and
environmental benefit and line loss cost. Subsequently, the model has been extended to
a collaborative capacity planning model for distributed wind power and energy storage
systems. The fidelity of the proposed model was validated using a modified IEEE-33
bus network.

Li et al. [6] presented a wind turbine wake model based on the modified Reynolds-
averaged Navier–Stokes approach. The new model was proposed to improve the existing
wake effect models’ accuracy by proposing correction factors for the aerodynamic and
turbulence models. The study has shown that the proposed model’s velocity and turbulent
fields are in close agreement with the data obtained from real wind turbines. In addition,
the proposed mesh partition method has improved the computational efficiency, and hence
the proposed model could be deployed to effectively assess the impact of the wake effect
of wind turbines in power system studies.

Liu et al. [7] proposed a deep learning approach for wind power forecasting based on
a wavelet decomposition (WD)–long short-term memory (LSTM) neural network model.
Uncertainty and intermittency associated with power generation add complexity to system
operation, and inaccurate forecasts increase the power network’s risk of instability. Thus,
to address this pressing issue, this paper proposed a hybrid prediction model based on
the combination of WD and LSTM neural network. In this model, the nonstationary time
series is decomposed into multidimensional components to reduce the original time series’
volatility and make them more stable and predictable by WD. Subsequently, it has been
used as the input to the LSTM to predict wind power generation. The results showed
that the proposed model predicts wind power generation much more accurately than the
existing prediction models used in China.

Hao et al. [8] studied the impact of active power outputs and control parameters of
full-converter wind farms on the damping characteristics of sub-synchronous oscillation in
weak power grids. Eigenvalue and participation factor analyses were performed to identify
the dominant oscillation modes of the system and investigate the damping characteristics.
The analysis demonstrated that when the phase-locked loop (PLL) proportional gain is
high, the sub-synchronous oscillation damping has worsened with the increase in the
active power output. On the contrary, when the PLL proportional gain is small, the sub-
synchronous oscillation damping is improved with the increase in the active power output.
By adjusting the control parameters in the PLL and DC link voltage controllers, system
sub-synchronous oscillatory stability can be improved.

Chien et al. [9] designed an artificial neural network (ANN)-based real-time supple-
mentary frequency controller for a DFIG wind farm, as the optimal controller gain that
gives the highest frequency nadir or lowest peak frequency is a complicated nonlinear
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function and hence is not easy to be derived by conventional analytical methods, especially
for an online environment. In this work, the load disturbance, wind penetration, and wind
speed were used as the inputs and the desired controller gain was used as the output,
and the ANN can be employed to yield the desired gain in a very efficient manner, even
when the operating condition was not included in the training set. It was demonstrated in
the paper that the proposed ANN-based frequency control could yield a better frequency
response than the fixed-gain controller.

Zhang et al. [10] presented a model using modified LSTM to predict ultra-short-term
wind power. The error following forget gate (EFFG)-based LSTM model was developed,
which can update the output of the forget gate using the difference between the predicted
value and the actual value, thereby reducing the impact of the prediction error at the previ-
ous moment on the prediction accuracy at this time and improving the rolling prediction
accuracy of wind power. Study results revealed that the root mean square error of the
wind power prediction model is less than 3%, while the accuracy rate and qualified rate
are more than 90%. Hence, the EFFG-based LSTM model provides better performance than
the support vector machine (SVM) and standard LSTM model.

Chen et al. [11] proposed two types of flexible kinetic energy release controllers for the
DFIG to improve frequency nadir following a disturbance and avoid under-frequency load
shedding. A deactivation function-based integral controller was firstly presented and a
second flexible kinetic energy release controller was designed using a proportional-integral
controller with the gains being adapted in real-time with the particle swarm optimisation
algorithm. The design only releases a small amount of kinetic energy in the initial transient
period and more kinetic energy would be released when the frequency dip exceeds a pre-set
threshold. The paper concluded that the frequency nadir could be maintained around the
under-frequency load shedding threshold of 59.6 Hz using the proposed controllers.

Mujcinagic et al. [12] presented a control scheme of the virtual inertia response of
wind power plants based on the centre of inertia (COI) frequency of a control area for the
inertia-insufficient power systems. The PSS/E user written wind inertial controller was
developed using FORTRAN. The efficiency of the controller was tested and applied to the
real interconnected power system of Southeast Europe. The performed simulations showed
certain conceptual advantages of the proposed controller in comparison to traditional
schemes that use the local frequency to trigger the wind inertial response.

Luo et al. [13] investigated the participation of full converter-based wind power
generation (FCWG) in electromechanical dynamics and uncovered an unusual transition of
the electromechanical oscillation mode (EOM). Modal analysis was employed to quantify
the FCWG participation in electromechanical dynamics, with two new mode identification
criteria proposed. The impact of different wind penetration levels and controller parameter
settings on the participation of FCWG was studied. It was revealed that if an FCWG
oscillation mode (FOM) has a similar oscillation frequency to the system EOMs, strong
interactions between FCWG dynamics and electromechanical system dynamics of the
external power systems might be induced, and an EOM can be dominated by FCWG
dynamics instead, and hence becomes a quasi-EOM. Some key findings on the mechanism
of this special phenomenon are finally summarised and discussed.

Yan et al. [14] presented a novel coordinated control scheme, i.e., overspeed-while-
storing control for permanent magnet synchronous generator (PMSG)-based WTG to
enhance its LVRT capability. The proposed control scheme regulated the rotor speed to
reduce the input power of the machine-side converter (MSC) during slight voltage sags.
When the severe voltage sag occurs, the coordinated control scheme sets the rotor speed
at the upper-limit to decrease the input power of the MSC, while the surplus power is
absorbed by the supercapacitor energy storage (SCES) to reduce its maximum capacity.
Moreover, the specific capacity configuration scheme of SCES was detailed. The effective-
ness of the overspeed-while-storing control in enhancing the LVRT capability was validated
under different levels of voltage sags and different fault types in MATLAB/Simulink.
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The papers mentioned above included in this Special Issue provide new and valuable
insights, effectively representing ongoing research efforts and stimulating future research
activities in the relevant field. As guest editors, we would like to thank all the authors and
reviewers who contributed to this Special Issue.
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Abstract: The high rate of change of frequency (RoCoF) issue incurred by the integration of renewable
energy sources (RESs) into a modern power system significantly threatens the grid security, and thus
needs to be carefully examined in the operational planning. However, severe fluctuation of regional
frequency responses concerned by system operators could be concealed by the conventional assessment
based on aggregated system frequency response. Moreover, the occurrence probability of a high
RoCoF issue is actually a very vital factor during the system planner’s decision-making. Therefore, a
fast-algorithmic evaluation method is proposed to determine the probabilistic distribution of regional
RoCoF for the operational planning of a RES penetrated power system. First, an analytical sensitivity
(AS) that quantifies the relationship between the regional RoCoF and the stochastic output of the RES
is derived based on the generator and network information. Then a linear sensitivity-based analytical
method (LSM) is established to calculate the regional RoCoF and the corresponding probabilistic
distribution, which takes much less computational time when comparing with the scenario-based
simulation (SBS) and involves much less complicated calculation procedure when comparing with the
cumulant-based method (CBM). The effectiveness and efficiency of the proposed method are verified
in a modified 16-machine 5-area IEEE benchmark system by numerical SBS and analytical CBM.

Keywords: renewable energy sources (RESs); regional RoCoF; model-based operational planning;
linear sensitivity-based method (LSM); cumulant-based method (CBM)

1. Introduction

The integration of renewable energy sources (RESs) brings an increasing number of stochastic
disturbances into power systems [1–4] and meanwhile considerably reduces the system inertia [5–7],
which hence incurs higher rate of change of frequency (RoCoF) than ever before [8,9], and sometimes
even serious incidents [10]. The recent London blackout on 9 August 2019 has drawn wide attention,
and the official investigation report [10] indicates that a sudden reduction in the power output of the
Hornsea offshore wind farm has worsened the RoCoF significantly, which further causes the enormous
loss of both generations and demands. Hence, there is a pressing need to evaluate the impact of
stochastic variation of RESs on the RoCoF in modern operational planning.

5



Energies 2020, 13, 2780

To accommodate the uncertainties brought by RESs, the safe operation of the system under
the assumed “worst-case scenario” is guaranteed by reserving excessive conventional generation
in real-time operation. However, the “worst-case scenario” where the uncertain disturbances of all
the RESs reach maximum simultaneously rarely happens in a highly RES-penetrated power system
because of spatiotemporal uncorrelation among the same or different types of the RESs in the network.
For different types of RESs, wind power plants often reach the maximal output in the night while the
photovoltaic plants only generate during the daytime. For the same type of RESs located in different
places, the correlation of their stochastic output can be quite low. Both factors above significantly
reduce the occurrence probability of the simultaneous maximal output of renewable energy plants.
Thereby, a two-dimensional evaluation including both the severity and the occurrence probability
of the event could be more beneficial for the system planner to make a decision, which may further
increase the allowed penetration level of RESs. There are two common approaches to achieve the
two-dimensional evaluation mentioned above [11–14]. (1) Monte Carlo simulation (MCS), which
aims to compute the probabilistic distribution of the concerned indices by generating a large number
of random variables and thus, simulation results. In [13], scenario-based simulation (SBS), similar
to MCS, is proposed to calculate the maximal renewable energy penetration limits to maintain the
frequency performance by considering numerous potential operational scenarios. The results from the
SBS are accurate, but its calculation procedure is very time-consuming, which is normally regarded as
a verification tool. (2) Analytical method, e.g., cumulant-based analytical method (CBM), calculates the
distribution of the concerned indices based on the sensitivity and the series expansion. This method can
comfortably accommodate arbitrary types of continuous or noncontinuous distribution and correlation
of stochastic variables [14], which is proven to be the most efficient and accurate way to conduct
probabilistic small-signal stability analysis in [15]. In [16], a probabilistic assessment framework on
system RoCoF is proposed based on the CBM for the operational planning of a power system with
RESs. However, the calculation procedure of the CBM is very complicated and not easy to implement.

The system frequency response (SFR), as an overall performance of the system frequency,
is aggregated by frequency responses of the individual generator [17] and normally required to remain
within a specific range set by the system operator [18]. While the heterogeneity of different regional
frequency responses would be more obvious because of the increasing penetration level of distributed
RESs and uneven distribution of inertia sources, which cannot be simply revealed by an integrated
SFR [19–21]. Reference [13] reports that regional RoCoF violates the given limits, whereas the system
RoCoF operates safely after the disturbance, which demonstrates the necessity of regional RoCoF
assessment. Moreover, the RoCoF at the disturbance instant (i.e., t = 0+) is usually observed to be the
worst RoCoF without any assistance from the system fast-acting control [19,22–24]. Hence, regional
RoCoF deserves a careful investigation in the operational planning stage to avoid the potential risk of
RoCoF violation.

Taking all the points above into consideration, the paper proposes a novel fast-algorithmic
evaluation to efficiently determine the probabilistic distribution of regional RoCoF, which demonstrates
a clear superiority over the time-consuming SBS and the complicated CBM. The main contributions of
the paper are listed below accordingly:

1. By combining the analytical sensitivity (AS) of RoCoF and the linear sensitivity-based method
(LSM), AS-LSM is proposed to calculate the RoCoF. AS can adequately reflect the essential relationship
between the variation of RESs and the RoCoF. Together with AS, LSM enables the evaluation of the
RoCoF considering a complex multi-RES environment by using a superimposing technique, which
considerably facilitates the understanding and implementation.

2. The proposed AS-LSM can facilitate the calculation for the probabilistic distribution of regional
RoCoF. As a combination of numerical and analytical methods for probabilistic computation, the
AS-LSM has a higher computing efficiency compared with SBS and a more straightforward calculation
procedure compared with CBM.
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3. The proposed AS-LSM could determine the probabilistic distribution of regional RoCoF
influenced by the correlation of wind speed distribution more accurately than AS-CBM (i.e., CBM
based on AS).

The rest of the paper is organized as follows. In Section 2, regional analytical sensitivity (AS) of
RoCoF is derived based on the generator and network information. Based on the derived regional
AS and the linear sensitivity-based method (LSM), regional RoCoF in a multi-RES penetrated power
system is calculated by the proposed AS-LSM in Section 3. Case studies are conducted in Section 4 to
verify the effectiveness and efficiency of the proposed method with consideration of different wind
speed correlations. The conclusion is drawn in Section 5.

2. Analytical Sensitivity (AS) of Regional RoCoF w.r.t a Single Disturbance

For a single-machine system, the RoCoF is directly expressed as (1) according to [25]:

RoCoF =
f (t)

dt
=

1
2H

P(t) (1)

where H is the inertia, f (t) is the frequency deviation from the nominal frequency f0, and P(t) is the
imposed active power disturbance.

2.1. Generator-Level Power Disturbance Propagation and Its Distribution Coefficient

At the moment of the disturbance occurring (t = 0+), the system active power disturbance
(PDist), which is incurred by the sudden change of RES in this paper, would propagate in the system.
The active power disturbance component distributed to each generator bus Pi(0+) can be determined
by the synchronizing power coefficients (Psik) between the location of the RES and the individual
generator [17]. The propagating procedure is illustrated by Figure 1.
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Figure 1. Active power disturbance propagation from renewable energy sources (RES) (i.e., bus k) to
each generator bus.

First, the full network is reduced to the N+1 bus equivalent network, where N is the total number
of the generators in the network, and “1” refers to the single RES. Second, the synchronizing power
coefficients (Psik) between RES, i.e., bus k and, the ith generator bus is calculated as (2) according to [17].

Psik = ViVk(Bik cos δik0 −Gik sin δik0) (2)

where Vi and Vk are the voltage magnitude of bus i and bus k, respectively. Bik and Gik are the imaginary
and real parts of the equivalent admittance between bus i and bus k separately. δik0 is the steady angle
difference between bus i and bus k.
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Then the distribution coefficient of power disturbance (Pc) is defined as a percentage in (3), which
quantifies what percentage of active power disturbance from a single RES could arrive at the individual
generator bus [17]. The active power disturbance component allocated to each generator bus, i.e.,
Pi(0+) w.r.t the stochastic output of RES (PDist) can be computed by (4).

Pci =
Psik∑N

i=1 Psik

(3)

Pi

(
0+

)
= PciPDist (4)

2.2. Regional Power Disturbance Propagation and Its Distribution Coefficient

Based on the above analysis, the active power disturbance component allocated to a region equals
the sum of the active power disturbance distributed to the individual generator bus in this region.

P j
(
0+

)
=

G∑

i=1

P
j

i

(
0+

)
(5)

where, P j(0+) is the located active power disturbance component in the jth area, P
j

i
is the active power

disturbance distributed to the ith generator bus in the jth area and G is the number of generators in
the jth area. Substituting (4) into (5), the regional active power disturbance distributed from system
active power disturbance source is obtained in (6), where the regional distribution coefficient of power
disturbance is defined in (7).

P j
(
0+

)
=

G∑

i=1

P
j

ci
PDist = P

j
c PDist (6)

P
j
c =

∑G
i=1 Psik

∑N
i=1 Psik

(7)

where P
j
c refers to the jth area Pc w.r.t the output of RES, and N is the total number of the generators

in the network.

2.3. Analytical Sensitivity (AS) of Generator-Level RoCoF

The generator-level RoCoF is calculated as (8) by substituting (4) into (1), where the generator-level
AS is defined in (9).

RoCoFi =
1

2Hi
PciPDist = ASiPDist (8)

ASi =
1

2Hi
× Psik∑N

i=1 Psik

(9)

where RoCoFi is the RoCoF of the ith generator and the ASi is the AS of RoCoFi w.r.t the output of
the RES.

2.4. Analytical Sensitivity (AS) of Regional RoCoF

In a multi-machine system, an active power disturbance would cause various frequency responses
of different generators in a power system. Traditionally, system frequency response, as an overall
performance of all the frequency responses in the system, is aggregated based on the concept of the
center of inertia (COI), where all generators are integrated into one equivalent generator with the sum
of inertia under a base power capacity [17]. Hence, a similar method is applied here to calculate the
regional center of inertia (RCOI), which is defined as follows.

8
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First, the base power capacity of the system is selected, and the individual inertia constant under
a base power capacity (Hi) is acquired in (10):

Hi = Hi,o ×
(

Si

Sbase

)
(10)

where Hi,o is the ith inertia constant w.r.t its rated power capacity Si, and Sbase is the base power capacity.
Then the RCOI of the jth area (H j) is defined in (11):

H j =
G∑

i=1

H
j

i
(11)

where H
j

i
is the inertia of the ith generator in the jth area, and G is the number of generators in the jth

area. The superscript refers to the number of the area.
In [17], COI frequency is defined as fCOI =

∑N
i=1 fiHi/

∑N
i=1 Hi, where fi is the frequency response

of the ith generator, and N is the number of generators. It can be revealed that the COI frequency is
the weighted average of the frequency response of each generator, and the weighted coefficient is
the percentage of the inertia of individual generator over the system inertia. A similar approach is
employed to calculate the RCOI frequency for the jth area ( f

j

RCOI
), as defined by (12):

f
j

RCOI
=

∑G
i=1 H

j

i
f

j

i
∑G

i=1 H
j

i

(12)

where f
j

i
is the frequency response of the ith generator in the jth area, and G is the number of the

generators in the jth area.
By using the concept of a regional equivalent generator, the regional RoCoF (RoCoF j) is derived in

(13) by substituting (6) and (11) into (1), where the regional analytical sensitivity (AS j) is defined in (14).

RoCoF j =
1

2H j
P j

(
0+

)
=

1

2
∑G

k=1 H
j

k

P
j
c PDist = AS jPDist (13)

AS j =
1

2
∑G

k=1 H
j

k

×
∑G

i=1 Psik
∑N

i=1 Psik

(14)

where RoCoF j is the RoCoF of the jth area, the AS j is the AS of the RoCoF j, and G is the number of the
generators in the jth area.

3. Probabilistic Distribution of Regional RoCoF in a Multi-RES Penetrated Power System

3.1. Regional Active Power Disturbance Integration

From the above analysis, the propagation and distribution of system active power disturbance
from the RES depend on the “electrical distance” between the RES and each generator bus at t = 0+

demonstrated by (4). In a multi-RES penetrated power system, it is reasonable to assume that the
active power disturbance distributed to a generator bus equals the sum of the active power disturbance
allocated to the same bus from different RESs, which is expressed by (15). As mentioned above the
active power disturbance distributed to a region equals the sum of the active power allocated to the
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individual generator bus in a coherent area, the regional active power disturbance component in a
multi-RESs penetrated system can be depicted in (16).

Pi

(
0+

)
=

M∑

l=1

PDistil =
M∑

l=1

Psil∑N
i=1 Psil

PDistl =
M∑

l=1

PcilPDistl (15)

P j
(
0+

)
=

G∑

i=1

Pi

(
0+

)
=

G∑

i=1

M∑

l=1

PcilPDistl (16)

where PDistil and Pcil are the distributing active power and distribution coefficient of the ith generator
bus from the lth RES, respectively. PDistl is the active power disturbance of the lth RES. M is the number
of the RES in the system, and G is the number of generators in the jth area.

The propagating procedure of the active power disturbance from multiple RESs is illustrated in
Figure 2. Assume there are M RESs and N generators in the system. First, each RES spreads the active
power disturbance to individual generator bus through the reduced N + 1 network, where PDisti j is
the active power allocated to the ith generator bus from the jth RES. Then, the total active power (Pi)
distributed to a single generator bus equals the sum of the active power distributed to this bus from
different RESs. In addition, the regional active power disturbance equals the sum of the active power
disturbance distributed to the generator bus in the coherent region. For example, when the first i

generators are in Area 1, the active power disturbance distributed to Area 1 (P1) is equivalent to the sum
of the active power distributed to the generator bus in Area 1, i.e., Pk, k = 1 · · · i, as shown in Figure 2.
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Figure 2. The propagating procedure of the active power disturbances in the multi-RES penetrated
power system and the derivation of the regional active power disturbance.

3.2. Regional RoCoF Integration Based on Analytical Sensitivity and Linear Sensitivity-Based
Method (AS-LSM)

A linear sensitivity-based method (LSM), which is capable of accommodating multiple stochastic
variables (i.e., active power disturbance from RESs), is proposed here to compute the critical index
(i.e., regional RoCoF) with a linear relationship (i.e., AS). Hence, the regional RoCoF based on AS-LSM
is established in (17), and the full representation is given in (18).

RoCoF j =
M∑

l=1

AS
j

l
PDistl (17)

RoCoF j =
1

2
∑G

k=1 H
j

k

G∑

i=1

M∑

l=1

Psil∑N
i=1 Psil

PDistl . (18)
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where G and N are the number of the generator in the jth area and the system, respectively, and M is
the number of RES in the system. AS

j

l
. stands for AS of RoCoF j w.r.t the output of the lth RES.

The system-level RoCoF is a particular case of regional RoCoF when G = N and the (18) degrades
to (19). Furthermore, when there is only one disturbance in the system, the (19) further degrades to (1).

RoCoF =
1

2
∑N

k=1 Hk

M∑

l=1

∆PDistl (19)

3.3. Calculation Procedure of Probabilistic Distribution of Regional RoCoF

The flow chart of the calculation procedure of probabilistic distribution of regional RoCoF by
AS-LSM is illustrated in Figure 3 and described as follows: (1) The information of the RES is obtained
including type, number, capacity, steady output, probabilistic distribution of natural source, and the
correlation coefficient matrix, based on which active power variation sample series is generated;
(2) the information of the generator and the network is acquired; (3) on the basis of the above data,
an analytical coherency identification method, e.g., slow coherency identification [26], is implemented
to divide the system into several areas and the interested region is selected; (4) the concerned regional
AS w.r.t the output of individual RES is calculated according to (14), and (5) AS-LSM is employed
to determine the regional RoCoF based on the stochastic output of individual RES and the related
regional AS by (17). This step repeats to get the probabilistic distribution of the regional RoCoF, and the
number of the iterations depends on the number of generated sample series in step 2.

 

Start

Obtain the Information of RES
（ type, number, capacity, steady 

output, distribution and the 
correlation coefficient matrix ）

Obtain the Information of the 
Generators and Network ( structure 

and steady power flow )

Group System by Slow Coherency 
Identification Method and Select the 

Concerned  Region

Calculate the Regional AS w.r.t 
Individual RES according to (14)

End

Compute the Probabilistic 
Distribution of Regional RoCoF w.r.t 

Multiple RESs Based on 
AS-LSM according to (17)

Generate Active 
Power Variation 

Sample Series

 
Figure 3. Flowchart of the calculation procedure for probabilistic distribution of regional rate of change
of frequency (RoCoF) by analytical sensitivity-linear sensitivity-based method (AS-LSM).
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4. Case Study

The effectiveness of the proposed AS-LSM is verified by SBS with 5000 times simulation,
and AS-CBM is also applied to examine the probabilistic distribution of regional RoCoF for the first
time because of its proven good performance on the probabilistic computation of system RoCoF [16].
The benchmark system is selected as a modified IEEE 16-machine 68-bus system with three wind
farms (WFs) connected to bus 29, 32, and 41 respectively in Figure 4 partitioned by slow coherency
identification method [26]. The probabilistic distributions of Region 4 and Region 5 are selected as the
focus of the paper since they are the areas that contain more than one single generator. There are two
scenarios studied in this section, i.e., with and without the correlations of wind speed.

The base capacity of the system is 100MVA. The operational state of the system decreases to 50%
of the original level (system load, generation, and corresponding inertia). The capacity of each wind
plant is 6 p.u, and the steady output is 2 p.u. The penetration of wind energy is defined by the ratio of
the capacity of the WFs over the system load in [27], which is 19.7% in this section.
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Figure 4. Line diagram of a modified IEEE 16-machine 5-area benchmark system with three wind farms.

Based on the calculation procedure in Figure 3, after information acquisition and the system
partition, the regional ASs w.r.t the output of individual WF are calculated according to (14), and the
results are represented in Table 1. For system-level analysis, the system is equivalent to one generator
without considering the “electric distance,” which is also proven by (14) when n equals g, and hence,
the system AS w.r.t the output of different WFs are the same. However, there is a large difference
among the AS of regional RoCoF w.r.t the output of different WFs due to the comprehensive influences
from both “electric distance” and regional inertia. In details, the AS of Region 4 RoCoF w.r.t WF2 and 3
is small (i.e., 0.049267 and 0.004431), whereas the sensitivity w.r.t WF1 is relatively large (i.e., 0.294051),
which is caused by different “electric distance.” Furthermore, the maximal and minimal ASs of all
regional RoCoFs w.r.t WF1 are 0.294051 and 0.000983 respectively, and the difference stems from the
various regional inertia.
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Table 1. The AS of system/regional RoCoF w.r.t the output of individual wind farms (WFs).

WF1 WF2 WF3

System 0.050502 0.050502 0.050502
Region 1 0.000983 0.003597 0.019503
Region 2 0.003680 0.017777 0.001502
Region 3 0.006693 0.013478 0.299779
Region 4 0.294051 0.049267 0.004431
Region 5 0.019988 0.112672 0.003533

4.1. Scenario One (Uncorrelated Wind Speed)

The correlation between two wind power sources is closely related to their geographical distance,
based on which correlation coefficient matrix

[
ρi j

]
m×m

for m grid-connected wind power sources is
established [28], and the wind speed distribution in [29] is applied. In this scenario, the distances
among each two WFs are assumed to be larger than 1200 km, which means there is no correlation
among each WF, and hence the correlation matrix is a unit matrix.

Based on the AS in Table 1, AS-LSM and AS-CBM are employed to calculate the probabilistic
distribution of the system/regional RoCoF, which are examined by SBS in Figure 5. The probabilistic
density functions (PDFs) of the system, Region 4, and Region 5 RoCoF are exhibited in Figure 5a–c,
respectively. The operational limit of the RoCoF is concerned by the system operator, which is set
±0.4 Hz/s for demonstration [16], and the detailed comparisons are given in Tables 2 and 3.
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Figure 5. Probabilistic density functions (PDFs) of system/regional RoCoF by scenario-based 
Figure 5. Probabilistic density functions (PDFs) of system/regional RoCoF by scenario-based simulation
(SBS), AS-LSM, and analytical sensitivity-cumulant-based method (AS-CBM); (a) system, (b) Region 4,
and (c) Region 5.
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Table 2. Probabilistic distribution of the system, region 4, and region 5 RoCoF using SBS, AS-LSM,
and AS-CBM within operational limits (uncorrelated wind speed).

No SBS AS-LSM AS-CBM

System 96.9200% 98.0800% 98.0307%
Region 4 41.3200% 40.8400% 43.5933%
Region 5 92.8400% 90.7000% 92.9851%

Table 3. The absolute error of probabilities for the system, region 4, and region 5 RoCoF by AS-LSM
and AS-CBM within operational limits (uncorrelated wind speed).

No AS-LSM AS-CBM

System 1.1600% 1.1107%
Region 4 0.4800% 2.2733%
Region 5 2.1400% 0.1451%

The AS-LSM and AS-CBM perform well in computing the probabilistic distribution of the RoCoF
in the system, Region 4, and Region 5 intuitively, as displayed in Figure 5. Furthermore, it is also
discovered that the shapes of the probabilistic distributions of the system RoCoF and the regional
RoCoFs are different, but both methods could approach the trend, which is verified by the detailed
result in both Tables 2 and 3. The absolute errors of the probabilistic results by both AS-LSM and
AS-CBM, as presented in Table 3, reveal that the probabilistic distributions of system RoCoF calculated
by both methods are relatively stable compared with that of regional RoCoFs. For example, the
probabilistic result of Region 4 RoCoF can be estimated more accurately by AS-LSM than that by
AS-CBM with less deviation (0.48% vs. 2.2733%). While the AS-CBM has a better performance than
AS-LSM in calculating the probabilistic distribution of Region 5 RoCoF (0.1451% vs. 2.14%).

The computational time of each method are compared in Table 4. Both AS-LSM and AS-CBM
are more than 1000 times faster than SBS, while the AS-LSM is a little faster because of the simple
calculation procedure, which avoids a large amount of computation on Gram-Charlier expansion.

Table 4. The computational time of SBS, AS-LSM, and AS-CBM.

SBS AS-LSM AS-CBM

Computational Time 2691.72s 1.95s 2.57s

4.2. Scenario Two (Correlated Wind Speed)

In this scenario, the correlation coefficient between WF2 and WF3 is set to be 0.8 (highly correlated)
as (20).

[ρ]3×3 =




1 0 0
0 1 0.8
0 0.8 1




(20)

The PDFs of RoCoF on the system and Region 4 are given in Figures 6 and 7, respectively,
for illustration, while the PDF of RoCoF associated with Region 5 is not given due to similar outcomes.
The detailed probabilistic results and errors are also listed in Tables 5 and 6, respectively.
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Figure 6. PDF of system RoCoF by SBS, AS-LSM, and AS-CBM.

Figure 6 illustrates the probabilistic distribution of system RoCoF carried out by SBS, AS-LSM,
and AS-CBM. Compared with the real probabilistic distribution of system RoCoF in Figure 5a, there are
a few noticeable “impulses” (i.e., occurrence probability) at a few points on the horizontal ordinate
(i.e., RoCoF value, including maximal/minimal system RoCoF), which increases the probability of the
“worst-case scenario” and deserves careful consideration in operational planning. The most apparent
“impulse” in Figure 6 is the probability at the lowest RoCoF value, which is larger than the probability
of the steady state (0 Hz/s). On the other hand, the total probability is 1, and this leads to a few decreases
in the probabilities of other RoCoF values, which presents a smooth curve in Figure 6. Both methods
evaluate the system RoCoF well according to the detailed probabilistic results in Tables 5 and 6.
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Figure 7. PDF of Region 4 RoCoF by SBS, AS-LSM, and AS-CBM.

Table 5. Probabilistic distribution of the system, region 4, and region 5 RoCoF using SBS, AS-LSM,
and AS-CBM within operational limits (correlated wind speed).

No SBS AS-LSM AS-CBM

System 93.6600% 94.9800% 95.2664%
Region 4 42.7000% 41.8000% 43.9902%
Region 5 91.4600% 90.9200% 92.7150%
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Table 6. The absolute error of probabilities for the system, region 4, and region 5 RoCoF by AS-LSM
and AS-CBM within operational limits (correlated wind speed).

No AS-LSM AS-CBM

System 1.3200% 1.6064%
Region 4 0.9000% 1.2902%
Region 5 0.5400% 1.2550%

As indicated in Figure 7, the “impulses” still occur in the probabilistic distribution of regional
RoCoF, and the curve is much smoother compared with that in uncorrelated wind speed situations.
The probabilistic distribution of regional RoCoF obtained by SBS is not bell-shaped, which could be
depicted by both methods effectively, while the AS-LSM performs better than AS-CBM owing to less
deviation, i.e., 0.9% vs. 1.2902% in Region 4 RoCoF and 0.54% vs. 1.255% in Region 5 RoCoF as given
in Table 6.

5. Conclusions

The regional RoCoF is an important indicator for the safe operation of the power system, which
needs to be carefully considered in operational planning. This paper proposes a fast-algorithmic
assessment for the probabilistic distribution of regional RoCoF, which is more advantageous as it needs
less time compared with SBS and provides a more straightforward calculating procedure than CBM.
SBS validates the probabilistic results of both AS-LSM and AS-CBM with and without the consideration
of wind speed correlation. Some important findings are summarized as follows:

(1) The probabilistic distributions of system RoCoF and regional RoCoF are different, i.e.,
bell-shaped vs. non-bell-shaped, which should be assessed separately. Both AS-LSM and AS-CBM can
achieve the goal while AS-LSM has a better overall performance.

(2) When the wind speed correlation is considered, some evident “impulses” occur for the
probabilistic distribution of both system and regional RoCoF as indicated by SBS. This phenomenon
could be correctly reflected by both AS-LSM and AS-CBM, while AS-LSM performs better, which also
demonstrates the flexibility and robustness of the proposed AS-LSM.

(3) The proposed AS-LSM converts a multi-disturbance problem into the superposition of a
single-disturbance problem, which provides a more straightforward and convenient solution for their
industrial implementation.
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PDF Probabilistic density function
RCOI Regional center of inertia
RES Renewable energy source
RoCoF Rate of change of frequency
SBS Scenario-based simulation
SFR System frequency response
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Abstract: With the increasing penetration of wind power generation, the frequency regulation burden
on conventional synchronous generators has become heavier, as the rotor speed of doubly-fed
induction generator (DFIG) is decoupled with the system frequency. As the frequency regulation
capability of wind farms is an urgent appeal, the inertia control of DFIG has been studied by many
researchers and the energy storage (ES) system has been installed in wind farms to respond to
frequency deviation with doubly-fed induction generators (DFIGs). In view of the high allocation
and maintenance cost of the ES system, the capacity allocation scheme of the ES system—especially
for fast-frequency response—is proposed in this paper. The capacity allocation principle was to
make the wind farm possess the same potential inertial energy as that of synchronous generators set
with equal rated power. After the capacity of the ES system was defined, the coordinated control
strategy of the DFIG-ES system with consideration of wind speed was proposed in order to improve
the frequency nadir during fast-frequency response. The overall power reference of the DFIG-ES
system was calculated on the basis of the frequency response characteristic of synchronous generators.
In particular, once the power reference of DFIG was determined, a novel virtual inertia control
method of DFIG was put forward to release rotational kinetic energy and produce power surge by
means of continuously modifying the proportional coefficient of maximum power point tracking
(MPPT) control. During the deceleration period, the power reference smoothly decreased with the
rotor speed until it reached the MPPT curve, wherein the rotor speed could rapidly recover by virtue
of wind power so that the secondary frequency drop could be avoided. Afterwards, a fuzzy logic
controller (FLC) was designed to distribute output power between the DFIG and ES system according
to the rotor speed of DFIG and SoC of ES; thus the scheme enabled the DFIG-ES system to respond to
frequency deviation in most cases while preventing the secondary frequency drop and prolonging
the service life of the DFIG-ES system. Finally, the test results, which were based on the simulation
system on MATLAB/Simulink software, verified the effectiveness of the proposed control strategy
by comparison with other control methods and verified the rationality of the designed fuzzy logic
controller and proposed capacity allocation scheme of the ES system.

Keywords: DFIG; ES; virtual inertia control; capacity allocation; fuzzy logic controller

1. Introduction

With the rising emerging energy crisis and environmental problems, governments around the
world are actively investing in the utilization and development of new renewable energy [1]. Wind
energy and solar energy, as reliable renewable energy sources, have been exploited rapidly in recent
years. However, wind power generation is challenging the safety and stability of the power system, as
it results in the increasing penetration of wind power generation into the power grid.
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In recent years, wind farms have been required to have frequency regulation capability [2]. The
frequency regulation participated in by wind farms commonly involves two aspects: fast-frequency
response and primary frequency regulation [3]. The fast-frequency response, which is also called
short-term frequency response, is the intrinsically inertial response from synchronous generators to
suppress the frequency fluctuation and raise the frequency nadir by means of releasing a large amount
of kinetic energy stored in the rotating masses. The fast-frequency response lasts until the frequency
drop to the nadir or rise to the peak. The primary frequency regulation is the process where the output
active power of generators is adjusted to strike a power balance between generation side and load side
so that the frequency is restored within the safe range. Considering the great demand of support power
and long duration of the primary frequency regulation, the participation of wind farms in primary
frequency regulation means the wind turbines have to operate in the load reduction mode before
the frequency fluctuation so as to be able to provide enough reserve active power, which, however,
reduces the profit of wind farms because of the waste of wind resources [4]. In spite of the increasing
proportion of wind power generation in electricity generation, the primary frequency regulation is
still the main task of conventional synchronous generators in view of the fluctuation of wind power
output caused by the fluctuation of wind speed [5]. Therefore, the research on wind farms to enhance
fast-frequency response capability is more important for the current grid structure.

At present, doubly-fed induction generators (DFIGs) are commonly applied in wind farms.
Nevertheless, the rotor speed and the system frequency are decoupled because of the existence of
the electronic converter [6], which means that the rotational kinetic energy of the rotor is completely
“hidden”. The contribution of DFIG to the frequency regulation is almost none, so the frequency
stability will be jeopardized with the increasing proportion of wind power generation and the decrease
of inertia of the entire system [7]. Consequently, international scholars have put forward a series of
schemes to deal with this problem.

Compared with conventional synchronous generators, DFIGs have greater inertial energy due to
their wider range of speed regulation. Reference [8] added an accessional differential control into the
maximum power point tracking (MPPT) control link in order to lift instant output power by releasing
the stored rotational kinetic energy of the rotor once the frequency drop event occurred. The power
reference was modified as the frequency deviation was set as input variable in the MPPT control link.
Although this scheme enables DFIG to utilize its inertial energy to realize fast-frequency response,
DFIG would absorb much energy from the grid to recover its rotor speed, which would lead to the
secondary frequency drop. Reference [9] proposed a scheme in which the instant output power of
DFIG was maintained at the maximum level before the rotor speed exceeded the safe range once
the frequency drop event was detected. Then, the power reference was decreased dramatically so
that the rotor speed was able to recover. This scheme enables DFIG to support the frequency with
its best effort and prevent over-deceleration of rotor speed in theory. However, because of the slow
response of rotor speed control, in practice, the secondary frequency drop still happens when the
rotor speed regulation range is too large, as is shown in the simulation results. Taking rotor speed
and wind power penetration level into account, reference [10] made DFIG maintain the incremental
power for a preset period and forced the rotor speed converge to a stable operating range with power
reference decreasing. Because the incremental power varies with the penetration level according to
the calculation process of the power reference, DFIG is unable to provide sufficient power to support
frequency when the power system has low wind penetration, which should be easier to deal with for
wind farms. Furthermore, DFIG is unable to conduct fast-frequency response under the condition of
extreme wind speed (too high or too low), as DFIG does not possess surplus inertial energy under
extremely low wind speed and cannot increase the output power under extremely high wind speed.
Thus, wind farms have difficulties relying on DFIGs alone to respond to system frequency.

The energy storage (ES) system has been widely applied in electrical fields to suppress the
fluctuation of output power and regulate frequency because of its stable performance, flexible control,
and fast response [10]. Thus, it is suitable for the fast-frequency response in wind farms. In reference [11],
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in order to avoid the frequency secondary drop caused by rotor speed recovery, the ES was integrated
at the AC bus of wind farm to respond to frequency fluctuation with DFIG where DFIG was the
main part and ES was the auxiliary part. ES simply provided the energy required in the period of
rotor speed recovery or supplemented the insufficient energy supplied by DFIG, so the enormous
potential of ES was not made full use of in this scheme. To make the best use of both the capability of
ES and the wind resources, reference [12] made only ES take charge of the fast-frequency response,
whereas DFIG operated in the MPPT mode without responding to frequency fluctuation. However,
there is no doubt that the service life of ES would reduce and the maintenance cost of ES would
increase in this scheme. In addition, the capacity of the ES system was given as 10% of the DFIGs’
rated power without any mathematical deduction. Herein, whether this scheme could increase the
profit of wind farms or not is questionable. In reference [13], a hybrid control strategy is proposed,
considering the de-loading (DL) state of wind turbine generator (WTG) and the state of charge (SoC) of
ES. However, the power reference of the DFIG-ES system for fast-frequency response is calculated
on the premise of the power load deviation forecast, which is hard to acquire precisely in practice.
Reference [14] integrated an ES system at the DC bus of a DFIG to share the frequency regulation
burden, and proposed coordinated control strategy to improve the nadir with consideration of the SoC

of ES and the operating state of DFIG. Nevertheless, the DFIG-ES system is unable to provide extra
active power and participate in frequency regulation under extremely high wind speed because of
the capacity limitation of the converter in DFIG. Moreover, this scheme increases the number of ES
systems and creates unnecessary maintenance and management cost when the ES system is embedded
at the DC bus of DFIG. In summary, the research works mentioned above did not involve an effective
coordinated control method for DFIG and ES to respond to frequency disturbance with their most
effort under any wind speed.

To enhance the fast-frequency response capability of wind farms, this paper puts forward a
coordinated control scheme of the DFIG-ES system with the consideration of different wind speed. The
overall power reference of the DFIG-ES system was calculated on the basis of the frequency response
characteristic of synchronous generators. Therefore, according to the biggest inertial energy that
synchronous generators can provide, a capacity allocation scheme of ES for the fast-frequency response
was proposed, and the capacity allocation principle was to make the wind farm possess the same
potential inertial energy as that of synchronous generators set with equal rated power. The capacity
allocation of ES is meaningful because it reduces the allocation and maintenance cost of ES compared
with other schemes. In order to enable DFIG to respond to frequency deviation with ES, once the
power reference of DFIG was determined, a novel virtual inertia control method was put forward to
release rotational kinetic energy and produce power surge by means of continuously modifying the
proportional coefficient of maximum power point tracking (MPPT) control. During the deceleration
period, the power reference smoothly decreased with the rotor speed until it reached the MPPT curve,
then the rotor speed could rapidly recover by virtue of wind power, so that secondary frequency
drop could be avoided. After the deficiencies of DFIG and ES solely accomplishing fast-frequency
response were respectively analyzed, a fuzzy logic controller was designed to distribute the output
power between DFIG and ES according to the rotor speed of DFIG and SoC of ES, which ensured
the effective cooperation between DFIG and ES. In the end, the test results, which were based on the
simulation system on MATLAB/Simulink software, verified the effectiveness of the proposed control
scheme by comparison with other control methods and verified the rationality of the designed fuzzy
logic controller and proposed capacity allocation scheme of the ES system.

2. Modeling of the DFIG-ES System

The model structure of the DFIG-ES system introduced in this paper is shown as Figure 1.
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Figure 1. The structure diagram of the doubly-fed induction generator energy storage (DFIG-ES)
system. GB is the gear box, IG is the induction generator, and T1 and T2 are transformer 1 and
transformer 2, respectively.

2.1. Doubly-Fed Induction Generator Model

In the dq two-phase synchronous rotating coordinate system, the voltage, flux, power, and
electromagnetic torque equations of the doubly-fed induction generator are shown as follows [15,16]:



Ψsd = −Lsisd + Lmi
rd

Ψsq = −Lsisq + Lmirq

Ψrd = Lrird − Lmi
sd

Ψrq = Lrirq − Lmisq

usd = pΨsd −ωeΨsq −Rsisd
usq = pΨsq +ωeΨsd −Rsisq

urd = pΨrd −ωrΨrq + Rrird
urq = pΨrq +ωrΨrd + Rrirq

Ps = 1.5(usdisd + usqisq)

Qs = 1.5(usqisd − usdisq)

Te = 1.5pnLm(isqird − isdirq)

(1)

where ψsd, ψsq, ψrd, ψrq are stator and rotor flux on the d and q axes, respectively; Ls, Lr, Lm are
equivalent self-inductance and mutual inductance of the stator and rotor; isd, isq, ird, irq are stator and
rotor current on the d and q axes; usd, usq, urd, urq are the stator and rotor voltage on the d and q axes;
Te is electromagnetic torque; pn represents pole pairs of DFIG;ωe is synchronized angular velocity;
ωr represents rotor angular velocity; Ps is the active power of DFIG; and Qs is the reactive power of
DFIG. Ignoring the change of stator resistance and stator flux, the d axis of the dq synchronous rotating
coordinate system is oriented according to the space vector of grid voltage. The relationship between
stator-side power and rotor current is shown as follows:


ird = Ls

Lm

2Ps
3Us

irq = − Ls
Lm

2Qs
3Us
− Us
ωeLm

. (2)

Once the stator voltage vector control is adopted, the active power of DFIG is controlled by the
rotor current on the d axis, and the reactive power is controlled by the rotor current on the q axis. Thus,
the active power and reactive power of DFIG are decoupled. The control diagram of the rotor-side
converter is shown in the Figure 2 [8]. This control link contains double loops. The outer loop is a
power loop, and the inner loop is a current loop. The rotor current reference, i∗

rd
and i∗rq, in the current
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loop are respectively determined by the maximum power point tracking control and the reactive power
control in the outer loop. In the maximum power point tracking control, the relationship between
active power reference value P∗opt and rotor angular velocity ωr is as follows:

P∗opt =



koptω3
1,ω0 < ωr < ω1

Pmax−koptω3
1

ωmax−ω1
(ωr −ωmax) + Pmax,ω1 < ωr < ωmax

Pmax,ωmax < ωr

(3)

where kopt is the proportional coefficient of the maximum power point tracking control; ω0 represents
the lowest rotor angular velocity of DFIG;ω1 is the rated rotor angular velocity of DFIG;ωmax is the
maximum rotor angular velocity; and Pmax is the maximum active power output of DFIG.
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Figure 2. The control diagram of the rotor side converter of DFIG. MPPT: maximum power point
tracking. PI: proportion and integral. SPWM: sinusoidal pulse width modulation. PLL: phase
locked loop.

2.2. Energy Storage System Model

Different types of batteries can be chosen to make up an energy storage system, such as
nickel-cadmium batteries, sulfur-sodium batteries, and lithium-ion batteries, among others. Among
them, the energy storage technology of the lithium-ion batteries has developed rapidly over the
years [17]. Thus, lithium-ion batteries are integrated into the ES system in this paper.

The ES affiliated to DFIG is controlled by an independent inverter, which features a fast response
performance on the frequency regulation. Considering that the capacity of the ES is finite, the
state of charge (SoC) of ES should be taken into consideration [18], which is calculated by

QSoC(t) = QSoC(0) −

∫ t

0 PES(τ)dτ

Erated
× 100% (4)

where QSoC(t) is the state of charge at time t; QSoC(0) is the initial state of charge; PES(τ) is the output
power (positive when ES is discharging) of ES at time τ; t is the operation time of ES; and Erated is the
rated capacity of ES.

Considering that the capacity of ES is a main factor influencing the frequency regulating capability
of wind farms, especially in the case where DFIG is unable to respond to frequency deviation under
extreme wind speed, a capacity allocation scheme of ES will be discussed later in the paper.

3. Capacity Allocation Scheme of ES

In reference to power system analysis, inertia time constant H is defined as the ratio of rotor
inertial energy to rated capacity of generator at synchronous angular velocity [19]. Since the inertial
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energy of DFIG is not available naturally during a frequency fluctuation and the amount of virtual
inertial energy provided by DFIG depends on the parameters in virtual inertial control link (discussed
in the next section), the potential inertia time constant HSWE of power systems containing wind farms
and conventional power plants can be represented by

HSWE =

n∑
i=1

( 1
2pi

2 Jiωe
2)+

m∑
j=1

EDFIG, j +
l∑

k=1
EES,k

SN_all
(5)

where n, m, l is the number of synchronous generators of DFIG and ES systems, respectively; Pi is the
pole pairs of synchronous generator i; Ji represents the rotational inertia of synchronous generator i;
EDFIG, j is the rotational kinetic energy of DFIG j; EES,k is the storage energy of ES k; and SN_all is the
total rated capacity of the generators in power system.

The DFIG operating in the MPPT mode, unlike the synchronous generator whose rotor speed is
coupled with the system frequency, cannot exchange power with the grid when the system frequency
fluctuates. Therefore, large-scale wind farms connected to the grid will inevitably lead to the reduction
of system inertia, and the allocated capacity of ES will directly affect the inertia of the wind farm and
even the whole power system. However, in view of the relatively high configuration and maintenance
cost of ES, the larger the capacity of ES means the higher construction and maintenance cost of wind
farms. Considering that synchronous generators contribute with the most electricity generation,
adjusting the output energy of the wind farm to be approximately same as the inertial energy produced
by conventional synchronous generators would reduce the negative impact of large-scale wind farms
on frequency stability of the power system and be convenient for grid staff to dispatch the power
grid [20]. Therefore, the capacity allocation scheme of ES installed in wind farms for fast-frequency
response is proposed. The capacity allocation principle is to make the wind farm have the same
potential inertial energy as that of synchronous generators set with equal rated power.

According to the power grid operating regulations in China [21], the rotor angular velocity of the
synchronous generator is usually limited between 0.95 p.u and 1 p.u during frequency regulation. The
maximum rotational kinetic energy ∆ES,MAX released from the synchronous generator is

∆ES,Max =
1
2

J(1− 0.952)ωe
2 = 0.0488Jωe

2. (6)

The rotational kinetic energy of the synchronous generator at rated angular velocity is

ES =
1
2

Jωe
2 =

1
2

PNTJ (7)

where TJ is the inertia time constant of the synchronous generator; PN is the rated output active power
of the synchronous generator; ∆ES,MAX can be regarded as the maximum inertial energy produced by
the synchronous generator during fast-frequency response; The time during the frequency dropping
from normal to the nadir is ∆T, and therein the virtual inertial energy released by ES ∆EESS is

∆EESS = PESS ∗ ∆T = 0.0488PNTJ (8)

where PESS is the average output power of ES during the fast-frequency response; and ∆T represents
the time duration of the fast-frequency response. Then, PESS can also be expressed as

PESS = 0.0488PN

TJ

∆T
. (9)

Generally, the inertia time constant of the synchronous generator is about 4 to 18 s, and the
fast-frequency response lasts about 7 to 15 s [22]. Thus, we set TJ as 11 s and ∆T as 11 s (average
value), giving
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PESS = 0.0488PN. (10)

Considering the huge instantaneous throughput of the ES system [23], the time required for the
output power to reach the specified value, compared with the time duration of the fast-frequency
response, can be negligible. In view of a certain output power fluctuation margin, the maximum
output power of the ES is set as 5% of the rated power of the wind farm.

Deep charging and discharging will seriously reduce the service life of the ES system [24]. In this
paper, the charging and discharging range of ES is maintained between 10% and 90% of the rated
capacity. Normally, the initial SoC of the ES system is 50%, so the available storage energy used for
fast-frequency response equals 40% of the rated capacity. As the time duration of fast-frequency
response is supposed as 11 s, referring to Equation (10), the rated capacity of the ES EESS is calculated
as follows:

EESS = PESS ∗ (11/3600)/0.4 = 0.00764PN. (11)

Therefore, the rated capacity of the ES system affiliated to DFIGs equaled to 0.764% of the rated
power of the wind farm.

4. Coordinated Control Strategy of DFIG-ES System with Consideration of Wind Speed

4.1. Division of Wind Speed Region

When DFIG is in normal operation, converter control and pitch control are comprehensively
applied to adjust the operation state of wind turbine [10,25,26]. In the case of low wind speed, the
control purpose is to make the operating point follow the maximum power point tracking curve and
capture the maximum wind energy. With the increment of wind speed, the rotor speed reaches the
limit and maintains at the maximum. In the case of high wind speed, the wind energy capturing
efficiency is reduced by adjusting pitch angle so that the output power of DFIG is maintained at the
maximum (rated power) [27]. The relationship among rotor speed, active power, pitch angle and wind
speed is shown in Figure 3.
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Figure 3. The operation state diagram of DFIG. ωr,min is the minimum rotor angular velocity;ωr,max is
the maximum rotor angular velocity; and PN is the rated active power of DFIG.

Because the operation state of DFIG is closely related to the wind speed, the wind speed was
divided into three regions before the control strategy was discussed in this paper:

(1) Low speed region (vwind < 6 m/s)—the rotor speed just maintains at ωmin, so the DFIG cannot
respond to the frequency drop by releasing the rotational kinetic energy.

25



Energies 2019, 12, 3581

(2) Middle speed region (6 m/s ≤ vwind ≤ 12 m/s)—the DFIG operates in MTTP mode to maximize the
efficiency of capturing wind energy. The fast-frequency response can be achieved by releasing the
rotational kinetic energy, except for the scenario where the output power is close to the maximum.

(3) High speed region (12 m/s < vwind)—although the rotational kinetic energy is huge, the output
power of the DFIG is limited by the capacity of the converter and no excess energy can be
generated, so the DFIG cannot undertake the task of fast-frequency response.

It can be seen that when the wind speed belongs to the low or high speed region, the DFIG cannot
provide inertial energy and only relies on ES to complete fast-frequency response. Next, we will
discuss the coordinated control strategy of the DFIG-ES system when the wind speed belongs to the
middle speed region. It was noted that the control objective is very easy to achieve when frequency
suddenly rises because DFIG can operate in load reduction mode and ES can operate in charging mode.
Thus, in this paper, we only discuss frequency drop incident.

4.2. Virtual Inertia Control of DFIG-ES System

During the period of fast-frequency response, in order to make the wind farm emit the same
amount of inertial energy as the synchronous generators set with equal rated power, the energy emitted
by the DFIG-ES system can be represented as

∆EDFIG + ∆EES = 1
2p2

n
JDFIG[(ωr0 + ∆ωr)

2 −ωr0
2)] + ∆EES

= 1
2p2

n
Jvir[(ωe + ∆ωe)

2 −ωe
2)]

(12)

where ∆EDFIG is the energy emitted by DFIG; ∆EES is the energy emitted by ES; JDFIG is the inertia
constant of DFIG; Jvir represents the virtual inertia constant of the DFIG-ES system; ∆ωe is the change
of synchronized angular speed; ∆ωr is the rotor speed change of DFIG; and ωr0 is the initial rotor
angular velocity of DFIG.

Supposing that the energy emitted by DFIG accounts for ∂ (0 ≤ ∂ ≤ 1) of the total energy emitted
by the DFIG-ES system, the equivalent virtual inertia constant of the DFIG can be represented as


Jvir,DFIG = ∂

(2ωr0+∆ωr)∆ωr

(2ωe+∆ωe)∆ωe
JDFIG ≈ ∂ωr0∆ωr

ωe∆ωe
JDFIG = ∂λωr0

ωe
JDFIG

λ = ∆ωr
∆ωe

(13)

where λ is the rotor speed regulation coefficient, and Jvir,DFIG is the equivalent virtual inertia constant
of DFIG.

According to Equation (13), it can be seen that the equivalent virtual inertia constant of the DFIG
is determined by not only the inertia constant of the DFIG, but also the initial angular velocity ωr0, the
rotor speed regulation coefficient λ, and the output power proportion of DFIG ∂.

On the basis of Equation (3) and Figure 2, in order to complete the fast-frequency response by
releasing the kinetic energy, we can modify the proportional coefficient kopt to adjust the operation
state of DFIG. Supposing the frequency change is ∆f, the proportional coefficient kopt is modified to
k∗opt during the frequency regulation period, with the rotor angular velocity ω0 decreasing to ω1 to
release rotational kinetic energy. The decrease range of rotor speed should not be too large (by limiting
output power proportion of DFIG ∂ and active power reference) so as to ensure that the rotor will
not absorb too much energy from the grid during the rotor speed recovery period. According to the
maximum power point tracking curves under different wind speeds, if the rotor speed regulation is
within the safe range, the secondary frequency drop would be avoided. Referring to Equations (13)
and (3), supposing the range of rotor speed regulation is not too large, then we can find

{
kopt
∗ω3

1 ≈ koptω3
0

ω1 = ω0 + ∆ωr = ω0 + λ∗∆ωe = ω0 + ∂λ2π∆ f
(14)
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where λ∗ is the modified rotor speed regulation coefficient with consideration of output power
proportion ∂. Thus, the modified proportional coefficient k∗opt can be represented as

kopt
∗ =

ω3
0

(ω0 + ∂λ2π∆ f )3
kopt, (15)

which follows the restrictions


kopt
∗ ≤ Pmax

ω3
0

ω
r,min ≤ ω1 = ω0 + ∂λ2π∆ f ≤ ωr,max

. (16)

Therefore, if we input the frequency change ∆f into the MPPT control link of DFIG, then the
fast-frequency response and rotor speed recovery can be realized by modifying the proportional
coefficient according to Equation (15). In particular, when the fast-frequency response is over, as the
primary frequency regulation continues and the frequency deviation fades, the proportional coefficient
k∗opt changes smoothly to the original value and the operating point moves smoothly back to the original
place. In the light of relatively long duration of primary frequency regulation, the energy required
for rotor speed recovery depends mainly on the wind energy (supposing the wind speed remains),
and secondly on the huge ramp rate of synchronous generators set. Therefore, as long as the speed
regulation range is not particularly large, the active power shortage caused by the rotor speed recovery
can be almost negligible.

The fast-frequency response progress of DFIG is shown in Figure 4. The DFIG originally operates
at point A on the MPPT curve, assuming that the wind speed remains at 9 m/s throughout the period.
When the frequency drop event is detected, the power reference is surged immediately and the
operating point of DFIG moves rapidly to point P. Because the electromagnetic power of DFIG is larger
than the mechanical power, the speed decreases rapidly. At the same time, the output power decreases
until the operating point reaches the MPPT curve at point B, where the electromagnetic power is equal
to the mechanical power. As is shown in Figure 4, the power shortage caused by rotor speed regulation
is very small, and thus Equation (14) is reasonable. The frequency deviation decreases gradually as
the primary frequency regulation processes, so the operating point moves smoothly from B to A. It is
noteworthy that the energy required in rotor speed recovery period is mainly from the wind energy.
Therefore, the secondary frequency drop can be avoided in this scheme, which will be proved in the
study case.
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Figure 4. The fast-frequency response progress diagram of DFIG. ∆ω is the rotor speed regulation
during fast-frequency response. The red curve is the MPPT curve.
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According to the Equations (7) and (12), the energy emitted by ES, which accounts for 1 − ∂
(0 ≤ (1− ∂) ≤ 1) of the output energy, can be expressed as

∆EES = 1−∂
2 PNTJ[(ωe + ∆ωe)

2 −ωe
2)]

= 2(1− ∂)π2PNTJ[1−
( fN+∆ f )2

f 2
N

]
(17)

Considering that the output power released by ES is basically stable, the output power of ES ∆EES

can be expressed as 
PES = 2(1− ∂)π2[1− ( fN+∆ f )2

f 2
N

]PN∣∣∣∣ d f
dt

∣∣∣∣ > threshhold
. (18)

4.3. Determination of Output Power Proportion

Both DFIG and ES have to be taken into account to determine the output power proportion ∂.
For DFIG, if its output power proportion is too large, it may face the risk of torsional vibration in the
shaft system caused by too much rotor speed regulation [28], the risk of an unstable power grid caused
by a rotor speed recovery range that is too large, and the risk of DFIG disconnection due to rotor speed
declining below the threshold [29]. For ES, if its output power proportion is too large, it may face the
risk of service life reduction as the result of frequent deep charging or discharging, which will cause
excess maintenance cost. Therefore, the determination of output power proportion is a complicated
problem where the appropriate mathematical expressions are difficult to establish.

The fuzzy logic control method shows its functionality when the control process cannot be
described by a concrete mathematical model [29–31]. The principle diagram of the fuzzy logic control
is shown in Figure 5.
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Figure 5. The principle diagram of fuzzy logic control.

Then the fuzzy logic controller (FLC) to determine the output power proportion can be designed
as follows:

(1) The structure of fuzzy logic controller: The rotor speed ωr of DFIG and SoC of ES are selected
as input variables of FLC, and the output power proportion of DFIG ∂ is selected as the output
variable of FLC. The corresponding FLC structure is shown in Figure 6.
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Figure 6. The structure diagram of fuzzy logic controller (FLC).

(2) The fuzzy state and the shape of membership function of fuzzy subset: Determining the fuzzy
state means determining the quantity of linguistic values of variables. If the quantity of linguistic
values is large then the control rules are precise, which will lead to the complexity of the controller.
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If the quantity of linguistic values is small then the control rules are easy to implement, but
too few linguistic values will result in a coarse controller [32]. Therefore, both simplicity and
precision should be considered. Seven fuzzy domains for input variables are set: VS (very small),
MS (middle small), S (small), M (middle), L (large), ML (middle large), VL (very large). Five fuzzy
domains for output variable are set: VS (very small), S (small), M (middle), L (large), VL (very
large). The common shapes of membership function are triangle and trapezoid. Compared with
the SoC and ∂, the rotor speed is a more precise variable with clearer discrimination, so a triangle
is chosen as the shape of the membership function of the rotor speed ωr. The domain of ωr is
[0.7, 1.2] p.u. The trapezoidal is chosen as the shape of membership function of SoC. The domain
of SoC is [0.1, 0.5] p.u. When SoC > 0.5 p.u, the value of SoC is set as 0.5 p.u. The trapezoidal is
chosen as the shape of membership function of ∂. The domain of ∂ is [0, 1] p.u. The membership
functions used in FLC are shown in Figure 7.
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Figure 7. The membership functions used in FLC. (a) The membership function of ωr. (b) The
membership function of SoC. (c) The membership function of ∂.

(3) The fuzzy rules: The rules of the fuzzy logic controller are determined according to the engineering
experience accumulated by the engineering experts during their long-term work [29]. The fuzzy
rules designed in this paper are mainly based on the following engineering experience:

a. If the rotor speed of the DFIG is too low or too high, the DFIG cannot release excess energy
by reducing the rotor speed. If the SoC of the ES is at a high level, the fast-frequency
response is completed by the ES alone.

b. If the SoC of the ES is lower than 10%, the ES cannot emit energy to respond to frequency
drop. If the rotor speed of the DFIG is relatively high, the fast-frequency response is
completed by the DFIG alone.

c. If the rotor speed of the DFIG is relatively high and the SoC of the ES is higher than 10%,
the frequency response is completed by DFIG and ES altogether, and the appropriate
output power proportion of each device is determined according to their stored virtual
inertial energy.

The fuzzy logic control rules are shown in Table 1.
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Table 1. The rules of FLC.
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(4) Defuzzification: Maximum of mean method, maximum average method, and center of gravity
method are commonly used for defuzzification [29]. Considering the error mined by the center of
gravity method is the least among these methods, the center of gravity method is applied for
defuzzification. The equation is as follows:

∂eout
∗ =

∫ b

a
uc(∂eout)∂eoutd∂eout

∫ b

a
uc(∂eout)d∂eout

(19)

where ∂∗eout is the value of output power proportion; ∂eout is the non-fuzzy value of output power
proportion; (a, b) is the range of ∂eout; and uc(∂eout) is the membership function of ∂eout.

The coordinated control strategy of the DFIG-ES system for fast-frequency response is shown in
Figure 8 (if the wind belongs to the high or low speed regions, the ∂ is set as 0).
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Figure 8. The control diagram of DFIG-ES system. fre f is the reference of grid frequency; fgrid is the
detected grid frequency; Pre f ,BESS is the active power reference of ES system; Pre f ,DFIG is the active
power reference of DFIG; P∗

re f ,DFIG
is the modified active power reference of DFIG; ωre f ,r is the reference

of rotor speed;ω∗
re f ,r is the modified reference of rotor speed; vwind is the detected wind speed; andωr

is the detected rotor speed.

5. Case Study

5.1. Introduction to the Simulation System

In order to verify the effectiveness of the proposed control strategy and the rationality of the
designed fuzzy logic controller and proposed capacity allocation scheme of the ES system, a simulation
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system, whose structure is shown in Figure 9, was built on MATLAB/Simulink software. Because
the proposed control strategy referring to single DFIG and single ES is universal, an equivalent
DFIG was selected to represent the wind farm. The simulation system consisted of an ES system
following the capacity allocation scheme, as well as three synchronous generators representing three
power plants, transformers, loads, and equivalent lines. The battery ES model used in this paper
was from MATLAB/Simulink original library, and this model was an integration of serial and parallel
combinations of multiple single cells. The detailed parameters of each component in the simulation
system were obtained from [12,33] and are shown in Table 2.
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Figure 9. Structure diagram of simulation system.

Table 2. Parameters of each component in the simulation system. (a) Parameters of lines. (b) Parameters
of DFIG. (c) Parameters of synchronous generator.

Line R (Ω/Km) X (Ω/Km) B (S/Km) Length (Km)

L1 0.065 0.315 3.65E-6 10
L2 0.065 0.315 3.65E-6 10
L3 0.065 0.315 3.65E-6 10
L4 0.065 0.315 3.65E-6 15

(a)

Rs Rr Xls Xlr Xlm H

0.058 p.u. 0.105 p.u. 0.087 p.u. 0.118 p.u. 3.78 p.u. 5.75 p.u.

(b)

Xd Xd
′ Xd” Xq Xq

′ Xq” H

1.8 p.u. 0.1 p.u. 0.25 p.u. 1.7 p.u. 0.55 p.u. 0.25 p.u. 5 s

Td0
′ Td0” Tq0

′ Tq0” Ra KD

8 s 0.03 s 0.4 s 0.05 s 0.025 p.u. 1

(c)

As mentioned above, for the frequency rise event, the frequency response can be easily achieved
by increasing the rotor speed or adjusting the pitch angle to reduce the active output of the wind farm.
Moreover, the reduction of output power of two devices and power proportion between two devices
can also be used in reference to the control strategy proposed in this paper. Therefore, simulation tests
involved only the frequency drop incident. The simulation scenario was that the load power increased
by 20 MW at 5 s.

5.2. Simulation Result

The coordinated control strategy of DFIG-ES, the inertia control of only DFIG [8], and no inertia
control were simulated. The simulation results of these three schemes were compared to verify the
effectiveness of the proposed method and its superiority over the traditional inertia control method of
DFIG. Considering that the DFIG-ES system operating under low or high wind speed only relies on
ES to achieve a fast-frequency response, this paper chose middle and high wind speed as simulation
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scenarios. Furthermore, in order to verify the rationality of the fuzzy logic controller proposed in
this paper, the scenarios where the DFIG-ES system with different SoC under middle wind speed
were simulated.

5.2.1. Simulation Result under Middle Wind Speed

In the simulation, the wind speed was set as 9 m/s and the initial SoC of ES was set as 50%. The
simulation result under middle wind speed is shown in Figure 10. Figure 10a shows the system
frequency curve. The output active power of DFIG and rotor speed curves are shown in Figure 10b,c.
The output active power of ES is shown in Figure 10d.
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Figure 10. Cont.
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Figure 10. Simulation result under middle wind speed. (a) System frequency. (b) Active power of
DFIG. (c) Rotor speed of DFIG. (d) Active power of ES.

5.2.2. Simulation Result under High Wind Speed

Under the conventional inertia control method, the output active power of DFIG reached the
maximum power in this scenario, and thus the frequency response effect under inertia control was the
same as that under no inertia control. Therefore, in this part, the coordinated control method and no
control method were taken as comparison. The wind speed was set as 13 m/s and the initial SoC of ES
was set as 50%. The frequency curves are shown in Figure 11. Figure 11a shows the system frequency
curve. The output active power of the ES is shown in Figure 11b.
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Figure 11. Simulation result under high wind speed. (a) System frequency. (b) Active power of ES.

5.2.3. Simulation Result under Different SoC

When the wind speed was 9 m/s, the initial SoC of ES was set as 30%, 40%, and 50%, respectively.
The frequency curves are shown in Figure 12a. The output active power curves of DFIG, and the rotor
speed curves and output active power curves of ES are respectively shown in Figure 12b–d.
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5.2.4. Simulation Result When SoC Is below 10%

When the wind speed was 9 m/s and SoC was below 10% (wherein the ES system cannot work),
in the simulation scenario the load power increased by 10 MW at 5 s. The frequency curves are shown
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in Figure 13a. The output active power curves of DFIG and the rotor speed curves are respectively
shown in Figure 13b,c.
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Figure 13. Simulation result when SoC was below 10%. (a) System frequency. (b) Active power of
DFIG. (c) Rotor speed of DFIG.

6. Discussion

Under middle wind speed, the cooperative frequency support of DFIG and ES was the objective
of the proposed control strategy. The nadir of frequency under the coordinated control method was
49.65 Hz, which was higher than the other two nadirs. This means the coordinated control method
effectively decreased the frequency drop range and was conducive to maintaining the frequency
stability of the power grid. In Figure 10a, the frequency curve under the conventional inertia control of
DFIG incurred a second drop due to the large active power shortage caused by rotor recovery, which
jeopardized the safety of the power grid. Because the output active power of DFIG was determined
by Equation (15) and the fuzzy logic controller, it decreased with the decline of rotor speed until the
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fast-frequency response finished. It can be seen that the regulation range of rotor speed under the
coordinated control method was the smallest because the frequency regulation was also supported by
ES. The DFIG operated only in MPPT mode when no inertia control was taken, so it could not respond
to frequency fluctuation. The output power of the ES, determined by Equation (18), climbed to the
peak gradually and dropped fast once the fast-frequency response finished. Compared with frequency
regulation effects of the other two methods, the coordinated control method not only completed the
fast-frequency response, but also raised the nadir of frequency and alleviated the frequency fluctuation
without causing a secondary frequency drop.

Under high wind speed, DFIG cannot respond to the frequency fluctuation, but can rely on the ES
to complete the fast-frequency response. The frequency nadir under the coordinated control method
was 49.68 Hz, which was obviously higher than the nadir under the no control method. Because of
the huge throughput and stable output of the ES, the nadir under the high wind speed was slightly
higher than that under the middle wind speed. Furthermore, frequency deviation during the primary
frequency regulation was alleviated because of the lack of the rotor speed recovery. The active power
output of the ES shown in Figure 11b was similar to that in Figure 10d, while the output power stayed
on the peak for longer duration. The simulation example validated that the wind farm operating under
high wind speed relied on the ES with proposed capacity to complete the fast-frequency response. The
frequency fluctuation was effectively restrained and the frequency nadir was improved by ES, which
made up for the inability to participate in the frequency response of the DFIG.

Under different SoC, the wind speed was set as 9 m/s, and thus the initial rotor speed was fixed.
The inertial energy possessed by the DFIG-ES system increased with the increment of initial SoC.
Therefore, the frequency nadir was 49.65 Hz, higher than the other two, when the SoC was 50%. The
output power proportion between DFIG and ES was determined by fuzzy logic controller. According
to the fuzzy rules, once the initial rotor speed is fixed, the output power proportion of DFIG decreases
with the increment of SoC. It can be seen that the range of rotor speed regulation of DFIG was the
smallest, the frequency oscillation during rotor speed recovery process was the smallest, and the
overall output energy of DFIG was the smallest when the SoC of ES was 50%. This means that the
higher the SoC, the more priority was given to reducing the mechanical loss of the DFIG; the lower
the SoC, the more priority was given to prolonging the service life of the ES. This simulation verifies
that the fuzzy logic controller effectively determined the output power proportion between DFIG and
ES under the middle wind speed. The maintenance cost of both DFIG and ES was comprehensively
reduced under the premise of meeting the demand of fast-frequency regulation.

When the SoC was below 10%, the ES system could not assist the DFIG to support frequency
regulation. Thus, the DFIG only relied on itself to complete the fast-frequency response through
virtual inertia control. Seemingly, the output active power of the DFIG-ES system showed the faster
response and smaller power shortage. Therefore, the frequency nadir was improved to 49.71 Hz and
the rotor speed gained a quick recovery under the proposed control method. However, when the
frequency nadir was 49.64 Hz, a small secondary frequency drop incurred under the conventional
inertia control method. This simulation result proves the excellent performance of DFIG in cases where
the ES is unable to work, and verifies the superiority of the proposed virtual inertia control over the
conventional inertia control.

7. Conclusions

In this paper, a novel coordinated control strategy was presented for the DFIG-ES system to
enhance the fast-frequency response capability of wind farms.

The overall power reference of the DFIG-ES system was calculated on the basis of the frequency
response characteristic of synchronous generators. On basis of this, the capacity allocation scheme of
the ES system was presented and its principle was to make the wind farm possess the same potential
inertial energy as that of synchronous generators set with equal rated power. The simulation results
demonstrate that this scheme ensures the ES system is economical but possesses enough reserved
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energy to complete a fast-frequency response in most cases. Meanwhile, the scheme saves allocation
and maintenance costs to some extent, compared with previous ES capacity allocation schemes.

A virtual inertia control of the DFIG-ES system was proposed to produce active power surge to
improve the frequency nadir, and a fuzzy logic controller was designed to distribute the active power
between DFIG and ES. In particular, the proposed virtual inertia control of DFIG ensured the rotor
speed recovery without causing secondary frequency drop. To demonstrate the effectiveness of the
proposed control scheme, a test system containing synchronous generators and a DFIG-ES system was
built on MATLAB/Simulink software. The simulation results indicated the proposed control strategy
made full use of the potential of both DFIG and ES to enhance the fast-frequency response capability of
wind farms. The DFIG and ES could cooperate dynamically for fast-frequency response and improve
the stability of the power grid and avoid the secondary frequency drop accident. Compared with
conventional inertia control of only DFIG, the proposed control strategy is more reliable and adaptable.
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Abstract: An artificial neural network (ANN)-based supplementary frequency controller is designed
for a doubly fed induction generator (DFIG) wind farm in a local power system. Since the optimal
controller gain that gives highest the frequency nadir or lowest peak frequency is a complicated
nonlinear function of load disturbance and system variables, it is not easy to use analytical methods
to derive the optimal gain. The optimal gain can be reached through an exhaustive search method.
However, the exhaustive search method is not suitable for online applications, since it takes a long
time to perform a great number of simulations. In this work, an ANN that uses load disturbance,
wind penetration, and wind speed as the inputs and the desired controller gain as the output is
proposed. Once trained by a proper set of training patterns, the ANN can be employed to yield
the desired gain in a very efficient manner, even when the operating condition is not included in
the training set. Therefore, the proposed ANN-based controller can be used for real-time frequency
control. Results from MATLAB/SIMULINK simulations performed on a local power system in Taiwan
reveal that the proposed ANN can yield a better frequency response than the fixed-gain controller.

Keywords: doubly fed induction generator (DFIG); wind generation; frequency control; artificial
neural network (ANN)

1. Introduction

To increase the percentage of green energy, wind farms are being built in Taiwan. It is expected
that the installed capacities of these wind farms will reach 4.2 GW by 2025 [1]. For a system with a
high penetration of wind power, the frequency regulation of the local power system becomes very
important, especially when it is disconnected from the main grid due to a fault, resulting in islanding
operation. How to design a proper supplementary frequency controller for the wind farm, such that
the frequency for a local power system in the islanding operation can be controlled satisfactorily, is of
major concern in this work.

Numerous works have been devoted to the design of a supplementary frequency controller for a
doubly fed induction generator (DFIG) in order to improve the system frequency under disturbance
conditions [2–14]. Both a proportional (droop) controller [2–6] and proportional (droop)–derivative
(inertial) (PD) controller [7–9] have been extensively studied.

In the design of proper gains for the droop controller and inertia controller, the objective is to
improve the dynamic system frequency response and keep the DFIG speed within the allowable
range after a disturbance. Since the dynamic system frequency response is a complicated nonlinear
function of load disturbance and system variables such as wind speed and the percentage of wind
power penetration, it is not easy to derive an analytical formula relating the system frequency and
DFIG speed to the load disturbance and system variables and get the desired optimal solutions for
the droop and inertia gains using analytical methods. In the literature, numerous works have been

39



Energies 2020, 13, 5320

reported [9–19] to get the desired gains using a simulation-based method. The frequency and speed
responses with and without droop control were compared in [9]. The effect of proportional gain on the
frequency response was investigated in [15], with the derivative gain being fixed at 15. The influence of
governor speed, droop gain, and inertia gain on frequency deviation was examined in [16]. The effect
of DFIG penetration on the frequency deviation was also studied [16]. System frequency and maximum
transient frequency deviation under different values of droop and inertia gains were investigated in [17].
In [18], the frequency nadir and rate of change of frequency for different wind power penetrations,
different percentages of steam turbines, and combined cycle gas turbines were analyzed in order to
reach the optimal droop and inertia gain settings. It was found that the optimal inertia gain was
near zero for most cases, and the inertia term could be neglected. In [19], the root locus and system
frequency response for proportional and inertia control were depicted under different wind speeds.
The effect of increased wind penetration on the root locus and frequency response was also studied.

The optimal controller gain that gives the highest frequency nadir for a system under a particular
condition of load disturbance, wind speed, and wind penetration can be reached by an exhaustive
search method in which the dynamic frequency response curves following a disturbance are simulated
for all possible gains, and the gain that gives the highest frequency nadir is selected as the optimal
gain. However, the exhaustive search method is not suitable for online applications, since it takes a
long time to perform a great number of simulations.

The main purpose of this work is to design an artificial neural network (ANN) [20,21]-based
frequency controller that gives the desired droop gain in a very efficient manner. The inputs to the ANN
are the load disturbance and system variables, such as the wind speed and percentage of wind power
penetration, which have significant impacts on the system frequency response [17–19]. Computer
simulations are first conducted to obtain the optimal droop gains that give the highest frequency
nadir (FN) (in the case of load increase) or lowest peak frequency (in the case of load decrease)
for the system under different values of load disturbances, wind power penetrations, and wind
speeds. The compiled ANN outputs (optimal droop gains) and the corresponding ANN inputs (load
disturbance, wind penetration, and wind speed) are employed as the ANN training patterns. Once the
ANN is trained, it can be used to provide the desired droop gain in a very efficient manner without
any time-consuming simulations. Therefore, the proposed ANN-based frequency controller can be
used for online applications.

The main contributions of the paper are summarized as follows:

1. The effects of load disturbance, percentage of wind penetration, and wind speed on the optimal
droop gain are investigated.

2. The designed ANN-based frequency controller can yield the desired droop gain in a very efficient
manner. Thus, it is suitable for real-time applications.

3. The proposed ANN-based frequency controller can give a better frequency response than the
fixed-gain controller. In addition, the ANN can yield controller gains that are very close to the
optimal gains, even when the input variables such as wind speed, wind penetration, and load
disturbance are not included in the training patterns of the ANN.

2. System Model

The system under study is a local power system in Taiwan with wind farms that are lumped
together as an equivalent DFIG [6]. The six fossil-fired steam turbine generators in the local power
system are lumped together as an equivalent synchronous generator (SG). Figure 1 depicts the nonlinear
block diagram for the synchronous generator frequency control and DFIG supplementary frequency
control. Details on the block diagrams for the governor, turbine, synchronous generator, and DFIG
were described in [6].

In this work, an ANN-based controller as shown in Figure 1 is proposed to adapt the gain KPD

for the DFIG supplementary frequency controller based on the load disturbance ∆PLoad, wind power
penetration, and wind speed VW .
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Figure 1. Block diagram for a frequency control system. SG: synchronous generator, ANN: artificial
neural network, DFIG: doubly fed induction generator.

3. Effect of Load Disturbance, Wind Power Penetration, and Wind Speed on the Optimal
Controller Gain

As shown in Figure 1, the system frequency f under disturbance conditions for a power system
with a DFIG wind farm is governed by the swing equation of the synchronous machine:

2HS
d f

dt
= PmS + PeD − PLoad − D∆ f (1)

where PmS is the mechanical power of the synchronous machine, PeD is the electrical power of the
DFIG, PLoad is the load demand, and HS and D are the equivalent per unit inertia constant for all
synchronous generators in the power system and the load damping constant, respectively.

It is observed from Equation (1) that the system frequency deviates from its nominal value f0
(1 pu or 60 Hz) when there is a disturbance ∆PLoad in the system load. In order to restore the system
frequency to its nominal value, the mechanical power PmS of the synchronous generators will be
adjusted through the action of speed governors and turbines, and the DFIG electrical power output
can also be modulated by the supplementary frequency controller denoted by −KPD∆ f in Figure 1.

The main purpose of this work is to design a proper gain KPD to meet the following objective
function and constraints: [8,22,23]

Objective function:
Maximize FN (in case of load increase) or
Minimize peak frequency (in case of load decrease)

(2)

Constraints:
(1) Frequency range: 59.5 Hz < f < 60.5 Hz.
(2) DFIG speed range: 0.7 pu ≤ wmD ≤ 1.2 pu.
(3) Controller gain: 16 pu ≤ KPD ≤ 50 pu (2–6% droop).

(3)

Note that only the frequency nadir or peak frequency is considered in the objective function,
since the main purpose is to keep the system frequency within the allowable limit to avoid load
shedding in an isolated power system. In addition, only the droop control is considered, since it was
pointed out in [18] that the inertial constant is near zero and can be omitted.
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It is observed from Figure 1 that the DFIG output power PeD can be written as

PeD = TeDωmD (4)

where TeD and ωmD are the electrical torque and speed of the DFIG, respectively.
Note that the mechanical torque TmD is given by

TmD =
1
2ρACp(λ, β)V3

W

ωmD
(5)

It is concluded from Equations (4) and (5) that the DFIG output power PeD is a function of
wind penetration and wind speed VW . Therefore, the dynamic frequency response following a load
disturbance will be affected by the load disturbance ∆PLoad, wind penetration, and wind speed VW ,
and the optimal controller gain KPD will be function of the three parameters of ∆PLoad, wind penetration,
and VW .

In the design of a fixed-gain supplementary frequency controller, the controller gain is usually
determined based on a nominal operating condition, e.g., ∆PLoad = 30 MW, wind penetration = 29.4%,
and VW = 11 m/s.

Figure 2 depicts the dynamic response curves for the system subject to a load disturbance of ∆PLoad

= 30 MW (wind penetration = 29.4% and VW = 11 m/s). An observation of the frequency response in
Figure 2a reveals that the controller gain KPD = 32 gives the highest frequency nadir. Additionally
shown in Figure 2a are the frequency response curves for the case with a smaller gain KPD = 20 and for
the case with a larger gain KPD = 40. As shown in Figure 2c, the DFIG delivers less electrical power to
the system and results in a lower frequency nadir when a smaller gain KPD = 20 is employed. On the
other hand, a larger gain of KPD = 40 causes smaller frequency dips in the first few seconds following
the disturbance and results in a lesser mechanical power increase for the synchronous generator and
lower frequency nadir than the case of KPD = 32. Therefore, an optimal gain of KPD = 32 is selected for
the base case of ∆PLoad = 30 MW, wind penetration = 29.4%, and VW = 11 m/s.

Figure 2. Dynamic response curves for a load disturbance of ∆PLoad = 30 MW (wind penetration
= 29.4% and VW = 11 m/s). (a) Frequency, (b) DFIG speed, (c) DFIG electrical power, and (d) SG
mechanical power. KPD: the optimal gain.
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Since the optimal gain changes with the load disturbance ∆PLoad, wind penetration, and wind
speed VW , the effect of these parameters on the optimal gain is examined below.

3.1. Effect of Load Disturbance ∆PLoad on the Optimal Gain KPD

Figure 3 depicts the dynamic response curves for the system subject to load increases of ∆PLoad =

62 MW and ∆PLoad = 63 MW, respectively.
It is observed from Figures 2 and 3a that the optimal gain KPD decreases from 32 to 23 as the ∆PLoad

is increased from 30 MW to 62 MW. It is also observed from Figures 2 and 3a that the frequency nadir
decreases with the increasing load disturbance. Note that the frequency nadir reaches the lower limit
of 59.5 Hz as the load disturbance is increased to 62 MW. If the load disturbance ∆PLoad is increased
further to 63 MW, the frequency nadir is below 59.5 Hz when the gain KPD remains at 23. When the
gain is increased to 25, the DFIG speed drops to a value lower than 0.7, and the frequency nadir is still
below 59.5 Hz. If the gain is decreased to 16, the DFIG speed will be higher than 0.7 but the frequency
nadir lower than 59.5 Hz.

It is thus concluded from Figure 3 that it is impossible to find a proper gain within the allowable
range (16 ≤ KPD ≤ 50) when the load disturbance is 63 MW. Therefore, ∆PLoad = 62 MW is the upper
limit for the load increase.

Figure 3. Dynamic response curves for the system subject to a load increase of ∆PLoad = 62 MW and
63 MW (wind penetration = 29.4% and VW = 11 m/s). (a) Frequency and (b) DFIG speed.

Figure 4 depicts the optimal gain KPD as a function of the load disturbance ∆PLoad. It is observed
from Figure 4 that the optimal controller gain KPD varies with the magnitude of the load disturbance
∆PLoad. This motivates the design of an ANN-based controller such that the controller gain can be
adapted with the load disturbance, and the load disturbance must be selected as one of the inputs to
the ANN-based controller.
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∆Figure 4. Optimal gain KPD as a function of the load disturbance ∆PLoad (wind penetration = 29.4%
and VW = 11 m/s).
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3.2. Effect of the Percentage of Wind Penetration on the Optimal Gain KPD

Figure 5 depicts the optimal gain KPD as a function of the percentage of wind penetration (∆PLoad

= 30 MW and VW = 11 m/s).
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Figure 5. Optimal gain KPD as a function of wind penetration (∆PLoad = 30 MW and VW = 11 m/s).

It is observed from Figure 5 that the optimal gain KPD varies from 32 to 28 and 23 as the wind
penetration changes from 29.4% to 22.05% and 14.7%, respectively. No feasible solution that satisfies
the frequency and DFIG speed constraints can be found as the wind penetration is decreased to 7.35%.
It is thus concluded that the wind penetration has a significant impact on the design of the optimal
controller gain and must be employed as one of the inputs to the ANN-based controller.

3.3. Effect of the Percentage of Wind Speed on the Optimal Gain KPD

Figure 6 depicts the optimal gain KPD as a function of wind speed (∆PLoad = 30 MW and wind
penetration = 29.4%). It is observed from Figure 6 that the optimal gain KPD varies from 34 to 32, 31,
and 17 as the wind speed is decreased from 12 m/s to 11 m/s, 10 m/s, and 9 m/s, respectively. Therefore,
the wind speed is selected as one of the inputs to the ANN-based controller, as it has a considerable
effect on the optimal controller gain KPD.
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Figure 6. Optimal gain KPD as a function of the wind speed VW (∆PLoad = 30 MW and wind penetration
= 29.4%).

4. ANN-Based Frequency Controller

As shown in Figure 1, the gain for the supplementary frequency controller is adjusted by ANN
based on the present load disturbance (∆PLoad), wind penetration, and wind speed (VW), which are
provided as the inputs to the ANN. The output of the ANN is the desired gain KPD for the DFIG
supplementary frequency controller. A feedforward neural network with two hidden layers and ten
nodes for each layer as shown in Figure 7 was used [21].
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Figure 7. ANN for a frequency controller. ∆PLoad : load disturbance.

As shown in Figure 7, the output of the jth node in the nth layer, y
(n)
j

, is a nonlinear function of
the outputs from the nodes in the (n − 1)th layers, as described below:

y
(n)
j

= g (
10∑

i=1

w
(n)
ji

y
(n−1)
i

) (6)

where w
(n)
ji

is the connection weight between the ith node in the (n − 1)th layer, and the jth node in the
nth layer and g is a nonlinear hyperbolic-tangent activation function.

The desired droop gain KPD is obtained from the following equation:

KPD= g (
10∑

i=1

w
(4)
1i

y
(3)
i

) (7)

Before the ANN can be employed to yield the desired droop gain KPD, the connection weights
must be determined using a set of training patterns. In this paper, a total of 27,920 training patterns
were used in the ANN training process to cover different combinations of ∆PLoad, wind penetration,
and VW .

The flow chart in Figure 8 was used to reach the desired ANN output (KPD) for a particular
combination of ANN inputs (∆PLoad, wind penetration, and VW).

The procedures to create training patterns are described as follows:

Step 1 Set the ∆PLoad, wind power penetration, and VW that are considered in this work and the
minimum value of the KPD.

Step 2 Solve the dynamic frequency response of the system using the nonlinear model in Figure 1.
Step 3 If the dynamic response satisfies the requirements defined in Equation (3), record the KPD and

the frequency nadir.
Step 4 Find the KPD that gives the highest frequency nadir under different scenarios and record the

∆PLoad, wind power penetration, VW , and KPD.

The created training patterns are depicted in Figure 9 for the cases under four different wind
speeds: VW = 9 m/s, VW = 10 m/s, VW = 11 m/s, and VW = 12 m/s.
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Figure 8. Flow chart to create training patterns.

Among the 27,920 training patterns as shown in Figure 9, 80% were used for training and 20%
were used for testing. In the ANN training process, the connection weights between the inputs nodes,
the nodes in the two hidden layers, and the output node are determined based on the criterion to make
the droop gain from the ANN as close to the optimal gain in the training pattern as possible. In other
words, the objective is to minimize the cost function, as described below:

E =
1
2
(K PD −K∗PD

)2
(8)

where KPD and K∗
PD

are the droop gain from the ANN and the optimal droop gain in the training
pattern. Detailed procedures to determine the connection weights from the cost function in Equation
(8) can be found in [21].
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Figure 9. Training patterns under four different wind speeds: (a) VW = 9 m/s, (b) VW = 10 m/s, (c) VW

= 11 m/s, and (d) VW = 12 m/s.

5. Case Studies

To demonstrate the effectiveness of the proposed ANN-based supplementary frequency controller,
the local power system as shown by the block diagram in Figure 1 with the parameters in the
Appendix A was simulated using MATLAB/SIMULINK. The results are described below.

5.1. Comparison of ANN-Based Controller and Fixed-Gain Controller under Different Load Disturbances

Figure 10 compares the droop gain KPD from the ANN-based controller, optimal controller,
and fixed-gain controller with KPD = 32 under different load disturbances. It is observed from Figure 10
that the droop gain KPD from the ANN-based controller is very close to those from the optimal controller.
However, the ANN-based controller can be used for online applications, since the droop gain is reached
in a very efficient manner. On the other hand, the optimal controller cannot be employed in real-time
situations, since a great number of simulations are performed in order to reach the optimal droop gain
by using the exhaustive search method.

 

 

Figure 10. Droop gain KPD from the ANN-based controller, optimal controller, and fixed-gain controller
(wind penetration = 29.4% and VW = 11 m/s) under different load disturbances.

Figure 11 depicts the frequency, DFIG speed, SG energy, and DFIG energy for a load disturbance
of ∆PLoad = 62 MW. It is observed from Figure 11 that, in the case of a load increase of 62 MW, the DFIG
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speed fails to remain in the allowable range of 0.7 pu ≤ ωmD ≤ 1.2 pu when the controller gain is
fixed at 32. On the other hand, the satisfactory frequency and speed responses can be achieved by the
ANN-based controller by adapting the gain to a lower value of 23.59.

The frequency, DFIG speed, SG energy, and DFIG energy for a load disturbance of ∆PLoad =

40 MW are depicted in Figure 12. As the observation of the response curves in Figure 12 indicates,
the ANN-based controller gives better frequency and speed responses than the fixed-gain controller.

Figure 11. Dynamic response curves from the ANN-based controller and fixed-gain controller (∆PLoad

= 62 MW, wind penetration = 29.4%, and VW = 11 m/s). (a) Frequency, (b) DFIG speed, (c) SG energy,
and (d) DFIG energy.

Figure 12. Dynamic response curves from the ANN-based controller and fixed-gain controller (∆PLoad

= 40 MW, wind penetration = 29.4%, and VW = 11 m/s). (a) Frequency, (b) DFIG speed, (c) SG energy,
and (d) DFIG energy.
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5.2. Comparison of the ANN-Based Controller and Fixed-Gain Controller under Different Wind
Power Penetrations

The droop gain and FN from the ANN-based controller and fixed-gain controller under different
wind power penetrations are depicted in Figure 13. It is observed from Figure 13 that the ANN-based
controller gives better frequency than the fixed-gain controller, since its droop gain is varied according
to the percentage of the wind power penetration.

 

∆

  

(a) (b) 

∆

∆

Figure 13. Droop gain KPD and frequency nadir from the ANN-based controller and fixed-gain
controller (∆PLoad = 30 MW and VW = 11 m/s) under different penetrations. (a) Droop gain KPD and (b)
frequency nadir (FN).

5.3. Comparison of the ANN-Based Controller and Fixed-Gain Controller under Different Wind Speeds

In order to examine the dynamic performance of the ANN-based controller under different wind
speed conditions, the droop gain and FN under different wind speeds are shown in Figure 14. It is
observed from Figure 14 that it is impossible to find a feasible solution that satisfies the frequency
and speed constraints by using the fixed-gain controller when the wind speed is lower than 9.8 m/s.
However, satisfactory frequency nadir can still be achieved by the ANN-based controller. It is also
observed that the ANN-based controller gives better FN than the fixed-gain controller, since the droop
gain is varied with the changing wind speed.
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∆
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∆
Figure 14. Droop gain KPD and frequency nadir from the ANN-based controller and fixed-gain
controller (∆PLoad = 30 MW and wind penetration = 29.4%) under different wind speeds. (a) Droop
gain KPD and (b) frequency nadir (FN).

5.4. ANN Performance Test for Untrained Cases

A major feature of the ANN is that, once the ANN is trained using an appropriate set of training
patterns, it can be used to generate the desired output (controller gain KPD) directly even when the
input variables (∆PLoad, wind penetration, and wind speed) are not within the set of training patterns.
Time-consuming simulations for the untrained cases can thus be avoided.

Figure 15 compares the droop gain KPD from the ANN-based controller and the optimal controller
for the case of VW = 10.5 m/s, which was not included in the training patterns. It is observed from
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Figure 15 that the ANN-based controller can yield droop gains that are very close to the optimal gain
from the exhaustive search method even when the wind speed (VW = 10.5 m/s) is different from the
wind speeds in all training patterns for the ANN.

 

∆

 

 

 

Figure 15. Droop gain KPD from the ANN-based controller and optimal controller (VW = 10.5 m/s and
wind penetration = 29.4%).

5.5. Feasible Operating Regions for the ANN-Based Controller

The feasible operating regions for the ANN-based controller and fixed-gain controller are compared
in Figure 16 for cases under four different wind speeds: VW = 9 m/s, VW = 10 m/s, VW = 11 m/s,
and VW = 12 m/s. It is concluded from Figure 16 that the proposed ANN-based controller with variable
gain provides a wider operating zone than the fixed-gain controller.
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Figure 16. Comparison of the feasible operating regions for the ANN-based controller and fixed-gain
controller. (a) VW = 9 m/s, (b) VW = 10 m/s, (c) VW = 11 m/s, and (d) VW = 12 m/s.

6. Conclusions

An ANN was designed to yield the droop gain KPD for the supplementary frequency controller of
a DFIG wind farm under different load disturbances, wind penetrations, and wind speeds. The effects
of the load disturbances, wind penetrations, and wind speeds on the optimal gain were first studied.

50



Energies 2020, 13, 5320

It was found that the load disturbance, wind penetration, and wind speed had significant impacts
on the optimal controller gain. Therefore, the three variables were employed as the inputs to the
ANN, and the output of the ANN was the desired droop controller gain. The specific conclusions are
as follows:

1. The droop gain KPD decreases with the increasing magnitude of the load disturbances.
2. The droop gain should be increased when the wind power penetration is increased.
3. The droop gain increases with the increasing wind speed.
4. The ANN-based controller yields essentially the same droop gain as the optimal controller using

the exhaustive search method. However, the ANN-based method is more efficient than the
exhaustive search method, since time-consuming simulations can be avoided after the ANN is
trained. Therefore, the ANN-based controller can be used in online applications, and the optimal
controller using the exhaustive search method cannot be employed for real-time applications.

5. A major feature of the ANN-based controller is that it can be employed to provide the desired
droop gain without the need to perform additional simulations, even when the load disturbance,
wind penetration, and wind speed are not within the set of training patterns.

6. By using the ANN-based controller with different gains under different operating conditions,
the feasible operating regions under different wind speeds and different wind penetrations can
be expanded.

7. In practical applications, the load disturbance can be estimated from the rate of change of

frequency (∆PLoad = −2Hs
d f
dt ). The wind penetration is computed using the rated capacities of

online units. The wind speed is assumed to be available at the local wind farm.
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Nomenclature

D load damping
HS, HD equivalent inertia time constants of synchronous machine and DFIG
f0, f nominal frequency and system frequency
F5, F4, F3 power fractions of the high, intermediate, and low-pressure turbines
Kopt maximum power point tracking constant
KPD DFIG supplementary proportional controller gain
KPS, KIS synchronous machine droop and integral controller gains
Pc, Psr, Xgov control signal, speed relay output signal, and steam valve position of the synchronous machine
Pt5, Pt4, Pt3 mechanical output power of the high, intermediate, and low-pressure turbines
PLoad Load demand
PeD electromagnetic power of DFIG
PmS mechanical power of synchronous machine
Tsr, Tsm speed relay and servo-motor time constants of the synchronous machine
Tt5, Tt4, Tt3 steam chest, reheater, and crossover time constants of the synchronous machine
TmD, TeD mechanical torque and electromagnetic torque of DFIG
T∗

eD, MPPT
electromagnetic torque command of DFIG for MPPT operation

51



Energies 2020, 13, 5320

T∗
eD

DFIG torque command
ωmD DFIG speed
VW wind speed
CP wind turbine power coefficient
A area swept by the wind turbine blades
ρ air density
λ,β wind turbine tip speed ratio and blade pitch angle
∆ incremental quantity

Appendix A

Synchronous machine:
Rated power: 480 MVA.
Machine parameters: HS = 3.3 s.

Speed governor and turbine:
Droop and integral controller gains: KPS = 20 and KIS = 0.1.
Speed relay and servo-motor time constants: Tsr = 0.1 s and Tsm = 0.3 s.
Steam chest, reheater and crossover time constants: Tt5 = 0.68 s, Tt4 = 5.3 s, and Tt3 = 0.58 s.
Power fractions: F5 = 0.241, F4 = 0.399, and F3 = 0.360.

DFIG:
Rated power: 200 MVA.
Machine parameters: HD = 3.5 s.
Load parameters:
Load damping coefficient: D = 1.
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Abstract: To improve frequency nadir following a disturbance and avoid under-frequency load
shedding, two types of flexible kinetic energy release controllers for the doubly fed induction generator
(DFIG) are proposed. The basic idea is to release only a small amount of kinetic energy stored at the
DFIG in the initial transient period (1–3 s after the disturbance). When the frequency dip exceeds a
preset threshold, the amount of kinetic energy released is increased to improve the frequency nadir.
To achieve the goal of flexible kinetic energy release, a deactivation function based integral controller
is first presented. To further improve the dynamic frequency response under parameter uncertainties
and external disturbances, a second flexible kinetic energy release controller is designed using a
proportional-integral controller, with the gains being adapted in real-time with the particle swarm
optimization algorithm. Based on the MATLAB/SIMULINK simulation results for a local power
system, it is concluded that the frequency nadir can be maintained around the under-frequency load
shedding threshold of 59.6 Hz using the proposed controllers.

Keywords: doubly fed induction generator (DFIG); load frequency control (LFC); wind farm; particle
swarm optimization; kinetic energy

1. Introduction

To improve the dynamic frequency response of a local power system with high penetration of
wind power, a supplementary frequency controller (SFC) installed on the rotor side converter (RSC)
of a doubly fed induction generator (DFIG) has been widely investigated in recent years. The main
purpose of this work is to design a proper SFC such that the frequency nadir (FN) of the islanding
system following a grid disconnection event can be maintained higher than the threshold of 59.6 Hz,
which is equal to the sum of the low frequency load shedding limit of 59.5 Hz set by the local utility
and 0.1 Hz safety margin. In other words, frequency nadir following a disturbance causing a power
deficit is of major concern in this paper.

In the literature, a proportional (droop) controller which generates a control signal proportional
to the frequency deviation has been proposed [1–10]. When the control signal is added to the RSC
of the DFIG, the electrical power output of the DFIG can be modulated and the system frequency
response can be improved. To further improve the dynamic frequency response, the gain of the
proportional controller was varied based on the rate of change of frequency (ROCOF) [4], or DFIG rotor
speed [5]. In [7], the gain was decreased linearly with time. In [8], the particle swarm optimization
(PSO) technique was employed to adapt the proportional gain in real-time in order to have a good
dynamic frequency response following a disturbance. Other self-tuning techniques such as artificial
neural networks [11], model predictive controllers [12–15], and fuzzy set algorithm [16–18] have been
proposed to provide the required supplementary frequency control signal.
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A proportional (droop)-derivative (inertia) (PD) controller with the inertial control signal being
proportional to the derivative of frequency deviation has also been widely studied [19–28]. The effect
of the PD controller on the initial ROCOF [22,24] or frequency nadir [22] has been examined. It was
pointed out in [7,22] that the initial ROCOF might be improved during the inertia period (around 1–2 s
after the disturbance) by the inertia controller through injecting more DFIG electrical power to the
power system. However, the inertia control might have a negative impact on frequency nadir since the
DFIG injects more electrical power to reach a smaller frequency dip, causing the steam or gas turbine to
deliver less mechanical power to the synchronous generator (SG). The increase in DFIG kinetic energy
release and reduction in SG accumulated mechanical energy in the first few seconds might cause a
lower frequency nadir in the subsequent primary frequency regulation period (around 2–50 s after
the disturbance). Therefore, the optimal inertia controller gain to have the highest frequency nadir
was found to be close to zero [22]. Therefore, the inertia control will not be considered in this work,
since our goal is to reach the highest frequency nadir to avoid under-frequency load shedding.

In this paper, two flexible kinetic energy release controllers for a DFIG wind farm are proposed
in order to improve the frequency nadir after a disturbance. The basic idea is to release less kinetic
energy from the DFIG during the first few seconds after the disturbance when the system frequency is
above a certain threshold. When the system frequency drops to a level below the threshold, the kinetic
energy reserved in the DFIG during the first few seconds after the disturbance is gradually released to
improve the frequency nadir.

In the first flexible kinetic energy release controller, an integral controller is added to the conventional
droop controller when the system frequency is lower than 59.9 Hz. A deactivation function is proposed
to gradually decrease the integral controller output to zero and force the DFIG to return to its steady-state
maximum power point tracking (MPPT) operating mode when the system frequency eventually returns
to its nominal value of 60 Hz.

The gains in the first flexible kinetic energy release controller are designed based on a particular
operating point. To improve the dynamic frequency response for the system subject to variations in
system parameters such as speed governor and steam turbine time constants or external disturbances
such as wind speed variation, the second flexible kinetic energy release controller, in which the
controller gains are adapted in real-time based on PSO algorithm, is proposed. The advantages and
disadvantages of the proposed controllers and controllers referred to in the literature are summarized
in Table 1.

Table 1. Summary of supplementary frequency controllers for doubly fed induction generator (DFIG).

Controller/Algorithm
Operating
Conditions
Dependent

Needs
Training

Needs
Rule
Base

Needs
Evaluation
Function

Computational
Burden

PID [1–10,19–28] YES NO NO NO LOW
ANN [11] NO YES NO NO LOW

MPC [12–15] NO NO NO YES HIGH
Fuzzy [16–18] NO NO YES NO LOW

Type I YES NO NO NO LOW
Type II NO NO NO YES HIGH

2. Test System Model

The test system under study is a local power system as illustrated in Figure 1.
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TeD =TeD,opt

TeD,opt
ωmD

TFKERC TeD,opt

TeD = TeD,opt + TFKERC

Figure 1. One-line diagram for the studied local power system.

The six synchronous generators in the local power system in Figure 1 are lumped together as an
equivalent SG [29] and the inland and offshore wind farms are lumped together as an equivalent DFIG
in this study [1]. When the grid is subject to a fault, the local power system is disconnected from the
grid and is operated at an islanding operation mode. The functional block diagram for the equivalent
SG and equivalent DFIG frequency control system is depicted in Figure 2.

 

TeD =TeD,opt

TeD,opt
ωmD

TFKERC TeD,opt

TeD = TeD,opt + TFKERC

Figure 2. Frequency control functional block diagram for the islanding system.

To avoid considerable revenue losses, the approaches of power reserve such as pitch angle control
and de-loaded operating strategy are not considered in this work. Therefore, the DFIG operates at the
MPPT mode in a normal operation to achieve the maximum harvest of the wind power. The DFIG
electromagnetic torque under the MPPT mode is expressed as:

TeD = TeD,opt (1)

where TeD,opt is the optimum electromagnetic torque for MPPT, which is a quadratic function of the
DFIG rotor speed ωmD. In the case of frequency drop due to grid disconnection, the DFIG kinetic
energy is the only energy source from a wind farm that can be released to the system. To improve the
dynamic response of system frequency, a supplementary frequency control signal from the flexible
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kinetic energy release controller TFKERC is added to TeD,opt to obtain the desired electromagnetic torque
command of the DFIG as shown below:

TeD = TeD,opt + TFKERC (2)

In this work, the main purpose of the DFIG flexible kinetic energy release controller is to inject
additional real power into the islanding system such that the system frequency nadir is as high as
possible during the entire post-disturbance transient period. Due to the fast reaction of the RSC,
the frequency response is dominated initially by DFIG. As mentioned earlier, the flexible kinetic energy
release controller should be designed for the DFIG to release minimal kinetic energy in the initial
transient period. Then, the reserved kinetic energy of the DFIG can be released afterwards to improve
the frequency nadir. Details on the design of the two types of flexible kinetic energy release controllers
proposed in this work are described in Sections 3 and 4.

3. Type I Flexible Kinetic Energy Release Controller Using the Deactivation Function Based
Integral Controller

In this section, an innovative Type I flexible kinetic energy release controller, as depicted in
Figure 3, is proposed to release the kinetic energy flexibly and effectively from a DFIG wind farm.

 

TFKERC

TFKERC = {  -KPDΔf(t),     if f > 59.9 Hz  - (KPD + D(t)KIDs ) Δf(t),  otherwise

TFKERC

Figure 3. Deactivation function based integral controller.

As shown in Figure 3, the Type I flexible kinetic energy release control signal TFKERC from the
deactivation function based integral controller can be written as:

TFKERC =


−KPD∆ f (t), if f > 59.9 Hz
−
(
KPD + D(t)KID

s

)
∆ f (t), otherwise

(3)

In order for the DFIG to deliver only a small amount of kinetic energy in the initial transient period,
only the droop control is employed in Equation (3) when f > 59.9 Hz. When the system frequency is
below 59.9 Hz, the deactivation function based integral controller is started. With the proposed Type I
flexible kinetic energy release controller, an integral control signal u is gradually increased such that
the goal to have a smaller control signal TFKERC in the beginning and a larger control signal afterwards
can be met. Therefore, the system frequency nadir can be improved through the action of an integral
gain with a deferred and accumulated control output.

Since the integral controller output will not be zero after the transient period is over, the DFIG may
work at an operating point which is different from that before the disturbance. For the DFIG to return
to its MPPT mode operation when the system frequency approaches its nominal value, the integral
controller output must be gradually decreased to zero. In the present work, a deactivation function
D(t), as depicted in Figure 4, is proposed to gradually decrease the integral control output to zero in a
very smooth manner.
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Figure 4. Deactivation function for the integral controller.

As shown in Figure 4, the integral controller output must be gradually decayed to zero in a period
of decay time (t2) after a delay time (t1) from the instant of the lowest system frequency (the nadir
time tn). The dynamic frequency response curves for different delay times (t1) and decay times (t2) are
shown in Figure 5a,b, respectively, for the case of Vw = 11 m/s and Pgrid = 30 MW at t = 10 s.

t2 t1
tn t1

t2 Vw Pgrid t

 
(a) (b) 

t1 t2
t2

t2 KPD KID
t1

t1
t2

KPD KID

t2

t2
t2

KID KPD
Pgrid

Figure 5. Effects of different delay times (t1) and decay times (t2) on system frequency. (a) Different
delay, Table 1. (b) Different decay times (t2).

It is observed from Figure 5a that, after a brief period of frequency rise, the system frequency
will drop again to a new low value when the integral controller output is gradually decreased to zero.
The decay time t2 is chosen to be 20 s, and the PI controller gains are KPD = 20 and KID = 1.5 in Figure 5a.
As shown from the response curves in Figure 5a, the delay time t1 should be kept as small as possible
in order to decrease the subsequent frequency drop. This is due to the fact that a longer delay time will
cause a greater drop in the DFIG kinetic energy and a lower system frequency following the removal
of the integral controller. In the present work, a delay time of 1 s is chosen for t1 to cover the time
required to detect the system frequency nadir.

Figure 5b compares the frequency responses for different decay times t2. The PI controller gains
are chosen to be KPD = 20 and KID = 1.5. It is observed that the system frequency after the decay of
the integral controller output dips to a value even lower than the first nadir when a short decay time
t2 = 10 s is employed. This is due to the fact that the DFIG output power is decreased rapidly and the
SG does not have enough time to increase its output power, causing a power deficit and subsequent
frequency dip. On the other hand, the DFIG kinetic energy will be consumed too much, causing a later
frequency drop if a long decay time such as t2 = 50 s is used. In the present work, a moderate decay
time t2 = 20 s is employed.

Since it takes a long time to get a solution from MATLAB/SIMULINK circuit-level simulations,
system-level simulations are conducted to approximately estimate the effects of integral controller
gains KID on the system frequency nadir under different values of KPD for the system subject to a
disturbance of Pgrid = 45 MW at t = 10 s, as depicted in Figure 6.
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Figure 6. Effect of integral controller gain KID on frequency nadir under different values of KPD

(a) KPD = 5, (b) KPD = 10, (c) KPD = 15, (d) KPD = 20.

An observation of Figure 6 reveals that a higher frequency nadir can be achieved for the four
different values of KPD when a moderate gain of KID is employed. Table 1 lists the highest frequency
nadir for various combinations of KPD and KID under different values of Pgrid.

It is observed from Table 2 that a combination of KPD = 20 and KID = 1 gives the highest frequency
nadir for the base case of Pgrid = 45 MW. The preliminary gains of KPD = 20 and KID = 1 from
system-level simulations are further refined to be KPD = 20 and KID = 1.1 using more time-consuming
circuit-level simulations. In Section 5, the pair of gains KPD = 20 and KID = 1.1 will be employed for
the simulations.

Table 2. The highest frequency nadir for various combinations of KPD and KID under different values
of Pgrid.

KPD KID FN

Pgrid = 30 MW

5 5.5 59.63

10 3.7 59.70

15 2.3 59.75

20 1.3 59.78

Pgrid = 35 MW

5 5.4 59.56

10 3.6 59.65

15 2.2 59.71

20 1.2 59.74

Pgrid = 40 MW

5 5.3 59.50

10 3.5 59.60

15 2.1 59.67

20 1.1 59.70

Pgrid = 45 MW

5 5.1 59.43

10 3.4 59.55

15 2 59.62

20 1 59.66
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4. Type II Flexible Kinetic Energy Release Controller Using PSO

In the design of Type I flexible kinetic energy release controller, the controller gains are designed
based on a certain set of system parameters and operating conditions in order to have a good frequency
response under that particular operating point. However, the dynamic frequency response may become
unsatisfactory when there is a change in system parameters or operating conditions. In order to have a
good frequency response when the system is subject to variations in system parameters or operating
conditions, the gains of the Type I flexible kinetic energy release controller may be adapted in real-time
using the Type II PSO controller, as shown in Figure 7.

 

Kn
i =[KPD,n

i KID,n
i ]T Vn

i =[VPD,n
i VID,n

i ]T

Kn
i+1 = Kn

i +Vn
i+1

Vn
i+1 = wn

i ⋅Vn
i +r1⋅(Kn(pbest)-Kn

i )+r2⋅(K(gbest)-Kn
i )

r1 r2 Kn(pbest) K(gbest)
wn

i

wn
i  = wMAX- (wMAX-wmin)

N i

wMAX
wmin

E = MAX|Δfpu(t)| - Δfpu
*

Δfpu(t) fpu(t)- Δfpu
* -

Figure 7. Particle swarm optimization (PSO) based adaptive Proportional-Integral (PI) controller.

The procedures followed by the proposed flexible kinetic energy release controller using PSO to
adjust the controller gains have been described in [30,31]. As shown in Figure 8, in each iteration i,

particle n has positions Ki
n= [ Ki

PD,n Ki
ID,n

]T
and velocities Vi

n= [ Vi
PD,n Vi

ID,n

]T
. The positions

and velocities are updated as follows:

Ki+1
n = Ki

n+Vi+1
n (4)

Vi+1
n = wi

n ·Vi
n+r1 ·

(
Kn(pbest)−Ki

n

)
+r2 ·

(
K(gbest)−Ki

n

)
(5)

where r1 and r2 are random numbers between 0 and 1, Kn(pbest) is the best particle position, K(gbest) is
the best global position, and wi

n is a weighting factor expressed as:

wi
n = wMAX −

(w MAX−wmin)

N
i (6)

The number of particles N is chosen to be 12 and the total number of iterations is 15. The maximum
and minimum values for the weight of the velocity vector are chosen to be wMAX = 0.5 and wmin = 0.1,
respectively. In this work, the evaluation function E in the PSO algorithm is defined as follows:

E = MAX
∣∣∣∆ f

pu
(t)

∣∣∣ − ∆ f
∗
pu

(7)

where ∆ f pu(t) = fpu(t)− 1 pu and ∆ f ∗pu = 1 − (59.6/60) pu. Note that the PSO algorithm is started only
when the system frequency is lower than 59.6 Hz and the evaluation function is chosen to keep the
system frequency as close to 59.6 Hz as possible. In this way, the retained DFIG kinetic energy can be
released in critical conditions to avoid under-frequency load shedding.

61



Energies 2020, 13, 6135

 

KPD Pgrid Vw

 KID
 KID
 KID

PeD

Figure 8. Schematic diagram of particle positions and velocities in every iteration.

5. Simulation Results

To demonstrate the effectiveness of the proposed flexible kinetic energy release controllers,
the local power system in Figure 1 with the parameters in the Appendix A was simulated using
MATLAB/SIMULINK. The dynamic responses from detailed circuit-level simulations are presented
as follows.

5.1. Dynamic Performance of Type I Flexible Kinetic Energy Release Controller

To examine the dynamic performance of the Type I flexible kinetic energy release controller,
dynamic response curves for the following three cases are depicted in Figure 9 under the condition of
KPD = 20, Pgrid = 45 MW, and Vw = 11 m/s:

• Case 1: Droop control only (KID = 0).
• Case 2: Type I controller with KID = 1.1.
• Case 3: Type I controller with KID = 2.

KPD Pgrid Vw

 KID
 KID
 KID

PeD

 
(a) (b) 

Figure 9. Cont.
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(c) (d) 

KPD Pgrid
Vw
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KID
PeD

(12 s ≤ ≤ 22 s)

PeD
KID

KID

Tsm Tt4 Pgrid Vw Tsm Tt4

Tsm Tt4

Figure 9. Comparison of dynamic response curves from different integral gains (KPD = 20, Pgrid = 45 MW,
Vw = 11 m/s). (a) Frequency, (b) DFIG speed, (c) DFIG electrical power, (d) deactivation function based
integral control signal.

The local power system was disconnected from the main grid at the instant of t = 10 s and
remained in islanding operation afterwards. The power deficit of 45 MW immediately following the
grid disconnection caused a frequency dip, which should be controlled by increasing the DFIG electrical
power PeD in order to present the frequency from dropping to a level lower than the under-frequency
load shedding threshold of 59.6 Hz.

On comparing the response curves for the three cases in Figure 9, the following observations are
in order:

1. The frequency response curves for the three cases are essentially the same during the inertia
period (1–2 s after the disturbance or 10 s ≤ t ≤ 11–12 s) since the frequency nadir is of major
concern and inertia control is not considered in this work.

2. The frequency nadir for Case 1 with only a droop controller is lower than the prespecified
threshold of 59.6 Hz.

3. With the proposed Type I flexible kinetic energy release controller, the frequency nadir is improved
to a value higher than the threshold of 59.6 Hz. This is achieved through the addition of an
integral controller with a gain of KID = 1.1. As shown in Figure 9c,d, both the DFIG electrical
power PeD and control signal are increased by the proposed Type I flexible kinetic energy release
controller during the first few seconds in the primary frequency regulation period (12 s ≤ t ≤ 22 s)

4. As evidenced by the response curve in Figure 9d, the control signal u from the proposed Type I
flexible kinetic energy release controller is gradually increased when the system frequency drops
to 59.9 Hz at t = 10.5 s. The deactivation function in Figure 4 begins to work at t = 13 s when
the frequency nadir is detected. Due to the action of deactivation function, the rate of change
of control signal u is gradually decreased and the control signal u is decreased to zero in a very
smooth manner in order to avoid the second frequency nadir.

5. Although the DFIG output power PeD can be further increased and the first frequency nadir at
around t = 13 s can be improved further using a higher integral gain of KID = 2 for the Type I
flexible kinetic energy release controller, the DFIG speed will drop significantly and the DFIG
kinetic energy will be exhausted in the primary frequency regulation period. As a result, a very
low second frequency nadir (59.4 Hz) will be observed at t = 34 s. A moderate gain of KID = 1.1
seems to be a good choice for the study system.

5.2. Dynamic Performance of Type II Flexible Kinetic Energy Release Controller

Detailed comparisons of the dynamic frequency responses for the system with Type I and Type II
flexible kinetic energy release controllers, when the system is subject to parameter uncertainties and
external disturbances, are described below.
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5.2.1. Dynamic Response Curves under Uncertainties in System Parameters Servo-Motor Time
Constant Tsm and Reheater Time Constant Tt4 (Pgrid = 45 MW, Vw = 11 m/s, Tsm = 0.375 s, Tt4 = 6.625 s)

To investigate the dynamic performance of the Type II controller under parameter uncertainties,
the servo-motor time constant Tsm and the reheater time constant Tt4, were changed from 0.3 and 5.3 s
to 0.375 and 6.625 s, respectively. It is assumed that the Type II controller is unaware of the change in
system parameters. The dynamic response curves from the Type I and Type II controllers are compared
in Figure 10. Note that the initial gains for the Type II controller were set to be KPD = 10 and KID = 0.
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Figure 10. Comparison of dynamic response curves from the Type I and Type II controllers under
change of system parameters Tsm and Tt4 (Pgrid = 45 MW, Vw = 11 m/s, Tsm = 0.375 s, Tt4 = 6.625 s).
(a) Frequency, (b) DFIG speed, (c) PSO proportional gain, (d) PSO integral gain.

It is observed from the frequency response curves in Figure 10a, for the case of Tsm = 0.375 s and
Tt4 = 6.625 s, that the system frequency nadir is lower than the threshold of 59.6 Hz when a Type I
controller with the same controller gains of KPD = 20, KID = 1.1, and deficit power Pgrid = 45 MW as
those used in Figure 9 was employed. Recall that the Type I controller with the gains KPD = 20 and KID

= 1.1 gave a satisfactory frequency response for the system with the original parameters (Tsm = 0.3 s
and Tt4 = 5.3 s), as shown in Figure 9a. Therefore, it is concluded that the frequency response from a
Type I controller is sensitive to system parameter variations.

On the other hand, as evidenced by the response curve in Figure 10a, the frequency nadir remained
around 59.6 Hz when the Type II controller was employed. As shown in Figure 10c,d, an improvement
of the system frequency response was achieved by the Type II controller through the use of a pair of
lower initial gains (KPD = 10, KID = 0) immediately following the grid disconnection. As explained
earlier, more kinetic energy retained in the DFIG as a result of lower initial gains during the first few
seconds after disturbance enabled the DFIG to deliver more electrical power to the islanding system
and to improve frequency response.

As shown in Figure 10c,d, the Type II controller was started when the frequency was lower than
59.6 Hz and higher gains for KPD and KID from the Type II controller forced the DFIG to deliver
more electrical power to the system. With the increase of the electrical power output from the DFIG,
the system frequency was improved. In order to return to the MPPT operation mode, when the system
frequency exceeded 59.65 Hz, the PSO gains were gradually decayed to the initial values (KPD = 10,
KID = 0).
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5.2.2. Dynamic Response Curves under Change of Wind Speed

To examine the dynamic performance of the Type II controller under a change of wind speed as
shown in Figure 11, Figure 12 depict the dynamic response curves for this case.

Pgrid

Vw

Pgrid

Pgrid

Figure 11. Variation of wind speed.

 
(a) (b) 

 
(c) (d) 

Pgrid

Vw

Pgrid

Pgrid

Figure 12. Comparison of dynamic response curves from the Type I and Type II controllers under
change of wind speed (Pgrid = 45 MW). (a) Frequency, (b) DFIG speed, (c) PSO proportional gain,
(d) PSO integral gain.

Since the gains of the Type I controller had been selected based on a fixed wind speed of
Vw = 11 m/s, the system frequency nadir failed to meet the requirement of 59.6Hz when the system was
subject to a wind speed change, as evidenced by the frequency response curve in Figure 12a. However,
the Type II controller can still maintain a satisfactory frequency response by adjusting the controller
gains in real-time when the system is subject to a wind speed change, as shown in Figure 12c,d.

5.2.3. Dynamic Response Curves under Uncertainties in System Parameters and Fluctuation of Wind
Speed in Different Pgrid

In order to assess the effectiveness of the Type II controller, the dynamic responses for different
values of Pgrid under the combined effects of the SG time constant change, as described in Section 5.2.1,
and the wind speed fluctuation, as shown in Figure 13, are depicted in Figure 14.
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Figure 13. Fluctuation of wind speed.
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Figure 14. Dynamic response curves of the Type II controller under parameters uncertainties and the
fluctuation of wind speed at different deficit powers. (a) Frequency, (b) DFIG speed.

Based on the dynamic response curves in Figure 14, the following observations can be made.

1. When the deficit power Pgrid is 30 MW, the PSO algorithm will not be initiated since the frequency
response during the entire post-fault period is higher than the threshold of 59.6 Hz. Therefore,
the controller gains for the Type II controller will remain at the initial values (KPD = 10, KID = 0).

2. As the deficit power Pgrid is increased to 45 MW, the controller gains for the Type II controller
can be adjusted online to improve the frequency response, even though the PSO algorithm is
unaware of the change in SG parameters and the fluctuations in wind speed.

3. When the system encounters a large deficit power, e.g., Pgrid = 50 MW, the system frequency
can be kept around 59.6 Hz in the first few seconds after disturbance using the proposed Type
II controller. However, the DFIG stall and frequency collapse are observed afterwards since
the large deficit power exceeds the upper limit of the DFIG stored kinetic energy, which can be
released to the power system under disturbance conditions.

6. Conclusions

Two flexible kinetic energy release controllers have been designed for a DFIG to improve the
frequency nadir of an islanding system, comprising an equivalent SG and an equivalent DFIG. Specific
conclusions are summarized as follows:

1. The Type II flexible kinetic energy release controller with the controller gains being adapted
in real-time, using the PSO technique, has been found to be able to offer a better dynamic
frequency response than the Type I controller when the system is subject to external disturbances
or parameter variations.

2. In this paper, the pitch angle is set to be zero to avoid considerable revenue losses. However,
the de-loaded operation may be used to improve the system frequency at the price of revenue
loss when the deficit power exceeds the DFIG kinetic energy limit.

3. Although the dynamic frequency response can be improved by the proposed Type I and Type II
controllers, the delay time and decay time in the Type I controller must be properly designed in
order to achieve good performance. In addition, it takes a long time for the PSO algorithm to
reach the desired optimal gains of KPD and KID. In order to reduce the computational burden,
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it is necessary to limit the number of particles per iteration. However, the local minimum may be
experienced as a result of an insufficient number of particles.

4. Future work will be devoted to the implementation and field test of the proposed controllers.
Furthermore, the coordination between the pitch angle controller and the proposed controller
will be investigated.
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Nomenclature

DS load damping
D(t) deactivation function
HS, HD equivalent inertia time constants of synchronous machine and DFIG
f system frequency
KPD, KID DFIG supplementary proportional and integral controller gain
Pgrid grid power
PeD electromagnetic power of DFIG
PmS mechanical power of synchronous machine
TmD, TeD mechanical torque and electromagnetic torque of DFIG
TeD,opt electromagnetic torque command of DFIG for MPPT
TFKERC flexible kinetic energy release control signal
t1,t2,tn decay time, delay time, and nadir frequency time
ωmD DFIG speed
VW wind speed
∆ incremental quantity

Appendix A

Speed governor and turbine:

Droop and integral controller gains: KPS = 20 and KIS = 0.1.
Speed relay and servo-motor time constants: Tsr = 0.1 s and Tsm = 0.3 s.
Steam chest, reheater, and crossover time constants: Tt5 = 0.68 s, Tt4 = 5.3 s, and Tt3 = 0.58 s.
Power fractions: F5 = 0.241, F4 = 0.399, and F3 = 0.360.

Synchronous machine:

Rated power: 480 MVA.
Rated voltage: 18 kV.
Rated frequency: 60 Hz.
Number of poles: 2 poles.
Machine parameters: HS = 3.3 s, DS = 0.

DFIG:

Rated power: 200 MVA.
Rated voltage: 690 V.
Proportional and integral gains of q-axis rotor current regulator: Kpq = 0.0756, Kiq = 0.8318.
Stator, rotor, and mutual inductances: Ls = 3.1 pu, Lr = 3.08 pu, and Lm = 3 pu.
Rotor resistance: Rr = 0.01 pu.
Number of poles: 4 poles.
Machine parameters: HD = 3.5 s.

Loads:
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Load 1 = 26 MW; Load 2 = 160 MW; Load 3 = 50 MW; Load 4 = 24 MW.

Infinite bus parameters:

Rated short-circuit power: 11,072.92 MVA.
Rated short-circuit current: 39.71 kA.
Rated voltage: 161 kV.
X/R ratio: 31.6912.
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Abstract: As a result of the increased integration of power converter-connected variable speed
wind generators (VSWG), which do not provide rotational inertia, concerns about the frequency
stability of interconnected power systems permanently arise. If the inertia of a power system is
insufficient, wind power plants’ participation in the inertial response should be required. A trendy
solution for the frequency stability improvement in low inertia systems is based on utilizing so-called
“synthetic” or “virtual” inertia from modern VSWG. This paper presents a control scheme for the
virtual inertia response of wind power plants based on the center of inertia (COI) frequency of a
control area. The PSS/E user written wind inertial controller based on COI frequency is developed
using FORTRAN. The efficiency of the controller is tested and applied to the real interconnected
power system of Southeast Europe. The performed simulations show certain conceptual advantages
of the proposed controller in comparison to traditional schemes that use the local frequency to trigger
the wind inertial response. The frequency response metrics, COI frequency calculation and graphical
plots are obtained using Python.

Keywords: inertial response; low inertia; the center of inertia; frequency response metrics;
wind integration; PSS/E; FORTRAN

1. Introduction

Over the last ten years, the structure and control of the electric power system (EPS) have changed
dramatically due to the increased integration of variable power generation (from wind and photovoltaic
solar) [1]. In 2019, 15.4 GW of new wind power plants (WPP) had been installed and connected to
the European power system, so the total installed capacity of WPP in Europe reached 205 GW [2].
Southeast Europe (SEE) region is also experiencing a “wind boom”. The total installed capacity of WPP
in 2019 in the SEE reached 5 GW. The largest number of conventional power plants in the SEE region
were built during the 1970s and 1980s. In the near future, due to carbon pricing (e.g., emissions trading
system, carbon taxes or EU Carbon Border Adjustment mechanism) and the aging of conventional
thermal power plants (TPP), it is expected that coal-fired TPPs will decrease production or will be
decommissioned (e.g., the recent case of Romania). They will be mainly replaced by variable speed
wind generators (VSWGs). Conventional generating units have an inherent property to support the
grid frequency regulation since the generator’s rotating mass provides kinetic energy to the grid
(or absorbs it) in the case of a frequency deviation caused by an active power imbalance.

Since VSWGs are connected to the network via power back-to-back AC/DC/AC converters,
there is no direct electrical coupling between the grid frequency deviation and VSWG active power
generation [3], which means that they do not contribute to the total system inertia. As the amount of
wind energy in EPS increases, the share of connected synchronous machines and the total system inertia
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will decrease during high wind power generation periods. A detailed assessment of the dynamic impact
of wind generation on EPS frequency control and changing system frequency behavior trends following
the largest generator’s loss is studied in [4]. The assessment requires detailed modelling of an entire
interconnection for different wind penetration and contingency scenarios [5]. Reduced total system
inertia causes many challenges and research opportunities for frequency control of future EPS [6,7].
It has a direct impact on frequency stability, potentially leading to under-frequency load-shedding
(UFLS) [8] or, in the worse cases, to system blackouts (e.g., the 2016 Australian blackout and the London
blackout of 2019) [9,10]. From the EPS point of view, inertia is essential because inertia slows down the
frequency change, giving balancing mechanisms more time to respond and stabilize frequency [11].

Modern power converter connected generation can provide inertia to the grid and support the
frequency recovering process. The authors in [12,13] found that the virtual synchronous machine
concept is a promising solution for improving the frequency response metrics in low-inertia EPS.

In the past few years, numerous strategies and control schemes have been developed to utilize
WPP to inject additional active power during a frequency disturbance using synthetic or virtual inertia
control [14–16]. A complete definition of synthetic inertia with a distinction from the general term of
fast frequency response is well described in [17]. Synthetic inertia control is implemented to extract
the kinetic energy stored in the wind turbine’s rotating blades and in wind generators, and is used
to improve the quality of frequency response (FR) after a disturbance. The world wind industry has
started to integrate controllers on modern VSWG to provide a temporary inertial response during
frequency deviation (e.g., General Electric WindINERTIATM).

Emulated inertia controllers are mainly based on two different approaches: releasing hidden
inertia and reserve capacity in pitch [18]. However, both methods have focused on developing
inertial controllers that track frequency change at the point of common coupling (PCC) of WPP.
Utilizing frequency at PCC as the input signal for the wind inertial controller will result in different
synthetic inertial responses depending on the wind power plant (WPP) locations.

This paper presents the WPP inertial response control scheme based on tracking the selected control
area’s center of inertia (COI) frequency. The control area is part of an interconnected system of the
European Network of Transmission System Operators for Electricity (ENTSO-E). Usually, it coincides
with a state’s territory, administered by a transmission system operator. The rationale behind the
proposed scheme is based on frequency response (FR) analysis and the hierarchical organization of
operation and control of continental European EPS [19]. The role of wind power and the need for
additional inertia in the European EPS until 2050 was quantified in [20]. In [21], insufficient system
inertia in European EPS has to be compensated by the provision of synthetic inertia.

The COI frequency is computed based on synchronous machine rotor speeds and widely used
to define the effect of primary and secondary frequency regulation. Furthermore, COI frequency
is particularly useful to present the frequency group of coherent synchronous machines.
Regarding practical implementation, some previous researches considered that the COI signal is not
fully adequate to support local frequency controllers due to delays in the communication system [22].
Nevertheless, modern digital high-speed telecommunication infrastructure brings new research
opportunities and boosts the COI signal possibilities. Wind inertial control based on COI frequency can
provide a “firm frequency response” within the first few seconds after the disturbance, regardless of
their locations.

This paper aims to open the door for further research of frequency control based on COI in future
low inertia system. The main paper contributions may be summarized as follows:

• The frequency response (FR) analysis of real interconnected EPS of the Southeast Europe region is
performed and evaluated. The novel FR quality indicator “concentration of inertia” is introduced
and calculated.

• The proposed wind inertial response control scheme based on the center of inertia frequency
is introduced. The PSS/E user written wind inertial controller is developed using FORTRAN.
The efficiency of the controller is tested and applied to the real EPS of SEE Europe.
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The paper is organized as follows. In Section 2, the theoretical background of the power
system frequency response is described. ENTSO-E inertia specifics are presented. A novel frequency
response indicator is introduced. Next, in Section 3, the concept of COI is described. In Section 4,
WPP contribution to the grid frequency regulation is explained. A proposed wind inertia controller
based on the frequency of COI (FCOI) is presented in detail. In Section 5, a model of the SEE power
system developed in PSS/E is described. The efficiency of the proposed controller is tested. Results of
dynamic simulations, performed using PSS/E and supported by Python’s scripts, are presented. Finally,
in Section 6, conclusions and some recommendations for future research are given.

2. Power System Frequency Response

The frequency of an interconnected electric power system is a fundamental quantity for estimation
and control. The EPS must be operated within a safe frequency range. The frequency will remain at
its standard value (e.g., 50 Hz in Europe) as long as active power from the generation and the load
demand are balanced. The frequency quality parameters for the European Network of Transmission
System Operators for Electricity (ENTSO-E) synchronous areas, continental Europe (CE), Great Britain
(GB) and Nordic system (NO) are provided in Table 1 [23].

Table 1. Frequency Quality Defining Parameters of the Synchronous Areas (Continental Europe (CE),
Great Britain (GB) and Nordic system (NO).

Parameters CE GB NO

Standard frequency range ±50 mHz ±200 mHz ±100 mHz
Max. instantaneous frequency deviation 800 mHz 800 mHz 1000 mHz
Max. steady state frequency deviation 200 mHz 500 mHz 500 mHz

Time to recover frequency n/a 1 min n/a
Time to restore frequency 15 min 10 min 5 min

Alert state trigger time 5 min 10 min 5 min

According to the ENTSO-E, the interconnected power system of Continental Europe has to survive
any frequency deviations due to a significant sudden change in load or generation (active power
imbalance). The frequency response is the traditional metric used to describe how an EPS has stabilized
frequency after the active power imbalance. To comply with the parameters given in Table 1, the FR
process is realized through several phases: an inertial response, governor response (slow primary
response) as illustrated in Figure 1, automatic generation control (secondary control) and tertiary
control. In the initial phase of the incident (disturbance), which occurs during a few seconds (0–3 s)
after the frequency changes, the synchronous generators’ rotor releases or absorbs part of its kinetic
energy. The swing equation mathematically describes this process:

2Hi

f0

d fi
dt

= Pm.i − Pe,i = ∆Pi (1)

where, Hi (s) is the inertia constant of i-th turbine-generator, fi (Hz) is the frequency of i-th generator,
f 0 is the rated frequency, Pmi (p.u.) is the mechanical power of i-th turbine-generator, Pei (p.u.) is the
electrical power of i-th generator and ∆Pi (p.u.) is active power imbalance. Equation (1) shows an
imbalance between the turbine generators’ mechanical and electrical power results in a frequency
derivative. The rate of change of system frequency (ROCOF) is mostly used to evaluate the EPS
frequency response dynamic. The ROCOF is directly proportional to the amount of active power
imbalance:

ROCOF =
d f

dt
= −

∆P f0

2Hsys
(2)

where, Hsys (s) is the total system inertia constant, ∆P (p.u.) power imbalance of the system and f 0 (Hz)
system rated frequency. If the ROCOF becomes too high during a disturbance, it could lead to under
frequency load shedding. The ROCOF is lower as the inertia of the power system is higher.
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Figure 1. EPS frequency response time frame with different total system inertia.

Large conventional generators (like coal, gas and oil-fired thermal power plants, nuclear and
hydropower plants), which use synchronous machines to convert the mechanical power from their
turbines to electrical power, are the primary sources of inertia in today’s EPS. Inertia constant H (s)
describes the inertia of each generator:

H =
1
2

Jω2
n

Sn
(s) (3)

where J (kg m2) is the moment of inertia of generator and turbine, ωn (rad/s) is the rotor angular speed
and Sn (VA) is generator rated power. Inertia constant H falls typically in the wide range of 2–9 (s) [24].
The sum of all inertia of the spinning generators (and loads like motors) connected to the network is
referred to as the total system inertia:

Hsys =
Σ

N
i=1SniHi

Sn,sys
(s) (4)

where Sni (MVA) is the rated power of the i-th generator, Sn,sys is system rated power equal to the sum
of Sni and Hi (s) is the inertia constant of i-th turbine-generator. The number N in Equation (4) is the
number of rotating synchronous generators connected to the system.

2.1. ENTSO-E Inertia Specifics

In Figure 2, the indicative inertia contribution of each European country (control area) at the time of
the minimum total system inertia is presented. The contribution of SEE countries varies. Each country’s
contribution depends on the generation portfolio and the number of connected conventional generators.
Due to the low share of wind and PV solar in their generation portfolio, some countries (e.g., Serbia and
BIH) have substantial inertia contributions. Others, like Greece and Croatia, have slightly lower system
inertia. Generally, EPS’ stability and frequency control in the SEE region is still based on conventional
power plants’ dynamic characteristics and controllability.
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Figure 2. Indicating the contribution of each Transmission System Operator (TSO) to the total system
inertia (European Network of Transmission System Operators for Electricity (ENTSO-E)—Ten Year
Network Development Plan 2016).

2.2. Novel FR Indicator—The Concentration of Inertia

Modern interconnected EPS with a high share of converter interfaced production units will need
a sufficient amount of inertia (kinetic energy). Calculation and estimation of each real interconnected
EPS’ available kinetic energy are crucial from the aspect of controllability and sharing inertial support
among power systems. This paper introduced a novel FR metric called the “concentration” of inertia
Hc (s). Instead of expressing inertia of a power system in seconds, it is often more convenient to
calculate the kinetic energy stored in rotating masses of the system in megawatt seconds (MWs) [25]:

Ek,sys =
∑N

i=1
SniHi (MWs) (5)

where Sni is the rated apparent power of generator i [MVA] and Hi is the inertia constant of
turbine-generator i (s).

This enhanced metrics (Hc) is determined using the ratio of the total kinetic energy and the total
active power load (PL) in the individual EPS:

Hc =
Ek,sys

PL
(s) (6)

The proposed indicator—“concentration of inertia” characterizes each EPS and its contribution to
the total system inertia. It is especially important that EPSs import electricity, and at the same time,
have a significant share of wind in overall production. In the case of an imbalance that occurs in such
EPS, a considerable part of the missing inertia will be provided from the interconnection. If the inertia
(kinetic energy) of an EPS is low (small Hc), the participation of WPP in the inertial response should
be required.

3. Center of Inertia Frequency Specifics

Real EPS consists of a large number of generators, and each of them, during the response to
an active power disturbance, will operate at an individual frequency. Observing the entire system,
there is an overall mean deceleration or acceleration of the fictitious center of inertia (COI) [26].
Individual generator frequency describes the power balance of the individual generator at a given
location that is, due to electromechanical swings, oscillatory. In contrast, COI’s frequency describes
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an aggregated active power balance of the entire system, which does not contain electromechanical
oscillations. The amplitude and slope of individual electromechanical oscillations of synchronous
generators with respect to the COI frequency in the inertial phase of FR will depend on their
turbine-generator models’ parameters and their electrical distance from the disturbance location.
Based on the weighted average frequency (speed) of the individual generators, the frequency of the
center of inertia can be calculated as:

fCOI =
Σ

N
i=1Hi fi

Σ
N
i=1Hi

(7)

The COI concept is the most common way to estimate the system frequency in transient stability
analysis. The COI frequency could be calculated for a part of the interconnection, e.g., for a national EPS
or a control area, which then contains inter-area electromechanical oscillations. Thus, the COI frequency
is suited to study inter-area oscillations among coherent machine groups (clusters). In practice, instead
of using COI, transmission system operators very often use the frequency estimated at a “pilot bus” of
the system (typically a bus with a high short-circuit ratio). However, the “pilot bus” does not represent
the system’s average frequency, as it follows the dynamics of the closest synchronous generators.

4. WPP Inertial Controller Based on COI Frequency of a Control Area

Since variable speed wind generators (VSWG) are connected to the grid via power converters,
their rotational speed is isolated from the system frequency and does not contribute to the total system
inertia. A controller that emulates a synchronous generator’s inertial response is often referred to as a
synthetic, emulated, or virtual inertial response. Today, wind inertia controller activation primarily is
based on the local frequency input signal. Using this type of controller, the active power output of
VSWG is a function of the measured frequency and/or ROCOF. Estimating local frequency at PCC
is commonly based on phase-locked loop (PLL) techniques. To emulate synthetic inertia, an initial
additional active power ∆Pi must be controlled with the following equation [27]:

∆Pi =
2PmaxHgen

fn

d f

dt (t=0+)
(8)

where Pmax is the generator’s active power, Hgen is generator inertia constant and fn the nominal
frequency. In order to emulate the inertial response properly, synthetic (virtual) inertia must be very
fast (0–3 s). The exact values of the inertial constant vary depending on the manufacturer of WT.
However, for research purposes, the WT inertial constant as a function of its power P (W) can be
estimated [28]:

Hwt ≈ 1.87P0.0597 (9)

The total inertia of the wind turbine-generator system presents a sum of the inertia constant for
the generator and the turbine. According to Equation (1), system frequency excursion in the inertial
phase of disturbance is not the same in all system nodes. Utilizing the local frequency (at PCC) as
the input signal for the wind inertial controller will result in different synthetic inertial responses
depending on the wind power plant (WPP) locations.

Proposed Wind Inertial Control Scheme and Controller

The impact of emulated inertia on a real interconnected EPS frequency response is usually
quantified and analyzed through time-domain simulations using commercial programs like Power
Systems Simulation for Engineers (PSS/E) software. Unlike modelling classical thermal or hydro
generating units, modelling of WPP is very specific. Wind turbine (WT) manufacturers develop
their models, which are more or less complex, but substantially different. Modelling and transient
stability simulations of EPS with many different WT commercial models could be hard work and quite
frustrating. Generally, the idea is to create generic models that are parametrically adjustable to represent
specific wind turbines available in the market. Developing a user-defined model and integrating it into
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a modular machine-model structure enables implementing a wide range of influencing factors in the
power system dynamic simulations. PSS/E wind-related machine models with defined input-output
dependencies can be integrated into the unique structure by developing a user-defined auxiliary signal
model that controls the principle of operation of the entire model during the dynamic simulations.

The proposed wind inertia control scheme based on the control area’s COI frequency is presented
in Figure 3. The input signal ∆ωCOI presents deviation of the frequency of the COI of a control area
with N synchronous generators, computed according to:

∆ωCOI =

∑Narea
i=1 Hi∆ωi
∑Narea

i=1 Hi

(10)

 

Δω

𝛥𝜔 = ∑ 𝐻 𝛥𝜔∑ 𝐻

 

Figure 3. Frequency of center of inertia (FCOI) wind inertia control scheme.

Based on the proposed scheme, a novel generic model of wind inertial controller FCPCAU1 is
developed. The structure of FCPCAU1 is presented in Figure 4. FCPCAU1 is written in FORTRAN.
PSS/E Environment Manager is used to compile code and create a dynamic linked library (DLL) [29].
The application of available wind generator and wind electrical PSS/E models combined with a
user-defined wind auxiliary control model (FCPCAU1) implies the integration of the modified logic
into the dynamic models’ structure. This inertial controller model is integrated with the existing
generic wind electrical model REECAU1 and generic wind generator/convertor model REGCAU1.
These models are contained in the PSS/E dynamics models library and they are widely used to represent
Type 3, double fed induction generator (DFIG) or Type 4, fully fed generators.
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Figure 4. FCPCAU1 wind inertia controller structure.

FCPCAU1 model storage, input and output parameters are presented with state variable values
(STATE), real model parameters (CON) and real model variable values (VAR), as shown in Tables 2 and 3.

Table 2. FCPCAU1 Model Storage Parameters.

Model Storage FCPCAU1 Parameters

STATE(K) ∆Pp

STATE(K+1) ∆Pd

VAR(L) TOTALINERTIA
VAR(L+1) TOTALFACTOR
VAR(L+2) DELTAFCOI
VAR(L+3) DERIVDELTAFCOI
VAR(L+4) PSTART
VAR(L+5) QSTART

CON(J) R
CON(J+1) Kd

CON(J+2) Tp

CON(J+3) Td

CON(J+4) ∆Ppmax

CON(J+5) ∆Pdmax

CON(J+6) DEFARENR

Table 3. FCPCAU1 Model Input and Output Parameters.

Model Input FCPCAU1 Parameters

Hi Model CONS
∆ωi SPEED
Po PELEC
Qo QELEC

Model Output FCPCAU1 Parameters

Pref WPCMND
Qref WQCMND

FCPCAU1 controller consists of two modules: the first one performs droop control, while the
second one performs inertia emulation. These two modules combined results in the recovery of
the frequency to a new steady-state value. Adjusting model storage parameters (e.g., R), the droop
controller module can be disabled. The droop module produces an active power change proportional
to the frequency deviation. It is reasonable that R should be tuned on a similar value as conventional
synchronous generators, Figure 5. The wind turbine generators (WTGs) usually operate at the
maximum power point tracking (MPPT). The active power increase (∆P) during a sudden drop of
system frequency must be obtained from the kinetic energy of the rotating parts (turbine and generator)

78



Energies 2020, 13, 6177

of WTG that causes a decrease of rotational speed. The droop control should be ended on time to
avoid WT’s stalling or coordinated with the de-loading control. For the de-loading mode of WT
operation, the upper droop control limit ∆PpMAX depends on the current wind power availability.
FCPCAU1 operates assuming that the wind speed is constant. Tp (s) presents the time constant.

 

 

ω2𝐻 𝑑𝛥𝜔𝑑𝑡 = 𝑃 − 𝑃
Δω

2𝐻 𝑑𝛥𝜔𝑑𝑡 = 𝑃 − 𝑃 − 𝐾 𝑑𝛥𝜔𝑑𝑡
(2𝐻 + 𝐾 )𝑑𝛥𝜔𝑑𝑡 = 𝑃 − 𝑃

𝑑𝛥𝜔 (𝑡)𝑑𝑡 = 𝛥𝜔 (𝑡) − 𝛥𝜔 (𝑡 − 𝛥𝑡)𝛥𝑡

Δ

Figure 5. EPS frequency droop control.

The derivative module emulates conventional generating units’ inherent property to support the
grid frequency regulation, based on Equation (1). It is possible to consider the whole system or its part
(one control area) and introduce ωCOI:

2H
d∆ωCOI

dt
= Pm − Pe (11)

where ∆ωCOI is the rotational speed deviation of the COI from the nominal synchronous speed:
The wind power injected in the EPS is contained in Pe [30] according to:

2H
d∆ωCOI

dt
= Pm − Pe −Kd

d∆ωCOI

dt
(12)

The controller provides an active power injection proportional to the derivative of the COI
frequency of the control area in which WPP is connected, described by:

(2H + Kd)
d∆ωCOI

dt
= Pm − Pe (13)

where derivative gain Kd acts as synthetic inertial constant, increasing the total system inertia.
The derivative of the COI frequency deviation is calculated according to:

d∆ωCOI(t)

dt
=

∆ωCOI(t) − ∆ωCOI(t− ∆t)

∆t
(14)

As a result, the frequency derivative effect has the same nature as the synchronous generators’
inertia in the selected control area. When the frequency decreases, active power injection increases due
to the negative derivative of frequency. It continues to change until the frequency variation becomes
zero. Due to practical implementation, active power injection should be limited, and limitation band
±∆Pdmax band is introduced. Wind generator (REGCAU1) and wind electrical (REECAU1) models are
controlled by the wind auxiliary control model’s output reference signal (Pref).

Having in the mind ongoing marketization of EPS inertial service, the proposed scheme can
also be applied to selected generators belonging to balance responsible parties (BRPs). BRPs are
financially responsible for continuously maintaining the balance between supply and demand within
their generation portfolio.
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5. EPS Modelling and Simulations

Traditionally, the generation’s portfolio in EPS of this Southeast Europe region is based mainly
on hydro and thermal power plants. The transmission network of these countries operates at 400 kV,
220 kV and 110 kV voltage levels. The high voltage network through the region is well meshed,
providing robust interconnections illustrated in Figure 6. The nominal transmission capacity of
interconnectors on average is above 40% of the regional average peak load. Some countries like BIH
and Croatia have an unusually high capacity of interconnectors regarding their peak load.

 

’

’

’

ea MW) (MWs) W) Wind (

87

330

0

) 417

Figure 6. Southeast Europe (SEE) Region Electric Power System.

The SEE region’s power system, presented in Figure 6, is modelled using PSS/E software. The PSS/E
consists of a complete set of programs for the study of the EPS with both steady-state and dynamic
simulations. The PSS/E software interfaced with Python programming language with the application
program interface (API) is used to perform the dynamic simulations [31]. There are two automation
processes in the PSS/E based on the API: the Python interpreter (Python) and the IPLAN simulator.
Python has great flexibility in operation and has predefined modules for interacting with PSS/E [32].
In this paper, frequency response metrics, frequency of COI calculations and plots are performed with
Python scripts.

The EPSs of Slovenia (SI), Croatia (HR), Bosnia and Herzegovina (BIH), Serbia (RS), North Macedonia,
Kosovo, and Montenegro are modelled in detail, using complete models of generators, excitation systems
and governors. The PSS/E library includes a family of generator models. GENROU (round rotor
generator model) and IEEEG1 governor model is used to present thermal units [33]. IEEEG1 is the IEEE
recommended general model for steam turbine speed governing systems. The hydro generators are
presented with GENSAL (salient pole generator model) with HYGOV turbine speed governing systems.
The simplified excitation system’s dynamic model SEXS is used for all types of synchronous generators.

The classical generator model (GENCLS) is used to present all generators in EPSs of Hungary,
Romania, Bulgaria, Albania, Greece, and Turkey. GENCLS is the classical constant voltage behind the
transient reactance generator model (with H = 4 s, D = 0.5 p.u.).

The EPS is assumed to be working in a steady-state equilibrium before the active power
disturbance’s initialization. The simulated steady-state, network topology, generation units schedule
and loads corresponding to the real scenario are recorded on 16 February 2020. Data are obtained from
the ENTSO-E transparency platform. The total power generation in the analyzed system is 84.3 GW
and consists of thermal and hydro as well as some wind power plants. The total system load is 82.6 GW.
The FR analysis of each control area is out of the scope of this paper. This paper is focused on the FR
performance of the ENTSO-E SCB control block (Slovenia, Croatia and BIH).

The power system data of ENTSO-E control block Slovenia, Croatia and BIH used in simulations
are presented in Table 4.
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Table 4. ENTSO-E Slovenia, Croatia and BIH (SCB) control block electric power system (EPS) data.

Control Area Generation (MW) Eksys (MWs) Load (MW) Wind (MW)

BIH 1.990 9.273 1.385 87
Croatia 1.680 8.033 2.100 330

Slovenia 1.590 10.532 1.689 0
TOTAL (MW) 5.260 27.838 5.174 417

The aggregated wind turbine model is used to represent all wind turbines inside a wind farm.
The wind speed remains constant during simulation. The user-written auxiliary model FCPCAU1 is
used to simulate WTGs in BIH EPS. There are two WPPs connected in the BIH control area, WPP Jelovaca
(18 × 2 MW) and WPP Mesihovina (22 × 2.3 MW). The values of the parameters of the FCPCAU1 are
provided in Table 5.

Table 5. FCPCAU1 parameter values.

Parameter Value Unit

R 0.1 -
Kd 3.3 -
Tp 0.3 s
Td 0.5 s

∆PpMAX 0.5 -
∆PdMAX 0.5 -

DEFARENR BIH 1

1 Selected control area is Bosnia and Herzegovina (BIH).

5.1. Southeast Europe Region EPS Frequency Response Simulation

The active power disturbance ∆PL = 2.75 (p.u.), sudden loss of production of TPP Stanari (275 MW)
in the BIH control area, is applied at t = 2 s after the simulation start. Based on imported data from
PSS/E time-domain simulations, Python scripts have been developed to automate calculations and
plots of EPS frequency response. For the simulated disturbance, the COI frequency is calculated for the
SCB control block and the entire SEE region.

Power system frequency responses of Slovenia, Croatia, BIH and of FCOI of SEE region are
presented in Figure 7.

 

Δ
Δ

Δ

 

Figure 7. EPS frequency response, simulation time 15 s.

Following the disturbance, frequency excursions of COI Slovenia, Croatia and BIH are different
and experienced inter-area electromechanical oscillations (EMOs).
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These low frequency (0.1–0.8 Hz) EMOs are associated with coherent groups of synchronous
generators from each control area (EPS) swinging against the other coherent groups of synchronous
generators. Each coherent group oscillates differently than the others. In particular, at a given time,
some groups locally accelerate, and others locally decelerate. Frequency oscillations caused by the
active power imbalance are damped, and after 10–15 s, the system obtains a new steady-state.

At the end of the simulation (Figure 7), the system will not return to the nominal frequency (50 Hz)
on its own. To compensate for the remaining frequency deviation, ENTSO-E Continental Europe
interconnected system uses automatic secondary frequency control called automatic generation control
(AGC). The AGC is not included in this simulation model.

5.2. Southeast Europe Region Frequency Response Evaluation

The frequency response (FR) performance indicators and inertia concentration are calculated for
individual control areas and the entire SEE region. The results are presented in Table 6. The steady-state
frequency deviation ∆fss is the frequency deviation from the rated (nominal) system frequency (50 Hz) in
a new steady-state, while ∆fmax is the highest absolute frequency deviation (nadir). Generally, after the
applied disturbance, the calculated frequency response metrics show that the system frequency remains
in the prescribed range.

Table 6. Frequency response metrics of COI of control areas, SEE Region and WPP Jelovaca 110 kV PCC.

Nadir tmin df /dt ∆fmax ∆fss Hc

Hz s Hz/s mHz mHz s

BIH 49.9749 0.220 −0.238 25.1 11 6.7
Croatia 49.9808 0.245 −0.073 19.2 11 3.8

Slovenia 49.9821 0.255 −0.047 17.9 11 6.2
WPP Jel. 110 kV (BIH) 49.9849 0.228 −0.169 22.2 10 -

SEE Region 49.9778 3.38 −0.010 15.1 10 -

The lowest point of frequency drop (nadir) is recorded in EPS of BIH (49.9749 Hz) and the time it
takes to reach the nadir tmin = 0.22 (s) (immediately after a disturbance occurred). The frequency decline
of the SEE region is stopped at tmin = 5.38 (s) (3.38 s after a disturbance occurred) at a frequency value of
49.9778 Hz. The final steady-state frequency deviation in the SEE region EPS is ∆fss = 10 (mHz).

Deviations from nominal frequency by more than 20 mHz are corrected by activating individual
generators’ primary frequency regulators and, if necessary, by activating the energy for frequency
restore reserve FRR [34]. FRR is an operating reserve activated to restore frequency to the nominal
value and power flows on the interconnected lines to the pre-fault scheduled values. It is also used for
secondary and tertiary regulation. In Figure 8, the FCOI of SEE region, frequency measured at PCC of
WPP Jelovaca and FCOI of EPS BIH are presented. The frequency at PCC of WPP Jelovaca (red line) is
obtained from time-domain simulation, computing the numerical derivative of the bus voltage phase
angle. It is evident that in the initial phase, the local bus frequency (red line) is much closer to the
frequency of the total system frequency of the SEE region (black dotted line) than the frequency of COI
BIH (blue line). It can be concluded that the frequency representation using the measured generator
speeds (e.g., FCOI of the control area) more closely reflects the frequency dynamics of a local EPS.
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Figure 8. EPS frequency response, time simulation 20 s.

The initial slopes (ROCOF) of each control area and SEE region are presented in Figure 9.
As expected, recorded ROCOFs of COI of Slovenia and Croatia are lower than the COI of BIH.

 

 

−
−

Figure 9. ROCOF of EPS.

Following the disturbance, the maximum ROCOF of COI BIH (−0.238 Hz/s) is significantly higher
than the ROCOF of local frequency at PCC of WPP Jelovaca (−0.169 Hz/s). This different frequency
behavior is used to design wind inertial controller FCPCAU1 based on specifics of the FCOI of a control
area. The performed simulation and calculations show that EPS of BIH, which is a significant exporter,
has the largest inertia concentration 6.7 (s), due to low total system load and numerous synchronous
generators connected to the grid. The inertia concentration of the EPS of Croatia is the smallest 3.8 (s)
in the SCB LFC block. Croatia is a regional importer of electricity and its total load (2.100 MW) is
high relative to the local generation (1.680 MW) and the number of connected SGs. The concentration
of inertia indicates a potential need for WPPs located in EPS of Croatia to participate in the inertial
response. It is an important finding because the EPS of Croatia has the largest installed wind capacity
and the smallest kinetic energy in the SCB LFC block (Table 4).
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5.3. WPP Inertial Controller FCPCAU1 Performance

Based on previous findings and calculated FR indicators, the WPPs’ inertial contribution highly
depends on used frequency input signals. In Figure 10, the power output of WPP Jelovaca (blue dotted
line) during the analyzed disturbance is presented. When the frequency drop is detected (red line),
the inertial controller FCPCAU1 continuously follows dfCOI/dt and forces the WPP to generate additional
power. The additional power output from synthetic inertia depends on ROCOF, WPP inertia constant
and WPP Pmax. In the initial phase of active power response, WPP Jelovaca additionally generates
0.4 MW.

 

 

Figure 10. WPP Jelovaca (BIH) active power response.

In Figure 11, a comparison between WT active power responses considering different input signals
for synthetic inertia control is presented. The initial peak of the inertial response triggered by the
FCOI of the BIH control area (red line) results from fast releasing kinetic energy from WT. It is more
significant than when local frequency measured at PCC of WPP (blue dotted line) is used.

 

 

Figure 11. WPP Jelovaca (BIH) active power response comparison.

The value of derivative gain Kd highly influences FCPCAU1 performance. Gain (Kd) excessive
value could lead to WT rotor speed instability, because Kd scales change at every frequency. The inertial
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controller’s parameters should be carefully determined to avoid eventual dangerous consequences on
WT’s mechanical parts.

In Figure 12, the FCOI of SEE region, FCOI of control area Croatia and frequency obtained from
PSS/E simulation at PCC of WPP Ponikve (34 MW), WPP Velika Glava (43 MW) and WPP Vratarusa
(42 MW) are presented. These wind farms are connected to the 110 kV transmission grid of the
Croatia control area. WPP Ponikve and Velika Glava are electrically close to hydropower plants
(HPP Dubrovnik and HPP Orlovac), so the frequency excursion at their PCC is significantly influenced
by these HPP. WPP Vrataruša is electrically more distant from the fault location, so the frequency
change at PCC is slightly different.

 

  
(a) (b) 

 

Figure 12. EPS frequency response. (a) simulation time 4 s, (b) simulation time 10 s.

In the first few seconds, the dynamics of the Croatian FCOI better characterizes the nature of the
imbalance than the local PCC frequency at WPP Vratarusa. The frequency response indicates that the
system frequency excursion in the inertial phase of disturbance is not the same in all system nodes.
This finding will result in different synthetic inertial responses depending on the wind power plant
(WPP) locations. Using FCOI of a control area instead of local frequency, all WPPs can provide a “firm
frequency response” within the first few seconds after the disturbance, regardless of their locations.

6. Conclusions

The wind is expected to be a significant new electricity generation source in Southeast Europe,
but WPP integration is slow and their share in total production is small. Generally, the frequency
stability and control of EPS in this region are still based on the dynamic characteristics and controllability
of conventional power plants.

Simulation results show that the modelling and the frequency calculation (COI or local frequency)
significantly differ in a power system’s transient behavior with high WPP integration. A new FR
indicator, “concentration of inertia”, was introduced. This indicator shows how inertia is distributed
in real interconnected systems and can be relevant for the inertial response service’s upcoming
marketization. The inertial response of WT based on the COI frequency shows that WTTs can provide
a “firm frequency response” in the first few seconds after the disturbance, regardless of their location.
Some essential points like the impact of noise, time delay and measurement data quality on the
estimation COI signal still require further research to enhance the WT inertial response based on the
control area FCOI. In the future (low inertia) EPS, frequency control methods need to be redefined
and new schemes need to be developed. The authors believe that this work presents a small step in
that direction.
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Abstract: With the increasing penetration level of wind turbine generators (WTGs) integrated into the
power system, the WTGs are enforced to aid network and fulfill the low voltage ride through (LVRT)
requirements during faults. To enhance LVRT capability of permanent magnet synchronous generator
(PMSG)-based WTG connected to the grid, this paper presents a novel coordinated control scheme
named overspeed-while-storing control for PMSG-based WTG. The proposed control scheme purely
regulates the rotor speed to reduce the input power of the machine-side converter (MSC) during
slight voltage sags. Contrarily, when the severe voltage sag occurs, the coordinated control scheme
sets the rotor speed at the upper-limit to decrease the input power of the MSC at the greatest extent,
while the surplus power is absorbed by the supercapacitor energy storage (SCES) so as to reduce its
maximum capacity. Moreover, the specific capacity configuration scheme of SCES is detailed in this
paper. The effectiveness of the overspeed-while-storing control in enhancing the LVRT capability is
validated under different levels of voltage sags and different fault types in MATLAB/Simulink.

Keywords: permanent magnet synchronous generator (PMSG); supercapacitor energy storage (SCES);
rotor overspeed control; low voltage ride through (LVRT); capacity configuration of SCES

1. Introduction

Due to the abundant sources and advanced power generation technologies, the wind
power is integrated into the grid on a large scale as a major green source. Currently, the low
voltage ride through (LVRT) is one of the most important issues to the modern systems
with high penetration of wind power. To overcome this difficulty, the grid-connected
requirements for wind power have become stricter and stricter. The grid codes enforce the
wind turbine generator (WTG) to keep grid-connected and provide reactive power support
under faults.

At present, the doubly fed induction generator (DFIG) [1–6] and the permanent mag-
net synchronous generator (PMSG) [7–12] are two mainstream wind turbine generators
(WTGs). On the one hand, the PMSG exempts the gearbox, which is easily broken, so as to
reduce maintenance cost and improve the reliability of PMSG; on the other hand, the PMSG
can complete isolation from the grid disturbances owing to the full-scale converter. In com-
parison with DFIG, the PMSG has a simpler structure, lower maintenance cost and higher
LVRT capabilities [13].

Recently, the methods of the LVRT enhancement of PMSG have been divided into
two primary types: inherent control modification and auxiliary device modification [14].
The inherent control modification was well covered in the following references [15–20].
The active power surplus was stored in the inertia of the turbine–generator system to
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keep the DC-link voltage stability in [15–17]. Moreover, in [16], a direct model predictive
control is proposed for enhancing the dynamic response of the wind energy conversion
systems. In addition, the control strategies of stator-side and grid-side were altered to
provide reactive power for the grid under faults in [17]. Then, a new control structure is
presented in [18,19], the machine-side converter (MSC) was utilized to regulate the DC-link
voltage, while the grid-side converter (GSC) was used for fulfilling the maximum power
point tracking (MPPT) of the wind turbine. Accordingly, when the voltage sags in the
grid-side, the active power generated by the PMSG can be reduced, hence the surplus
power of DC-side is decreased. Then, the voltage of DC-side is easily able to be stable.
However, the performance of the control scheme in [18,19] is inaccurate in the normal
condition. In [20], the pitch control was used to reduce the available wind power, and the
excess energy is stored by the rotor and the DC-link capacitor. Moreover, the reactive
power support was provided by the GSC. Whereas, the pitch control is a slow mechanical
process and it cannot respond to the disturbances of system immediately. What is more,
frequent change of the pitch angle results in the abrasion of equipment and the decrease of
PMSG lifetime.

In addition, the studies on auxiliary device modification are also attention-attracting
for its characteristics of a fast response and wide adjustable range under different levels of
voltage sags. In [21,22], the excess energy of DC side was dissipated by the chopper circuit
to avoid the overvoltage of the DC side and eliminate the mismatch between the input
power of MSC and the output power of GSC. The method is utilized widely for its simple
control strategy and low costs. However, it is noteworthy that the efficiency of PMSG is
declining owing to the waste of energy, and the overheating problem occurs under severe
faults. In [23], as a multiple-functional flexible alternating current transmission system
(FACTS) device, the electronic power transformer (EPT) was combined with energy storage
system to enhance the LVRT capability of PMSG. In [24], the supercapacitor energy storage
(SCES) devices were installed on the DC-side, and they can absorb the surplus active power
of DC-side to prevent the DC link capacitor from overvoltage. The effectiveness of the SCES
is verified comparing with conventional current-limiting strategy. However, there was no
specific capacity configuration scheme of the SCES in [24]. The superconducting magnetic
energy storage (SMES) was presented in [25] to improve the LVRT capability and transient
stability of PMSG, the superconducting fault current limiter (SFCL) was utilized to increase
the output power of GSC, while the excess power was absorbed by the SMES so as to
reduce its energy storage capacity.

In brief, the inherent control modification reduces the input power at the cost of the
increasing mechanical tensions and faster aging, while the auxiliary device modification
dissipates or absorbs the surplus power to prevent the DC capacitor from overvoltage at
the expense of economic performance. In order to take full advantages of the two types of
methods, based on the SCES control in [24], this paper presents a novel coordinated control
scheme of rotor overspeed control and supercapacitor energy storage (SCES) control for
PMSG-based WTG to improve the LVRT performance with comprehensive consideration
of many factors. In this paper, the rotor speed is increased within allowable limits to reduce
the input power of MSC under slight faults, and the rotor speed is set to the upper-limit
to reduce the input power of MSC to the maximum extent under severe faults. The SCES
is inoperative under slight faults to prevent the SCES from switching frequently, but the
SCES can absorb the excess energy to prevent the DC link capacitor from overvoltage
under severe faults. The specific capacity of the SCES is calculated, compared and verified.
In addition, the GSC is utilized to maintain the DC voltage stability under the normal
condition and provide reactive power support under faults.

The rest of this paper is structured as follows: The grid codes and technical principle
of LVRT are introduced in detail in Section 2. The rotor overspeed control scheme of
PMSG-based WTG is described in Section 3. The SCES control scheme is given in Section 4.
The two kinds of coordinated control scheme for PMSG-based WTG are presented in
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Section 5. The simulation results and analyses of the proposed coordinated control scheme
are shown in Section 6. Finally, the conclusions are drawn in Section 7.

2. The Grid Codes and Technical Principle of LVRT

2.1. The Grid Codes of China

According to the grid codes of China [26], the PMSG-based WTG should have suffi-
cient LVRT capabilities. Here, the LVRT requirements of China are shown in Figure 1. It is
stated that the PMSG-based WTG should keep connected to the power system for the grid
voltage above the curve and the trip of PMSG-based WTG occurs otherwise. In the worst
case, the voltage sagged to 0.2 p.u. and lasted for 0.625 s at most, and the voltage should
recover to 0.9 p.u. within 2 s.

Figure 1. The grid codes of China.

2.2. The Technical Principle of LVRT

In the steady state, Equation (1) holds if the losses of the PMSG-based WTG and
full-scale converters are ignored.

Pm = Ps = Pg (1)

where Pm is the mechanical power captured by the wind turbine, Ps is the input power of
MSC and Pg is the output power of GSC.

The output power Pg is decreasing on account of voltage sags and current limiting
measures of GSC during faults. However, the PMSG is incapable of responding the grid
faults due to the complete decoupling from grid for adopting the full-scale converter.
Consequently, a mismatch between the input power of MSC Ps and the output power of
GSC Pg is produced, and then it leads to the unbalance energy on the DC-side.

According to the above principle, this paper mainly takes measures to fulfill the LVRT
requirements of PMSG-based WTG from the following three aspects in Figure 2:

Figure 2. The technical principle of low voltage ride through (LVRT).
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(1) The MSC side: It can reduce the input power Ps by increasing the rotor angular speed
ω. However, this method threatens the stability of system when the rotor angular
speed out-of-limit. Therefore, it generally needs to be combined with other methods.

(2) The GSC side: The control strategy of GSC should switch to reactive power com-
pensation mode during faults, so as to provide reactive power support to hold the
grid voltage.

(3) The DC side: In order to dissipate the unbalance power ∆P, the SCES is installed
on the DC link and absorbs the excess energy to prevent the DC link capacitor from
overvoltage.

3. The Overspeed Control Scheme

The mechanical power captured by the wind turbine can be described as Equation (2):

Pm =
1
2

πρR2V3Cp (2)

where ρ is the air density, R is the radius of the wind turbine blade, V is the wind speed,
and Cp is the wind power coefficient [27], which is the function of the tip speed radio λ

and the pitch angle β. Generally, in order to maximize the use of wind energy, the Cp is set
to maximum value Cpmax, and tip speed radio λ is set to the optimal value λopt:

Cp(λ, β) = 0.5176(
116
λi

− 0.4β − 5) exp(
−21
λi

) + 0.0068λ (3)

1
λi

=
1

λ + 0.08β
−

0.035
1 + β3 (4)

where λ is given as Equation (5).

λ =
ωR

V
(5)

It is assumed that the wind speed V is constant during the short time interval for
the electromagnetic transient analysis. In addition, we did not take the pitch control into
account due to its slow mechanical response. Therefore, the wind speed V was set to VN
(i.e., V = VN), and the pitch angle β was set to 0 (i.e., β = 0). According to Equations (2)–(5),
the input power curve is shown as Figure 3:

Figure 3. The input power curve of the permanent magnet synchronous generator (PMSG).

The unbalance power of the DC-side produced by the mismatch between the input
power and the output power during faults can be expressed as:

∆P = Ps − Pg (6)
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Thus, to eliminate the mismatch between the input power of MSC Ps and the output
power of GSC Pg, the input power Ps needs to be reduced by ∆P. Then the deloading rate
is defined as d = ∆P/PA, where PA is the maximum power captured by the wind turbine in
the MPPT mode. Due to the static instability problem caused by under-speed control [28],
then overspeed control is generally adopted to keep the rotor working in the safe area (i.e.,
the right area of the optimal speed ωopt) [29]. The power of the overspeed point PC can be
represented as:

PC = PA − ∆P = (1 − d)PA (7)

The wind power coefficient of the overspeed point can be expressed as:

Cpc = (1 − d)Cpmax (8)

Under the condition of β = 0, Cp is given according to Equation (8), and then λ can
be obtained by Equations (3) and (4). Furthermore, the rotor speed referenceωref can be
calculated easily according to Equation (5). However, consider the strong nonlinearity of
the Cp-λ curve, it is hard to find the concrete expression of inverse function of Cp = f(λ).
To address this issue, in this paper, the least square method is was to fit the inverse function
of Cp = f(λ).

λ = f (Cp) = a0 + a1Cp + a2C2
p + · · ·+ anCn

p (9)

When the order of polynomial n = 3, the equation is shown as:

λ = 13.5594 − 11.5724Cp + 29.3383C2
p − 56.6625C3

p (10)

Comparing with the actual curve, the fitting curve with the allowable errors is shown
in Figure 4.

Figure 4. Actual curve and fitting curve of λ-Cp.

The overspeed control strategy of MSC is shown in Figure 5. The outer loop is the
speed control loop while the inner loop is the current control loop. The d axis current
reference idref is set to 0 both in the steady state and faulted state, while the q axis outer
speed reference ωref switches between the normal mode and faulted mode according to the
state of the system. When the system is steady, the switch is work at Mode 1, the speed
reference ωref is set to ωopt (i.e., ωref = ωopt), the PMSG is working at point A, the input
power of MSC is equivalent to the maximum mechanical power captured by the wind
turbine PA. When the voltage sags, the switch is working at Mode 2, the speed reference
ωref is set to ωc. The reference control variables of the MSC are altered so as to reduce the
input power, and eliminate the mismatch between the input power and the output power.
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Figure 5. The control strategy of the machine-side converter (MSC): (a) the outer loop control and (b) the inner loop control.

According to Figure 1, under the symmetrical fault (i.e., the worst case of voltage
sags), the unbalanced energy generated during faults can be expressed as:

E =
∫ 2

0
∆Pdt (11)

where the integral time t means the time that PMSG keeps connected to the grid under
faults, and ∆P is the deviation between the output power during faults and the rated
power.

The unbalanced power is generated due to the voltage sags and current limiting
measures of GSC. Thus, the output current is keeping at the upper limit under voltage sags,
that is to say, the current is constant during faults. Consequently, the output power Pg is
proportional to the grid voltage ug.

By substituting the data of Figure 1 into Equation (11) [30], the unbalanced energy
generated during faults can be calculated as:

E = PN [(1 − 0.2)× 0.625 + 0.5 × (0.8 + 0.1)× (2 − 0.625)] (12)

where PN is the rated power of PMSG. The total unbalance energy of the DC-side is 28 kJ
in the worst case of voltage sags. Hence, to eliminating the unbalanced energy 28 kJ within
2 s, the average changed power by regulating the rotor is 14 W, and the corresponding
speed isω = 1.4ωN according to Figure 3. However, the rotor speed of the wind turbine,
generally, should not exceed 1.2 ωN [31]. Thus, the deloading rate d should keep between 0
and 12% without the pitch control.

The rotor overspeed control scheme can enhance the inherent LVRT performance of
PMSG by regulating the rotor speed without auxiliary devices. Apparently, the advantage
of the overspeed control is low cost. However, the rotor overspeed control scheme is only
applicable to the condition of slight faults due to the limit of maximum rotor speed.

4. The Supercapacitor Energy Storage (SCES) Control Scheme

To cope with the issue existing in the rotor overspeed control scheme, the SCES control
scheme is proposed to improve the LVRT capability of PMSG under all conditions of
voltage sags [24].

The unbalanced power on the DC-side under faults leads to overvoltage as the following:

∆P = Ps − Pg = CUdc
dUdc

dt
(13)

To maintain the stability of DC voltage during faults, the energy storage systems,
which consist of the SCES and the bidirectional DC–DC converter, are installed on the
DC-side. In comparison with other energy storage, the SCES is more attractive and suitable
for LVRT occasions owing to its higher power density, more cycle times, and shorter
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charge–discharge time. Consequently, The SCES is selected to store or release the energy in
this paper.

In addition, the bidirectional DC–DC converter is mainly used to fulfill the charge–
discharge control of the SCES and improve the stability of DC voltage. If the DC voltage
rises, the bidirectional DC–DC converter works at the buck mode. Otherwise, the bidirec-
tional DC–DC converter works at the boost mode.

Thus, the control strategy of the bidirectional DC–DC converter is displayed in
Figure 6. The voltage control outer loop achieves the voltage stability by tracking DC
voltage, while the current control inner loop improves the response speed. Furthermore,
the working mode of the bidirectional DC–DC converter is shown in the Figure 7, when the
S1 is triggered, the converter works in the buck mode and the SCES absorbs the energy
from the DC-side; when the S2 is triggered, the converter works in the boost mode and the
SCES transfers the stored energy to the DC link. It should be noted that S1 and S2 cannot
be triggered concurrently.

Figure 6. The control strategy of the bidirectional DC–DC converter.

Figure 7. The bidirectional DC–DC working mode: (a) buck mode and (b) boost mode

In practice, consider the impacts of the series equivalent resistance of the SCES,
the losses caused by the large number of supercapacitors integrated in series or in parallel,
and the possibility of grid faults occurring multiple times during a period of time. Thus,
the actual capacity of the SCES should be multiplied by a larger reliability coefficient based
on the theoretical value. In addition, the SCES usually works at a middle voltage U0 so as to
charge or discharge. In this paper, we set the reliability coefficient of unidirectional energy
transmission to 1.5, and then the reliability coefficient of bidirectional energy transmission
was set to 3 [30]. According to Equation (12), the theoretical value of unbalanced energy is
28 kJ. Therefore, the triple energy of SCES (i.e., 84 kJ) should be configured in this paper.

This paper adopted the single supercapacitor and the specifications were: Cs = 300 F,
Us = 2.5 V and Rs = 200 mΩ. Then 120 supercapacitors were connected in series to form
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the SCES. Here, define discharge depth h = Umin/Umax, and the energy absorbed or released
by the SCES can be described as:

Wsc =
1
2

Csc(Umax
2
− Umin

2) = Wmax(1 − h2) (14)

The state of charge (SOC) of the SCES can be expressed as:

SOC =
Wmax − Wsc

Wmax
=

Wmax − Wmax(1 − h2)

Wmax
= h2 (15)

Generally, the discharge depth was set to 50% (i.e., h = 50%), then the SOC of SCES
was calculated between 25 and 100%, and the chargeable and dischargeable energy of the
SCES was 75%. Apparently, the utilization rate of the SCES was relatively high.

From Equation (14), the maximum energy absorbed by the SCES can be calculated
as follows:

Wsc =
1
2

CscUmax
2(1 − h2) = 84kJ (16)

Thus, the value meets the requirement of reliability coefficient. In addition, the initial
middle voltage U0 of the SCES can be obtained from Equation (17) [32]:

1
2

CscU2
max −

1
2

CscU2
0 =

1
2

CscU2
0 −

1
2

CscU2
min (17)

Therefore, the SCES control scheme is applicative under the all conditions of voltage
sags as long as the capacity configuration is appropriate. However, the separate utilization
of the SCES control scheme is not conducive to the economic performance of the system
owing to its high cost.

5. The Coordinated Control of Rotor Overspeed and SCES

According to the aforementioned control scheme in Section 3, the rotor overspeed
control scheme under severe faults is prone to result in the rotor speed of the PMSG out-of-
limit and affects the safety and stability of the power system. Additionally, in Section 4,
the cost for separate utilization of the SCES control is high.

Thus, in order to take the advantages of the rotor overspeed control and the SCES
control, and overcome drawbacks of either of the two control methods, now we are in a
position to propose the coordinated control strategies, in which two innovative schemes
are discussed as follows.

5.1. Coordinated Control Scheme I: Overspeed-Before-Storing

A reliable and effective coordinated control scheme named overspeed-before-storing
is proposed (i.e., Scheme I). The rotor overspeed control is adopted under the slight faults;
while the SCES control is adopted under the severe faults.

Introduce the voltage sag depth k = ∆U/UN. Noteworthily, when k is equal to 30%,
the rotor speed is up to the upper bound limit (i.e., 1.2 p.u.). Therefore, we set the critical
value as 30% to avoid the rotor speed out-of-limit.

The control strategy of Scheme I is as follows: When the voltage sag depth k ≤ 30%,
the rotor overspeed control is adopted. Contrarily, the SCES control is adopted. The specific
control flow chart is shown in Figure 8.
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Figure 8. The flow chart of the two coordination control schemes.

Theoretically speaking, Scheme I can fulfill the LVRT requirements of PMSG under
the all voltage sags conditions. Furthermore, Scheme I can avoid frequent switching of
SCES under slight faults. Whereas, in Scheme I, the capacity configuration of SCES is the
same as the SCES control scheme in Section 4, and the economic performance of the system
is not improved.

5.2. Coordinated Control Scheme II: Overspeed-While-Storing

Based on further optimization and improvement of Scheme I, the coordinated control
scheme named overspeed-while-storing (i.e., Scheme II) is presented. When the voltage
sag depth k ≤ 30%, the rotor overspeed control scheme was adopted, and it was the same
as in the Scheme I. However, if k > 30%, unlike Scheme I, the rotor overspeed control and
the SCES control worked together. The rotor angular speed increased and maintained at
maximum (i.e., ω = 1.2 p.u.), and the surplus energy was absorbed by the SCES to stabilize
the DC-side voltage. The detailed control flow chart is represented in Figure 8.

In Scheme II, the unbalance power of DC-side under the severe faults is given as:

∆P′ = ∆P − ∆Ps (18)

where ∆P is the unbalance power between MSC and GSC without rotor overspeed control,
and ∆Ps is the variable quantity of input power by setting the rotor speed to maximum.

Substitute (18) into Equations (11) and (12), it can be calculated that the total unbalance
power of DC-side under voltage sags is 23 kJ. To absorb the excess energy, the 100 superca-
pacitors are installed in series to form the SCES.
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The maximum energy absorbed by the SCES is calculated as:

W ′
sc =

1
2

C′
scU

′2
max

(1 − d2) = 70 kJ (19)

In practice, consider the limit of voltage transformation range of the DC–DC converter,
the bound limits of voltage magnitudes on the SCES can be designed between 195 and
584 V [33], that is, the corresponding voltage transformation ratio is between 0.25 and 0.75.
Consequently, the maximum working voltage of the SCES meets the requirements under
the three control schemes (i.e., the SCES control scheme, the coordinated control Scheme I
and Scheme II).

Comparing with the other three control schemes mentioned above, the coordinated
control Scheme II could enhance the LVRT capability under the all conditions of voltage
sags. Meanwhile, the rotor speed could stay in the safe limit. In addition, due to the impact
of the regulation of rotor speed, the capacity configuration of SCES in coordinated control
Scheme II is smaller than that in the SCES control scheme. In conclusion, the coordinated
control Scheme II improves the stability and economy of the system simultaneously.

For all of the four control schemes mentioned above, the control strategy of the GSC is
identical and it is presented as follows:

In the normal condition, the GSC works at the unity power factor mode (i.e., iqref = 0),
in other words, there is no reactive power injected to the grid.

When the voltage sags, the reactive current reference can be written as:

igq ≥ 1.5 × (0.9 − ug)IN (20)

igdre f 2 =
√

i2max − i2gqre f (21)

where ug is the grid voltage and IN is the rated current. According to Equation (20), instead
of the unity power factor control, the GSC is utilized to provide reactive power support,
in other words, the GSC is set to the Q-priority mode [34]. Accordingly, the active current
should be limited by Equation (21) during faults because of the current limit of GSC, and
the active current reference adopts the smaller one between idref1 and idref2. The reference
control variables of the GSC are altered so as to provide reactive support to the grid under
faults. The control strategy of GSC is shown in Figure 9.

Figure 9. The control strategy of the grid-side converter (GSC): (a) the outer loop control and (b) the inner loop control.

6. Simulation Validation

The simplified modeling of the grid-connected wind system in MATLAB/Simulink is
depicted in Figure 10. The wind system consists of a PMSG-base WTG, the MSC, the GSC,
the SCES and the bidirectional DC–DC converter. The parameters of the modeling are
listed in Table 1.
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Figure 10. The simplified modeling of the grid-connected wind system.

Table 1. Simulation parameters of the wind system.

Name Value

The parameters of PMSG

Rated power 25 kW
Stator resistor 0.05 Ω

Stator inductance 2 × 10−3 H
Permanent magnet flux 2 Wb

Pole pairs of PMSG 8
Rotational inertia 12 kg·m2

The parameters of system
DC-link rated voltage 778 V

System frequency 50 Hz

The parameters of SCES under the
SCES control and

overspeed-before-storing control

Equivalent capacitance of SCES 2.5 F
SCES rated voltage 300 V

Equivalent resistor of the SCES 2.4 Ω

The parameters of SCES
underoverspeed-while-storing

control

Equivalent capacitance of SCES 3 F
SCES rated voltage 250 V

Equivalent resistor of the SCES 2 Ω

The parameters of the below simulation analysis diagram are as follows: ua is the grid
voltage, ω is the rotor angular speed, Ps is the input power of MSC, Udc is the DC-side
voltage, Pg is the output power of GSC, Q is the reactive power generated by the GSC,
Usc is the voltage of the SCES and SOC is the state of charge of the SCES.

6.1. The Simulation Results of the Four Control Scheme under Symmetrical Faults

6.1.1. The Simulation Results of the Rotor Overspeed Control Scheme

The response characteristics of PMSG-connected system with the rotor overspeed
control scheme under faults are shown in Figure 11. According to the voltage sag depth,
the rotor speed ω is regulated to reduce the input power of MSC, so that it can maintain
the power balance of the system and keep the DC voltage fluctuated in the range within
permission. The GSC can provide the reactive power to the grid under the voltage sags.
When the voltage sag depth k > 30%, the rotor speed has exceeded the upper limit of wind
turbine, which is not allowable in practice.
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Figure 11. The simulation results of the rotor overspeed control scheme.
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6.1.2. The Simulation Results of the SCES Control Scheme

The response characteristics of PMSG-connected system with the SCES control scheme
under faults are presented in Figure 12. The input power of the MSC remained unaltered
under any voltage sags because there no measures were adopted in the machine side. The
unbalance power of the DC-side leads to the fluctuation of DC voltage. The SCES was
utilized to absorb the unbalanced power on the DC side and stabilized the DC voltage.
The GSC was used to provide the reactive power to enhance the LVRT capacity. When
the worst fault occurred (i.e., the voltage sag depth k was 80%), the voltage of the SCES
Usc increased from 230 to 279 V, SOC increased from 76% to 93%, the two values of the
SCES were both in the allowable limit. The SCES control scheme could enhance the LVRT
capacity of the PMSG under the all levels of faults.

Figure 12. Cont.
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Figure 12. The simulation results of the supercapacitor energy storage (SCES) control scheme.

6.1.3. The Simulation Results of Coordinated Control Scheme I: Overspeed-Before-Storing

The rotor overspeed control and the SCES control are combined to enhance the LVRT
capacity under all voltage sags and maintain that the rotor is not out-of-limit. When the
voltage sag depth k ≤ 30%, the rotor overspeed control is adopted; otherwise, the SCES
control is adopted. Since the two control schemes are still used separately, the simulation
results were the same as those in the Sections 6.1.1 and 6.1.2.

6.1.4. The Simulation Results of Coordinated Control Scheme II: Overspeed-While-Storing

The response characteristics of PMSG-connected system with the coordinated control
Scheme II under faults are described in Figure 13. When the voltage sag depth k ≤ 30%,
the input power was declining by regulating the rotor speed, while, the SCES was inopera-
tive. When the voltage sag depth k > 30%, the rotor speed was set to the maximum 1.2 p.u.
to reduce the input power. Meanwhile, the bidirectional DC–DC converter worked in the
buck mode and the SCES absorbed the excess energy of the DC side. The GSC provided the
reactive power to support the LVRT of PMSG. Comparing with the SCES control scheme,
the capacity configuration of the SCES was decreased. The coordinated control Scheme II
improved the stability and economy of the system simultaneously. As seen, even though
the worst fault occurred (i.e., the voltage sag depth k was 80%), the two values of the SCES
were in the allowable limit.

6.2. The Simulations Results of Overspeed-while-Storing Control under Asymmetrical Faults

Actually, only 12% of grid dips are the symmetrical fault. Therefore, it is necessary
to verify the performance of the overspeed-while-storing control proposed in this paper
under asymmetrical faults. In this section, the overspeed-while-storing control under the
two asymmetrical faults, which are single line-to-ground fault and double line-to-ground
fault, were simulated and analyzed in detail.

6.2.1. The Simulations Results under the Single Line-to-Ground Fault

In Figure 14, it can be observed that, when the voltage of A-phase sagged to 20% (i.e.,
the maximum degree of voltage sags), the rotor speed was increased but did not reach to
the upper limit, that is the unbalanced power can be eliminated only by regulating the
rotor speed, and then the SCES was inoperative. In addition, the reactive power generated
by the GSC contained 2 ω oscillations due to the negative component of the grid, and
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the voltage of DC-side also consisted of 2 ω oscillations. However, the oscillation of DC
voltage was within the allowable range. Apparently, the overspeed-while-storing control
fulfilled the LVRT of PMSG and prevented the DC capacitor from overvoltage under single
line-to-ground fault.

Figure 13. Cont.

103



Energies 2021, 14, 518

Figure 13. The simulation results of the overspeed-while-storing control.

Figure 14. Cont.

104



Energies 2021, 14, 518

Figure 14. The simulation results of the overspeed-while-storing control under a single line-to-ground
fault.
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6.2.2. The Simulations Results of the Double Line-to-Ground Fault

Another simulation of the overspeed-while-storing under the double line-to-ground
is shown in Figure 15, when the voltage of B-phase and C-phase sagged to 20%, the rotor
was increased to the maximum value (i.e., 1.2 p.u.) and the surplus power of DC-side was
absorbed by the SCES. The values of SCES were in the allowable range due to the capacity
being configured under the most severe fault (i.e., symmetrical fault). It can be seen that
the DC voltage and reactive power suffered 2ω oscillation during faults, as a result of the
negative component of the unbalanced voltage. However, this 2ω oscillation was small
enough not to affect the stability of the system. Thus, the overspeed-while-storing control
fulfilled the LVRT of PMSG and prevented the DC capacitor from overvoltage under the
double line-to-ground fault.

Figure 15. Cont.
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Figure 15. The simulation results of the overspeed-while-storing control under the double line-to-
ground fault.

6.3. The Comparison between the Conventional Control and the Overspeed-while-Storing Control
under Faults

In conventional control [24], the 1.5 times current-limiting strategy and unity power
factor control were adopted in GSC. As shown in Figure 16, when the voltage sagged to
20%, the voltage of DC-side could be reached to triple of rated value and there was no
reactive power generated by the GSC in conventional control. Whereas, the DC voltage
could be stabilized in the allowable limit and the GSC could provide reactive power under
faults by using overspeed-while-storing control. According to the grid codes of the power
system, the overspeed-while-storing control could fulfill the LVRT requirements effectively.

7. Conclusions

A novel LVRT control strategy for the PMSG-based wind turbine generator (WTG)
based on the coordinated control named overspeed-while-storing is presented in this
paper. Particularly, when the voltage sags were slight (i.e., the voltage sag depth k ≤ 30%),
the mismatch issue between the input power and the output power could be solved by only
regulating the rotor speed. Otherwise, the rotor speed was set to the maximum to reduce
the input power to the maximum extent. Meanwhile, the supercapacitor energy storage
(SCES) was utilized to absorb the excess energy of the DC side to maintain the DC voltage
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stability. The coordinated control method proposed in this paper, on the one hand, could
fulfill the LVRT requirements of PMSG under all conditions of voltage sags; on the other
hand, it requires the smaller capacity configuration than that in the SCES control scheme.
Consequently, the proposed coordinated control method could improve the stability and
economy of the system simultaneously. All these analytical results were validated in the
single PMSG-connected system.

Figure 16. The simulation results comparison between the conventional control and the overspeed-
while-storing control.
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In this paper, only the LVRT under symmetrical faults and asymmetrical faults were
discussed. Future works will focus on the condition of HVRT and the frequency regulation
of the PMSG.
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Abstract: This paper presents the analysis and mitigation of sub-synchronous resonance (SSR) for
doubly fed induction generators (DFIG) under virtual synchronous generator (VSG) control, based on
impedance methods. VSGs are considered to have grid-supporting ability and good stability in
inductance-based weak grids, and are implemented in renewable power generations, including DFIG
systems. However, stability analyses of VSGs for DFIG connecting with series capacitor compensation
are absent. Therefore, this paper focuses on the analysis and mitigation of SSR for DFIG under
VSG control. Impedance modeling of DFIG systems is used to analyze SSR stability. Based on
impedance analysis, the influence of VSG control parameters and the configuration of damping factor
of reactive power are discussed. Next, a parameter configuration method to mitigate SSR is proposed.
Finally, time-domain simulation and fast fourier transform (FFT) results are given to validate the
correctness and effectiveness of the impedance model and parameter configuration methods.

Keywords: virtual synchronous generator; doubly fed induction generator; sub-synchronous
resonance; impedance modeling

1. Introduction

Recently, renewable power generation has developed rapidly. Wind power generation systems
(WPGS) based on doubly fed induction generator (DFIG), which has the advantages of relatively low
cost and variable speed constant frequency operation, have been widely installed worldwide [1,2].
With the penetration of WPGS in power grids increasing continuously, conventional power sources
like synchronous generators (SG) are decreasing; frequency stability and lack of inertia are becoming
main concerns in power grids [3]. It is necessary to enhance the ability of WPGS to support power
systems like conventional SGs. Based on this consideration, the virtual synchronous generator (VSG)
control is proposed [4,5].

VSG is a grid-friendly control strategy which emulates the operating principle of SGs. VSG is
first introduced to stabilize the grid frequency by adding virtual rotational inertia to distributed
generation systems in [4]. The concepts of “Self-Synchronized Synchronverters” is proposed in [5],
in which phase-locked loop can be neglected. The method to stabilize the power system based
on VSG control with alternating moment of inertia is introduced in [6]. The comparison of VSG
control and droop control are given in [7,8]. According to [8], VSG control inherits the advantages of
droop control and provides inertia support for the system. In [9], “virtual synchronized control” for
DFIG is presented to increase the inertia support capability and frequency stability of the weak grid.
Furthermore, VSG control shows the superior small signal stability better than conventional vector
control when a DFIG is connected to a weak grid [10,11].
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Wind farms are usually located far away from load center. And wind farms are connected
to weak grids through long transmission lines with high impedance. Therefore, series capacitor
compensation is usually used to increase power transmission capability among AC lines [12].
However, series capacitors in transmission lines, which connects weak grid with DFIG based
wind farms, may cause sub-synchronous resonance (SSR). In recent years, several accidents in DFIG
based wind farm caused by SSR have been reported worldwide [13,14].

Currently, the studies of modeling, analyzing and mitigating control strategy for DFIG-based
wind farms interconnected with series compensation have been reported in [14–20]. Based on modal
analysis, the impacts of series compensation level, wind speed and current loop gains on SSR are
studied in [15,16]. According to [15], the higher compensation level, the lower wind speed and the
larger control loop gains, the more possible SSR occurs. As for mitigation strategies of SSR, there are two
main methods: (1) auxiliary damping hardware. FACTS devices, such as static var compensator (SVC),
thyristor-controlled series capacitor (TCSC) and gated-controlled series capacitors (GCSC), can be used
to mitigate SSR [17,18]; (2) damping control strategies. Sub-synchronous resonance damping control is
implemented in grid-side converters (GSC) [19] and control performance of different control signals,
including rotor speed, capacitor voltage and current magnitude, is analyzed. Intelligent algorithms can
be also adopted in suppressing SSR, such as the improved particle swarm optimization algorithm [20].

The works mentioned above focus on the SSR of DFIG under conventional vector control.
However, the stability analysis of VSG control in DFIG interconnected with series compensation
is absent. Furthermore, VSG control is quite different with vector control, especially in
power-synchronization and voltage control loop. Therefore, the stability of DFIG under VSG control in
series compensation network should be analyzed in detail.

Impedance modeling is an effective stability analysis method [21,22], which has been used in
studying SSR [23,24]. The impedance modeling of VSG control has been implemented in [25], in which
VSG control shows the better stability than the vector control in ultraweak inductance-based grid.
However, the reactive power and voltage control loops are neglected during VSG modeling, which are
very important in VSG control and SSR analysis. Therefore, the impedance model of VSG control for
DFIG including voltage control loop should be developed.

The major contributions of this paper can be concluded as: (1) building the detailed impedance
model of DFIG under VSG control including DFIG model, swing equation, voltage-reactive power
control, frame transformation and rotor voltage calculation; (2) analyzing the influence of VSG control
for DFIG on SSR stability and configuring the VSG control parameter based on impedance analysis.

The rest of this paper is organized as follows. In Section 2, VSG control for DFIG is introduced
briefly. In Section 3, the impedance modeling of DFIG under VSG control is illustrated. In Section 4,
the impedance model is verified and the SSR analysis is also discussed, followed by the influence of
VSG control parameters and configuration method are investigated. In Section 5, simulation studies
are implemented to verify the correctness and effectiveness of the impedance model and configuration
method. Finally, the conclusion is drawn in Section 6.

2. VSG Control for DFIG

In this section, the VSG control for DFIG is introduced. Different with voltage source converters
(VSC), the stator of DFIG is connected to the grid directly and outputs the most part of power.
Thus, in order to introduce the VSG control for DFIG, the equivalent circuit of DFIG is given in
Figure 1. It should be noted that the control target of grid-side converters (GSC) is to keep the constant
DC voltage on the DC bus. Therefore, GSC still works in the conventional current vector control [2].
Moreover, GSC has little influence on SSR stability, therefore the analysis of GSC will be neglected in
the following [19,23,24].
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Figure 1. Equivalent circuit of the doubly fed induction generator (DFIG) model.

According to Figure 1, the voltage and flux equations of DFIG in synchronous rotating frame
(SRF) can be expressed as:

Usdq = RsIsdq + dψsdq/dt + jωψsdq (1)

Urdq = RrIrdq + dψrdq/dt + jωsψrdq (2)

ψsdq = LsIsdq + LmIrdq (3)

ψrdq = LmIsdq + LrIrdq (4)

ψmdq = LmIsdq + LmIrdq (5)

where Isdq and Irdq are the stator and rotor current respectively, Usdq and Urdq are the stator and rotor
voltage respectively, ψsdq, ψrdq and ψmdq are the stator, rotor and air-gap flux respectively, Lm, Ls and
Lr are the mutual, stator and rotor inductance, in which Ls = Lm + Lsσ, Lr = Lm + Lrσ, Lsσ and Lrσ are
the stator and rotor self-inductance respectively, ω is the SRF angular frequency, ωs is the slip angular
frequency, ωs = ω − ωr, ωr is the rotor angular frequency. All variables are referenced to the stator.

Under steady-state conditions, neglecting differential terms of stator flux ψsdq in (1), the stator
voltage model can be represented as:

EDFIG = jωψmdq = Usdq + Isdq(Rs + jω1Lsσ) (6)

Similar with the steady stator circuit equation of SG in [26], the term jωψmdq in (6) can be defined
as the internal voltage EDFIG of DFIG. In this way, the VSG control for DFIG can emulate a conventional
SG by controlling the phase and magnitude of ψm.

The phase and magnitude of can be controlled by active power and reactive power, respectively.
The phase and frequency reference of ψm can be calculated by the rotor swing equation [5–11,27]:

ω =
1
JP

∫
(P∗s − Ps + DP(ω0 −ω)) dt +ω0 (7)

θ =

∫
ω dt (8)

where, Ps is the stator active power, P∗s is stator active power reference, which can be calculated by the
methods of the maximum power point tracking (MPPT) or de-loading control, ω0 is rated angular
frequency, JP and DP are the inertia and damping coefficients of active power respectively, θ is the
phase reference of EDFIG, which is used in the frame transformation. In this way, the phase-locked-loop
(PLL) can be canceled.

The magnitude reference of internal voltage can be calculated by the feedback control of stator
voltage and stator reactive power. The reference of reactive power can be set by the grid operators or
given by the voltage-drooping, which can be written as:

∣∣∣∣∣∣EDFIG

∣∣∣∣∣∣
∗ =

1
JQ

∫
(Q∗s −Qs + DQ(U0−

∣∣∣U
∣∣∣)) + U0 (9)
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where, Qs and Q∗s are the stator reactive power and its reference, JQ are DQ are the inertia and damping
coefficient of reactive power control loop respectively, U0 is the rated value of grid voltage, |U| is equals
to the magnitude of Usdq.

VSG control for DFIG works in the virtual synchronous rotating frame (VSRF), in which d-axis
is aligned to EDFIG. And flux feedback control is implemented in control scheme to track the flux
reference, which can be expressed as:

E∗d =
∣∣∣EDFIG

∣∣∣∗ E∗q = 0 (10)

U∗rdq = (kP + kI

∫
)(E∗DFIG −ωψmdq) (11)

where, U∗
rdq

is the output of VSG control loop, kP and kI are the proportional and integral coefficients of
ωψmdq feedback controller and ωψmdq can be calculated based on (5), respectively.

Based on (7)–(11), the control block diagram of VSG for DFIG is presented in Figure 2. The active
and reactive power can be controlled by the phase and magnitude of internal voltage EDFIG, respectively.
The inertia and damping characteristics can also be implemented by the rotor swing equation in the
VSG control of DFIG.
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Figure 2. Control block diagram of virtual synchronous generator (VSG) for DFIG.

3. Impedance Modeling of VSG Control for DFIG

In this section, the impedance modeling of VSG control for DFIG is presented. For clarity,
bold letters are used in this paper to denote complex space vectors, e.g., X = Xd + jXq; bold letters also
denote complex transfer functions or transfer matrix, e.g., X(s) = Xd(s) + jXq(s). Impedance modeling is
based on the small signal analysis [21,22], therefore, the state variables with a small-signal perturbation
can be written as:

x = X0 + ∆x (12)

where x is the state variable, X0 is the steady-state value, ∆x is the small-signal perturbation, x can
denote voltages, currents and other state variables in VSG control of DFIG.

3.1. Modeling of DFIG

Submitting (3) and (4) into (1) and (2) and taking the Laplace transformation of (1) and (2),
the small signal model of DFIG can be expressed as:

∆Usdq = G1(s)∆Isdq + G2(s)∆Irdq (13)
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∆Urdq = G3(s)∆Isdq + G4(s)∆Irdq (14)

In the impedance model, the stator voltage and rotor voltage are the inputs of the model; the stator
current is the output. Thus, the small-signal model of DFIG can rewritten as:

∆Isdq = Gus_is(s)∆Usdq + Gir_is(s)∆Irdq (15)

∆Irdq = Gus_ir(s)∆Usdq + Gur_ir(s)∆Urdq (16)

Figure 3 illustrates the block diagram of transfer matrices of DFIG in the synchronous dq-frame.
As can be seen from Figure 3, the stator current depends on the stator voltage and rotor voltage.
The transfer functions in (13)–(16) are expressed as:

G1(s) =

[
Rs + sLs −ωLs

ωLs Rs + sLs

]
(17)

G2(s) =

[
sLm −ωLm

ωLm sLm

]
(18)

G3(s) =

[
sLm −ωsLm

ωsLm sLm

]
(19)

G4(s) =

[
Rr + sLr −ωsLr

ωsLr Rr + sLr

]
(20)



Gus_is = G−1
1

Gir_is = −G−1
1 G2

Gus_ir = −
(
−G3G−1

1 G2 + G4

)−1
G3G−1

1
Gur_ir= ( −G3G−1

1 G2 + G4)
−1

(21)

where the superscript −1 means the inverse matrix and the subscript us_is means the transfer matrix
from stator voltage to stator current, the meanings of other subscripts are similar to this.

    

    

    

    

–



sdq
U


rdq

I
sdq

I

DFIG 
Model

rdq
U

_ur ir
G _ir is

G

_us ir
G

_us is
G

 



  

   




 
  
 




 
  
 



  

   





  

 


 
   
  

−

Figure 3. The model of DFIG in synchronous dq-frame.

3.2. Modeling of Power and Voltage Amplitude

In synchronous dq-frame, the power and voltage amplitude can be calculated as:

{
Ps = −1.5(usdisd + usqisq)

Qs = −1.5(usdisq − usqisd)
(22)

∣∣∣∣∣U
∣∣∣∣∣=

√
u2

sd
+ u2

sq (23)
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By linearizing the (22) and (23), the small-signal-model can be expressed as:



[
∆Ps

0

]
=

Gi_P

︷                  ︸︸                  ︷
3
2
[
−usd0 −usq0

0 0
]

[
∆isd

∆isq

]
+

Gu_P

︷                ︸︸                ︷
3
2
[
−isd0 −isq0

0 0
]

[
∆usd

∆usq

]

[
∆Qs

0

]
=

Gi_Q

︷               ︸︸               ︷
3
2
[
−usq0 usd0

0 0
]

[
∆isd

∆isq

]
+

Gu_Q

︷              ︸︸              ︷
3
2
[

isq0 −isd0

0 0
]

[
∆usd

∆usq

]

(24)

[
∆|U|

0

]
=

GU︷               ︸︸               ︷
1

U0
[

usd0 usq0

0 0
]

[
∆usd

∆usq

]
(25)

3.3. Modeling of VSG Control

The VSG control of DFIG consists two power control loops. The phase and amplitude of internal
voltage of DFIG are controlled by active and reactive power loops, respectively. According to (7)–(9),
the small signal model of power loops can be written as:

∆θ =
1
s

∆ω =
1
s

−1
JPs + DP

∆Ps (26)

∆

∣∣∣∣∣∣EDFIG

∣∣∣∣∣∣
∗ =
−1
JQs

∆Qs −DQ∆

∣∣∣∣∣∣U
∣∣∣∣∣∣ (27)

By submitting (24) and (25) into (26) and (27), the model can be expressed as:

[
∆θ

0

]
= GP_θ

[
∆P

0

]
= GP_θGi_P

[
∆isd

∆isq

]
+ GP_θGu_P

[
∆usd

∆usq

]
(28)

[
∆E∗

d
0

]
= GQ_E

[
∆Qs

0

]
+ GU_E

[
∆|U|

0

]

= GQ_EGi_Q

[
∆isd

∆isq

]
+ GQ_EGu_Q

[
∆usd

∆usq

]
+ GU_EGU

[
∆usd

∆usq

] (29)

The transfer functions in (28) and (29) are expressed as:

GP_θ =

[ 1
s
−1

JPs+DP
0

0 0

]
(30)

GQ_E =



−1
JQs 0

0 0


 (31)

GU_E =

[
−DQ 0

0 0

]
(32)

Based on the (28)–(32), the small signal model of VSG control can be obtained.

3.4. Modeling of Frame Transformation

Since the calculation of rotor voltage are applied in virtual synchronous reference frame (VSRF),
the park transformation and inverse park transformation are used in VSG control (green and yellow
blocks in Figure 2, respectively). The small-signal perturbation in the angular reference (28) affects
the VSG control for DFIG the through the frame transformation. Therefore, the frame transformation
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should be involved in impedance modeling. It should be noted that the frame transformation does not
affect the modeling of DFIG, power calculation and power control loops.

The park transformation (green blocks in Figure 2) of stator and rotor currents can be expressed as:

Iv
dq

= Iαβe
− jθ = (Idq0 + ∆Is

dq
)e− j∆θ

≈ (Idq0 + ∆Is
dq
)(1− j∆θ)

⇒ ∆Iv
dq

= ∆Is
dq
− jIdq0∆θ

(33)

where the superscript v means the VSRF and the superscript s means the synchronous dq-frame.
The inverse park transformation (yellow block in Figure 2) of rotor voltage can be expressed as:

Us
rαβ = Uv

rdq
e j(θs+∆θ) = (Urdq0 + ∆Uv

rdq
)e j∆θs

≈ (Urdq0 + ∆Uv
rdq

)(1 + j∆θ)

⇒ ∆Us
rdq

= ∆Uv
rdq

+ jUrdq0∆θ

(34)

3.5. Modeling of Rotor Voltage

Based on the (5) and (11), the small signal model of rotor voltage can be obtained:

∆Uv
rdq

= GPI∆

∣∣∣∣EDFIG

∣∣∣∣∗ + GPI_i(∆Iv
sdq

+ ∆Iv
rdq

) (35)

By submitting (33) and (34) into (35), the rotor voltage in synchronous dq-frame can be expressed as:

∆Us
rdq

= Gurdq0

[
∆θ

0

]
+ GPI∆

∣∣∣∣∣∣EDFIG

∣∣∣∣∣∣

∗

+GPI_i(∆Is
sdq

+ Gisdq0

[
∆θ

0

]
) + GPI_i(∆Is

rdq
+ Girdq0

[
∆θ

0

]
)

(36)

The transfer matrixes in (36) are expressed as:

Gurdq0 =

[
−urq0 0
urd0 0

]
Gisdq0 =

[
isq0 0
−isd0 0

]
Girdq0 =

[
irq0 0
−ird0 0

]
(37)

GPI =




1
2

kPs+kI
s 0

0 1
2

kPs+kI
s


GPI_i = −ω0LmGPI (38)

Based on the (22)–(36), the block diagram of transfer matrixes of VSG control in synchronous
dq-frame is presented in Figure 4.
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Figure 4. Block diagram of small signal transfer matrices for VSG control in synchronous dq-frame.
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In Figure 4, the currents and stator voltage are the inputs of the VSG and the rotor voltage is the
output. Thus, the model can be expressed as:

∆Us
rdq

= Gus_ur∆Us
sdq

+ Gis_ur∆Is
sdq

+ Gir_ur∆Is
rdq

(39)



Gus_ur = (Gurdq0 + GPI_i(Gisdq0 + Girdq0))GP_θGu_P

+GPIGQ_EGu_Q + GPIGU_EGU

Gis_ur = (Gurdq0 + GPI_i(Gisdq0 + Girdq0))GP_θGi_P

+GPIGQ_EGi_Q + GPI_i

Gir_ur = GPI_i

(40)

3.6. Sequence Impedance of VSG Control for DFIG

The small signal models of DFIG and VSG control have been obtained in Figures 3 and 4,
respectively. The detailed model of VSG control for DFIG based on transfer matrices can be presented
as Figure 5, in which “△” is omitted for simplicity.
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Figure 5. The whole block diagram of transfer matrices of DFIG with VSG control in synchronous
dq-frame.

Therefore, the stator current can be expressed as:

Usdq = −ZdqIsdq (41)

Zdq =
Gur_irGir_ur + Gur_irGir_isGis_ur − E

Gus_is + Gus_irGir_is + Gus_urGur_irGir_is
(42)

where the E is the identity matrix. Zdq(s) is the dq-frame impedance model, which is used to reveal the
mathematical relations between the models in the dq-domain.

A general dq-frame impedance matrix Zdq(s) is expressed as:

Zdq(s) =

[
Zdd(s) Zdq(s)

Zqd(s) Zqq(s)

]
(43)

Since the dq-domain impedance model cannot be directly used in the practical situation,
the αβ-domain or the sequence-domain model should be obtained. Based on the unifying approach
in [22], the sequence-domain model in stationary frame can be expressed as:

Z±(s) =




Z+dq(s− jω1) Z−dq(s− jω1)

Z∗−dq
(s− jω1) Z∗

+dq
(s− jω1)


 (44)

Z+dq(s) =
Zdd(s)+Zqq(s)

2 + j
Zqd(s)−Zdq(s)

2

Z−dq(s) =
Zdd(s)−Zqq(s)

2 + j
Zqd(s)+Zdq(s)

2

(45)
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where the subscript ±means the positive-sequence and negative sequence components of impedance
and the superscript * means the complex conjugate of the transfer functions.

4. Impedance Validation and SSR Analysis

In this section, the proposed sequence impedance model of VSG control for DFIG will be validated.
Then, based on the impedance model, the SSR analysis of VSG control for DFIG interconnected
with series compensation is presented. The simulation study is implemented to verify the SSR
analysis; several conclusions can be obtained from the impedance analysis. Finally, the influence
of VSG parameters on impedance is illustrated in detail. The parameters configuration of VSG is
also discussed.

4.1. Impedance Validation

To verify the correctness of the impedance modeling in Section 3, a corresponding simulation
model based on Simulink is built. The parameters of DFIG and VSG control for simulation are listed
in the Appendix A Table A1; the DFIG is connected to an ideal grid, for the sake of excluding the
influence from the grid impedance. The results of impedance model and simulation are given in the
case of 0.7 pu rotor speed.

Figure 6 shows the model validation results of impedance in (44) and simulation frequency
scanning. As can be seen, the asterisks are all located in the solid lines. It verifies that the impedance
model in (44) is accurate in describing the impedance characteristics of VSG control for DFIG.
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Figure 6. Model validation by frequency scanning, the lines are calculated by the impedance matrix
(44), the asterisks are obtained by simulation results. Red and blue lines are positive and negative
impedance, respectively. The black line is the impedance of network at 50% compensation level.

Since VSG control emulates the operating principle of SG, the impedance of DFIG under VSG
is similar with the output impedance of SG [25]. The sequence impedance model of VSG control for
DFIG is basically inductive. As can be seen from phase curve, the influence of VSG control can be
found mainly around 50 Hz.

4.2. SSR Analysis

To analyze the SSR stability of VSG control for DFIG, a simulation case study of weak grid with
series compensation net is introduced first. The simulation study system is derived from IEEE first
benchmark model [15,16,23]; its schematic diagram is shown in Figure 7. The DFIG-based wind farm is
a 100 MW aggregated equivalent system, which is aggregated from 50 2-MW DFIGs in the Appendix A
Table A1. The transformer is 690 V/161 kV. The main parameters of the network system are given in
the Appendix A Table A2.
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DFIG Grid

690V 161kV XL XC

 

−

Figure 7. Diagram of a DFIG-based wind farm connecting the grid with a series-compensated
transmission line.

The compensation level can be defined as [12]:

K =
XC

XL
× 100% (46)

where XL is the inductive reactance of the network including transmission line and transformer, XC is
the capacitive reactance in the transmission line.

Based on the impedance theory, instability happens when the impedance ratio curve encircles
(−1,0). Therefore, bode plots can be used to analyze resonance stability [23,25]. When the compensation
level is 50%, the impedance curve of series compensation network is shown as the black line in Figure 6.
As can be seen, there is a magnitude curve intersection at 30 Hz; the phase difference is 187◦ (more
than 180◦ is unstable), which indicates that there is an SSR instability in the situation; the resonant
frequency is 30 Hz.

Figure 8 shows the bode plots of the impedance model developed in [23]. Compared with the
proposed model in this paper, only the current control is considered in the impedance model in [23].
VSG control loops and frame transformation are neglected.
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Figure 8. Bode diagram. Red line is the impedance in [23]. The black line is network impedance.

As can be seen from Figure 8, when the compensation level is 50%, there is a curve intersection at
27 Hz and the phase difference is 194◦. The impedance model in [23] indicates that there is an SSR
instability in the situation; the resonant frequency is 27 Hz.

To verify the SSR analysis, a simulation model is built in Matlab/Simulink. The simulation
initially operates at 25% compensation level. Then, at t = 1 sec, additional capacitors are switched in,
which imitates the transmission line fault and makes the compensation level reach 50%. Figure 9 shows
the stator current of DFIG under VSG control; the fast fourier transform (FFT) analysis result of currents is
given in Figure 10. As can be seen, SSR occurs at the resonant frequency 30 Hz. Therefore, the following
conclusions can be obtained:

1. The DFIG with VSG control also has the SSR problem, when the weak grid reaches a high
compensation level.

2. The correctness of proposed impedance model is validated based on the frequency scanning and
SSR prediction.
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3. Compared with the impedance model only considering current control, the proposed impedance
model is more accurate, which indicates that VSG control has an important influence on the SSR.

 
Figure 9. Waveform of stator currents, at the 50% series-compensation level.

 

Figure 10. Fast Fourier transform (FFT) analysis of stator currents, at 50% series-compensation level.

4.3. Influence and Configuration of VSG Control Parameters

The inertia and damping are the key parameters in VSG control. Based on the SSR analysis above,
VSG control plays an important role in SSR stability. Therefore, the influence of VSG control parameters
is introduced in this section.

Figure 11 shows the bode plots of impedance with different inertia of active power control.
The three impedance curves almost overlap each other. As can be seen, the inertia of active power
control has little influence on impedance. Thus, inertia of active power cannot be used to mitigate
the SSR.
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Figure 11. Bode diagram of different inertia of active power. Red line: 0.5 JP0; green dash line: JP0;
blue dash line: 1.5 JP0.

Figure 12 shows the bode plots of impedance with different damping of active power control.
As can be seen, the phase decreases when the damping of active power control increases. It means
that the phase difference of DFIG and network decreases, which will decrease the possibility of SSR.
However, the damping of active power control is associated with primary frequency control [26,27],
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which configuration is limited according to grid code. Moreover, with the value increasing continuously,
the phase variation is small.
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Figure 12. Bode diagram of different damping of active power. Red line: 0.5 DP0; green line: DP0;
blue line: 1.5 DP0.

Figure 13 shows the bode plots of impedance with different inertia of reactive power control. As can
be seen, with the inertia changing, the phase varies without obvious regularity. Therefore, the inertia
of reactive power is not suitable for mitigating SSR.
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Figure 13. Bode diagram of different inertia of reactive power. Red line: 0.5 JQ0; green line: JQ0;
blue line: 1.5 JQ0.

Figure 14 shows the bode plots of impedance with different damping of reactive power DQ.
As can be seen, as DQ increases, the phase decreases significantly. It indicates that the damping of
reactive power has the ability to mitigate the SSR. When the damping of reactive power increase more
than 1.5 DQ0, the phase difference is less than 180 degree, which means that the small SSR disturbance
is stable. And it should be noted that phase variation is small when DQ increases continuously.
Moreover, with the DQ increasing, the magnitude of impedance intersection decreases, which may
slow down the recovery of SSR. With the consideration of phase margin and impedance magnitude,
2 DQ0 is a proper value to mitigates the SSR. The zoom figure is shown in Figure 15.
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Figure 14. Bode diagram of different damping of reactive power. Red line: DQ0; green line: 1.5 DQ0;
blue line: 2 DQ0; pink line: 4 DQ0.
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Figure 15. Zoom Bode diagram of different damping of reactive power.

Table 1 shows the summary of the influence of VSG control parameters. As can be seen,
the damping factor of reactive power DQ is suitable for mitigating the sub-synchronous resonance
(SSR); the value should be set to 2 DQ0.

Table 1. Influence of VSG Parameters Increasing.

Inertia of Active
Power

Damping of
Active Power

Inertia of Reactive
Power

Damping of
Reactive Power

Has little influence on
impedance.

Phase decreases.
But limited by the

grid code.

Phase varies without
obvious regularity.

Phase decreases.

× × ×
√

5. Simulation Results

To validate the correctness and effectiveness of the proposed impedance model and parameters
configuration method, the simulation results are given in this section. The simulation situation is the
same as Figure 9 in Section 4.2. At the 1 sec, the series compensation level increases from 25% to 50%.

Figure 16 shows the results of stator currents with different damping factor DQ. As can be seen,
at the 1 s, there is the SSR disturbance caused by series compensation changing. Compared with
Figure 9, the SSR disturbance in Figure 16 is mitigated well. When the DQ. increases more than 1.5 DQ0,
the phase difference is less than 180◦, which means that the SSR disturbance is stable and validates the
correctness of the SSR analysis in Section 4.3. According to the FFT analysis, when DQ. increases to
1.5 DQ0, 2 DQ0 and 4 DQ0, the resonant frequency is 30.5 Hz, 31 Hz and 32 Hz, respectively. The FFT
results also coincide with the SSR analysis in Figure 15.
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r’s value

Figure 16. Waveform of stator currents.

Figure 17 shows the simulation results of electromagnetic torque; the enlarged figure of Figure 17
is given in Figure 18. Compared with the conditions of 1.5 DQ0 and 4 DQ0, the attenuation of torque
with 2 DQ0 is faster. To illustrate the results more intuitively, the damping time is defined as the
length of time that the disturbance in electromagnetic torque damps into 0.05 pu (dashed lines in
Figures 17 and 18). The damping time of different parameter’s value is given in the Table 2. When the
parameter is 2 DQ0, the damping time is less than 0.5 s. By contrast, the damping time is more than
0.8 s, when the parameter is 1.5 DQ0 and 4 DQ0. The simulation results verify the effectiveness of
parameter configuration method.
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Figure 17. Waveform of electromagnetic torque.
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Figure 18. Enlarged waveform of electromagnetic torque.

Table 2. SSR damping time.

Damping of reactive power 1.5 DQ0 2 DQ0 4 DQ0

Damping time >0.8 s <0.5 s >0.8 s

6. Conclusions

This paper analyzes the SSR stability of DFIG under VSG control based on impedance method.
Accurate impedance model of DFIG under VSG control, which considers DFIG model, swing equation,
voltage-reactive power control loop, frame transformation and rotor voltage calculation, is developed.
It can be found that DFIG with VSG control also has the SSR problem, when the weak grid reaches
a high series-compensation level. The simulation results of stator current and FFT result coincide the
impedance model analysis well, which indicates that the impedance modeling is an effective way to
analyze the SSR in DFIG under VSG control. The influence of VSG control parameters on SSR stability
is also analyzed. Based on the impedance analysis, the damping factor of reactive power is suitable
for mitigating SSR. With the damping of reactive power increasing, the phase difference between
DFIG and network decreases, which means that the damping of reactive power can be designed to
mitigate SSR disturbance. Simulation results validate the correctness and effectiveness of the proposed
impedance model and parameters configuration method. The robust control to damp SSR disturbance
of DFIG under VSG control will be investigated based on the impedance model in the future.
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Appendix A

Table A1. Parameters of DFIG and VSG Control.

Parameters Value

Rated power 2 MVA
Rated voltage 690 V

Rated frequency 50 Hz
Stator/Rotor ratio 0.34

Mutual inductance (p.u.) 3.90
Stator leakage inductance (p.u.) 0.171
Rotor leakage inductance (p.u.) 0.167

Stator resistance (p.u.) 0.0127
Rotor resistance (p.u.) 0.0127

DC voltage 1200 V
Inertia of active power JP0 100

Damping of active power DP0 318310(50 × 2 × 10ˆ6/(100π))
Inertia of reactive power JQ0 100

Damping of reactive power DQ0 17750(5 × 2 × 10ˆ6/(
√

2/3 × 690))
Flux control coefficient kP, kI 1, 10

Table A2. Parameters of Network System.

Parameters Value

Transformer ratio 690 V/161 KV
Rated power 100 MVA

Line resistance 0.02 pu
Line inductance 0.5 pu

Line capacitive reactance at 50%
compensation level

64.8 Ω
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Abstract: Active power outputs of a wind farm connected to a weak power grid greatly affect the
stability of grid-connected voltage source converter (VSC) systems. This paper studies the impact
of active power outputs and control parameters on the subsynchronous oscillation characteristics
of full-converter wind farms connected weak power grids. Eigenvalue and participation factor
analysis was performed to identify the dominant oscillation modes of the system under consideration.
The impact of active power output and control parameters on the damping characteristics of
subsynchronous oscillation is analysed with the eigenvalue method. The analysis shows that when
the phase-locked loop (PLL) proportional gain is high, the subsynchronous oscillation damping
characteristics are worsened as the active power output increases. On the contrary, when the PLL
proportional gain is small, the subsynchronous oscillation damping characteristics are improved
as the active power output increases. By adjusting the control parameters in the PLL and DC link
voltage controllers, system stability can be improved. Time-domain results verify the analysis and
the findings.

Keywords: weak grids; full-converter wind; active power output; control parameters; subsynchronous
oscillation; eigenvalue analysis

1. Introduction

In recent years, as a clean, renewable and relatively proven technology, wind power generation
has grown significantly in order to tackle the climate change and replace fossil fuels generators.
By the end of 2019, the cumulative installed capacity of wind power worldwide reached 650 GW,
of which 60.4 GW was newly added [1]. With the development of wind power and high voltage direct
current transmission system (HVDC), subsynchronous interaction (SSI) has attracted the attention of
academia and industry. The SSI is generally classified into the following three types: subsynchronous
resonance (SSR), subsynchronous control interaction (SSCI) and subsynchronous torsional interaction
(SSTI) [2]. In 2009, an SSI incident occurred in southern Texas, USA. A doubly fed induction generator
(DFIG)-based wind farm was integrated into the grids via a high-series compensation transmission
line. This caused a subsynchronous control interaction, resulting in a large number of wind turbine
trips [3,4]. In 2012, the Guyuan wind farm in China also experienced the interaction between the
control of DFIG and series compensation devices, causing the SSI event.
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With the increase of grid-connected wind power capacity and the use of long-distance transmission
lines, the support from the grids for wind farm connection is weakened [5]. There is a different type
of interaction observed recently between full-converter wind farms and weak AC networks. In 2015,
the permanent magnet synchronous generators based wind farm in Xinjiang, China, suffered from a
severe oscillation event without series compensation. The oscillation frequency coincided with the
torsional vibration frequency of the nearby thermal power unit, which led to the torsional vibration
protection action of the thermal power unit resulting in generator shut down [6]. This type of interaction
between full-converter wind farms and weak AC networks is also called subsynchronous oscillation
(SSO), which is the topic investigated in this paper.

The dominant elements that affect the subsynchronous interaction characteristics in different
scenarios of wind farms connected to the grids [6–25]. References [7–9] established DFIG-based wind
farms interconnected with the grids and analysed the influence of the number of wind turbine generators
(WTGs), wind speed, series compensation, line resistance, and outer and inner loop control parameters
on subsynchronous interaction. For instance, reference [8] points out that when the DFIG-based wind
farm is connected to series capacitive compensated transmission systems, the system damping decreases
with the rise of series compensation or the decrease of total line resistance. Meanwhile, the variations
of series compensation also affect the oscillation frequency of subsynchronous interaction. As for SSO
in the full-converter wind farm or the VSC connected to AC grid system, the eigenvalue analysis,
impedance-based analysis and the complex torque coefficient approach are conducted in [6,10–20]
to research the dominant elements that affect the SSO characteristics. AC system strengths, WTGs
number, wind speed, converter control parameters, PLL parameters and aggregation characteristics
of wind farms are considered in these works. The work in [6] indicates the SSO will occur with
the decrease of the AC system strengths. And control parameters also have great impacts on the
SSO characteristics. In addition, SSO caused by the interconnection of direct-drive wind farms via
voltage source converter based high voltage direct current (VSC-HVDC) transmission system has been
studied in the references [21–28]. These elements, including wind farm control parameters, HVDC
control parameters, PLL parameters and filter parameters are analysed and the coordinated controller
is designed.

Until recently, there were very few papers specifically analysing the impact of the active power
output of wind farms on the SSO characteristics. However, the change of active power output during
the operation of wind farms will have a more significant impact on system stability. References [17–20]
established the model of full-converter wind farm integrated into the grids or the VSC connected to
AC grid. The SSO characteristics of the system are studied, and the impact of active output is analysed.
The works in [17–19] pointed out that as the active power output of wind farms increases, the damping
of the SSO mode decreases. However, it is revealed in [20] that increasing the active power output of
wind farms will increase the damping of the SSO mode and increase system stability. When the active
power output is too small, the system will result in diverging oscillation and loss of system stability.

In the view of the impact of active power output on SSO characteristics, some studies identified
that the greater the active power output, the worse the SSO damping characteristics will be [17–19].
However, some studies that found that the higher the active output, the better the SSO damping
characteristics will be [20]. Meanwhile, the existing researches are based on a certain set of control
parameter without considering the influence of different control parameters. Therefore, it is necessary to
study further the relationship between active power output and damping characteristics of SSO mode.

This paper investigates the impact of active power output on SSO characteristics by a small-signal
analysis based on analytical models. The correlation between the active power output and the damping
of the SSO mode with different control parameters is analysed through dynamic modelling and linear
system analysis. First, the critical factor that determines the correlation is identified. Then, based on
the eigenvalue analysis results, the strategy to increase the damping of SSO mode and improve system
stability is proposed. Case studies and time-domain simulation verify the analysis result.
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The rest of the paper is organized as follows: Section 2 builds the dynamic model of the system
with full converter wind farm connected to the AC grids. In Section 3, both eigenvalue analysis and
calculation of participation factors are carried to study the impact of active power output on SSO
characteristics. The correlation between the active power output and the damping of the SSO mode is
analysed with different control parameters and the critical factors that affect the SSO characteristics
are presented. Meanwhile, the strategy to improve the stability of the system is proposed. Section 4
presents case studies and time-simulation results. Finally, the brief conclusions are given in Section 5.

2. System Modeling

A full-converter wind model including wind turbine, synchronous generator (SG), machine-side
converter (MSC), DC link, grid-side converter (GSC), phase-locked loop (PLL), and converter control
system is considered. It is assumed that wind farms usually consist of the same type of wind turbines
with similar control parameters and operating conditions. Therefore, a wind farm is represented by
an equivalent wind turbine. The schematic diagram of grid-connected wind power system structure
is shown in Figure 1. Lf1 and Rf1 represent the filter inductance and filter resistance, respectively.
C1 represents the reactive power compensation parallel capacitor. R2+jX2 represents the equivalent
impedance of both 25 kV line and 220 kV line. R3+jX3 represents the equivalent impedance of the
transmission line near the grids. vpcc denotes the voltage of point of common coupling (PCC). vgrid

denotes the infinite grid voltage. i1 and i2 are the grid-side output current and transmission line
current, respectively. Since the grid-connected dynamics of full-converter mainly depends on the
control features of GSC, this paper ignores the machine-side dynamics. The wind turbine, SG and
MSC are simplified as constant power sources [6].

 

PMSG

C1

Lf1 Rf1

T1
575V/25kV

T2
25kV/220kV R2L2 L3 R3

Cdc
i1

vpcc

i2

vgrid

Wind Turbine

AC

DC

DC

AC

MSC GSC

Control System

Grid

Figure 1. The diagram of the grid-connected wind farm.

The following section will establish a dynamic mathematical model of the grid-connected system.
There are two dq reference frames in the dynamic mathematical model, namely the PLL-based dq

frame and the grid-based dq frame. The PLL-based reference frame aligns its d-axis with the PCC
voltage space vector vpcc through the PLL output phase. Meanwhile, the grid-based reference frame
has its d-axis aligned with the grid voltage space vector vgrid [10,17]. Superscripts ‘c’ and ‘g’ represent
variables in the PLL-based reference frame and the grid-based reference frame, respectively. Phasor
diagram of the component in different reference frames is shown in Figure 2.
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Figure 2. Phasor diagram of component in different reference frame.

2.1. Modeling of DC-Link

Since the machine-side dynamics are ignored, it is assumed that the active power output of the
generator remains constant and is represented by Pwind. The dynamic mathematical model can be
obtained from the DC link active power balance equation as Equation (1).

CdcVdc
dVdc

dt
= Pwind − Pg (1)

CdcV2
dc,base

2P2
base

d(V
pu
dc )

2

dt
= P

pu
wind − P

pu
g (2)

Pg = vc
pcc,dic1d + vc

pcc,qic1q (3)

Pg and Pbase are the GSC power delivered to the grids and base power, respectively. Vdc and
Vdc,base are expresses as DC voltage and rated DC voltage, respectively. Superscript ‘pu’ represents per
unit variables. Subscripts ‘d’ and ‘q’ respectively notate the d-axis and q-axis components of variables.
Hereafter the dc-link dynamic mathematical model is expressed by Equation (2). For convenience,
the superscript ‘pu’ is omitted.

2.2. Outer and Inner Control Loop of GSC

The GSC control block diagram is shown in Figure 3. DC-link voltage control (DVC) and reactive
power control are adopted for GSC, which contributes to balancing the power flow through DC
link, maintaining DC-link voltage and operating at unit power factor for wind farm. The dynamic
mathematical model of the outer and inner loop can be expressed as



dx1
dt = Kidc(V

2
dc −V2

dc,ref)
dx2
dt = Kii(i

c
1d,ref − ic1d)

dx3
dt = Kii(i

c
1q,ref − ic1q)

(4)



vc
d = KpdcKpi(V

2
dc −V2

dc,ref) + Kpix1 −Kpii
c
1d+

x2 −ωLf1ic1q + vc
pcc,d

vc
q = Kpi(i

c
1q,ref − ic1q) + x3 +ωLf1ic1d

(5)

where x1, x2 and x3 represent intermediate state variables. Kpdc and Kidc notate DVC proportional gain
and integral gain, respectively. Kpi and Kii are the proportional gain and integral gain of the inner
current control loop, respectively. Subscript ‘ref’ denotes the system reference value.
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Figure 3. The control block diagram of GSC

2.3. Phase-Locked Loop Model

PLL uses the three-phase voltage at PCC bus as inputs to obtain the phase of the PCC voltage to
achieve synchronization between the wind farm and the grids. The control block diagram of the PLL is
illustrated in Figure 4. The PLL principle has been well documented [26] and will not be discussed
here. ω0 represents the rated angular frequency of the grids. ∆ω notates the frequency deviation. θpll

is the voltage phase of the PLL output. Kppll and Kipll denote the PLL proportional gain and integral
gain, respectively. PLL dynamic mathematical model can be expressed as



dxpll

dt = KiPLLvc
pcc,q

d∆θpll

dt = ω0 + ∆ω
(6)
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Figure 4. The control block diagram of the PLL.

2.4. Grid Dynamics

The grid dynamics mainly include shunt capacitor dynamics, filter inductance dynamics,
and transmission line equivalent inductance dynamics. The dynamic mathematical model of the grid
is established in the grid-based reference frame. The grid dynamic mathematical model can be written
as Equation group (7): 

di
g
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dt = 1
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(v
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g
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g
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2q)
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(v

g
pcc,q − v

g
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g
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g
2d)

dv
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(i

g
1d − i

g
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g
pcc,q)

dv
g
pcc,q
dt = 1

C1
(i

g
1q − i

g
2q −ω0C1v

g
pcc,d)

(7)

Rg and Lg denote the total equivalent resistance and inductance of the grid, including the
transformers and the transmission lines. The impedance from the PCC to the grid can be represented
as a single impedance Rg + jω0Lg, Rg = RT1 + RT2 + R2 + R3, Lg = LT1 + LT2 + L2 + L3.
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3. Eigenvalue Analysis

3.1. Analysis of the Dominant Oscillation Mode

In this paper, a wind farm consisting of fifty 2 MW wind turbines connected to the AC grid
through long-distance transmission lines is used as the target test system. The parameters of the system
are listed in Table 1. The short circuit ratio (SCR) of this system is 1.53, which indicates that the wind
farm is connected to a very weak AC grid [27]. The parameters of the wind generator are shown in
Table 2.

Table 1. Parameters of the grid-connected system.

Parameter Value (pu, SB = 100 MVA)

Transformer T1(575 V/25 kV) XT1 = 0.06, RT1 = 0.006
Transformer T2(25 kV/220 kV) XT2 = 0.065, RT2 = 0.0065

Long-distance transmission line X2 = 0.525, R2 = 0.0525
Short-distance transmission line X3 = 0.01, R3 = 0.001

Table 2. The parameters of a single wind generator.

Parameter Value (pu, SB = 2 MVA)

Rated power 2 MW
Rated frequency 50 Hz

GSC filter Xf1 = 0.15, Rf1 = 0.003, yc1 = 0.25
DC capacitor 0.09 F

Rated DC voltage 1100 V
DVC Kpdc = 1.1, Kidc = 137.5

Current control Kpi = 0.4758, Kii = 3.28
PLL Kppll = 314, Kipll = 24,700

In the system dynamic mathematical model established in this paper, the state variables
are x = [ ig1d, ig1q, ig2d, ig2q, vg

pcc,d, vg
pcc,q, xpll, ∆θpll, Vdc, x1, x2, x3]. By linearizing the dynamic

mathematical model at an operating condition x0, the small signal model of the system can be
established as Equation (8) shows.

d∆x

dt
= A∆x (8)

In Equation (8), A represents the eigenmatrix of the small signal model as shown in Appendix A
and ∆x denotes incremental state vector.

When the active power output of the wind farm is maintained at 0.8 pu, the eigenmatrix is used
to calculate the eigenvalues of the system as shown in Table 3. It can be observed that there are four
oscillation modes in the target system, of which λ6,7 and λ9,10 belong to the SSO mode. However,
the real parts of the eigenvalues λ6,7 are positive, which indicates that the mode exhibits negative
damping and the system is unstable. For this mode, the participation factors of state variables are
shown in Figure 5. In Figure 5, the first six state variables represent the dynamics of the grids and the
last six state variables represent the dynamics of the wind farm. Therefore, this mode is related to both
the grid dynamics and the wind farm dynamics and reflects the subsynchronous interaction between
the AC grids and the wind farm. As far as the control loops are concerned, the participation factors of
these state variables (∆θpll, xpll, V2

dc, x1) are higher. That is, PLL and DVC have a greater impact on
this mode.
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Table 3. Eigenvalues of the weak grids-connected wind power system.

Mode Eigenvalue

λ1,2 −569.33 ± j1764.69
λ3,4 −87.53 ± j836.15
λ5 −976.21
λ6,7 2.62 ± j199.47
λ8 −91.51
λ9,10 −15.89 ± j55.99
λ11 −6.90
λ12 −6.89

 

Δ

Δθ

−
−

−

−
−

−
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Grid dynamics Wind farm dynamics

Figure 5. Participation factors of the state variables in the dominant oscillation mode

3.2. Impacts of the Active Power Outputs of the Wind Farm on Subsynchronous Oscillation Characteristics
with Different Control Parameters

There are two main factors that affect the eigenvalues in the weak grids: one is active power output
(operating condition), and the other is the control structure and control parameters. By calculating
the participation factors, it can be seen that the PLL and the DVC loop have a greater impact on the
dominant oscillation mode. In this section, the eigenvalue method will be used to analyse the impact
of active power output on SSO characteristics with different control parameters. For convenience
of expression, the following sections will use comparative gain to express the control parameters.
The comparative gain represents a multiple of the pre-set value of the parameters given in Table 2.

3.2.1. Impacts of Active Power Outputs with Different PLL Proportional Gains

To evaluate this case, Kppll is selected between 0.1 and 1.2 times of its pre-set value. When the
active power output increases from 0.6 pu to 1.0 pu, the variations of the dominant eigenvalues with
different Kppll are shown in Figure 6 (only those parts are shown where the imaginary part is positive).
When the value of Kppll is large (e.g., when the factors are larger than 0.3 times), the eigenvalues move
toward the right half plane (RHP) with the increase of the active power output, the mode damping
decreases, and the system stability decreases. The active power output is negatively related to the
mode damping. When the value of Kppll is small (e.g., when the factors are smaller than 0.3 times),
the eigenvalues move towards the left half plane (LHP) as the active power output increases. The active
power output is positively correlated with the mode damping. There are only slight changes of the
frequency of the SSO modes with different active power outputs.
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Figure 6. The impact of the active power output on the dominant SSO modes with different Kppll.

When Kppll takes these intermediate values, the correlation between the active power output and
the mode damping will change from negative correlation to positive correlation with the decrease
of Kppll. When Kppll takes the critical value, the real part of the dominant eigenvalues changes with
the active power output as shown in Figure 7. Moreover, as depicted in Figure 7, the real part of
the dominant eigenvalues gradually increases when the active power output increases from 0.6 pu
to 0.75 pu, while the real part of the dominant eigenvalues decreases when the active power output
increases from 0.75 pu to 1.0 pu. It can be found that when Kppll takes the critical value, the mode
damping decreases first and then increases as the active power output increases.

 

 

Kppll 
decrease

Figure 7. The impact of the active power output on the dominant SSO modes with the critical value
of Kppll.

In addition, it can also be seen from Figure 6 that when the active power output is negatively
correlated with the mode damping, the larger the value of Kppll, the greater the variation of the mode
damping with the active power output will be. That is, the stability of the system is more affected by
the active power output. Conversely, when the active power output is positively correlated with the
mode damping, the smaller the value of Kppll, the stability of the system is more affected by the active
power output.

From the results above, a conclusion can be drawn that when selecting a larger Kppll, the active
power output is negatively correlated with the damping of this SSO mode, while when selecting a
smaller Kppll, the active power output is positively correlated with the damping of this SSO mode.
Moreover, there is a critical value Kppll for correlation. Meanwhile, the closer Kppll is to the critical
value, the less the system stability is affected by the active power output.
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3.2.2. Impacts of Active Power Outputs with Different PLL Integral Gain

In the two cases where Kppll is selected to be larger (negative correlation) and smaller (positive
correlation), the impact of the active power outputs on the mode damping with different Kipll is
observed. When the active power output increases from 0.6 pu to 1.0 pu, the dominant eigenvalue is
plotted as shown in Figure 8. As shown in Figure 8a, with different Kipll, the dominant eigenvalues
move towards the RHP as the active power output increases and in effect decreasing the mode damping.
At the same time, Figure 8b shows response with smaller Kppll value. With different Kipll, the dominant
eigenvalues move towards the LHP as the active power output increases and the mode damping
increases. It can be observed that adjusting Kipll does not affect the correlation between the active
power output and the damping of this SSO mode. However, under the same active power output
condition, the damping of the SSO mode increases when Kipll decreases. This is because the typical
control parameters of a PLL are designed to ensure good phase tracking responses. However, in a
weak grid, a fast PLL response will enlarge the interaction between the weak grid and the wind turbine
converter, which will reduce the system stability. Therefore, a smaller integral gain is selected to
improve the stability by compromising the PLL response characteristics.

 

  

(a) (b) 

Kipll 
decrease

Kipll 
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Figure 8. The impact of the active power output on the dominant SSO modes with different Kipll.
(a) At large Kppll. (b) At small Kppll.

3.2.3. Impacts of the Active Power Outputs with Different DVC Proportional Gain.

According to the above analysis on PLL parameters, four representative PLL parameters are
selected as shown in Table 4. The impact of Kpdc on the correlation between the active power output
and the damping of the dominant SSO mode is analysed with the four different PLL parameters.
When the active power output increases from 0.6 pu to 1.0 pu, the variations of the dominant eigenvalues
with different Kpdc are presented in Figure 9.

Table 4. Four different PLL parameters.

Kppll Kipll

Case 1 314 (the pre-set value) 24,700 (the pre-set value)
Case 2 314 24,700 × 0.8
Case 3 314 × 0.2 24,700
Case 4 314 × 0.2 24,700 × 0.8
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Figure 9. The impact of the active power output on the dominant SSO modes with different Kpdc.
(a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4.

The Kppll of PLL is selected to be larger in Figure 9a,b. Figure 9a,b show that with different Kpdc,
the dominant eigenvalues move towards the RHP as the active power output increases, and the mode
damping decreases. The Kppll of PLL is selected to be smaller in Figure 9c,d and shows that with
different Kpdc, the dominant eigenvalues move towards the LHP as the active power output increases,
and the mode damping increases. Therefore, adjusting Kpdc does not change the correlation between
the active power output and the mode damping. However, when the active power output is negatively
correlated with the mode damping, the smaller the value of Kpdc, the greater the variation of the mode
damping with the active power output. That is, system stability is more affected by the active power
output (as shown in Figure 9a,b). Conversely, when the active power output is positively correlated
with the mode damping, the greater the value of Kpdc, the greater the system stability affected by the
active power output (as shown in Figure 9c,d).

Meanwhile, it can be found that the increase in Kpdc leads to increase the mode damping under
the same active power output condition. When the damping of the SSO mode is small, the stability can
be improved by increasing Kpdc. Comparing Figure 9a,c with Figure 9b,d, it can be seen that better and
improved system stability can be achieved by simultaneously decreasing Kipll and increasing Kpdc.

A conclusion can be drawn from the analysis that the correlation between the active power
output and the damping of the dominant SSO mode mainly depends on Kppll. When Kppll is large,
the active power output is negatively correlated with the damping of this SSO mode. When Kppll is
small, the active power output is positively correlated with the damping of the dominant SSO mode.
Moreover, there is a critical range for Kppll, in which SSO damping is near consistent irrespective to the
change of active power variation. Meanwhile, the system stability can be improved by appropriately
decreasing Kipll or increasing Kpdc.
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4. Case Study and Simulation Verifications

To validate the effectiveness of the conclusions in Section 3, the impact of the active power output
on the eigenvalues of the system is analysed with different control parameters shown in Figure 1.
At the same time, the detailed simulation model of the studied system is developed in Matlab/Simulink
(2018a, MathWorks, Natick, MA, USA) for validation.

4.1. Verification of the Negative Correlation when the PLL Proportional Gain is Large

When the active power output is 0.6pu, the system has good stability through trial-and-error
and adjustment of control parameters. The control parameters in this case are called the based-case
as shown in Table 5. When the control parameters of the based-case in Table 5 are used (with the
larger Kppll selected), the eigenvalue locus of the two SSO modes with the increase in active power
output are plotted in Figure 10a. It is found that under the control parameters of the based-case,
the eigenvalues λ6,7 move to the RHP with the increase of active power output. The mode damping
decreases continuously, and the system stability is weakened. When the active power output reaches
0.75 pu, λ6,7 first crosses the imaginary axis and enters the RHP. The system becomes unstable. That is,
there is a negative correlation between the active power output and the damping of the λ6,7 mode.
The results proved that when Kppll is large, the active power output is negatively correlated with the
damping of this SSO mode.

Table 5. Four different control parameters

Parameters Based-Case Group 1 Group 2 Group 3

PLL
Kppll 314 314 314 × 0.2 314 × 0.2
Kipll 24,700 24,700 × 0.8 24,700 × 0.8 24,700 × 0.7

DVC
Kpdc 1.1 1.1 × 1.6 1.1 × 1.6 1.1 × 2
Kidc 137.5 137.5 137.5 137.5

Inner current control loop Kpi = 0.4758 Kii = 3.28
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Figure 10. The impacts of the active power output on the SSO modes with the different control
parameters. (a) Pre-set values. (b) Group 1.

When the control parameters of group 1 in Table 5 are used, the impact of the active power output
on the eigenvalues of the SSO modes is shown in Figure 10b. Clearly, the eigenvalues are always in the
LHP during the variations of active power output. The damping of the λ6,7 mode is always positive,
and the system remains stable. Therefore, it is proved that the system stability can be improved by
decreasing Kipll and increasing Kpdc.
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In order to verify the above analysis, an electromagnetic transient simulation model of the
grid-connected wind farm system in Figure 1 is built in MATLAB/Simulink. The studied system
adopts the control parameters of the based-case and the group 1 control parameters, respectively.
At t = 3 s, the active power output of the wind farm increases from 0.7 pu to 0.75 pu. Responses
of active power output, DC voltage and phase-a voltage of the PCC are observed and analysed.
The corresponding time-domain simulation results are presented in Figure 11. It can be seen that when
the active power output increases from 0.7 pu to 0.75 pu, the system with the control parameters of
the based-case oscillates and becomes unstable. As shown in Figure 11a, the wind power has 31Hz
oscillation. This further confirms the conclusion in Section 3 that the active power output is negatively
correlated to the damping of this λ6,7 mode with a lager Kppll. Furthermore, the system with the group
1 control parameters is able to keep stable after disturbance, indicating that the damping of the SSO
mode increased after adjusting Kipll and Kpdc. The simulation results are consistent with the analysis
results above.
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Figure 11. Simulation results of wind power increase with a large Kppll. (a) Based-case. (b) Group 1.

4.2. Verification of the Positive Correlation when the PLL Proportional Gain Is Small

When the control parameters of group 2 in Table 5 are used (the smaller Kppll is selected),
the eigenvalue locus with varied active power output is depicted in Figure 12a. It can be seen that
the eigenvalues λ6,7 move to the LHP as the active power output increases. The damping of this SSO
mode increases and the system stability is enhanced. Moreover, when the active power output of the
wind farm is too small (less than 0.75 pu), the eigenvalue λ6,7 will be in the RHP. The system will result
in diverging oscillation and become unstable. That is, the active power output is positively correlated
to the damping of the λ6,7 mode. It is proved that when Kppll is small, the active power output is
positively correlated with the damping of this SSO mode.

Similarly, when the control parameters of group 3 in Table 5 are adopted, the impact of active
power output on the eigenvalues of the SSO modes is shown in Figure 12b. In the process of active
power output change, the eigenvalues are always in the LHP. The damping of the λ6,7 mode is always
positive, and the system remains stable. This analysis indicates again that the stability of the system
can be enhanced by decreasing Kipll and increasing Kpdc.
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Figure 12. The impacts of the active power output on the SSO modes with the different control
parameters. (a) Group 2. (b) Group 3.

To validate the above analysis, group 2 and group 3 were selected as the control parameters of the
system respectively. At t = 3 s, the active power output of the wind farm decreases from 0.8 pu to
0.7 pu. Figure 13 presents the corresponding time-domain simulation results. It can be observed that
when the active power output decreases from 0.8 pu to 0.7 pu, the system using group 2 of control
parameters is unstable and the oscillation frequency of the wind power is 21 Hz. This result matches
the conclusion in Section 3 well, which demonstrates that there is a positive correlation between the
active power output and the damping of this λ6,7 mode with a smaller Kppll. Meanwhile, the system
using the control parameters of group 3 can remain stable after disturbance. This indicates that the
damping of the SSO mode increases after adjusting the parameters. The simulation results are in
accordance with the analysis results above.
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Figure 13. Simulation results of wind power decrease with a small Kppll. (a) Group 2. (b) Group 3.

4.3. Simulation Verification for a Complex System

To verify the analyses, simulation has been carried out for a complex system with different wind
farm ratings, grid configurations and grid voltage levels, as shown in Figure 14. The system parameters
are given in Figure 14. The control parameters are given in Table 6. The simulation results are given in
Figures 15 and 16.

141



Energies 2020, 13, 5225

 

T1
0.62kV/35kV

T2
35kV/110kV

L3 R3

vpcc

i

R1L1

R2L2

P=20 MW, Q=5 Mvar

110kV

220kV

T3
220kV/110kV

R3L3

110kV
Parameters：
Base capacity for the complex system SB1:150MW
the rated angular frequency       ：0ω 2π 50×

0

1 1

2 2

3 3

T1 T1

T2 T2

T3 T3

0.8 pu  0.08 pu
0.6 pu  0.06 pu
0.6 pu  0.06 pu
0.06 pu  0.006 pu
0.065 pu  0.0065 pu
0.13 pu  0.013 pu

x L

x R

x R

x R

x R

x R

x R

ω=

= =

= =

= =

= =

= =

= =

，

，

，

，

，

，

 wind farm consisting of 
75   2MW wind turbines

(150MW)
×

 

(M
W

)
dc

(V
)

pc
c,

a(
V

)

Limit

2 3 4 5 6 7 8
time(s)

100

120

140

2 3 4 5 6 7 8
time(s)

1080

1100

1120

2 3 4 5 6 7 8
time(s)

-500

0

500

(M
W

)
dc

(V
)

pc
c,

a(
V

)

Figure 14. The diagram of a complex system.

Table 6. Four different control parameters.

Parameters Group 4 Group 5 Group 6 Group 7

PLL
Kppll 314 314 314 × 0.2 314 × 0.2
Kipll 24,700 24,700 × 0.8 24,700 × 0.8 24,700 × 0.7

DVC
Kpdc 1.1 × 1.2 1.1 × 1.8 1.1×1.8 1.1 × 2.0
Kidc 137.5 137.5 137.5 137.5

Inner current control loop Kpi = 0.4758 Kii = 3.28

In Figure 15, a large Kppll is used. Figure 15a gives the simulation results when the Group 4 control
parameters are used. When the wind power increases, system tends to be unstable. If the control
parameters are adjusted properly, by reducing Kipll and increasing Kpdc, as in Group 5, the system can
be maintained stable, as shown in Figure 15b.
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Figure 15. Simulation results of wind power increase with a large Kppll. (a) Using the Group 1 parameter
(b) Using the Group 2 parameter after adjustment.

In Figure 16, a small Kppll is used. Figure 16a gives the simulation results when the Group 6 control
parameters are used. When the wind power decreases, system tends to be unstable. If the control
parameters are adjusted properly, by reducing Kipll and increasing Kpdc, as in Group 7, the system can
be maintained as stable, as shown in Figure 16b.

The simulation of the complex system further verifies the proposed theoretical analysis.
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Figure 16. Simulation results of wind power decrease with a small Kppll. (a) Using Group 3’s parameters
(b) Using Group 4’s parameters after adjustment

5. Conclusions

This paper investigates the influence of active power output on subsynchronous oscillation
characteristics in weak grids. Compared to the research in the literature, this is the first of its kind
to investigate the distinctive correlations between active power output and the damping of the SSO
mode. The reasons for the different correlation between active power output and SSO mode damping
have been explained. The findings and contributions of the study include:

The change of active power output in one direction can either improve or reduce SSO mode
damping. This work identifies that the correlation between active power variation and damping
mainly depends on the proportional gain of the phase-locked loop (PLL).

• When the PLL proportional gain is large, the active power output is negatively correlated with
the damping of the SSO mode. When the PLL proportional gain is small, the active power output
is positively correlated with the damping of the SSO mode. This clarifies the confusions in the
understanding of the correlation between active power output and SSO damping.

• The PLL integral gain and the DC voltage control proportional gain have little influence on the
correlation between the active power output and SSO damping. However, the system stability
can be improved by appropriately retuning the PLL integral gain and the DC voltage control
proportional gain.

• There is a critical range for the PLL proportional gain, in which SSO damping is near consistent
irrespective to the change of active power variation. The influence of active power output on the
stability can be minimized by selecting proper the PLL proportional gain first when the damping
variation is at the critical range. Then adjustment of other parameters will improve the stability.
This is valuable for engineering applications in designing PLL parameters.

For full-converter wind power systems, the grid-connected dynamics mainly depend on the
control of GSC and are not affected by the wind turbine types. The conclusions of this paper are
applicable to full-converter wind farms with induction generators or permanent magnet synchronous
generators. DFIG is not covered in the study, and the analysis of the DFIG-based wind farms and the
auxiliary control design will be undertaken in future research.
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Appendix A

The A matrix expression in Equation (8):
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State variables:
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Abstract: Previous studies generally consider that the full converter-based wind power generation
(FCWG) is a “decoupled” power source from the grid, which hardly participates in electromechanical
oscillations. However, it was found recently that strong interaction could be induced which might incur
severe resonance incidents in the electromechanical dynamic timescale. In this paper, the participation
of FCWG in electromechanical dynamics is extensively investigated, and particularly, an unusual
transition of the electromechanical oscillation mode (EOM) is uncovered for the first time. The detailed
mathematical models of the open-loop and closed-loop power systems are firstly established,
and modal analysis is employed to quantify the FCWG participation in electromechanical dynamics,
with two new mode identification criteria, i.e., FCWG dynamics correlation ratio (FDCR) and
quasi-electromechanical loop correlation ratio (QELCR). On this basis, the impact of different wind
penetration levels and controller parameter settings on the participation of FCWG is investigated.
It is revealed that if an FCWG oscillation mode (FOM) has a similar oscillation frequency to the
system EOMs, there is a high possibility to induce strong interactions between FCWG dynamics and
system electromechanical dynamics of the external power systems. In this circumstance, an interesting
phenomenon may occur that an EOM may be dominated by FCWG dynamics, and hence is transformed
into a quasi-EOM, which actively involves the participation of FCWG quasi-electromechanical
state variables.

Keywords: electromechanical dynamics; FCWG dynamics; strong interaction; electromechanical
loop correlation ratio (ELCR); FCWG dynamic correlation ratio (FDCR); quasi- electromechanical
loop correlation ratio (QELCR)

1. Introduction

The high penetration of renewables and power electronic domination are two important aspects
of the future power system [1,2]. Converter interfaced generations (CIGs) such as wind power and
photovoltaic (PV) generation have been increasingly integrated into the power system at an incredible
scale and speed and play a pivotal role in rendering the power system more sustainable [3–5]. As one
of the promising CIGs, full converter-based wind power generation (FCWG, e.g., permanent magnet
synchronous generator (PMSG)), in which two full scale converters are employed to transfer wind power
to the power system, has become prevalent in the wind market due to its concise physical structure
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and mature control techniques [6–9]. The ever-increasing share of wind generation and its replacement
of conventional synchronous generators (SGs) involve profound challenges on the electromechanical
dynamics and potential threats on the oscillatory stability of the power system [10–13]. Unlike
conventional rotational power sources, the integration of FCWG may introduce complex interactions
with the electromechanical dynamics, which is well worth investigating, whereas it has not been
thoroughly studied.

Currently, many efforts have been endeavored as to how to utilize wind generation and employ
various additional controllers to mitigate electromechanical oscillations. Despite the inertia-less
characteristic under the maximum power point tracking (MPPT) control strategy, by emulating an
inertia response, a double fed inductor generator (DFIG) is capable of damping electromechanical
oscillations [14]. Both drivetrain torsional oscillations of a DFIG and electromechanical oscillations are
further examined, and alternative dampers are designed to suppress these oscillations [15]. The potential
of imposing inter-area oscillation damping control with wind power plants is studied in [16]. The effect
of spatial correlation between wind speed of geographically close wind farms on the damping of
electromechanical oscillations is examined in [17]. With the aid of the wide area measurement system,
a wide area damping controller is designed for DIFGs to alleviate electromechanical oscillations [18].
A second-order sliding-mode based damping controller is proposed in [19,20] as a resort for inter-area
oscillation mitigation. A reduced-order model based optimal oscillation damping controller is also
designed in [21]. A residue-based evaluation method is implemented to provide an additional control
design for the power oscillations [22]. In addition, modulation and coordination resorts such as active
power modulation and reactive power modulation [23] and DC-link control [24] are also proposed to
damp inter-area oscillations with wind generation.

Apart from mitigating electromechanical oscillations with wind generation, the dynamic
interaction between wind generation and the electromechanical dynamics has also drawn attention
and is defined as a converter-driven stability problem [3]. Model validation and reduction techniques
for different types of wind power induction generators (i.e., a fixed-speed induction generator (FSIG),
DFIG) are discussed in terms of oscillatory stability issues [25–27]. The dynamic interaction between
wind generation and the electromechanical modes of the nearby synchronous generators (SGs) poses
threats to the small signal stability with high penetration levels of wind power, which is verified with
modal analysis techniques [28]. An electric torque analysis method is proposed in [29] to quantify the
impact of wind generation integration on electromechanical oscillations. A novel modal superposition
theory is proposed in [30] to classify the interaction categories between wind generation and the
external power system. The impact of power electronic integrated wind generation considering
increasing wind penetration and load conditions on the inter-area oscillation is investigated in [31].
An adaptive coordination strategy is proposed in [32] to eliminate the modal resonance between FCWG
dynamics and electromechanical dynamics.

Although the above works validated the impact of wind generation on electromechanical
dynamics and provided satisfactory solutions to tackle the electromechanical oscillations with various
control resorts, the systematic modeling to deepen the understanding of FCWG participation in
electromechanical dynamics is still worth further exploring. Especially, an interesting phenomenon
is discovered that, in some circumstances, the electromechanical oscillation mode (EOM) may be
dominated by the FCWG dynamics and become a quasi-EOM, which has not been studied before.
Therefore, the main contributions of this paper are summarized: (1) the linearized open-loop and
closed-loop power system models tailored for FCWG dynamics impact investigation are established;
(2) together with the electromechanical loop correlation ratio (ELCR), the FCWG dynamics correlation
ratio (FDCR) and the quasi-ELCR (QELCR) are proposed to quantify the participation of FCWG in
electromechanical dynamics; (3) extensive case studies considering comprehensive wind penetration
levels are thoroughly examined to uncover the unusual transition in electromechanical dynamics;
and (4) useful findings and suggestions on how FCWG dynamics transform both local and inter-area
modes are provided based on modal analysis and time domain simulations.
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The remainder of this paper is organized as follows. Section 2 presents a typical configuration
of FCWG. Section 3 proposes a method to investigate the participation of FCWG by constructing the
open-loop linearized power system model and the closed-loop linearized power system model.
In Section 4, the participation of FCWG is meticulously examined in a two-area test system,
and important findings on the impact of the electromechanical dynamics are concluded. The main
findings are summarized in Section 5, while conclusions are emphasized in Section 6.

2. Configuration of FCWG

The typical topology of an FCWG (e.g., permanent magnet synchronous generator (PMSG))
connected to the multi-machine power system is demonstrated in Figure 1.
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Figure 1. Physical configuration of a full converter-based wind power generation (FCWG) connected
to a multi-machine power system.

The FCWG consists of three parts: (1) the PMSG, the machine side converter (MSC) and the
associated control system (as demonstrated in Figure 2); (2) the DC-link, the grid side converter (GSC)
and the associated control system (as shown in Figure 3); and (3) the synchronous reference frame
phase-locked loop (SRF-PLL) (as presented in Figure 4), which is used to synchronize FCWG with the
external power system.
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Figure 2. The control configuration of machine side converter (MSC).
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Figure 4. Block diagram of the synchronous reference frame phase-locked loop (SRF-PLL).

The electromechanical dynamics stem from the inertia sources of power systems. Regarding
the large mass of physical rotors, SGs are the main inertia sources of conventional power systems,
which actuate as a buffer under unintended disturbance contingencies and bolster the oscillatory
stability. Owing to the AC-DC-AC configuration, the rotor inertia of wind turbine is decoupled
from the multi-machine power system, and hence FCWG is normally regarded as a low-inertia
source. Such low-inertia characteristic is significantly distinguished from conventional power sources.
Therefore, the integration of FCWG is usually recognized to be inertia-less, which may not participate
in electromechanical dynamics like SGs. Its impact on electromechanical dynamics is not taken into
account meticulously.

3. Modal Analysis on Electromechanical Dynamics and FCWG Dynamics

Comprehensive modal analyses of the electromechanical oscillation modes (EOMs) are carried out
to essentially reveal the participation mechanism of FCWG in electromechanical dynamics. To elaborate
on the participation of FCWG, the power system that excludes the FCWG dynamics is denoted as the
open-loop power system, while the entire system is the closed-loop power system. By comparing the
EOMs of the open-loop and closed-loop power systems, the impact of FCWG is quantified.

3.1. State-Space Model of FCWG

The detailed modeling of FCWG can refer to [12,33]. The state-space model of FCWG is expressed as

{
d
dt ∆XW = AW∆XW + BW∆VW

∆IW = CW∆XW
(1)

where ∆XW denotes all the state variables of FCWG (as illustrated in Figures 2–4); AW , BW , CW are the
state-space matrices after integrating all the linearized differential equations.

It is noteworthy that all the controller parameters of FCWG are included in Equation (1) and will
be further integrated in the closed-loop power system in Section 3.3. Mathematically, this is how FCWG
controller parameters affect the formation of the state matrix and thus influence the electromechanical
dynamics of the external power system.

3.2. Open-Loop Power System

In the open-loop power system, FCWG is regarded as a constant power source, and thus its
dynamics are excluded.

The state-space model of the ith SG in the power system can be expressed as

{
d
dt ∆Xgi = Agi∆Xgi + Bgi∆Vgi

∆Igi = Cgi∆Xgi + Dgi∆Vgi
(2)

where ∆Xgi is the state variables of SG i; Agi, Bgi, Cgi, Dgi are the state-space matrices; ∆Vgi and ∆Igi

are voltage variation and current variation at the connecting bus of SG i, respectively.
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The equation of the transmission network is expressed as

[
∆Ig

0

]
=

[
Ygg YgN

YNg YNN

][
∆Vg

∆VN

]
= Yopen

[
∆Vg

∆VN

]
(3)

where ∆Ig denotes the current variation at the generator buses; ∆Vg and ∆VN are the voltage variations
at the generator buses and other buses, respectively; Yopen is the open-loop admittance matrix of the
transmission network in which the FCWG is considered as a constant power source and modeled as a
constant impedance. Assume that the total number of SGs is M, then

∆Ig =
[

∆Ig1 ∆Ig2 . . . ∆IgM

]T

∆Vg =
[

∆Vg1 ∆Vg2 . . . ∆VgM

]T

∆Xg =
[

∆Xg1 ∆Xg2 . . . ∆XgM

]T

Ag= diag
[

∆Ag1 ∆Ag2 . . . ∆AgM

]T

Bg= diag
[

∆Bg1 ∆Bg2 . . . ∆BgM

]T

Cg= diag
[

∆Cg1 ∆Cg2 . . . ∆CgM

]T

Dg= diag
[

∆Dg1 ∆Dg2 . . . ∆DgM

]T

(4)

where diag[] represents the diagonal matrix. By integrating all the SGs, the state-space model is
expressed as {

d
dt ∆Xg = Ag∆Xg + Bg∆Vg

∆Ig = Cg∆Xg + Dg∆Vg
(5)

From (3), the relationship between ∆Ig and ∆Vg can be expressed as

∆Ig = (Ygg −
YgNYNg

YNN
)∆Vg (6)

Combine (5) and (6), and the state-space model of the open-loop power system is derived as

d

dt
∆Xg = [Ag +

BgCg

Ygg −
YgNYNg

YNN
−Dg

]∆Xg = Aopen∆Xg (7)

where Aopen is the state matrix of the open-loop power system.

3.3. Closed-Loop Power System

In the closed-loop power system, the dynamics of FCWG are included by injecting a current
variation ∆IW into the external power system. Accordingly, the network equation in Equation (3)
should be modified as below




∆Ig

∆IW

0



=




Ygg YgW YgN

YWg YWW YWN

YNg YNW YNN







∆Vg

∆VW

∆VN



= Yclose




∆Vg

∆VW

∆VN




(8)

where ∆Ig and ∆IW are the current variations at generator buses and the FCWG bus, respectively; ∆Vg,
∆VW and ∆VN are the voltage variations at generator buses, FCWG bus, and other buses; and Yclose is
the admittance matrix of the transmission network.

Eliminating the non-source buses, the network equation can be simplified as
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[
∆Ig

∆IW

]
=




Ygg −
YgNYNg

YNN
YgW −

YgNYNW

YNN

YWg −
YWNYNg

YNN
YWW − YWNYNW

YNN




[
∆Vg

∆VW

]

=

[
Y11 Y12

Y21 Y22

][
∆Vg

∆VW

] (9)

From the second equation of (1), the second equation of (5), and (9), the relation between voltage
variation and the state variables is expressed as

[
∆Vg

∆VW

]
=

[
Y11 −Dg Y12

Y21 Y22

]−1[
Cg CW

][ ∆Xg

∆XW

]
(10)

From the first equations of (1) and (5),

d

dt

[
∆Xg

∆XW

]
=

[
Ag 0
0 AW

][
∆Xg

∆XW

]
+

[
Bg 0
0 BW

][
∆Vg

∆VW

]
(11)

From (10) and (11), the closed-loop state-space model of the entire power system is derived as

d

dt

[
∆Xg

∆XW

]
= Aclosed

[
∆Xg

∆XW

]
(12)

where Aclosed is state matrix of the closed-loop power system considering the dynamics of FCWG and
is defined as

Aclosed =

[
Ag 0
0 AW

]
+

[
Bg 0
0 BW

][
Y11 −Dg Y12

Y21 Y22

]−1[
Cg CW

]
(13)

By performing modal analysis on the state matrices of the open-loop and closed-loop power
systems and comparing all the essential information of the oscillation modes, the impact of FCWG
dynamics can be revealed. One advantageous aspect of modal analysis is that it can give insight into the
relationship between oscillation modes and physical components and reveal the interaction between
FCWG dynamics and electromechanical dynamics. For example, by analyzing the participation factors
of SGs, the local EOMs and the inter-area EOM can be identified [34,35]. Moreover, it is also easy
to uncover those state variables and the corresponding controllers that are the most active in the
interaction between electromechanical dynamics and FCWG dynamics via the same technique.

3.4. Impact of FCWG on Electromechanical Dynamics

The EOMs are identified with the electromechanical loop correlation ratio (ELCR), which is
defined as

ELCR =
PFrotor

PFtotal − PFrotor
(14)

where PFrotor is the sum of participation factors (PFs) related to electromechanical oscillatory loop
associated with state variables (i.e., the rotor speed ω and rotor angle δ) for all M SGs, and PFtotal is the
sum of PFs of all state variables.

For any oscillation mode, if its ELCR is larger than 1, the oscillation mode is identified to be an
EOM. Similarly, the FCWG dynamic correlation ratio (FDCR) can also be proposed to distinguish
FCWG oscillation modes, which is defined as

FDCR =
PFFCWG

PFtotal − PFFCWG
(15)

where PFFCWG is the sum of participation factors (PFs) related to all state variables of FCWG.
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Since the MSC of FCWG is decoupled from the external power system, the most interactive part is
the grid side converter (GSC) of FCWG, and it should be highlighted that the concept of FDCR can be
extended to any other power source (e.g., voltage source converter (VSC)). Likewise, the methodology
proposed in this paper can be applied to study the impact on electromechanical dynamics from any
kind of converter-based power sources (such as PV, energy storage system (ESS)).

In an EOM, two state variables (i.e., the rotor speed ω and rotor angle δ) related to the SG rotor are
recognized as the main contributors to electromechanical oscillatory dynamics. For FCWG, there are
usually two state variables taking part in the EOM most actively when strong interaction happens.
Normally, a pair of state variables, which is closely related to a controller of FCWG (e.g., PLL controller,
or DC voltage controller), might participate actively in electromechanical dynamics, and thus can be
regarded as quasi-electromechanical state variables. Though these state variables are not from any
physical rotational storage, their participation in an EOM will inevitably affect the electromechanical
dynamic responses and might incur unintended consequences if not properly tackled.

If strong interaction between FCWG and the external power system occurs, the quasi-
electromechanical state variables may hold a considerable PF in an EOM, and thus ELCR in Equation (14)
may fall below 1. As a result, ELCR is not suitable for identifying EOMs in such cases. To fill in this
gap, a quasi-ELCR (QELCR) is proposed to account for the two quasi-electromechanical state variables
and is defined as

QELCR =
PFrotor + PFQEWG

PFtotal − PFrotor − PFQEWG
(16)

where PFQEWG is the sum of PFs of the two quasi-electromechanical state variables from FCWG.
For any oscillation mode with an FDCR larger than 1, it can be recognized as an FOM. By analyzing

the ELCR and FDCR of the same EOM, it is possible to quantify the participation of FCWG. Normally,
the dynamics of FCWG are not involved in the EOM, and thus it is straightforward to identify an EOM
via ELCR. However, if FCWG dynamics are strongly coupled with the electromechanical dynamics,
ELCR may be lower than 1. Hence, ELCR is no longer suitable for EOM identification. In such a
situation, two possible results may emerge: 1) the electromechanical dynamics may mingle with the
FCWG dynamics; an EOM may be dominated by FCWG dynamics instead of the rotors of SGs, and is
no longer a typical EOM, and thus can be identified as a quasi-EOM; and 2) a new quasi-EOM may be
introduced (which may also be dominated by FCWG) and imposed on the rotor swing movements of
SGs. To be more specific, a very interesting phenomenon may appear, in which, with the increase of
the FDCR and the decrease of the ELCR, a typical EOM will gradually turn into a quasi-EOM, and at
the same time, the most interactive FOM may have an ELCR larger than 1, and can be considered as a
new quasi-EOM. Such a transition from the electromechanical dynamics to the quasi electromechanical
dynamics is rare but may occur if FCWG strongly interacts.

With the criteria of ELCR and FDCR, it is capable of distinguishing all the EOMs and FOMs,
as presented in Figure 5. This mode identification criteria can be implemented to observe the unusual
transition in electromechanical dynamics.

ELCR

1

EOM

Non-EOM

Discriminant Line

0

Consistent operational 

condition

FDCR

1

FOM

Non-FOM
0

Consistent operational 

condition

Discriminant Line

(a) (b)

“ ” 

+ +

2 4SG

1 101

12

Figure 5. Criteria for electromechanical oscillation mode (EOM) and FCWG oscillation mode (FOM)
identification: (a) EOM identification; (b) FOM identification.
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4. Case Study

4.1. Introduction of Test System

An FCWG-integrated modified two-area power system is set up as a test system for investigation,
as illustrated in Figure 6, in which the FCWG-based wind farm is connected at bus 12. Busbar 3 is the
swing bus of the test system. To emulate the electromechanical dynamics, the simplified third-order
model with a first order of the automatic voltage regulator (AVR) is adopted for each SG. No power
system stabilizer (PSS) is equipped. All the parameters of SGs in [34] and the parameters of FCWG
in [12] are used, and a detailed mathematical model can be found in [12,34].
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Figure 6. Configuration of two-area power system integrated with an FCWG wind farm.

To cover the participation level, the FCWG is used to replace the active power of SG1 step by step.
The total active power output of FCWG and SG1 is 600 MW and kept constant. Other SGs and network
and load parameters are the same throughout the following study.

The proportion of FCWG active power output increases from 0% to 100% with a change step of 2%
(i.e., 12 MW). Meanwhile, the active power of SG1 decreases from 100% to 0% with the same amount
of change step. To simplify the expression, “FCWG proportion” is used to represent the active power
share of FCWG in the total active power of FCWG and SG1 (i.e., 600 MW). A higher FCWG proportion
also indicates a higher wind power penetration level.

The impact of FCWG on all the EOMs are analyzed through modal analysis. Mathematically,
the dynamic interaction between FCWG and the external power system can be seen as a modal
coupling in which a major FOM interacts with the EOMs of the external power system. In other words,
some state variables (usually two) of FCWG may participate in the EOMs, and state variables of rotor
dynamics of SGs may also take part in the FOM that is determined by these FCWG state variables.

The original EOMs of the two-area power system (i.e., the output of FCWG is Pew = 0%) are
identified and presented in Table 1.

Table 1. Electromechanical oscillation modes (EOMs) of two-area power system (Pew = 0.0%).

EOM No. EOM1 EOM2 EOM3

Eigenvalue λ −0.0660 ± 3.3891i −0.3201 ± 5.7346i −0.2824 ± 5.9767i
Freq. (Hz) 0.5394 0.9127 0.9512

Damping Ratio 1.95% 5.57% 4.72%
Electromechanical loop correlation ratio (ELCR) 9.3952 23.7402 17.4803

FCWG dynamic correlation ratio (FDCR) 0 0 0
Major sources SG3, SG4, SG1, SG2 SG2, SG1 SG4, SG3

The participation of power sources is also compared and demonstrated to clarify the relationship
between the EOM and power sources, as shown in Figure 7. EOM1 is an inter-area oscillation mode
that all SGs take part in, while EOM2 and EOM3 are two local oscillation modes that are dominated by

154



Energies 2020, 13, 6270

SG1, SG2, and SG3, SG4, respectively. Since FCWG is integrated into the left area, it is much more
likely that FCWG will participate in two EOMs (i.e., EOM1 and EOM2) and will not affect EOM3.

𝜆 −
− −

(a) (b) (c)

Figure 7. The participation of power sources in EOMs: (a) EOM1; (b) EOM2; (c) EOM3.

The participation of FCWG in the EOM is not only affected by the power injection level, but is also
impacted by the parameters of the FCWG controllers. The interaction between FCWG and the external
power system is strongly related to the relative locations of the FOM and the EOM. For a specific power
system, EOMs normally do not vary too much and will stay at relatively stable frequencies. Meanwhile,
the location of FOM is mainly determined by the controller parameters and operating conditions.
The former is decisive as controller parameters can be designed with bandwidth to accommodate
signals of various oscillation frequencies. While the latter also affects the FOM location with different
power flows, such relation may not be decisive since it is mainly attributed to the variation of voltage
and current, which are not strongly coupled in controller oscillation modes.

To give a thorough demonstration, two FOMs are selected to interact with the EOMs, i.e., the PLL-FOM
which denotes the dynamics of the PLL controller, and the DC-FOM which represents the dynamics
of the DC voltage controller. Different PI parameters are selected and denoted as different scenarios
(under a 50% FCWG penetration level), as presented in Tables 2 and 3.

Table 2. Different scenarios with respect to PLL-FOM under 50% FCWG penetration level.

Scenario No.
Parameters of PLL

Controller
PLL-FOM EOM1 ELCR FDCR

Scen. 1 Kipll = 6, Kppll = 1 −0.5243 ± 2.4481i −0.1712 ± 3.4044i 9.8518 0.0260
Scen. 2 Kipll = 8, Kppll = 1 −0.5057 ± 2.8071i −0.1851 ± 3.4137i 7.2631 0.0601
Scen. 3 Kipll = 10, Kppll = 1 −0.4627 ± 3.1275i −0.2233 ± 3.4200i 3.6326 0.1793
Scen. 4 Kipll = 12, Kppll = 1 −0.4412 ± 3.5208i −0.2397 ± 3.3226i 2.3364 0.2905
Scen. 5 Kipll = 14, Kppll = 1 −0.4870 ± 3.7901i −0.1889 ± 3.3257i 4.4731 0.1148
Scen. 6 Kipll = 16, Kppll = 1 −0.4986 ± 4.0331i −0.1724 ± 3.3359i 6.1709 0.0632
Scen. 7 Kipll = 100, Kppll = 1 −0.4364 ± 9.8689i −0.1559 ± 3.3686i 11.7832 0.0023

Table 3. Different scenarios with respect to DC-FOM under the 50% FCWG penetration level.

Scenario No.
Parameters of DC
Voltage Controller

DC-FOM EOM1 ELCR FDCR

Scen. 8 Kpi4 = 100, Kpp4 = 2 −0.0955 ± 1.8304i −0.1614 ± 3.3743i 11.5318 0.0061
Scen. 9 Kpi4 = 200, Kpp4 = 2 −0.1558 ± 2.5672i −0.1777 ± 3.3826i 8.8525 0.0340

Scen. 10 Kpi4 = 300, Kpp4 = 2 −0.1651 ± 3.0997i −0.2500 ± 3.4155i 2.1014 0.3827
Scen. 11 Kpi4 = 400, Kpp4 = 2 −0.3863 ± 3.6959i −0.1136 ± 3.2919i 3.0269 0.1943
Scen. 12 Kpi4 = 500, Kpp4 = 2 −0.4665 ± 4.0728i −0.1201 ± 3.3287i 5.9994 0.0612
Scen. 13 Kpi4 = 600, Kpp4 = 2 −0.5485 ± 4.4338i −0.1257 ± 3.3402i 7.7275 0.0316
Scen. 14 Kpi4 = 2000, Kpp4 = 2 −1.8423 ± 7.9388i −0.1359 ± 3.3565i 10.5869 0.0053
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For Scenarios 1–7, only the parameters of the PLL controller change, and all other parameters of
FCWG stay at their original values. For Scenarios 8–14, only the parameters of the DC voltage controller
vary, and all other parameters remain unchanged. It should be noted that the controller parameters are
included in Equation (13), and the variation of these parameters will affect the state matrix Aclosed and
thus influence the eigenvalue of the EOMs. When controller parameters change, ELCR and FDCR also
vary. Among all the scenarios, it is interesting that Scenario 4 and Scenario 10 have the lowest ELCR
and the highest FDCR in the corresponding tables. This implies that in Scenario 4 and Scenario 10,
FCWG dynamics are more active in interacting with the electromechanical dynamics. The decrease of
ELCR and the increase of FDCR may lead to the transition in electromechanical dynamics. If the ELCR
falls below 1, the unusual transition occurs, and thus an EOM will turn into a quasi-EOM, which will
be demonstrated in Sections 4.2 and 4.3.

Comparing the FOMs in Tables 2 and 3, the oscillation frequencies of FOMs increase with the
integral parameter of the controllers. When the oscillation frequencies of FOMs are close to the
frequency of EOM1 (about 0.5 Hz), the participation of FCWG becomes very active. When the FOMs
move away, the participation of FCWG becomes less active.

4.2. Interaction Between PLL-FOM and EOMs

Modal analyses are extensively implemented for every scenario, considering 50 operating
conditions (0–100% penetration level of FCWG). For each group of controller parameters, eigenvalue
analyses are implemented based on varying operating conditions and thus the eigenvalue loci of critical
modes are drawn, which are significantly different from the parameter-based root locus. Therefore,
the term “eigenvalue loci” is used in this paper to distinguish from “root locus”.

The interactions between PLL-FOM and EOM1, EOM2 are demonstrated in Figures 8 and 9,
respectively. It is worth mentioning that EOM3 is hardly influenced by the integration of FCWG since
it is another local EOM which is closely related to SG3 and SG4, and thus is not presented due to
space limit.

(b)(a)

(c) (d)

–

Figure 8. The interaction between PLL-FOM and EOM1 considering increasing FCWG proportion:
(a) eigenvalue loci; (b) variation trend of damping ratio; (c) variation trend of ELCR; (d) variation trend
of FDCR.
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(b)(a)

(c) (d)

Figure 9. The interaction between PLL-FOM and EOM2 considering increasing FCWG proportion:
(a) eigenvalue loci; (b) variation trend of damping ratio; (c) variation trend of ELCR; (d) variation trend
of FDCR.

In Scenarios 1–7, the integration of FCWG is beneficial for EOM1, as it is shown that in Figure 8a,
the eigenvalue of EOM1 turns to move towards the left in the complex plane, and Figure 8b further
confirms that the damping ratio of EOM1 is enhanced. It is very interesting that, in Figure 8c, the ELCR
may increase or decrease under different scenarios. Particularly, for Scenario 3, the ELCR continuously
decreases to almost 1 when the FCWG proportion is near 100%, which indicates that EOM1 gradually
interacts with FCWG dynamics while the electromechanical dynamics become less and less active.
At the same time, the FDCR increases from 0 to almost 1. If ELCR falls below 1 and FDCR is above 1,
the corresponding EOM will transform into a quasi-EOM.

Moreover, the FDCR in Figure 8d demonstrates that in most scenarios, the participation of FCWG
in EOM1 stays at a low level (e.g., for Scenarios 1, 2, 5, 6, and 7, FDCR is less than 0.1), which suggests
that the dynamic interaction is weak, and the damping enhancement is largely due to the power
injection of FCWG. However, the FDCRs can increase drastically in Scenarios 3 and 4, and the damping
ratio can also be raised a lot when FCWG participates actively. This indicates that dynamic interaction
could be too strong to be ignored. It is surprising that such dynamic interaction is positive and may be
utilized as a resort to enhance oscillatory stability.

From Figure 8, it is concluded that strong interaction between FCWG and the external power
system is possible. In this case, the integration of FCWG is conducive for EOM1, and the damping
ratio of the EOM is raised from 1.95% to over 10%, which is prominent from the perspective of low
frequency oscillation suppression.

In Scenarios 1–7, the overall impact of FCWG integration is negative for EOM2, as it is shown
that in Figure 9a, the eigenvalue of EOM1 tends to move towards the right in the complex plane,
and Figure 9b further confirms that the damping ratio of EOM1 decreases.
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The ELCRs in Figure 9c encounter some fluctuations under different scenarios, but stay above 10
all the time, which means EOM2 is always dominated by electromechanical dynamics, whereas the
FDCRs in Figure 9d are always less than 0.1, which indicates the participation of FCWG dynamics is
very limited or even can be ignored. This finding elucidates that the damping deterioration of EOM2 is
mainly attributed to the power injection of FCWG and the power reduction of SG1.

From Figure 9, it is concluded that the FCWG dynamics may not always hold considerable
participation in the EOMs, and the power injection may become the main influence. The damping ratio
of EOM2 decreases from 5.57% to about 3%, which is a potential threat for this local EOM. Careful
coordination for FCWG integration should be considered.

4.3. Interaction Between DC-FOM and EOMs

From the analyses in Section 4.2, the parameters of the PLL controller play an important role in the
interaction between FCWG dynamics and electromechanical dynamics. With certain parameters in the PLL
controller, FCWG can have very active participation in electromechanical dynamics (e.g., Scenarios 3 and 4).

To further validate the participation of FCWG, the parameters in the DC voltage controller are
also examined to investigate the interaction of DC-FOM and the EOMs. Accordingly, Scenarios 8–14
are studied via modal analysis, considering 50 operating conditions (which covers from 0% to 100%
penetration level of FCWG with a 2% step). The results of the interaction between DC-FOM and EOM1,
EOM2 are depicted in Figure 10 and Figure 11, respectively.

EOM Discriminant  Line FOM Discriminant Line

(b)(a)

(c) (d)

–

Figure 10. The interaction between DC-FOM and EOM1, considering increasing FCWG proportion:
(a) eigenvalue loci; (b) variation trend of damping ratio; (c) variation trend of ELCR; (d) variation trend
of FDCR.
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(b)(a)

(c) (d)

Figure 11. The interaction between DC-FOM and EOM2, considering increasing FCWG proportion:
(a) eigenvalue loci; (b) variation trend of damping ratio; (c) variation trend of ELCR; (d) variation trend
of FDCR.

In Scenarios 8–14, the overall impact of FCWG integration is also beneficial for EOM1, as it is
shown that in Figure 10a, the eigenvalue of EOM1 tends to move towards the left in the complex plane.
Figure 10b further ascertains that the damping ratio of EOM1 is enhanced.

In Figure 10c, the ELCR may also increase or decrease under different scenarios, which is similar
to that of Figure 8c. However, when it comes to ELCRs and FDCRs, it should be highlighted that,
for Scenario 10, the ELCR consistently decreases to below 1, which implies that EOM1 is no longer a
typical EOM that is determined by the electromechanical dynamics, and the participation of FCWG
becomes the primary domination. As also verified in Figure 10d, the FDCR in Scenario 10 can increase
to above 1 at the 86% penetration level, which also indicates this oscillation mode (i.e., previously
identified to be EOM1) now becomes a quasi-EOM.

It is worth pointing out that, although all scenarios can improve the damping ratio of EOM1,
the contribution of damping enhancement due to FCWG integration are from two aspects: (1) the
power flow impact (which refers to the low participation of FCWG, such as in Scenarios 8–9, 12–14);
and (2) dynamic interaction impact (which could superpose dynamic impact on the electromechanical
dynamics and even dominate the electromechanical oscillatory stability, such as in Scenario 10).

In Scenario 10, the integration of FCWG is conducive for EOM1, and the damping ratio of
EOM1 can be raised from 1.95% to about 15%, which is quite impressive comparing with other
scenarios (which can only reach about 8% damping ratio). This proves that dynamic interaction can be
pronounced and should not be ignored, and the participation of FCWG is significant.

The interaction between DC-FOM and EOM2 is shown in Figure 11. The damping ratio of
EOM2 decreases in all scenarios, which indicates that the integration of FCWG is negative for EOM2.
Such influence is mainly attributed to the power flow impact of FCWG, since the FDCRs are at a very
low level (less than 0.1 as illustrated in Figure 11d). Though the ELCRs in Figure 11c have encountered
fluctuations, they stay at a very high level (over 10), and thus the electromechanical dynamics of EOM2
are hardly affected by FCWG dynamics.

Peculiarly, take Scenario 10 as an example, major modes related to electromechanical dynamics
in both an open-loop power system and a closed-loop power system model are demonstrated in
Table 4 (the FCWG proportion is 86%). Due to the strong interactions between FCWG dynamics and
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electromechanical dynamics, there are only two typical EOMs (i.e., EOM2 and EOM3) left in the
closed-loop power system. The inter-area EOM 1 (i.e., 0.51 Hz) is now dominated by FCWG with
an ELCR less than 1 and an FDCR larger than 1, and thus is a quasi-EOM. Local EOM2 is slightly
affected while local EOM3 is hardly moved by comparing them with the closed-loop modes 3 and
4. The participation of power sources in four major oscillation modes is depicted in Figure 12. It is
worthwhile mentioning that the active participation of FCWG not only dominates the inter-area
mode (viz. Closed Mode 2) but also introduces a new quasi-EOM (i.e., Closed Mode 1), in which the
electromechanical dynamics are involved.

Table 4. EOMs of two-area power system in Scenario 10 (Pew = 86%).

Mode No. Eigenvalue λ Freq. (Hz) Damping Ratio ELCR FDCR

Open-Loop
Power System

Open EOM1 −0.1994 ± 3.2280i 0.5138 6.17% 17.4809 0
Open EOM2 −0.1677 ± 4.7219i 0.7515 3.55% 47.7340 0
Open EOM3 −0.2839 ± 5.9764i 0.9512 4.75% 17.9009 0

DC-FOM −0.5333 ± 3.1585i 0.5027 16.65% 0 6.3587

Closed-Loop
Power System

Closed Mode 1 −0.2777 ± 3.0665i 0.4880 9.02% 0.8911 0.8601
Closed Mode 2 −0.3697 ± 3.2492i 0.5171 11.31% 0.8194 1.0237
Closed Mode 3 −0.1563 ± 4.6983i 0.7478 3.33% 36.6454 0.0084
Closed Mode 4 −0.2840 ± 5.9762i 0.9511 4.75% 17.8584 0

–

(a) (b)

(c) (d)

Figure 12. The participation of power sources in major oscillation modes of the closed-loop power
system: (a) closed-loop Mode 1; (b) closed-loop Mode 2; (c) closed-loop Mode 3; (d) closed-loop Mode 4.
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4.4. Time Domain Simulations for Verification of Frequency Domain Analysis

From the analysis above, in Scenario 4 and Scenario 10, FCWG has the most active participation.
To verify the above analyses, time domain simulations are also performed. The simulation condition is
set: a 5% increase of mechanical output occurs at SG2 at 0.2 s and then drops to the original value
after 100 ms. The FCWG penetration level is set to be 50% (i.e., 300 MW), and all the parameters of the
transmission network and generators are the same. To save space and maintain clarity, only Scenarios
4, 7, and 10 are selected to implement the small disturbance simulations.

The angular speed, bus voltage, and active power of SG3 are compared in Figure 13a–c. The reason
why variables of SG3 are chosen for comparison is that, in time domain simulations, the variation
of SG3 variables are formulated with the superposition of both local mode (EOM3) and inter-area
mode (EOM1). The participation of FCWG affects both EOM1 and EOM2, whereas FCWG integration
benefits EOM1 and deteriorates EOM2 at the same time, and these two EOMs will impose on the
dynamic performances of SG1 and SG2 and may lead to misunderstanding. Therefore, by comparing
variables of SG3 under different scenarios, the impact on EOM1 from the participation of FCWG can be
clearly demonstrated.

(a) (b)

(d)(c)

Figure 13. The dynamic responses of interaction between FCWG dynamics and electromechanical
dynamics: (a) angular speed of SG3; (b) bus voltage of SG3; (c) active power of SG3; (d) active power
of FCWG.

Scenarios 4 and 10 have better dynamic performances than that of Scenario 7 in terms of
electromechanical dynamics. The only difference is whether FCWG actively participates or not.
It is important to also mention that the participation of FCWG in electromechanical dynamics may
introduce negative effects on its own dynamics. For example, the active powers of FCWG in Scenarios
4 and 10 have worse dynamic performances than that of Scenario 7, as demonstrated in Figure 13d.
Therefore, the integration of FCWG may not only participate in the electromechanical dynamics and
influence the oscillatory stability of the power system; additionally the side effects of its own dynamic
performances should also be carefully considered. Appropriate coordination between FCWG dynamics
and electromechanical dynamics is suggested when integrating FCWG into the power system.
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4.5. Discussion on a Special Case: Replacement of SG with FCWG

The replacement of an SG with FCWG significantly affects the electromechanical dynamics. On one
hand, with the removal of an SG from the grid, the rotor swing dynamics of this SG are now excluded
from the inter-area EOM. On the other hand, a local EOM closely related to this SG may also disappear
(e.g., EOM 2 of the two-area benchmark system in this paper). In a weak interaction case, FCWG hardly
interacts with electromechanical dynamics, and hence the replacement of SG1 with FCWG will lead to
the disappearance of the local EOM between SG1 and SG2, as confirmed in Figure 14. There are only
two EOMs left in the power system, i.e., a local EOM associated with SG3 and SG4, and the inter-area
EOM in which the remaining three SGs participate.

(a) (b)

Figure 14. Weak interaction case: participation of power sources in EOMs when SG1 is replaced with
FCWG: (a) closed-loop Mode 1; (b) closed-loop Mode 2.

However, if strong interaction between FCWG and the external power system occurs, two quasi-
electromechanical state variables of FCWG may act as the electromechanical oscillatory loop associated
state variables of the replaced SG, and hence introduce a new local quasi-EOM. In such circumstances,
the integration of FCWG becomes vital in determining power system oscillatory stability. As demonstrated
in Figure 15, the local EOM (Mode 4) and the inter-area EOM (Mode 3) still exist. FCWG could have a
significant participation in the inter-area EOM (Mode 3) due to the active interaction between FCWG
and electromechanical dynamics, which may pose threats to the power system oscillatory stability
if not properly tackled. Moreover, two quasi-EOM are introduced (Mode 1 and Mode 2). Mode 1
can be regarded as a local quasi-EOM, since it is mainly dominated by SG2 and FCWG. Meanwhile,
Mode 2 is largely a FOM, whereas all 3 SGs participate actively, and hence can also be recognized as an
inter-area quasi-EOM.

(d)

(a) (b)

(c)

Figure 15. Strong interaction case: participation of power sources in EOMs when SG1 is replaced with
FCWG: (a) closed-loop Mode 1; (b) closed-loop Mode 2; (c) closed-loop Mode 3; (d) closed-loop Mode 4.
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Above all, the replacement of SG with FCWG should be carefully investigated. In the weak
interaction case, it normally leads to the missing of a local EOM, while in the strong interaction case,
new quasi-EOMs may be introduced. Such impact on the electromechanical dynamics may be critical
for oscillatory stability and hence should be carefully tackled.

5. Discussion

Based on all the analyses above, some key findings with respect to the FCWG participation in
electromechanical dynamics are summarized as below:

(1) FCWG dynamics might interact with both inter-area EOMs and local EOMs;
(2) The interaction can be either positive or negative, and may improve one EOM while deteriorate

the other;
(3) Different FOMs with respect to different FCWG controllers may interact with the EOMs;
(4) For the same FCWG controller, the integral parameter plays a key role in determining the

oscillation frequency of the relevant FOM and thus affects the participation of FCWG in the
electromechanical dynamics;

(5) The degree of interaction is normally influenced by the penetration level of FCWG and the
distance between the two affected modes. A strong interaction is more likely to occur at a high
penetration level of FCWG, with the frequency of the FOM within the oscillation frequency range
of the EOM (i.e., 0.2Hz–2.5Hz), especially when an FOM is close to an EOM;

(6) When a strong interaction occurs, if the FDCR of the EOM increases above 1, the ELCR of the EOM
would drop below 1, which indicates that this EOM is no longer dominated by electromechanical
dynamics, and thus is transformed into a quasi-EOM. The participation of FCWG may not only
affect the system electromechanical dynamics, but also influence the FCWG dynamics; thus proper
coordination of dynamic interaction is needed to avoid the negative effects;

(7) In the case of strong interaction, the integration of FCWG introduces a new quasi-EOM which
relates to both system electromechanical dynamics and FCWG dynamics;

(8) The replacement of an SG with the FCWG significantly affects the system electromechanical
dynamics. A local EOM may disappear in weak interaction cases, while new local quasi-EOMs
may be introduced in strong interaction cases.

6. Conclusions

Due to the decoupling nature of FCWG, its dynamics can be normally neglected when studying
the system electromechanical dynamics, whereas the exceptional case is a strong interaction between
wind power generation and the grid. In this paper, we extensively investigated the participation of
FCWG in the electromechanical dynamics of the power system and how it transforms the characteristics
of the system’s EOM. By using the mode identification criteria, the participation of FCWG in system
electromechanical dynamics is quantified. It is found that in most scenarios when the FOMs have an
oscillation frequency far from that of the EOMs, the participation of FCWG is quite limited, and the
main impact of FCWG on the EOM is via the power flow injection. However, when an FOM has
a similar frequency to that of an EOM, the participation of FCWG may become significantly active,
or even dominate the EOM. In this condition, a transition from the traditional electromechanical
dynamics to quasi-electromechanical dynamics was observed with the assistance of the proposed
FDCR and QELCR.
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Abstract: Wind power generation is one of the renewable energy generation methods which maintains
good momentum of development at present. However, its extremely intense intermittences and
uncertainties bring great challenges to wind power integration and the stable operation of wind
power grids. To achieve accurate prediction of wind power generation in China, a hybrid prediction
model based on the combination of Wavelet Decomposition (WD) and Long Short-Term Memory
neural network (LSTM) is constructed. Firstly, the nonstationary time series is decomposed into
multidimensional components by WD, which can effectively reduce the volatility of the original
time series and make them more stable and predictable. Then, the components of the original time
series after WD are used as input variables of LSTM to predict the national wind power generation.
Forty points were used, 80% as training samples and 20% as testing samples. The experimental results
show that the MAPE of WD-LSTM is 5.831, performing better than other models in predicting wind
power generation in China. In addition, the WD-LSTM model was used to predict the wind power
generation in China under different development trends in the next two years.

Keywords: wind power generation; hybrid prediction model; wavelet decomposition; long short-term
memory; scenario analysis

1. Introduction

Environmental pollution and serious shortage of energy have become the most pressing problems
in the world today. With the increasing environmental pollution and the depletion of fossil energy,
there is a strong demand for renewable energy generation [1]. Wind power generation is one of
the main renewable energy generation methods, showing a good momentum of continuous growth.
The Global Wind Energy Council (GWEC) emphasized in its 14th Global Wind Power Development
Report that the value wind energy, as a new form of energy, brings to power systems and markets
will contribute to the wind power integration and balance between supply and demand. Wind power
generation can not only effectively relieve the pressure of energy crisis but as a kind of clean energy
can also greatly reduce environmental pollution [2]. Wind power generation prediction is an effective
measure to improve the acceptance capacity of wind power and ensure the stable operation of power
grid. A high-precision wind power generation prediction model directly affects power quality, power
grid stability and the balance between power grid processing load and power generation, which is of
great practical significance for power grid security, stability and efficient operation [3]. Wind power
generation is affected by wind speed fluctuation on three time scales: ultra-short-term fluctuation (a few
minutes) influences the control of wind turbine to a certain extent, medium-term fluctuation (from a few
hours to a few days) has a certain impact on wind power grid connection and power grid dispatch and
long-term fluctuations (weeks or months) are related to maintenance plans for wind farms and power
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grids. Accurate long-term generation of wind power prediction is of great significance for improving
power grid planning, optimizing power dispatching, management development and enhancement of
power consumption. High-precision wind power generation prediction is also a key factor as well as
an effective way to realize power mutual assistance and power generation complementary dispatching
in the field of renewable energy [4].

To avoid the huge risks brought by randomness to wind power integration and improve the
efficiency and safety of power grid operation, many scholars have conducted extensive and intensive
studies on short-, medium- and long-term prediction of wind power generation. The research methods
used in the wind power prediction are mainly divided into physical prediction method [5], traditional
statistical prediction method [6], artificial intelligence prediction method [7,8] and mixed prediction
method [9,10]. Physical prediction methods are based on digital weather prediction (NWP, numerical
weather prediction), which uses many data from weather and environmental factors to calculate and
predict wind power generation [11]. Because the models are relatively complex and have a large
amount of calculation, they are generally used for medium- and long-term forecasting of wind power,
showing lower prediction accuracy. Based on the historical data of wind power generation to predict
the future power generation, the statistical prediction methods are relatively simple [12]. When there
are obstacles to obtaining a large amount of data, the statistical method is suitable for prediction.
Because the correlation of time series is fully considered, the accuracy of short-term prediction is
improved. Due to the intermittent and fluctuating nature of wind power data, it exhibits extremely
strong nonlinear characteristics. The introduction of artificial intelligence algorithms such as BP neural
network and Recurrent Neural Network (RNN) more accurately fits the nonlinear relationship [13–15].
The time series variation of wind power signal is extremely complex. Although the single model has
made a breakthrough in the prediction accuracy, it still cannot reach a satisfactory height. On this
basis, some scholars use the method of preprocessing the wind power time series to reduce the impact
of the non-stationarity of the original time series on the prediction accuracy. Wind power data are
preprocessed by filtering, decomposition and other methods, and then the processed time series is
input to the prediction model to obtain a more accurate prediction result [16].

Therefore, by eliminating the volatility of wind power data through preprocessing and speeding
up the model convergence, the prediction accuracy of the model can be effectively improved. In this
paper, macroeconomic indicators and related renewable energy generation are selected as input
indicators of the prediction model, while wind power generation in China is taken as output indicators,
which greatly reduces the randomness and uncertainty of input data and overcomes the limitation in
previous studies of single wind farms being used as prediction objects. Besides, Wavelet decomposition
is used to further reduce the volatility of input data and reflect data characteristics more clearly in data
preprocessing. Finally, to avoid the problems of gradient disappearance and gradient explosion caused
by the increase of time series length in the training process, the decomposed data are taken as the input
data of the LSTM model, and the long-term correlation between the input samples and the output
variables was fully learned, which improves the accuracy of the prediction model to some extent.

The contribution of this research consists mainly of two aspects: (1) establishing a national wind
power generation forecasting model based on normalization and WD-LSTM; and (2) taking national
macroeconomic indicators (gross domestic product, consumer price index, industrial added value and
total imports and exports) and related renewable energy power generation (total power generation
and hydropower generation) as input indicators, while the dimensionless data are realized through
normalization and the data dimension is optimized by wavelet decomposition, which improves the
convergence speed of the model and the prediction accuracy of the combined model.
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2. Related Works

2.1. Data Preprocessing Models

Previous research on wind power prediction mainly took wind speed, wind direction and humidity
as input variables of the model and preprocessed wind power signals by Empirical Mode Decomposition
(EMD) [17], Ensemble Empirical Mode Decomposition (EEMD) [18], Complete Ensemble Empirical
Mode Decomposition (CEEMD), Variational Mode Decomposition (VMD) [19] etc., which can more
clearly reflect the characteristics of wind power signals. EMD was proposed by NordneE. Huang et al.
to decompose signals into characteristic modes, which has the advantage that it does not use any defined
function as a basis, but adaptively generates a natural mode based on the analyzed signal state function.
With high signal-to-noise ratio and good time–frequency focus, it can be used to analyze nonlinear and
non-stationary signal sequences. In the research of Jyotirmayee Naik et al., EMD was used as a data
preprocessing method in short-term wind speed and wind power prediction. The original nonlinear
non-stationary wind speed and wind time series data were decomposed by EMD. The accuracy of
the proposed EMD-KRR and EMD-RVFL prediction models has been confirmed in experiments [20].
However, the Intrinsic Mode Function (IMF) after EMD will cause modal aliasing, while EEMD uses
Noise-Assisted Signal Processing (NASP) to solve this problem effectively. As a preprocessing method
for wind power prediction, the hybrid prediction model can improve the performance and prediction
accuracy, and show good results in wind power signal processing [21]. As a preprocessing method for
wind power time series in wind power prediction, the performance of the hybrid prediction model
is improved, the prediction accuracy is improved and it shows good results in wind power signal
processing. CEEMD has been further improved on the basis of EEMD, which makes up for the problem
of EEMD’s unclean noise removal in wind signal processing. To reduce the non-stationarity of the wind
power time series, Wang et al. used CEEMD to decompose the wind power signal. The decomposed
time series, as the input variables of the prediction model, can effectively improve the accuracy of
short-term wind power prediction [22]. VMD is a completely non-recursive signal decomposition
method based on the frequency domain, which to some extent overcomes many shortcomings of EMD.
Li et al. used VMD to decompose wind power data into long-term modes, wave modes and random
modes, which is more conducive for the prediction model to better understand the characteristics of
the three constituent modes [23]. With the improvement of wind power prediction on the stability of
sample data, data preprocessing has been improved on the original method.

2.2. Prediction Models

Through comparison, selection and improvement of the models, more accurate prediction models
are obtained. The modeling methods mainly include Autoregressive models (AR) [24,25], Time Series
Models [26,27], Support Vector Machine (SVM) [28,29], Artificial Neural Networks (ANN) [30,31], etc.
The initial application of these prediction models in the field of wind power prediction has improved
the accuracy of the prediction to a certain extent. However, these models do not fully consider the
long-term correlation between the input samples, so the ability to improve the accuracy of wind
power prediction models is also very limited. Li. et al. combined support vector machine (SVM)
and improved dragonfly algorithm to forecast short-term wind power for a hybrid prediction model,
and they found the proposed model suitable for short-term wind power prediction [32]. The SVM
method can theoretically find a global optimal prediction. However, the calculation cost of SVM
method will increase sharply, when the data volume is large. Under the circumstances, recursive
neural network is introduced to improve the accuracy of wind power forecasts. RNN is a deep
learning network, where there is a recursive link in the network structure. The relationship between
the samples before and after the learning can be considered, which is especially suitable for processing
time series signals. Aiming at the problems of gradient explosion and gradient disappearance, various
improved methods have been studied. The emergence of LSTM neural network effectively solved
the problems existing in previous models and achieved considerable results in the field of wind
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power prediction. At present, it is difficult for a single model to achieve good prediction effect, while
the fusion method combining multiple models can improve the accuracy of prediction model more
easily [33,34]. Erick Lopez et al. deeply integrated Long Short-Term Memory (LSTM) with Echo
State Network (ESN) in their study, proposing an architecture similar to ESN. LSTM-ESN is superior
to the WPPT model in all global indicators [35]. The wind power is predicted by the LSTM neural
network algorithm, while the Gaussian Mixed Model (GMM) is used to analyze the error distribution
characteristics of wind power short-term prediction. Both methods show better performance and
evaluation [36]. On this basis, some scholars have made simple improvements to the structure of
LSTM, reducing the influence of random components on prediction, effectively avoiding overfitting
and making it more suitable for prediction [37]. Jyotirmayee Naik et al. used VMD to decompose the
original nonlinear and non-stationary data and combined the VMD with 10 Multi-Kernel Regularized
Pseudo Inverse Neural Network (MKPPINN), which showed the superiority of this model in wind
power prediction [38]. Yu et al. proposed the Long Short-Term Memory and Enhanced Forget-Gate
network model (LSTM-EFG), which can be used for wind power prediction. Based on correlation, the
characteristic data of units within a certain distance are filtered, and the effect of wind power prediction
is optimized by cluster analysis [39]. Lin. et al. integrated IF with deep learning and proposed a
novel approach to perform power prediction using high-frequency SCADA data. Compared with the
conventional predictive model used for outlier detection, the proposed deep learning prediction model
shows superiority in wind power prediction [40].

3. Methodology

Wavelet Decomposition and Long Short-Term Memory neural network (WD-LSTM) is an intelligent
network combining the advantages of WD and LSTM neural network. To better represent the data
characteristics of the input index and facilitate the prediction of the neural network of LSTM, this paper
adopts the loose WD and LSTM neural network, in which the WD is used as the preprocessing method
of the prediction model of the LSTM neural network. According to the multi-fraction analysis function
of WD, the original data are decomposed into time series with different frequency components to
provide input vectors for LSTM neural network. SA1 is the approximate coefficient, while SD1, SD2 and
SD3 are the detail coefficients [41]. After the original data are decomposed by WD, the prediction is
made by using the LSTM neural network, and the prediction results are obtained.

WD-LSTM prediction model combines the advantages of WD and LSTM neural network.
This network can not only use the WD to analyze the subtle features of the original data but
also can combine the self-learning and fault-tolerance capabilities of the neural network, which can
improve both the accuracy of wind power generation prediction and the learning efficiency of the
network. The steps of WD-LSTM neural network to predict wind power are shown in Figure 1.
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Figure 1. Calculation process of the WD-LSTM model.
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3.1. Wavelet Decomposition

WD is an effective method to deal with non-stationary sequences. The multi-scale decomposition
capability of WD can decompose the original time series into different frequency sequences according
to different scales. WD is used to perform multi-scale analysis of various frequency components in the
original signal, and noise frequency is screened out to obtain high-quality signals that can represent
data characteristics, so as to improve the prediction accuracy of the model.

In the continuous wavelet transform, suppose ϕ(t) ∈ L2(R), ϕ∗(w) as the results of Fourier
transform ϕ(t), and ϕ∗(w) meet the conditions of Equation (1),

∫ +∞

−∞

∣∣∣ϕ∗(w)
∣∣∣2

|w| dw < ∞ (1)

Then, ϕ(t) can be considered as the parent wavelet function.
At the same time, ϕ(t) can be obtained by stretching and shifting,
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where a is the scaling variable and b is the translation variable.
For the square product function f (t) ∈ L2(R), the continuous wavelet transform is,
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In Equation (3), a, b and t are continuous variables, while a is the expansion variable and b is the
translation variable.

Continuous wavelets are usually sampled into discrete wavelets in practical applications, in order
to facilitate calculation and analysis. Wavelet discretization is mainly for scaling variables a and shifting
variables b. Then, the discrete wavelet function is Equation (4),
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In 1998, Mallet proposed wavelet multi-resolution analysis to perform J scale decomposition on
the original sequence s(t). In the first step, the original signal was first decomposed into low-frequency
components a1 and high-frequency components d1. In the second step of decomposition, the high
frequency part is retained and the low frequency component a1 is further decomposed into a low
frequency component a2 and a high frequency component d2. The low-frequency components
obtained at each step are decomposed in turn to finally obtain the low-frequency components aJ

and high-frequency components dJ in the J scale. Then, the original sequence can be expressed as
Equation (5),

s(t) = aJ(t) +
∑J

r=1
dr(t) (5)

where J is the decomposition scale, aJ(t) is the component approaching the original time series
(low-frequency component) and dr(t)(r = 1, . . . , J) is the detail signal component (high-frequency
component).

The more important step in WD is to choose the wavelet function and the scale of WD to participate
in the algorithm. The number of wavelet decompositions is small, and the approximate signal usually
contains random interference signals, which cannot effectively reflect the change trend of the original
wind speed sequence. If the number of decompositions is too large, there will be greater error
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accumulation and the training time will be longer. In this paper, Daubechies (DB) wavelet is used to
decompose the original data, taking J = 3.

3.2. Basic Principles of LSTM

The traditional neural network model lacks the memory function of historical information, and
the cyclic neural network (RNN) can apply the output information of previous neurons to the current
task. However, conventional RNN has the problem of gradient disappearance or gradient explosion; in
other words, when the time interval is large, the past learning results will disappear. To address these
shortcomings, Hochreiter proposed the Long Short-Term Memory Neural Network (LSTM) in 1997.
LSTM is a type of Recurrent Neural Network that can learn long-term dependent information. It not
only has the memory function of historical information, but also overcomes the long-term dependence
of the model and can selectively forget the invalid information and update the effective information,
thus solving the problem of gradient dispersion to some extent. As shown in Figure 2, the LSTM
network is composed of an input layer, an output layer and several recursive hiding layers between
them. A recursive hiding layer is composed of multiple memory modules, each of which contains one
or more self-connected memory units with three gates controlling the information flow: the input gate,
the forgetting gate and the output gate. The state of LSTM cell is calculated as follows:

it = σ(Wi × [ht−1, xt] + bi) (6)

ft = σ(Wf × [ht−1, xt] + b f ) (7)

ot = σ(Wo × [ht−1, xt] + bo) (8)

c̃t = tanh(Wc × [ht−1, xt] + bc) (9)

ct = ft × ct−1 + it × c̃t (10)

In Equations (6)–(8), it, ft and ot are, respectively, input gate, forgetting gate and output gate.
In Equation (10), ct is a new candidate for cell state. LSTM cells act as state information, updating the
ct of the old cell state ct−1 to the new cell state. Wi, Wf, Wo and Wc are, respectively, the weights of
input, forgetting, output and current cell state. bi, bf, bo and bc are, respectively, the deviations of
input, forgetting, output and current cell state.

 ，（
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Figure 2. Schematic diagram of neurons.
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4. Empirical Study

4.1. Data Description and Preprocessing

This paper selects four macroeconomic indicators of Gross Domestic Product (GDP), Consumer
Price Index (CPI), Industrial Added Value (IAV) and Total Imports and Exports (TIE), as well as two
related power generation indicators of National Total Power Generation (NTPG) and Hydropower
Generation (HG), as input variables. To accurately evaluate the accuracy of wind power generation
prediction model, this paper selects macroeconomic indicators and related power generation indicators
from the National Bureau of Statistics of China. Macroeconomic indicators and related power generation
data from the third quarter of 2009 to the second quarter of 2019 are selected, with a total of 40 data
points. The original data samples are divided into two datasets: 80% of the original data (32 data
points) are used as training samples and the remaining 20% (8 data points) are used as test samples to
evaluate the predictive performance of the model.

Since the macroeconomic indicators and related power generation indicators have different
dimensions and dimensional units, it is necessary to carry out data standardization processing for the
original time series in order to eliminate the dimensional impact between indicators. According to
Equation (11), each group of data is normalized into the interval 0–1 to solve the comparability between
indicators, reduce the influence of outliers and noise and speed up the training speed of the model.

x∗i =
xi − xmin

xmax − xmin
(11)

The Matrix Laboratory (MATLAB) wavelet toolbox is used to decompose the normalized time
series s(t); then,

s(t) = aJ(t) +
∑3

r=1
dr(t) (12)

where J is the decomposition scale, aJ(t) is the low-frequency component close to the original sequence,
dr(t) is the detail signal component (high-frequency component) of the r-th decomposition and t is the
discrete time.

4.2. Model Parameters

In this paper, the time series of multiple macroeconomic indicators and related power generation
indicators after WD are taken as the input variables LSTM neural network, and the wind power
generation of the whole country is taken as the output variable. The LSTM neural network contains
four parameters that affect the prediction accuracy of the model, including the time step of each layer
in the LSTM neural network, the number of hidden units in each layer in the model and the training
times. In the process of training the model, the other parameters are the same each time, but the single
parameter is different, so as to find the best prediction model. Each parameter setting in the model is
shown in Table 1.

Table 1. Parameters for the LSTM network.

Dataset Time Steps Hidden Layers Batch Size Lr Epoch

WD-LSTM 2 64 3 0.001 15,000

The LSTM model is a deep learning neural network, which has three layers: an input layer,
a hidden layer and an output layer. The input is composed of six input variables: Gross Domestic
Product (GDP), Consumer Price Index (CPI), Industrial Added Value (IAV), Total Imports and Exports
(TIE), National Total Power Generation (NTPG) and Hydropower Generation (HG). The hidden layer
consists of two LSTM units with time steps of 2, and each LSTM unit contains 64 cells. The output layer
contains an output variable of wind power generation. The structure of the LSTM model is shown in
Figure 3.
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Figure 3. The structure of LSTM neural network.

4.3. Performance Indicators

To further verify the effectiveness and performance of the prediction method proposed for wind
power prediction, three error analysis criteria are introduced to evaluate the proposed model, as given
in Equations (13)–(15) (where y_reali is the actual values and y_predi is predicted values). The mean
absolute error (MAE), root mean square error (RMSE) and mean absolute percentage error (MAPE) are
used to evaluate the performance of each method.

MAE =
1
N

N∑

i=1

∣∣∣y_reali − y_predi

∣∣∣ (13)

MAPE =
1
N

N∑

i=1

∣∣∣∣∣
y_reali − y_predi

y_reali

∣∣∣∣∣ ∗ 100 (14)

RMSE =

√∑N
i=1 (y_reali − y_predi)

2

N
(15)

5. Results and Analysis

5.1. Model Accuracy

To evaluate the performance of WD-LSTM model in wind power prediction more effectively,
other models are preliminarily selected for comparison in the paper. The physical or statistical
models commonly used to predict by time series are selected. In addition, the models commonly
used in machine learning and deep learning are selected. Bayesian Model Averaging and Ensemble
Learning (BMA-EL) proposed by Wang et al. can accurately predict wind power generation under
different meteorological conditions. Chen et al. built Multi-Resolution Multi-Learner Ensemble and
Adaptive Model Selection (MRMLE-AMS), which presented high accuracy in wind power prediction
by time series. Li et al. proposed the Support Vector Machine and Improved Dragonfly Algorithm
model (SVR-IDA). In this paper, these models are selected as the comparison object for experimental
verification. The results are shown in Table 2.
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Table 2. Comparison of forecasting errors using different models.

Algorithms BMA-EL MRMLE-AMS SVR-IDA WD-LSTM

MAPE 22.328 20.624 15.679 5.831

As shown in Table 2, among the four models, the MAPE of WD-LSTM model is the lowest,
reaching 5.831. The MAPE of SVR-IDA model comes in second at 15.679, more than 10. The errors
of BMA-EL and MRMLE-AMS are relatively high, exceeding 20. In this experiment, the accuracy of
machine learning and deep learning prediction models is generally better than that of physical or
statistical prediction models. The presumed reason may be that machine learning and deep learning
predictive models can fully learn the correlation between input and output variables, similar to human
neural networks. In particular, the deep learning model can more fully learn the variation trend of
data in time series, hence showing a higher prediction accuracy.

Based on previous comparisons, the prediction model proposed in this paper, which combines
wavelet decomposition with long short-term memory neural network, has shown high prediction
accuracy when predicting wind power generation in China. To effectively evaluate the performance of
WD-LSTM in wind power prediction, traditional prediction methods of machine learning and deep
learning are used in this paper as comparative experiments. Based on the same input time series,
the learning situation of each model is tested, and its errors are compared and analyzed. During the
experiment, Support Vector Regression (SVR), Gate Recurrent Unit (GRU), Wavelet Decomposition and
Support Vector Regression (WD-SVR) and Wavelet Decomposition and Gated Recurrent Unit (WD-GRU)
are used for time series prediction as comparative tests. In addition, the proportion of training set
and test set is the same as that of WD-LSTM model and five comparative experiments are conducted.
To objectively evaluate and describe the performance of the six prediction models, the prediction error
values of each model are calculated according to the above formulas. The experimental results of MAE,
MAPE and RMSE of the raw test set are shown in Table 3.

Table 3. Comparison of prediction performances using machine learning and deep learning models.

Algorithms MAE MAPE RMSE
Computing Time

(Minutes)

SVR 137.888 15.351 165.175 0.05
GRU 127.863 15.048 177.223 32
LSTM 101.511 13.715 169.644 32

WD-SVR 206.831 20.153 212.016 12.05
WD-GRU 144.321 18.034 226.302 44
WD-LSTM 49.896 5.831 63.991 44

Among all the experimental models, WD-SVR has the largest error, and its MAE, MAPE and
RMSE are 206.831, 20.153 and 212.016, respectively. The MAE, MAPE and RMSE of WD-GRU are
144.321, 18.034 and 226.302, respectively. The MAPE of the three models of SVR, GRU and LSTM are
similar, 15.351, 15.048 and 13.715, respectively. The error of WD-LSTM model is the smallest, and
its MAPE is 5.831, which is significantly lower than the other five models. It can be seen from the
data in Table 3 that WD-LSTM has a high accuracy in predicting wind power generation and is more
effective than the traditional models and single models. Furthermore, Table 3 shows computing time
cost of WD-LSTM and five other comparison models. In the machine learning models, the prediction
using SVR model took 0.05 min while WD-LSTM took 12.05 min. In the deep learning models, GRU
and LSTM cost the same time, 32 min, while WD-GRU and WD-LSTM cost the same time, 44 min.
In general, compared with machine learning models, deep learning models take a longer time to
predicate using time series. However, as for deep learning models, since the data samples are relatively
small, there is no significant difference in the time spent on prediction.
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Figure 4 shows the prediction results of WD-LSTM neural network and five other comparison
models, which directly reflects the degree of fitting between the predicted values of the six models
and the real values. Meanwhile, Figure 5 shows the predicted and original value based on WD-LSTM.
As shown in Figure 4, the prediction curve of Support Vector Regression (SVR) is relatively stable and it
is difficult to predict the dynamic change of data. When the data present a large fluctuation, the model
presents a large error value. Gated Recurrent Unit (GRU) is a variant or simplification of the Long
Short-Term Memory network (LSTM), which includes reset gate and update gate. From the forecast
results, it can reflect the fluctuation of wind power generation, but the variation trend in a single
quarter is opposite to the real value, leading to higher error value. The results show that the input
indexes such as Gross Domestic Product (GDP), Consumer Price Index (CPI), Industrial Added Value
(IAV), Total Imports and Exports (TIE), National Total Power Generation (NTPG) and Hydropower
Generation (HG) can be used as the input data of wind power generation. WD-LSTM can accurately
predict the fluctuation of wind power generation, and the error value is lower than other models.

 

Figure 4. Forecasting performance of the WD-LSTM model and five other models.

 
Figure 5. Forecasting results of wind power generation based on WD-LSTM model.
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On the basis of the above research, the paper further studies the influence of different types of input
indicators on the accuracy of wind power generation prediction. The six input indicators are divided
into two categories: (1) macroeconomic indicators, including GDP, CPI, IAV and TIE; and (2) power
generation indicators, including NTPG and HG. The two kinds of indicators are, respectively, taken as
input variables, and the WD-LSTM model is used to predict wind power generation on the condition
that the model parameters are kept consistent. When macroeconomic indicators are taken as input
variables, the experimental result of MAPE is 19.732. When the related power generation index is used
as the input variables, the MAPE is 16.298. The results show that wind power forecast achieves the
best prediction accuracy when six indicators are used as input variables.

5.2. Sensitivity Analysis

Sensitivity analysis is a common method to study and analyze the effect of parameter changes on
system behavior. The sensitivity of variables to test parameters can be calculated as follows:

st =

∣∣∣∣∣∣∣

(
Y′t −Yt

)
/Yt

(
X′t −Xt

)
/Xt

∣∣∣∣∣∣∣
(16)

where St is the sensitivity of variables to test parameters at time t, setting the third quarter of 2009 as
t = 1; Yt and Y′t are the value of output variable before and after change at time t; and Xt and X′t are
the value of input variables before and after change at time t. The maximum sensitivity of wind power
generation during 2006–2017 is:

s = max(St), 1 ≤ t ≤ 40 (17)

The sensitivity of the wind power generation variable on the six main input variable in the
proposed WD-LSTM model is studied and analyzed by changing the corresponding input variables by
−5%, −3%, −1%, 1%, 3% and 5%, and the maximum sensitivity of wind power generation from the
third quarter of 2009 to the second quarter of 2019 with respect to the six input variables change is
shown in Table 4.

Table 4. The maximum sensitivity of wind power generation with respect to the six variables.

Input Variables
Change Rate

−5% −3% −1% 1% 3% 5%

Gross Domestic Product (GDP) 0.09635 0.09475 0.09520 0.09520 0.09455 0.09635
Consumer Price Index (CPI) 0.00615 0.00605 0.00675 0.00675 0.00595 0.00615

Industrial Value Added (IVA) 0.07087 0.06913 0.07000 0.07000 0.06913 0.07087
Total Imports and Exports (TIE) 0.04830 0.04885 0.04715 0.04715 0.04885 0.04830
Total Power Generation (TPG) 0.05910 0.06875 0.06045 0.06045 0.06370 0.05910

Hydroelectricity Generation (HG) 0.00523 0.00467 0.00480 0.00480 0.00467 0.00523

It is found that the maximum sensitivity of wind power generation in the proposed model with
respect to the six input variables from the third quarter of 2009 to the second quarter of 2019 is
less than 0.10, which means the maximum sensitivity of wind power generation in the proposed
WD-LSTM model is less sensitive. Therefore, the proposed model is stable and does not cause abnormal
fluctuations in the output variable data due to the small changes of input variables.

5.3. Scenarios Setting

Different scenarios for forecasting are set in this paper, in which different scenarios match
different input data to explore the changing trend of national wind power generation under different
development situations and reduce the uncertainty of forecasting. Taking historical data rates and
national economic, energy and social macro-development plans into account to make more realistic
predictions and analyze the future trends of each characteristic value, this paper sets the following
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three scenarios to predict the wind power generation in China under different development trends in
the next two years. Scenario 1 is a low-growth scenario, which keeps the country’s recent development
trend sustainable and calculates the minimum growth rate (non-negative) of macroeconomic indicators
and related power generation indicators based on the growth rate of historical data to predict the
national wind power generation. Scenario 2 is the base scenario, in which the development trend
of each indicator is predicted more accurately and in line with the actual development trend from
the fourth quarter of 2019 to the fourth quarter of 2022, and the average year-on-year growth rate
of the data from the third quarter of 2009 to the second quarter of 2019 is calculated. Scenario 3 is a
high-growth scenario, which maintains a high growth rate according to the historical development
trend. According to the data from the third quarter of 2009 to the second quarter of 2019, the average
year-on-year growth rate of each quarter is calculated and increased by 1.2 times on the basis of the
average growth rate of each quarter. The specific growth rates under each scenario are shown in
Table 5.

Table 5. Growth rates in different scenarios.

Different
Scenarios

Gross Domestic
Product
(GDP)

Consumer
Price Index

(CPI)

Industrial
Value Added

(IVA)

Total Imports
and Exports

(TIE)

Total Power
Generation

(TPG)

Hydroelectricity
Generation

(HG)

Scenario 1 2.622 0.097 0.774 0.053 0.306 5.739
Scenario 2 3.146 0.101 2.645 2.345 1.603 6.455
Scenario 3 3.775 0.122 3.174 2.815 1.924 7.746

5.4. Future Prediction Results

By comparing the error values of each single model and the hybrid model in the prediction of
wind power generation across the country through testing, we obtained that the prediction accuracy
of WD-LSTM is relatively high, and predicted the wind power generation of China in the next two
years by this model (from the fourth quarter of 2019 to the fourth quarter of 2021). The index data of
different growth trends are substituted into WD-LSTM for the prediction of wind power generation in
China based on the above scenario settings, and the prediction results under three different scenarios
are compared, as shown in Figure 6. Wind power generation is projected to grow at a slower pace in
Scenario 1, from 66.3 billion kWh in the third quarter of 2019 to 81.6 billion kWh in the fourth quarter
of 2021, an increase of 15.3 billion kWh over nine quarters. Wind power generation forecasting show
an increase in Scenario 2 from 66.3 billion kWh in the third quarter of 2019 to 95.6 billion kWh in the
fourth quarter of 2021, an increase of 29.4 billion kWh in nine quarters. Scenario 3 is of high growth,
from 66.3 billion kWh in the third quarter of 2019 to 105.6 billion kWh in the fourth quarter of 2021,
an increase of 39.4 billion kWh in nine quarters. In summary, the forecast results of the three scenarios
show that the total national wind power output will fluctuate between 283.1 and 300.4 billion kWh in
2020, and the total national wind power output will be between 303.1 and 363.9 billion kWh in 2021,
floating from time to time.

From the overall trend, the country’s wind power generation will continue to increase. Under the
three scenarios, the national wind power generation will decline slightly in the first quarter of 2020,
and the growth rate will peak in the fourth quarter of 2021. In 2017, the State Grid pointed out at a
press conference that, by 2020, the problem of new energy consumption will be completely solved,
and the rate of abandoned wind and light will be controlled within 5%. According to the 13th Five-Year
Plan for Wind Power Development, by 2020, non-fossil energy will account for 15% of primary energy
consumption, and the country’s annual wind power generation will need to reach 42 billion kWh
and 6% of the total power generation. The sustained growth of wind power generation in China
in the future may be affected by the following factors: (1) The sustained and steady development
of China’s economy. At the present stage, China’s economic development model is changing from
high-speed development to high-quality development. The steady high-quality economic development
has laid a solid foundation for the development of the wind power industry in China, thus realizing
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the sustainable growth of the country’s wind power generation. (2) Environmental protection brings
development opportunities for renewable energy such as wind energy. From the overall perspectives,
the development of renewable energy is a common goal of mankind and an important support for the
global response to future climate, environmental and economic changes. The development of wind
power as an energy source can become more affordable than traditional coal power, and the parity
of wind power will release new market space, which is also an important reason for the continuous
growth of wind power generation across the country.

 

From the overall trend, the country’s wind power generation will continue to increase. Under 

energy consumption, and the country’s annual wind power generation will need to reach 42 bi

China’s economy. At the present stage, China’s econom
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Figure 6. Predictions for wind power generation in different scenarios.

Wind power in China shows a trend of rapid development. Wind curtailment and power limiting
has become the focus of society and a major problem that needs to be solved urgently in power grid
planning and dispatching operation. In 2017, the National Energy Administration’s Guidance on the
Implementation of the 13th Five-Year Plan for the Development of Renewable Energy was released.
At the same time, the target of consumption and utilization is also proposed to effectively solve the
problem of wind power curtailment by 2020. From 2011 to 2016, the wind curtailment rate showed a
trend of first decreasing and then increasing, reaching the highest value of 17.1% in 2016. According to
the Clean Energy Consumption Action Plan (2018–2020) jointly issued by the National Development
and Reform Commission and the National Energy Administration, the wind curtailment rate will be
kept at a reasonable level (aiming at around 5%) by 2020. Based on previous predictions, the total
national wind power output will fluctuate between 283.1 and 300.4 billion kWh in 2020. Consequently,
wind curtailment power will keep between 14.1 and 15.0 billion kWh in 2020.

6. Conclusions

As a kind of renewable energy, wind power generation plays a crucial role in China’s electric
energy production. Therefore, accurate prediction of wind power generation is helpful to optimize the
power grid dispatching, reduce the reserve capacity of the system and reduce the operating cost of the
power system. In this paper, a hybrid LSTM model for predicting wind power generation in China
is constructed based on six index factors: gross domestic product, consumer price index, industrial
added value, total imports and exports, total power generation and hydropower generation. Based on
wavelet decomposition and long short-term memory neural network methods, a hybrid WD-LSTM
model for predicting national wind power generation is constructed. The following conclusions can be
reached through experiments:
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(1) Wind power generation is related to GDP, CPI, IAV, TIE, TPG and HG. The selection of these six
input indexes can, to a certain extent, predict the wind power generation of the country.

(2) The time series of macroeconomic indicators and related power generation indicators are
decomposed into low-frequency components and high-frequency components through wavelet
decomposition, which increases the data dimension of the input variables of the prediction model
to some extent. The time series data of macroeconomic and related power generation indexes
of different frequencies are used as input variables to effectively improve the accuracy of the
prediction model.

(3) In this paper, the WD-LSTM hybrid prediction model is selected to predict the wind power
generation in China. The experimental results show that the MAPE of the mixed prediction
model is 5.831. Compared with machine learning and a single prediction model, the model can
predict wind power generation more accurately across the country.

(4) In addition, the prediction of national wind power generation in this paper still needs to be
improved and deepened. Due to the difficulty in obtaining some index data and the inconsistency
of some data in scale, the paper has the limitation in the selection of input indices. The limitations
of the samples themselves will lead to a certain range of errors in the process of data processing
and prediction. Therefore, other possible influencing factors can be considered as input variables.

(5) The next step of the study will consider whether the time series with different scales can be used
as the input index of the same model. At the same time, Information Gain (IG) will also be used to
sort and filter input indicators by correlation, and then make prediction using WD-LSTM model.
The application of the proposed model in primary energy consumption or renewable energy
consumption will also be considered.
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Abstract: To improve the accuracy of ultra-short-term wind power prediction, this paper proposed
a model using modified long short-term memory (LSTM) to predict ultra-short-term wind power.
Because the forget gate of standard LSTM cannot reflect the correction effect of prediction errors on
model prediction in ultra-short-term, this paper develops the error following forget gate (EFFG)-based
LSTM model for ultra-short-term wind power prediction. The proposed EFFG-based LSTM model
updates the output of the forget gate using the difference between the predicted value and the actual
value, thereby reducing the impact of the prediction error at the previous moment on the prediction
accuracy of wind power at this time, and improving the rolling prediction accuracy of wind power.
A case study is performed using historical wind power data and numerical prediction meteorological
data of an actual wind farm. Study results indicate that the root mean square error of the wind power
prediction model based on EFFG-based LSTM is less than 3%, while the accuracy rate and qualified
rate are more than 90%. The EFFG-based LSTM model provides better performance than the support
vector machine (SVM) and standard LSTM model.

Keywords: error following forget gate-based long short-term memory; long short-term memory;
ultra-short-term prediction; wind power

1. Introduction

Renewable energy is increasingly being discussed to phase out fossil fuel power generation to
address changes in conditions, such as the new climate system and serious air pollution. Wind power,
as one of major source of renewable energies, varies through time and space due to various factors,
such as wind speed, wind direction, and temperature. When large-scale wind power is integrated into
the grid, fluctuations of wind power bring challenges to the system operations of power systems [1].
Accurate wind power prediction enables secure and economic operation, as well as better utilization of
wind power [2]. According to the forecast time scale, wind power forecast is divided into ultra-short-term
forecast within 4 h ahead, short term forecast within 3 days, medium-term forecast ranges from 1 week
to 1 month, and long-term forecast within 1 year [3]. Ultra-short-term wind power prediction refers to
forecast wind power in the next 15 min to 4 h. The prediction interval is 15 min, and the predicted
wind power is rolled in next time [4]. Existing wind power forecasting methods can be divided
into two categories: physical methods and data-driven methods (statistical and artificial intelligence
methods) [5].

The physical models first compute the wind speed at the hub height of wind turbines based on
terrain, wind farm layout, numerical weather prediction (NWP) data, and environmental characteristics
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(topography, land use, etc.). The physical models then calculate the wind power according to the
wind speed power curve or meteorological power parameter model. This method can better reflect
the physical essence of meteorological factors. References [6,7] used weather (wind, temperature,
lightning density, humidity, barometric pressure, etc.) data to predict wind power. However, physical
models rely heavily on meteorological data. However, the meteorological data typically provided
once or twice a day, the physical model has to wait for hours between two iterations, which limit their
application for ultra-short term forecasting.

To solve the problems of the physical model, researchers have shifted to a data-driven model that
can deal with a large number of multivariate data. Data-driven methods usually use historical data of
wind power and weather for prediction. The auto-regression integrated moving average (ARIMA),
artificial neural network (ANN) method, and support vector machine (SVM) method are commonly
used at present [8,9]. Some researchers decompose the wind power and then establish a prediction
method based on the time series model [10,11]. However, the decomposition error will be generated
by decomposing the wind speed and power sequence. This error will be transferred to the prediction
model, which will reduce the prediction accuracy. Reference [12] used wind speed, wind direction,
air temperature, and air pressure as input variables, and established an SVM model for short-term wind
power forecasting. Its prediction accuracy is better than the artificial neural network. Wind power
has time series characteristics. However, the wind power at the predicted time is related, not only to
the state at the last moment, but also to the past moments. The existing time series models (such as
ARMA) and commonly used neural networks (ANN, SVM, etc.) cannot learn the correlation between
wind power and wind speed, wind direction, etc. Therefore, these prediction models are difficult to
further improve the prediction accuracy.

To solve the problems of the traditional neural network model, researchers shifted to the based
on deep learning model which can deal with time series data. Long short-term memory (LSTM) is
a neural network based on deep learning. Compared with the traditional neural network, LSTM has
obvious advantages in dealing with a large number of samples and nonlinear data. LSTM has recently
received researchers’ attention and has been used in the field of power system prediction [13,14].
Some researchers have applied it to the field of wind power prediction [15–17]. For example, there are
prediction methods based on traditional LSTM or LSTM combined with optimization algorithm [18,19].
It shows that the prediction accuracy of LSTM is better than ANN, support vector regression (SVR),
back propagation (BP), and Bayesian network. Because the LSTM network has short-term memory
capability, it can model the influence of the wind power at the previous time on the wind power at the
current time. Reference [20] used empirical mode decomposition and vibration mode decomposition to
decompose the wind power sequence, then applied the LSTM model to predict wind power. However,
the method using multiple decompositions will increase the prediction error. Because decomposition
of the original sequence will produce decomposition errors, these errors will be transferred to the
prediction model. Reference [21] used principal component analysis to select input variables and
established a short-term wind power forecasting model based on the LSTM network. The input
data is NWP data without considering the impact of historical data on the prediction moment [22].
Most of these methods do not improve LSTM for wind power prediction. Because the wind power and
meteorological data are dynamic time series with large randomness.

To solve the above problems of the traditional LSTM model for wind power prediction, this paper
proposes a modified LSTM, called error following forget gate (EFFG)-based LSTM, which updates
the output of forget gate using the difference between the predicted value and the actual value.
The input data of this paper is the integrated data of NWP and historical wind power. First, Spearman
rank correlation analysis is performed between wind power and NWPs to select influential weather
factors on wind power. Second, Spearman rank correlation analysis is performed among historical
wind powers to determine the timestep of the prediction network. Finally, the EFFG-based LSTM
is developed for ultra-short-term wind power prediction. Therefore, this paper provides a kind of
one-step ahead forecasting on a 15-min resolution.
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2. Correlation Analysis to Determine Input Variables for LSTM

There are many factors affecting wind power. Redundant information will be introduced if all
meteorological factors are used as input variables. Nevertheless, few factors will result in insufficient
information. Wind power has time series characteristics. The wind power at the present moment is
related to historical wind power. The time step in the LSTM model determines how long historical
wind power data needs to be used as input variables. If the time step is too small, it will cause a lack of
prediction information. Otherwise, it will decrease model performance.

Because the probabilistic distribution of NWP data and wind power data is not a normal
distribution, Spearman rank correlation coefficient analysis is used to select meteorological factors and
determine the time step. The Spearman correlation coefficient is calculated as follows

ρs = 1−
6
∑n

i=1 d2
i

n(n2 − 1)
(1)

di = rg(Xi) − rg(Yi)

where rg(Xi) and rg(Yi) are the ranks of each sequence of X and Y, and n is the number of samples.
Xi and Yi are two sequences of wind power.

Figure 1 shows that the correlation analysis between wind power and NWP data and the correlation
analysis among wind power time series are carried out using the Spearman rank coefficient to determine
the input variables of LSTM. A time series, including real wind power (RWP) at the historical time and
NWP at forecast time is reconstructed, which is used as the input of each step of prediction for wind
power prediction.
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Figure 1. Correlation analysis to determine input variables for long short-term memory (LSTM).

3. Error Following Forget Gate-Based LSTM

LSTM has three gates: input gate, output gate, and forget gate, to protect and control the state of
LSTM cell [23]. The inputs of the LSTM cell at time t include the inputs variables at time t, the outputs
at time t−1, and the state variable at time t−1. The outputs of the LSTM cell include the output value at
time t and LSTM cell state at time t. Figure 2 shows the LSTM model and its internal structure.

The forget gate update of traditional LSTM uses the output of the previous moment and the input
of the prediction moment. According to the output at time t−1 and the input at time t, the forget gate f

(t) determines how much cell information is saved to t time cell state. The mathematical expression of
the forget gate is:

ft = S
(
wf·[ht−1, xt] + bf

)
(2)

where S (·) is the sigmoid activation function; Wf is the weight matrix of the forgetting gate, and bf is
the bias of the forgetting gate.
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Figure 2. LSTM timing prediction model and its internal structure.

The ultra-short-term wind power prediction is to predict the wind power in the next 15 min.
Therefore, when the prediction at time t is carried out, the actual power value at the t time and the
predicted value are obtained from the model output. The error between the actual value and the
predicted value determines how much historical information is forgotten. From Equation (2), it can be
seen that the traditional LSTM forgetting gate cannot update with the error between the actual value
and the predicted value. The forget gate of traditional LSTM cannot take into account the adjustment
effect of the deviation between the predicted value and the actual value at the next predicted moment.

In the ultra-short-term prediction of wind power, the deviation between the actual and the
predicted value at the previous moment cannot only reflect the prediction ability of the model but also
reflect the positive effect of historical information on the output. If the deviation is large, the influence
of the previous moment should have little impact on the prediction moment. The deviation between
the predicted value and the actual value at the previous moment is proposed in this paper to update
the input for the forget gate. Therefore, the newly proposed forget gate is called error following the
forget gate. The calculation formula of the new forget gate is as follows

ft = S(Wfk + bf) (3)

where k = h′t−1 − ht−1, h′(t−1) is the actual value at time t−1; h(t−1) is the predicted value at time t−1.
Wf and bf are the weight matrix and bias of the forget gate. The weight Wf and bias bf will be optimized
by the optimization algorithm in the model training stage, such as Adam.

In comparison with the traditional LSTM network, the forget gate input is enhanced to take into
account of the deviation between the predicted value and the actual value at the previous moment.
The input gate and output gate remain the same as the ones in traditional LSTM. Figure 3 shows the
new structure of the EFFG-based LSTM network at time t.
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Figure 3. Error following forget gate (EFFG)-based LSTM network internal structure.

The update formula of the input gate is as Formula (4).

it = s(wi·[ht−1, xt] + bi) (4)
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where S(·) is the sigmoid activation function; Wi is the weight matrix of the input gate, and bi is the
offset term of the input gate.

The update formula of the current time memory is as Formula (5)

c̃t = T(wc·[ht−1, xt] + bc) (5)

where T(·) is the tanh activation function; Wc is the weight matrix of the input gate, and bc is the offset
term of the input gate.

The update formula of the new cell state is as Formula (6).

ct = ft·ct + it ·̃ct (6)

The update formula of the output gate is as Formula (7).

ot = s(wo·[ht−1, xt] + bo) (7)

where S(·) is the sigmoid activation function; Wo is the weight matrix of the input gate, and bo is the
offset term of the input gate.

The output of the EFFG-based LSTM network is shown in Formula (8).

ht = ot·tanh(ct) (8)

4. Ultra-Short-Term Wind Power Prediction Model Based on EFFG-Based LSTM

The prediction model of wind power based on EFFG-based LSTM is shown in Figure 4. Assume a
wind farm, according to Spearman correlation analysis, the RWP takes power at the first three moments
of the predicted moment, and NWP takes the wind speed and direction at the prediction moment.
The deviation between the predicted value and the actual value at the last moment is used as the input
of EFFG-based LSTM model to update the forget gate.
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Figure 4. The dynamic structure of wind power forecasting model based on EFFG-based LSTM.

The structure of EFFG-based LSTM is composed of one input layer, one hidden layer, and one
output layer. The static network structure is shown in Figure 5.
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Figure 5. The static structure of wind power prediction model based on EFFG-based LSTM.

Input layer: X is the historical wind power of the past time and the wind speed and direction at
the predicted time. The input layer normalizes the input data according to Equation (9).

X′ =
x− (xmax − xmin)/2
(xmax − xmin)/2

(9)

where xmax and xmin are the maximum and minimum values of the variable, respectively.
Hidden layer: The hidden layer is the EFFG-based LSTM network. One hidden layer can ensure

the faster prediction calculation speed and avoid overfitting phenomenon caused by too many
hidden layers.

Output layer: f (·) is the activation function of the output layer. Y is the predicted value of
wind power at the next time. The output layer weights and biases the output of the hidden layer,
and outputs one-dimensional predicted wind power. The inverse normalization is calculated according
to Equation (10). Finally, the predicted value of wind power is obtained.

Y =
1
2
[y′(ymax − ymin) + (ymax + ymin)] (10)

5. Case Study

5.1. Data Description and Test Design

The data (NWP and historical real wind power) is from a practical wind farm in northwest China.
The period is from January to December 2017. The sampling time interval of wind power is 15 min.
the time interval of NWP data is 15 min. NWP data includes wind speed and direction of 170 m,
100 m, and 30 m, temperature, pressure, humidity. The NWP dada is every 15 min as a rapid refresh
model. The model is a method of weather forecast based on the mathematical model of atmospheric
movement and using the current weather conditions as input data. The forecast is computed for the
next 15 min time step.

Firstly, the correlation coefficient between the wind power and NWP features, RWP historical
moments is calculated by using the Spearman correlation coefficient, and then the input variables of
the prediction model are selected.

It can be seen from Table 1 that the correlation coefficient average value of the wind speed and
wind direction at 100 m is 0.57 and 0.52. The correlation coefficient average value of the wind speed
at 30 m is 0.51. The two variables are strongly correlated when the correlation coefficient is greater
than 0.5 [24]. When forecasting the wind power at time t, the wind speed and wind direction at 100 m,
wind speed 30 m at time t are put into the newly constructed input time series.
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Table 1. Spearman correlation coefficient between wind power and numerical weather prediction
(NWP) features. RWP = real wind power.

NWPs

RWP January to
March

April to
June

July to
September

October to
December

Average
Value

wind speed at 170 m 0.45 0.38 0.40 0.48 0.43
wind speed at 100 m 0.53 0.57 0.61 0.55 0.57
wind speed at 30 m 0.56 0.46 0.54 0.49 0.51

wind direction at 170 m 0.33 0.45 0.38 0.41 0.39
wind direction at 100 m 0.48 0.55 0.58 0.49 0.52
wind direction at 30 m 0.26 0.36 0.33 0.34 0.32

temperature 0.15 0.09 0.05 0.17 0.12
pressure 0.42 0.37 0.28 0.36 0.36
humidity 0.03 0.05 0.11 0.08 0.07

It can be seen from Table 2 that the correlation coefficient of the power at time t−1, t−2, and t−3
are greater than 0.5. Therefore, the current wind power at time t has a strong correlation with the
power at time t−1, t−2, and t−3. When forecasting the wind power at time t, the wind power at the
past three times is put into the newly constructed input time series.

Table 2. Spearman correlation coefficient between power at t time and at time t before.

RWP at Time t

RWP at Time t before 15 min Interval
(t−1)

30 min Interval
(t−2)

45 min Interval
(t−3)

60 min Interval
(t−4)

75 min Interval
(t−5)

RWP at 8:00 0.83 0.72 0.51 0.37 0.21
RWP at 10:15 0.78 0.70 0.48 0.23 0.11
RWP at 13:30 0.81 0.67 0.50 0.18 0.07
RWP at 16:00 0.68 0.60 0.52 0.22 0.03
RWP at 21:45 0.73 0.66 0.49 0.15 0.06

EFFG-based LSTM network parameter set timestep is set to 4, which is the three historical moments
of RWP and at t time of NWP. The number of hidden layer neurons (EFFG-based LSTM cell) is not
linearly related to the forecast accuracy (such as root mean square error (RMSE)). The number of
neurons in the hidden layer should be determined according to the number of input features and the
model training accuracy. The number of neurons in the hidden layer is set to 12 to achieve the best
prediction accuracy. The EFFG-based LSTM gate activation function remains at the default value.

Finally, use the historical data of March, June, September, and December 2017 of the wind farm as
the training data set of the model. Then, the four groups of prediction tests were conducted as follows:

(1) Group 1: to predict the wind power within 24 h of February 22.
(2) Group 2: to predict the wind power within 24 h of May 13.
(3) Group 3: to predict the wind power within 24 h of September 30.
(4) Group 4: to predict the wind power within 24 h of November 17.

5.2. Forecast Error Computation

Because the actual wind power value has zero value, the mean absolute percentage error (MAPE)
in the forecast effect evaluation index will be meaningless [25]. Therefore, root mean square error
(RMSE), accuracy R1, and qualification R2, are used to evaluate the prediction results.

The calculation formula of RMSE is:

RMSE =

√√
1
n

n∑

i=1

(
Pi − P′

i

)2
(11)

where n is the number of forecast samples; P is the actual value of wind power and P′ is predicted
value of wind power; i is the serial number of the actual value and the predicted value.
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The calculation formula of the accuracy rate R1 is:

R1 = [1−

√√√
1
N

N∑

K=1

(
PMK − PPK

Pcap

)2

] × 100% (12)

In the formula, PMK is the average value of the actual power in the K period, PPK is the average
value of the predicted power in the K period, Pcap is the starting capacity of the wind farm in the
corresponding period, and N is the total number of predicted periods.

The calculation formula for the pass rate R2 is:

R2 =
1
N

N∑

K=1

BK × 100% (13)

In the formula,
(
1− PMK−PPK

Pcap

)
× 100% ≥ 75%, BK = 1;

(
1− PMK−PPK

Pcap

)
× 100% < 75%, BK = 0.

5.3. Comparison of Prediction Results

To verify that EFFG-based LSTM model has higher prediction accuracy, SVM and standard LSTM
wind power prediction model are used for prediction and comparative analysis. Therefore, the same
input data for all three methods for the prediction test. The predicted wind power and prediction error
curve of Group 1 as shown in Figures 6 and 7. The predicted wind power and prediction error curve of
Group 2 as shown in Figures 8 and 9. The predicted wind power and prediction error curve of Group 3
as shown in Figures 10 and 11. The predicted wind power and prediction error curve of Group 4 as
shown in Figures 12 and 13. The time in the x-axis is the local time in all figure.

 

 

Figure 6. Each model predicts wind power of 24 h of Group 1.

 

 

Figure 7. Each model prediction error of 24 h of Group 1.
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Figure 8. Each model predicts wind power of 24 h of Group 2.

 

 

Figure 9. Each model prediction error of 24 h of Group 2.

 

 

Figure 10. Each model predicts wind power of 24 h in Group 3.

 

 

Figure 11. Each model prediction error of 24 h of Group 3.
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Figure 12. Each model predicts wind power of 24 h of Group 4.

 

 

Figure 13. Each model prediction error of 24 h of Group 4.

It can be seen from Figures 6–13 that the SVM prediction model is the worst of the three models.
The reason is that SVM is not a prediction model suitable for time series and cannot process time series
information. LSTM model and EFFG-based LSTM model not only use deep learning technology to
optimize network parameters, but also deal with the correlation information and time correlation
between wind power time series as a time series model. When the wind power fluctuates, the accuracy
of EFFG- based LSTM model is better than traditional LSTM model. The reason is that the traditional
LSTM forget gate is updated by the last time output and input data, which cannot reflect the influence
of the error between the predicted value and the actual power value on the forget gate. The EFFG-based
LSTM forget gate is updated by the error between the predicted value and the actual power value.
When the error is large, the forgetting coefficient of the model is large. Then the historical output value
will be forgotten more, and the effect of historical value on the model will be smaller. When the wind
power suddenly changes, there is no correlation between the next moment’s wind power and the
previous moment’s power, it is necessary to reduce the role of historical value. Therefore, EFFG- based
LSTM prediction model has the highest prediction accuracy.

It is difficult to predict the wind power slope, this paper uses the historical wind power slope
data to train the prediction model. However, the following Figure 14 shows the up ramp period
of wind power in Figure 8 of our paper. It can be seen from the figure that there is a prediction
delay and the prediction error is relatively large. The maximum prediction error of the better model
(EFFG-based LSTM) is over 10 MW. The same problem appears in Figure 10 of the up ramp period.
This is one of the tasks we need to further study.
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Figure 14. Detail of the ramp in Figure 8.

Tables 3–6 show RMSE, R1, and R2 of 4 h and 24 h forecast results of Group 1, Group 2, Group 3,
and Group 4.

Table 3. Root mean square error (RMSE), accuracy rate (R1), pass rate (R2) of prediction results of
Group 1 of each model.

SVM LSTM EFFG-Based LSTM

RMSE 6.71 3.75 2.57
R1 73.19 83.54 90.81
R2 74.07 82.10 90.62

Table 4. Root mean square error (RMSE), accuracy rate (R1), pass rate (R2) of prediction results of
Group 2 of each model.

SVM LSTM EFFG-Based LSTM

RMSE 7.81 3.23 2.97
R1 73.78 82.44 90.78
R2 75.04 82.22 90.82

Table 5. Root mean square error (RMSE), accuracy rate (R1), pass rate (R2) of prediction results of
Group 3 of each model.

SVM LSTM EFFG-Based LSTM

RMSE 7.81 3.88 2.87
R1 73.78 81.02 90.11
R2 74.54 80.47 90.65

Table 6. Root mean square error (RMSE), accuracy rate (R1), pass rate (R2) of prediction results of
Group 4 of each model.

SVM LSTM EFFG-Based LSTM

RMSE 7.01 3.13 2.44
R1 74.68 81.40 90.06
R2 73.04 81.77 90.20

It can be seen from Tables 3–6 that the RMSE, R1, and R2 of the EFFG-based LSTM prediction
model are optimal compared with the SVM and LSTM prediction models. The RMSE of the EFFG-based
LSTM model changed small from Group 1 to Group 4 prediction, and the R1 and R2 were above 90%
in 24 h prediction. The accuracy and qualified rate of SVM and LSTM models decreased from Group 1
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to Group 4 prediction. SVM and traditional LSTM model can’t deal with the period when wind power
changes dramatically. This problem is solved by an improved forgetting gate, so the performance of
the EFFG-based LSTM prediction model is the best.

6. Conclusions

This paper proposed the EFFG-based LSTM model for an ultra-short-term wind power forecasting
method. The experimental outcomes are as follows: (1) Spearman correlation coefficient method can
better find the relationship between predictive factors affecting wind power because the probabilistic
distribution of NWP data and wind power data are not known distributions. (2) The input data is the
integrated data of NWP and historical wind power. Compared with the monotype input data, it can
better reflect the support effect of the wind power prediction. (3) The proposed method can realize an
ultra-short-term wind power prediction, considering the influence of the error between the predicted
value and the actual value on the prediction model. The forecast accuracy of the EFFG-based LSTM
model is better than SVM and the traditional LSTM model.
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Abstract: Distributed wind power (DWP) needs to be consumed locally under a 110 kV network
without reverse power flow in China. To maximize the use of DWP, this paper proposes a novel
method for capacity planning of DWP with participation of the energy storage system (ESS) in
multiple scenarios by means of a variable-structure copula and optimization theory. First, wind
power and local load are predicted at the planning stage by an autoregressive moving average
(ARMA) model, then, variable-structure copula models are established based on different time
segment strategies to depict the correlation of DWP and load, and the joint typical scenarios of DWP
and load are generated by clustering, and a capacity planning model of DWP is proposed considering
investment and operation cost, and environmental benefit and line loss cost under typical scenario
conditions. Moreover, a collaborative capacity planning model for DWP and ESS is prospectively
proposed. Based on the modified IEEE-33 bus system, the results of the case study show that the
DWP capacity result is more reasonable after considering the correlation of wind and load by using
a variable-structure copula. With consideration of the collaborative planning of DWP and load,
the consumption of DWP is further improved, the annual cost of the system is more economical, and
the quality of voltage is effectively improved. The study results validate the proposed method and
provide effective reference for the planning strategy of DWP.

Keywords: collaborative capacity planning; distributed wind power (DWP); energy storage system
(ESS); optimization; variable-structure copula

1. Introduction

There are generally two typical integration forms of wind power into power systems: centralized
and distributed. Distributed wind farms do not transport wind power over large-scale long-distance
transmission lines, they are directly provided to the load center of the power system [1,2], and the
generated electricity is consumed locally. Distributed wind power (DWP) has become an effective
solution for improving China’s environmental issues, and it will be an important form of wind power
integration into the power grid.

For the development and construction of DWP projects, China’s 2018 document [3] presented that
the DWP needs to be locally consumed through a 110 kV network with no power delivery at higher
voltage levels, and the installed DWP capacity limit should be based on the lowest consumption of
load. There is no doubt that this capacity planning principle for DWP will reduce the use rate of wind
power greatly, lead to waste of wind resources, and decrease the revenue of wind power industries,
further hindering the development of DWP.
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At present, many effective models and algorithms for wind power planning in distribution
networks have been explored [4–6]. A multi-objective DWP planning model was proposed in [7] to
meet the operation of unbalanced distribution systems, and the decision framework provided in [8]
could optimize DWP planning through technology selection. These studies provide a good reference
for further development of wind power in the distribution system.

To comply with the regulations under the premise of local consumption in the distribution system
without reverse power flow, it is necessary to further investigate the correlation between DWP and load.
At present, Nataf inverse transformation [9,10] and the correlation coefficient matrix method [11] are
usually employed for multivariable correlation analysis. However, the correlation feature or correlation
matrix between random variables must be determined in advance. When the correlation between
variables is complex or the features are not obvious, the fitting effect with the above commonly used
models is usually not good. In addition, it is also necessary to take into consideration different scenarios
of DWP and load because of their stochastic characteristics [12–14]. In [15], the correlation among
historical wind, photovoltaic power and electricity demand and the random moments is captured by
generating a scenario matrix, but the variable structure is not sufficiently considered. In view of the
above issues, copula theory [16] is employed in this work to better describe the correlation between
DWP and load, and at different time segments, a variable-structure copula model is established to
construct the correlation between DWP and load.

To follow the principle of no reverse power flow to higher voltage level and make the best
consumption of renewable resources, one effective way is to bring in the energy storage system (ESS) at
the planning stage [17–19]. A joint optimization in [17] was proposed to plan the capacity and location
of ESS, and distributed generating units in a stand-alone micro-grid were presented. These studies
mainly implement collaborative planning from the perspective of economics and pricing-based demand
response [20], thus providing a good reference for this paper. Still, the consideration of construction
investment, system line loss cost and the maintenance cost of ESS as part of the model’s objective
requires further improvement. Based on the above research, this paper takes the network line loss,
the investment operation cost and environmental income, and the time-of-day tariff into the objective
functions of the planning strategy, and prospectively proposes a feasible collaborative capacity planning
model of DWP and ESS. This paper contributes as follows:

(1) To describe the tail correlation and the change of correlation between DWP and load, a variable-
structure copula model is employed. In this paper, the variable-structure copula models are constructed
using two different time division methods (monthly and quarterly), and strategies are evaluated by
constructing an empirical copula model.

(2) Based on the correlation model of the variable-structure copula, the typical scenarios containing
correlation information are obtained through the clustering method, and then the DWP capacity
planning model is constructed under the typical scenarios. Furthermore, in order to increase the
consumption of DWP, a collaborative planning model is established for wind storage, and the
consumption of wind power and the quality of voltage level are analyzed based on a typical
schedule day.

The structure of this paper is as follows. In Section 2, the autoregressive moving average model
(ARMA) model for data prediction of DWP and load is introduced, the correlation of DWP and load
based on the variable-structure copula is investigated, and joint typical scenarios are generated using
the clustering method. In Section 3, a novel capacity planning model of DWP is proposed under
typical scenarios, and a collaborative capacity planning model is further established for DWP and ESS
to increase the consumption of wind power. A case study is then carried out in Section 4 based on
practical data for wind farm and load. Section 5 summarizes the findings.

2. Correlation Analysis between DWP and Load Based on a Variable-Structure Copula

The wind power output of a distributed wind farm should be consumed by its local load.
Since DWP has the characteristics of intermittency and inverse peak shaving, the correlation between
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DWP and load consumption should be carefully investigated. In this section, a variable-structure
copula model is employed to describe the joint density of DWP and local load. This method can well
capture the nonlinear, asymmetry and tail correlation characteristics among variables, it can analyze
the marginal distribution of each random variable individually, and can also illustrate the varied
correlated structure between variables.

2.1. Data Preparation Based on an ARMA Model

To carry out the correlation study between DWP and load, the predicted data of DWP and local
load in the planning stage are first obtained by ARMA model. The ARMA short-term prediction model
includes the autoregressive part and the moving average part, and its formula is:

Yt =

q∑

i=1

αiεt−i +

p∑

i=1

βiYt−i + εt, (1)

where Yt is the value of DWP or load at point t of series; εt and εt−i are the prediction error term at t and
i time points ahead of t, respectively; α is the correlation coefficient, which reflects the dependence of the
prediction error at different segments; Yt−i is the value with i time points ahead of t; β is the correlation
coefficient; p is the order of autoregressive process; and q is the order of moving average process.

The order of the ARMA model can be determined by calculating the Akaike Information Criterion
(AIC) value of the ARMA with different (p, q) pairs. The optimal ARMA (p, q) model is selected when
the AIC value is the smallest.

For cases where there is no historical data of DWP in the local area, the centralized wind power
data near the area can be used as a reference, since they have a similar wind source, and the data can
be converted proportionally into the DWP capacity for prediction and planning analysis.

2.2. Theory of Copula Function

Based on the predicted time series of DWP and load at the planning stage, in this subsection, this
paper proposes a variable-structure copula to depict the correlation between DWP and load.

2.2.1. The Definition and Properties of the Copula Function

Because DWP and load have the characteristics of fluctuation, and DWP also has the characteristic
of inverse peak shaving, the correlation between wind power and load is very complicated, and
correlation under extreme conditions (tail correlation) cannot be ignored. Therefore, the copula is a
useful tool for characterizing nonlinear correlation and tail correlation [21,22] between DWP and load.

Copula theory states that there must exist a copula function that satisfies F(x, y) =

C(F1(x), F2(y)) [23], where F(·) is a 2-dimensional cumulative distribution function, C(·) is a distribution
function of two-element copula function, x and y are the samples of DWP and load (MW), respectively,
and F1(·), F2(·) are the marginal probability density functions of DWP and load, respectively. To simplify,
let u = F1(x), v = F2(y), and vector ui and vi are the values of F1(x) and F2(y) at point i.

As a result, to construct a copula model, the first step is to estimate the marginal distribution of
DWP and load. Next, a copula function should be carefully selected to fit the correlation between
marginal distributions based on some evaluation indices.

2.2.2. Evaluation Indices of Copula Function

After estimating the marginal distribution function of DWP and load, respectively, this paper
estimates the parameters based on maximum likelihood estimation (MLE), and the evaluation indices
can subsequently be calculated.
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The parameter estimation results of Gaussian copula and t copula are the same as Pearson
coefficient, which can reflect variables’ linear correlation

ρp =

∑n
i=1(ui − u)(vi − v)

√∑n
i=1(ui − u)

2
√∑n

i=1(vi − v)
2

, (2)

where u and v are the expected values of the vectors ui and vi, respectively, and ρp is the Pearson
coefficient of the vector ui and vi.

The evaluation indices also include Kendall coefficient, Spearman coefficient and Euclidean
index [24].

(1) Kendall coefficient ρk can reflect the nonlinear correlation of the change trend of the vectors ui

and vi

ρk =
4r

n(n− 1)
− 1, (3)

where r is the number of the vectors ui and vi, whose two attribute values have the same size relationship.
(2) Spearman coefficient ρz can reflect the correlation of the rank of the variables

ρZ = 1−
6
∑

d2
i

n(n2 − 1)
, (4)

where di is the rank differences between two vectors ui and vi.
(3) Euclidean index can reflect the distance between the model and the empirical copula model [25].

d2
x =

n∑

i=1

∣∣∣Cm(ui, vi) −Cx(ui, vi)
∣∣∣2, (5)

where Cm(ui,vi) is the empirical copula function of DWP and load, and Cx(ui,vi) is the basic copula
functions, where the smaller the Euclidean distance is, the more accurate the model is.

Copula functions used in this paper include Gaussian copula, t copula, Frank copula, Gumbel
copula and Clayton copula. To carry out the model evaluation of copula functions, the evaluation
indices should be calculated and compared with the empirical copula, as shown in (6) [25].

Cm(ui, vi) =
1
n

n∑

i=1

I(Fm(xi)≤ui)
I(Gm(yi)≤vi)

, (6)

where Fm(xi) and Gm(yi) are the empirical distribution functions of DWP and load, respectively, I(·)
represents explanatory function, and u and v follow 0-1 distribution satisfying F(xi) ≤ ui, I(F(xi)≤ui)

= 1.

2.2.3. Variable-Structure Copula

According to the stochastic characteristic of DWP and load, their joint distribution can exhibit
varied correlation features at different periods; under these conditions, a unique copula function cannot
sufficiently describe the change. The variable-structure copula provides the most suitable copula
model for the description of correlation at different stages according to the varied structural features of
DWP and load, and is able to capture the changes of related structures between them more flexibly [26].

In general, the variable-structure copula can be divided into three types [27,28]:

(1) Only the marginal distribution of a single variable has a variable structure;
(2) The copula function part with a definite marginal distribution possesses a variable structure;
(3) Both the marginal distribution of a single variable and the copula function possess

variable structures.
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In this work, both the marginal distribution of a single variable and the joint copula function
are modeled with variable structures. Based on different time division strategies, the main steps of
constructing the variable-structure copula model are as follows:

(1) Divide the time series of DWP and load into multiple time segments;
(2) Apply non-parametric estimation to determine the marginal distribution of each variable at each

time segment;
(3) Construct the copula model at each time segment;
(4) Perform parameter estimation, evaluate the candidate models and select the optimal copula for

each time segment;
(5) Compare the results based on different time division methods based on (6), and choose the most

appropriate division strategy.

For each phased copula function, a binary frequency histogram between variables can be used
intuitively as a first estimate of the joint density function selection of DWP and load. By means of
the MLE method, the parameters of each basic copula model can be calculated [29]. Based on the
evaluation indices of candidate copulas and empirical copula, the two-stage filtration method [30] is
used to choose the optimal copula model.

After the modeling of the variable-structure copula, typical scenarios can be generated for further
DWP planning.

2.3. Typical Scenario Generation

Based on the continuous variable-structure copula function, it is necessary to discretize it to obtain
discrete DWP and load data pairs, so as to provide typical scenarios for the capacity planning of a
distributed wind farm.

This paper uses K-means clustering to classify typical scenarios. The specific steps are as follows:

(1) Discretize each phased copula function to generate two-dimensional discrete data pairs.
(2) Set the number of typical scenarios and select the initial condensation point.
(3) Calculate the distance from the discrete points to each condensation point, selecting the minimum

distance, and divide them into each class.
(4) Update the location of the condensate points for each class, and re-calculate step (3) to obtain a

new clustering result until the set number of cycles is reached.
(5) Choose the best clustering result and find the corresponding original quantile by inverting the

probability distribution function.

The joint typical scenarios of DWP and load can reflect the volatility of them with different
conditions, and provide a feasible reference for the rational capacity planning of DWP.

3. Capacity Planning Model for Regional Distributed Wind Farms

Based on the established typical scenarios between DWP and load, this section firstly proposes an
optimal capacity planning model for DWP. Then, a collaborative planning method with ESS is further
proposed in order to improve the consumption of DWP.

3.1. Capacity Planning Model of DWP

In this subsection, the capacity planning model for DWP is set up based on the typical scenarios
of DWP and load.

3.1.1. Optimization Function

The investment cost of the distributed wind farm, the environmental income provided by the
government, and the cost of line loss are included in the objective function:

Fc = min( f1 + f2), (7)
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First, f 1 is the annual investment cost of the distributed wind farm and the annual environmental
income provided by the government [31].

f1 = PDWG


Cwt −Csr

r0(1 + r0)

(1 + r0)
T − 1


, (8)

where PDWG is the planning capacity of DWP in MW, Cwt is the annual initial investment cost of the
distributed wind farm (RMB/kW), Csr is the environmental income per unit capacity (RMB/kW), r0 is
the discount rate, and T is the operating life of the distributed wind farm (year).

Second, f 2 is the annual line loss cost of the power system:

f2 = 8760
N∑

i=1

N∑

j = 1
j , i

∆U2
i j∣∣∣Zi j

∣∣∣
cos(ϕ)Cd, (9)

where N is the number of system buses, ∆Uij is the voltage difference between bus i and bus j of the
system (kV), Zij is the impedance of the branch i-j (Ω), Cd is the electricity price (RMB/kWh), and ϕ is
the power factor angle (rad).

3.1.2. Constraints

Considering the system power balance, the capacity limit of the generator, the constraints of bus
voltage and phase angle, and the constraints are listed as follows:

PGi + PDWGi − PDi −Ui

N∑

j=1

U j(Gi j cosθi j + Bi j sinθi j) = 0, (10)

QGi −QDi + Ui

N∑

j=1

U j(Gi j sinθi j − Bi j cosθi j) = 0, (11)

0 ≤ PGi ≤ PGimax, (12)

0 ≤ PDWGi ≤ PDWGmax, (13)

Uimin ≤ Ui ≤ Uimax, (14)
∣∣∣θi j

∣∣∣ ≤
∣∣∣θi j

∣∣∣
max, (15)

where PGi and QGi are the active and reactive power from the reference bus (MW,Mvar), respectively,
PDi, QDi are the active and reactive power of nodal load(MW,Mvar), respectively, and PDWGi is the
DWP capacity to be optimized at bus i (MW). Gij, Bij are the conductance and susceptance of the branch
i-j (S), respectively. Ui is the voltage magnitude at bus i (kV), θi is the voltage phase angle of bus i

(rad), θij = θi-θj. The subscript min, max indicate the lower and upper limits of the variable (p.u.),
respectively. PDGWmax = 0.5 p.u., Uimin = 0.95 p.u., Uimax = 1.05 p.u. To make sure power flow from
distributed wind farm does not transform to a higher voltage level, the active power at the reference
bus is strictly non-negative.

3.2. Collaborative Capacity Planning of DWP and ESS

In Figure 1 the daily curve of DWP and local load demand is shown based on the actual historical
data from a city in eastern China. It can be found that wind power is sometimes higher than load,
an appropriate capacity of ESS installation in a distributed wind farm could help absorb the extra
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wind power and then satisfy the load demand when the wind power output is lower than load. In this
section, a collaborative capacity planning model of DWP and ESS are prospectively proposed.
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Figure 1. The daily curve of DWP and local load demand.

3.2.1. Objective Function

Considering the investment cost of DWP, the environmental income contributed by the government,
the initial investment cost of the ESS, and the arbitrage gains of ESS into the capacity planning model,
the objective function for the collaborative planning of DWP and ESS is

Gc =min (g1 + g2 + g3 + g4), (16)

First, the annual storage cost of ESS g1 is [32]:

g1 = (CpPe + CeEe)
(1 + r0)

Tr

(1 + r0)
T − 1

+ CywPe, (17)

where Cp is the power cost of ESS (RMB/kW); Ce is the capacity cost of ESS (RMB/kVA); Cyw is the
annual operation and maintenance costs (RMB/kW); Pe is the active power of ESS (MW); Ee is the
capacity of ESS(MVA); and T’ is the operating life of energy storage (year) [33].

Second, the distribution line loss g2 is

g2 = 8760
N∑

i=1

N∑

j = 1
j , i

∆U2
i j∣∣∣Zi j

∣∣∣
cos(ϕ)Cd, (18)

Third, the investment cost of the distributed wind farm and the environmental income provided
by the government g3 are

g3 = PDWG


Cwt −Csr

r0(1 + r0)

(1 + r0)
T − 1


, (19)

Fourth, the arbitrage gains of ESS g4 are

g4 = 365EBESSσ(t), (20)

EBESS is the energy absorbed by ESS (MVA), and σ(t) is the time-of-day tariff (RMB/kWh),
which satisfies

σ(t) =



0.32 0 ≤ t ≤ 7, 22 < t ≤ 24

0.72

1.12

7 < t ≤ 9, 21 < t ≤ 22

9 < t ≤ 21

, (21)

205



Energies 2020, 13, 3602

3.2.2. Constraints

Optimization constraints include (10)–(15) and the ESS operational constraints in (22)–(27).

SOC = SOC−1 −
ηPe,−1∆t

Ee
, (22)

η =

{
ηout, Pe,−1 > 0
ηin, Pe,−1 < 0

ηout = 95%
ηin = 90%

(23)

pmin
e ≤ pe ≤ pmax

e , (24)

Emin
e ≤ Ee ≤ Emax

e , (25)

SOCmin ≤ SOC ≤ SOCmax, (26)
√

P2
e + Q2

e = Ee, (27)

where SOC is the state of charging/discharging of ESS. η is the charge and discharge efficiency (%); Qe are
the reactive power of ESS (kvar), respectively; the superscripts min, max represent the lower and upper
limits of the variables, respectively. The subscript “−1” represents the value of the previous moment.
To prevent the ESS from overcharging or discharging, the range of SOC is generally 0.1~0.9 [34].

A system diagram is illustrated in Figure 2 to convey the main process of planning.
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Figure 2. The system diagram of the DWP planning process.
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Based on the sequence of DWP planning, a case study is carried out in the following section.

4. Case Study

A case study is applied to the modified IEEE 33-bus test system in Figure 3. The distributed wind
farm and ESS are integrated at bus 6, the system-based capacity is 100 MVA, and MatlabTM is used
for analysis.

 

 
Figure 3. The modified IEEE 33-bus system.

In this study, with the assumption that the distributed wind farm has the same/similar wind
source as that of the centralized wind farm, the centralized wind power data are used, and the wind
power data are proportionally converted into DWP. Both wind power and local load data below 110 kV
level are practical operation data from an economically developed area in Xuzhou, a city in eastern
China. According to the distribution of the load at each bus in the test system, the practical load data
in Xuzhou are allocated in the modified IEEE33-bus system. The time series include the 5-min data
pairs of DWP and load from 1 January 2016 to 31 December 2018.

4.1. Data Preprocessing

The centralized wind power data is first proportionally converted into distributed wind power.
Based on the historical wind power output and load data, the orders of ARMA model for both time
series are shown in Table 1, where p, q is the order of the autoregressive, moving average process
respectively, and AIC is the value determined by Akaike Information Criterion. Based on the ARMA
model, the DWP and load are predicted at the planning stage.

Table 1. Order selection for ARMA models.

Data Type p q AIC

Load 7 10 2.3870
DWP 9 8 1.4892

In this work, the Support vector machine (SVM) prediction method is used to evaluate the accuracy
of the ARMA model, this paper employs root mean squared error (RMSE), mean absolute percentage
error (MAPE), R2 and mean absolute error (MAE) as indices to evaluate ARMA and SVM.

The smaller the RMSE, MAPE and MAE are, the more accurate the model is. The larger the R2 is,
the more credible the model is.

The evaluation indices are calculated for DWP prediction by using ARMA and SVM model.
The comparison is listed in Table 2.

Table 2. The evaluation indices of ARMA and SVM for wind power prediction.

Model RMSE MAPE (%) MAE R2

SVM 7.6806 31.7063 4.8614 0.5651
ARMA 4.6309 13.4228 2.2388 0.8418
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The performance of load prediction by ARMA and SVM are further compared based on the four
evaluation indices in Table 3.

Table 3. The evaluation indices of ARMA and SVM for load prediction.

Model RMSE MAPE (%) MAE R2

SVM 1.0677 25.0545 0.8097 0.7244
ARMA 0.3064 3.1339 0.1391 0.9773

Based on the calculation of evaluation indices, it can be concluded that:

(1) From Table 2, the RMSE, MAPE and MAE of ARMA for DWP prediction are smaller than those of
the SVM model, the R2 value of ARMA for DWP prediction is larger than SVM. All the evaluation
indices are in agreement that ARMA performs better than the SVM model.

(2) From Table 3, the RMSE, MAPE and MAE of ARMA for load prediction are smaller than those of
the SVM model, the R2 value of ARMA for load prediction is larger than that of SVM. All the
evaluation indices agree that ARMA shows better prediction performance than SVM model and
it is feasible and satisfactory for load prediction.

(3) The model evaluation indicates that prediction results of ARMA model is feasible for the next
step of capacity planning for DWP.

4.2. Marginal Probability Density Function of Load and DWP

Based on the non-parametric estimation, the marginal probability density function of DWP and
load can be obtained. The empirical distribution function is used as the standard for the actual
distribution function and is used to determine the accuracy of the non-parametric estimation method.

Figures 4 and 5 show the comparison of marginal cumulative distribution by kernel distribution
estimation with the corresponding empirical distribution function for DWP and load, respectively.

 

 

 

 

 

Figure 4. The comparison of marginal cumulative distribution and empirical distribution of DWP.
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Figure 5. The comparison of marginal cumulative distribution and empirical distribution of load.

As shown in the figures, by comparing the gaps of the function graphically, the results of the
non-parametric estimation are basically coincident with the empirical distribution, indicating a feasible
estimation accuracy.

4.3. Parameter Estimation and Model Selection

With the time division strategy by month, the following is a detailed description of the phased
copula selection based on DWP and load data in January, 2018 as an example. Based on the practical
data of January, 2018, the binary frequency histogram of DWP and load is illustrated in Figure 6.

 

 
Figure 6. Binary frequency histogram of DWP and load in January 2018.

From Figure 6, the symmetric correlation of DWP and load is identified, and the joint distribution
of the two variables are further examined by 5 copula functions. Figures 7–11 report the probability
density and distribution function of each copula model of DWP and load in January, 2018 in a graphic
view, and parameter estimation based on the MLE method for the copula models is shown in Table 4.
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Figure 7. (a) Probability density function of Clayton copula; (b) distribution function of Clayton copula.
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(a) (b) 

Figure 8. (a) Probability density function of Gumbel copula; (b) distribution function of Gumbel copula.

 

 
(a) (b) 

Figure 9. (a) Probability density function of Frank copula; (b) distribution function of Frank copula.

 

 
(a) 

 
(b) 

Figure 10. (a) Probability density function of Gaussian copula; (b) distribution function of
Gaussian copula.
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(b) 

Figure 11. (a) Probability density function of t copula; (b) distribution function of t copula.

Table 4. Parameter estimation of copula models and evaluation indices.

Copula Type Parameter
Estimation

Evaluation Indices

Kendall Spearman Euclidean

Gaussian 0.3759
0.2453 0.3611 9.9062
× × ×

t 0.4870
0.3238 0.4998 6.8339
# # #

Gumbel 0.3715
0.2709 0.3924 8.4066

Clayton 0.7454
0.2751 0.3953 7.4007

Frank 0.3373
0.3389 0.4920 2.1696√ √ √

Empirical 0.4689 0.3377 0.4640 0.0000

Archimedean type copula has good properties including Clayton copula, Frank copula and
Gumbel copula. Clayton copula excels at describing the asymmetric correlation and lower-tail
characteristics of variables as shown in Figure 7.

From Figure 8, it can be found that the asymmetric correlation and upper-tail characteristics of
variables are well depicted by the Gumbel copula.

The Frank copula can capture variables’ negative and symmetric correlation. It can be found from
Figure 9 that it can also indicate the progressive independence of both tails.

The ellipse type copula includes the Gaussian copula and t copula. From Figure 10, the asymmetric
and progressive independence of tails are illustrated by Gaussian copula.

From t copula in Figure 11, the asymmetric tail characteristic of DWP and load is depicted.
Figure 12 draws the empirical copula distribution function.

 

√

○

√

 

Figure 12. Empirical copula distribution function of DWP and load.

Different copulas show different characteristics of correlation and results based on different
parameter estimation. To select a proper phased copula, the Kendall, Spearman and Euclidean distance
indices of each copula are calculated and compared with those of the empirical copula in Table 4.
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Based on the calculation of evaluation indices in Table 4, the two-stage filtering method [30] is
carried out. When the type of copula model is inferior to other models under the evaluation criteria, it
is marked by “×”; when this type of copula model is superior to other models, it is marked by “

√
”;

when this type of copula model is closest among them apart from the optimal model, it is marked by
“#”. From Table 4, the Frank copula is determined to e the best fitting model by Kendall and Spearman
correlation coefficients, and the Euclidean distance between the model and the empirical copula model
is also the smallest. Since it receives the most “

√
”, Frank copula function is selected as best fitting the

correlation between DWP and load in January.
Similarly, by dividing the year into four quarters, the parameter estimation of each phased copula

is obtained and the evaluation indices in each quarter of year are calculated in Table 5.

Table 5. The optimal Copula models and empirical Copula parameters for four quarters of the year.

Copula Type
Parameter
Estimation

Kendall Spearman Euclidean

1
Frank 1.1731 0.1286 0.1920 3.7201

Empirical 0.1884 0.1262 0.1881 0.0000

2
t 0.2053 0.1316 0.1954 2.1972

Empirical 0.1926 0.1328 0.1938 0.0000

3
t 0.4039 0.2647 0.3827 3.8865

Empirical 0.3949 0.2793 0.3948 0.0000

4
Gumbel 1.5294 0.3461 0.4935 5.0976

Empirical 0.4960 0.3579 0.4918 0.0000

In the comparison between the two time division strategies, the average value of the Euclidean
distance between the best copula model and the empirical copula model in each month is 1.8864,
whereas it is 3.7254 with quarter division. Therefore, the correlation between the DWP and load can be
better fitted using the month division strategy.

4.4. Typical Scenario Generation

According to the variable-structure copula divided by month, the typical operation scenario of
DWP and load is obtained by discretizing the continuous variable-structure copula function.

First, we discretize the phased copula model and generate a sample data of 96,000 × 2 dimensions.
Next, set the number of typical scenarios to 6 and select the initial condensation point. Finally, use the
K-means method to cluster the remaining discrete points and find the corresponding original quantiles.

According to the steps in Section 2.3, Table 6 shows the generation results of typical scenarios.

Table 6. Quantile of DWP and load with probabilities in typical scenarios.

Scenario Load (MW) DWP (MW) Probability PL

1 8.3986 15.3398 0.183
2 6.2500 7.7391 0.160
3 8.2094 7.1449 0.137
4 5.6118 12.5456 0.180
5 4.8205 6.8032 0.182
6 7.7814 10.6478 0.158

It can be concluded from the results that each typical scenario has a similar incidence, which
illustrates the rationality of dividing the initial points into six typical scenarios.
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4.5. Capacity Planning of DWP

According to (7)–(9), the optimal solution of the objective function under the constraints of each
scenario is obtained. Table 7 shows the results of capacity planning of DWP and the optimal value of
the objective function without energy storage planning in each scenario.

Table 7. Optimal DWP output and objective function values for each scenario.

Scenario Probability DWP (p.u.) F(×104 RMB)

1 0.183 0.0883 1066.72
2 0.160 0.0648 889.63
3 0.137 0.0862 1015.56
4 0.180 0.0579 809.83
5 0.182 0.0495 686.76
6 0.158 0.0815 905.09

If capacity planning of DWP is conducted based on the minimum load from scenario 5 in Table 6,
the planning result will be 4.95 MW, which is conservative. This will obviously cause a large amount
of wind abandonment. The selection with the maximum capacity planning of DWP from scenario
1 will also lead to loss of economic profit. Taking into account the wind power consumption of the
typical scenarios above and economic operation, the final planning capacity is the weighted sum with
each scenario probability, that is:

PDWG∗ =
k∑

i=1

PDWG(i)PL(i)= 0.0706 (p.u .), (28)

where k is the number of scenarios, PDWG(i) is the planning capacity of DWP under scenario i, and PL(i)
is the probability of scenario i. The final capacity planning of DWP is 7.06 MW.

4.6. Collaborative Capacity Planning of DWP and ESS

To maximize the consumption of wind power, it is necessary to employ the ESS so as to increase
the planning capacity of DWP.

Based on the generation of typical scenarios, a typical schedule day is selected, and the collaborative
capacity planning of DWP and ESS is examined based on the 24-h daily curve. In Figure 13, based
on the ±10% fluctuation range of DWP and load in each typical scenario, several typical scenarios in
Table 6 are included and marked in the typical daily curve.

 

 

 

Figure 13. The typical daily curve with several typical scenarios.

Before optimization, the initial value of SOC is 0.6, and the initial state of ESS is discharge. Table 8
shows some specific parameters.
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Table 8. Related parameters of DWP and ESS [33,35].

Parameter Value

Cwt (RMB/kW) 4000
Csr (RMB/kW) 3500
Cd (RMB/kWh) 0.68
Cp (RMB/kW) 4000
Ce (RMB/kVA) 3500
Cyw (RMB/kW) 20

r (%) 8
T (Year) 10
T’ (Year) 15

Maximum charging/discharge power (MW) 150/150
Maximum/Minimum capacity (MWh) 600/10
Charging/discharging efficiency (%) 85/95

Based on the conditions above, fmincon optimization function in MatlabTM is employed to solve
the proposed nonlinear constrained optimization problem.

Under the premise of allowing some wind abandonment, the optimal power output of DWP and
the state of SOC in the typical day are obtained and shown in Figure 14. The corresponding charging
and discharging power of ESS in the typical day is reported in Figure 15.

 

 

 

 

 

 

Figure 14. Optimal output of DWP and the state of SOC in the typical day.

 

 

 

 

 

 

Figure 15. The charging and discharging power of ESS in the typical day.
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Based on the optimal DWP planning and the states of ESS in the typical day, the final energy
storage capacity planning is 4.63 MW, and the final DWP capacity planning is 12.07 MW. It can be
concluded from this study that:

(1) The optimal planning of DWP and the SOC of ESS change with the fluctuation of load in the
typical day. When load is smaller than actual wind power output, ESS charges and stores the
extra wind power. When load is larger than actual wind power output, ESS discharges and
supplies power to the load.

(2) The SOC of the ESS fluctuates within [0.1, 0.9], which meets the requirement of energy
storage operation.

(3) Compared with the case without ESS, the DWP planning value increases from 7.06 MW to
12.07 MW, with the study results indicating that with the participation of energy storage, it is
conducive to increasing the consumption of DWP.

Moreover, the active power loss of the distribution network, the annual cost of the system is
further compared with that before the installation of ESS in Table 9.

Table 9. Capacity of DWP and economy before and after installing ESS.

DWP (MW)
Network Loss Cost

(104 RMB)
Average Annual Total

Cost (104 RMB)

Without ESS 7.06 554.8 1066.7
With ESS 12.07 289.9 981.1

ESS can release power at peak load and it can absorb excess power when DWP output is higher
than load. From Table 9, ESS can reduce the rate of wind abandonment, and the network loss cost
is reduced with the collaborative planning of ESS, and the average annual cost is reduced with the
benefited from time-of-day tariff in the distribution network.

The fluctuation of bus voltage is further studied and compared in the typical day. The voltage
magnitude at some buses is lower than 0.95 in the case of without ESS installation, as shown in
Figure 16, and the bus voltages all lie in the range of [0.95, 1.05] based on the collaborative planning of
ESS as reported Figure 17.

 

 

 

Figure 16. The fluctuation of bus voltage in the typical day before installing the ESS.
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Figure 17. The fluctuation of bus voltage in the typical day after installing the ESS.

Based on the comparison of Figures 16 and 17, with the installation of the ESS, the voltage level
is increased effectively at heavy load conditions. At the same time, the range of voltage fluctuation
is reduced.

5. Conclusions

This paper proposes a DWP capacity planning method with participation of ESS optimization under
multi-scenario conditions based on variable-structure copula and optimization theory. The conclusions
can be reached as follows.

(1) The variable-structure copula models of DWP and load are established based on two different
time segment strategies. The average Euclidean distance of the strategies by month is 1.8864,
which is smaller than the strategies by quarter. It is concluded that the variable-structure copula
model with time segment by month is better able to fit the changes of the correlation structure
between DWP and load and can capture the correlation at each segment more accurately.

(2) The continuous correlation functions are discretized and typical scenarios of DWP and load are
obtained by the clustering method. For each typical scenario, a feasible capacity planning model of
DWP is established. In addition, the feasible optimal capacity of DWP is 7.06 MW, which is higher
than the lowest active power demand of load. Therefore, the capacity planning model of DWP
considering the correlation of DWP and load can effectively increase wind power consumption.

(3) Furthermore, a collaborative capacity planning model for DWP and ESS is proposed. Study results
show that, compared with the case without participation of ESS, the capacity of DWP planning
was increased to 12.07 MW, and the consumption of wind power was efficiently improved.
For economy, collaborative capacity planning of DWP and ESS can reduce the cost of network
loss of the distribution network and the annual cost of the system; moreover, for reliability, it can
effectively satisfy the lower voltage limit and reduce the range of voltage fluctuation.

Future work includes the investigation of time-varying copula model and multi-point integration
of wind and storage system for DWP planning.
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Nomenclature

Symbols:

Yt, Yt−i Time series of DWP, load at t, t−i

εt, εt−i Prediction error term at t, t−i

α, β Correlation coefficient of ARMA
p, q Order of autoregressive, moving average process
σ2 Variance of the predicted error term
n Number of time series
c(·), C(·) Probability density function, distribution functions of copula
F(·) Cumulative distribution function
F1(·), F2(·) The marginal probability density functions of DWP, load
x, y Samples of DWP, load (MW)
ρp, ρk, ρz Pearson, Kendall, Spearman coefficient
ui, vi Value of marginal probability density functions of DWP, load at i

u, v Expected values of ui, vi (MW)
r Number of the variables whose two attribute values have the same size relationship
di Rank differences between ui and vi

dx
2 Distance between basic copula and empirical copula model

Cm(·), Cx(·) Distribution functions of empirical copula, basic copula
Fm(·), Gm(·) Empirical distribution functions of DWP, load
I(·) Explanatory function
PDWG Planning capacity of DWP (MW)
Cwt Annual initial investment cost (RMB/kW) of distributed wind farm
Csr Environmental income (RMB/kW)
r0 Discount rate (%)
T, T’ Operating life of the distributed wind farm, ESS (year)
i,j Bus number
N Number of system buses
∆Uij Voltage difference between bus i and bus j (kV)
Zij Impedance of the branch i-j (Ω)
Cd Electricity price (RMB /kWh)
ϕ Power factor angle
PGi, QGi Active and reactive power from the reference bus (MW, Mvar)
PDi, QDi Active and reactive value of nodal load (MW, Mvar)
Gij, Bij Conductance and susceptance of the branch i-j (S)
Ui,θi Voltage magnitude (kV), phase angle of bus i (rad)
Cp power cost (RMB/kW) of ESS
Ce capacity cost (RMB/kVA) of ESS
Cyw Annual operation and maintenance costs (RMB/kW)
Pe, Qe, Ee Active, reactive power, capacity of ESS (MW, Mvar, Mvar)
EBESS Energy absorbed by ESS (MVA)
σ(t) Time-of-day tariff (RMB /kWh)
η Charge and discharge efficiency
Acronyms:

DWP Distributed wind power
ESS Energy storage system
ARMA Autoregressive moving average
AIC Akaike Information Criterion
MLE Maximum likelihood estimation
SVM Support vector machine
RMSE Root mean squared error
MAPE Mean absolute percentage error
MAE Mean absolute error
SOC State of charging/discharging of ESS
Superscripts and subscripts:

min, max The lower and upper limits of the variables
Subscript “−1” The value of the previous moment
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Abstract: To deal with the randomness and uncertainty of the wind power generation process, this paper
proposes the use of the clustering method to complement the multi-model predictive control algorithm
for active power control. Firstly, the fuzzy clustering algorithm is adopted to classify actual measured
data; then, the forgetting factor recursive least square method is used to establish the multi-model of
the system as the prediction model. Secondly, the model predictive controller is designed to use the
measured wind speed as disturbance, the pitch angle as the control variable, and the active power as the
output. Finally, the parameters and measured data of wind generators in operation in Western China
are adopted for simulation and verification. Compared to the single model prediction control method,
the adaptive multi-model predictive control method can yield a much higher prediction accuracy, which
can significantly eliminate the instability in the process of wind power generation.

Keywords: wind power generation; multi-model predictive control; fuzzy clustering

1. Introduction

The uncertainty of wind speed makes the output power of the wind power generation system
fluctuate greatly [1–3]. Frequent switching control will result in a transient overload of the transmission
chain and an overshoot of output power. As a result, the system shows very strong nonlinearity.
Since the multi-model predictive control (MMPC) method can effectively cope with complex nonlinear
systems—i.e., wind generation systems—it has been widely used recently.

In [4], a model predictive control (MPC)-based optimal active power control scheme for a
doubly-fed induction generator (DFIG) was proposed, which was applied to wind farms with a
distributed energy storage system (ESS). For such a multi-input and multi-output (MIMO) wind
generation system, the dynamic characteristics of the converter and wind turbines (WTs) were
considered in MPC. By using MPC, the reference for active power between WTs and ESS was optimized
according to the local wind conditions. The results showed that such a control scheme can greatly
reduce the control error of active power for WTs. Similarly, an online model-based predictive control
method was proposed in [5], which was used for the real-time optimal operation of a wind power
integrated system including demand response (DR) and ESS. This method took into account all the
interaction effects of the control facilities according to the estimated output of the future wind farms and
realized the maximum utilization of wind power. The model has good universality and adaptability,
and is suitable to resolve the high uncertainty of wind power generation and customer behavior.
Compared with the online no-prediction method and offline prediction method, the daily wind energy
utilization of this method is increased by 13.9% and 4.9%, respectively. In [6], an active power control
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architecture based on the combination of MPC and wind turbine state classification was proposed,
where an equivalent model of an MPC controller was established. Compared with traditional methods,
this method is more suitable for the active power control t the wind farm level since it ensures that the
wind farm operates as a single controllable entity on the grid and acts like a traditional power plant.

Considering that wind farms always cooperate and interact with traditional thermal power plants,
a comprehensive model of the hybrid system including both a wind farm and thermal power plant was
established in [7] by combining the wind farm model with the well-known thermal power model. In [8],
an improved load frequency control (LFC) method based on MPC was proposed, and the simulation
results showed that this method could effectively improve the frequency response level of both the wind
farm and thermal power plant, thus improving the frequency performance of the connected system.

To effectively coordinate the control of active power and reactive power, an MPC-based distributed
information synchronization scheme and distributed coordination control scheme for wind farms was
proposed and verified on a wind farm containing 10 WTs in [9]. For the distributed coordination control
scheme, the pitch angle and generator torque of the WTs were optimized to reduce the fatigue load
of the WTs and track the power reference of the wind farm. In [10], the MPC was utilized to replace
the proportional integral (PI) controller for the speed control of a permanent magnet synchronous
generator (PMSG). Similarly, the MPC was also applied to replace the traditional PI controller in [11,12].
The MPC avoids the disadvantages of the traditional PI controller; e.g., a slow dynamic response,
coupling, complex structure, difficulty in determining the PI’s parameters, etc. Compared with the PI
control, the MPC has better performance in speed tracking, irrespective of whether the step speed is
increased or step speed is decreased.

In [13], a variable-weight MPC strategy was introduced to optimize the coordination of mechanical
load and the power of the wind power generation system. In the variable-weight MPC strategy,
the pitch and torque are coordinated by Pareto analysis to optimize the output and load of the generator.
Through the evaluation of the wind condition, the weight matrix of MPC can be updated adaptively.
Finally, compared with the traditional gain scheduling PI control, the results showed that the strategy is
effective. According to the operation areas of the wind turbine, three kinds of controllers—classic MPC
and two kinds of economic model predictive control (EMPC)—were designed in [14]. The simulation
results showed that the performance of the three predictive control strategies was better than that of the
traditional LQR controller. EMPC can not only effectively reduce the fatigue load of all operation areas,
but also increase the utilization of wind energy when the wind speed fluctuates near the rated wind
speed. When the power grid operates under an unbalanced condition, the low-voltage ride-through
capability becomes a difficulty for managers. Therefore, a finite set model predictive control strategy
was proposed in [15], which could ensure the converter provides a balanced current and both active
and reactive power support during grid connection. Compared with the traditional MPC, this method
increases the control delay, and the waveform quality is much better.

Besides, the MPC method was also applied to a new type of converter control a the wind turbine
with PMSG in [16], and the separation control of the machine and the grid side was realized by
minimizing the value function. Further study on MMPC for PMSG control was also reported in [17].
The MMPC can ensure the smooth control of the active power output of WTs while ensuring high
wind energy utilization efficiency. In the low wind speed condition, the fluctuation of active power
can be reduced. The overshoot of active power can be reduced when WT operates near the rated wind
speed. A smooth control can be realized, and the fluctuation of active power can also be significantly
reduced when the WT operates above the rated wind speed.

From the above studies, it is apparent that the MPC method can solve the uncertainties and random
changes of wind speed in the wind power generation system. However, there is little discussion about
the short-term rapid change of wind speed in the above studies, especially for the case in which the
wind speed varies through three different wind speed sections in a few seconds.

In view of this situation, this paper proposes an MMPC method for wind turbines under all wind
conditions. The main contents of this paper include the following: (1) the classification of the collected
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1000 groups of field-collected data using the fuzzy clustering method (FCM) and establishment of a
multivariable prediction model using the forgetting factor recursive least square method (FFR-LSM),
(2) the design of the multi-model predictive controller (MMPCR) with measurable wind speed as
disturbance signal and pitch angle as the control variable, (3) the application of the designed MMPCR
to the actual power control of wind turbine, and a comparison of the results with those of the single
model predictive control method. The rest of this paper is organized as follows: Section 2 introduces
the modeling of the wind turbine data from actual field using fuzzy clustering, Section 3 presents the
design of the generalized predictive controller and Section 4 details the realization of multi-model
switching control. Case study and simulation analysis are carried out in Section 5, while the conclusions
are finally drawn in Section 6.

2. Fuzzy Clustering Modeling of the Field-Collected Wind Turbine Data

2.1. Mathematical Model of Variable Speed Variable Pitch Wind Turbine

Generally, a variable speed variable pitch wind turbine is mainly composed of a wind wheel,
transmission part, and generator. The output power can be described as [18]

P =

{
ηPr, vcutin ≤ v < vN

PN, vN ≤ v ≤ vcutout
(1)

with
Pr = 0.5ρv3SCp(λ, β) (2)

and

CP = (0.44− 0.0167β) sin
[
π(λ− 3)
15− 0.3β

]
− 0.00184(λ− 3)β (3)

λ =
2πnR

v
=
ωR

v
(4)

where η is the conversion efficiency of wind energy, P is the mechanical power of WT, ρ represents air
density, S stands for the swept area of the blade, λ is the tip speed ratio, β is the pitch angle, v is the
wind speed, ω is the speed of the main shaft, and R is the diameter of the wind turbine.

2.2. Fuzzy Clustering of Data Sets

The measured data of WTs including the wind speed, pitch angle and active power of the generator
are classified by the subtraction clustering algorithm–fuzzy c-means clustering, and then multiple
models are generated by FFR-LSM. The fuzzy c-means clustering algorithm determines the category of
each data point according to the membership degree. When the fuzzy objective function is the smallest,
the data group is divided into C fuzzy categories. Details of the algorithm can be found in [19] and [20].
The Davies Bouldin index (DBI) is used to evaluate the cluster performance. The process of subtractive
clustering is as follows [21,22]:

• Step 1: Determine the number of categories C and fuzzy weight index m, and initialize the
clustering center V.

• Step 2: Calculate the fuzzy membership matrix U according to Equation (5).

ui j =






c∑
k=1

‖xi−V j‖
2

m−1

‖xi−Vk‖
2

m−1



−1

‖xi −Vk‖ , 0

1 ‖xi −Vk‖ = 0andk = j

0 ‖xi −Vk‖ = 0andk , j

(5)

where uij is the membership of xi belonging to category j, and Vj or Vk is the clustering center of
category j or k.

223



Energies 2020, 13, 1329

• Step 3: Calculate the category center Vj using Equation (6).

V j =

n∑
i=1

um
ij

xi

n∑
i=1

um
ij

(6)

• Step 4: Calculate the objective value J of cluster Vj using Equation (7) and judge whether target
value is met or not. If it is met, the clustering will end; otherwise, return to step 2.

J =
n∑

i=1

c∑

j=1

(ui j)
m‖xi −V j‖ (7)

In this paper, a total of 1000 groups of field measured data set M (m1, m2, m3) are classified, where
m1 stands for the pitch angle, m2 represents wind speed, and m3 is the active power of the generator.
The clustering result shows that a minimum DBI can be obtained when the number of clusters is equal
to five. The clustering result is shown in Table 1.

Table 1. The clustering result of field-collected wind turbine data. DBI: Davies Bouldin index.

Number of Clustering 3 4 5 6 7

DBI 1.4473 0.6923 0.1978 1.1791 0.9733

When the number of clusters is five, all clustering center of the data can be summarized as

Center =




0.00 2.07 661.09
0.04 4.43 709.23
5.94 7.02 870.10

10.07 9.78 1300.79
13.08 11.06 1508.43




Considering that some of the data may overlap with each other—e.g., the wind speed can
increase or decrease in a short time—the output power is consequently affected by the wind speed.
Therefore, the wind generation system can be regarded as a system with a strong disturbance.

2.3. Least Square Modeling

Based on the results of the above clustering data, the wind speed and pitch angle are used as
inputs, and the output power is taken as the output for the least squares modeling and to perform the
index function determination. To overcome the shortcoming of the poor correction ability of the least
square method (LSM), the forgetting factor recursive LSM (FFR-LSM) is adopted in this paper [22].
The performed index function is

J =
L∑

k=1

λL−k[y(k) −ϕT(k)
∧
θ(k)] (8)

where θ̂(k) is the parameter under-identification, ϕ(k) is the observation matrix, λ is the forgetting
factor, L is the times of observation, and y(k) is the output of the system.

For the objective function given in Equation (8), Equation (9) can be used to express the recursive
least square parameter estimation formula of the forgetting factor.

224



Energies 2020, 13, 1329



∧
θ(k) =

∧
θ(k− 1) + K(k)

[
y(k) −ϕT(k)

∧
θ(k− 1)

]

K(k) =
P(k−1)ϕ(k)

λ+ϕT(k)P(k−1)ϕ(k)

P(k) = 1
λ

[
1−K(k)ϕT(k)

]
P(k− 1)

(9)

with K(k) representing the gain matrix and P(k) standing for the covariance matrix.
According to the measured data and the operating characteristics of the wind generator system,

the cumulative abnormal return (CAR) model expressed in Equation (11) is used to identify the
parameters. Combined with the classification results of the field-collected wind turbine data, five
mathematical models are established.

Y(k + 1) = ϕT(k)θ (10)

with
Y(k + 1) = [y1(k + 1), y2(k + 1), y3(k + 1), y4(k + 1), y5(k + 1)]T

θ =




a11 a12 a13

a21 a22 a23

a31 a32 a33

a41 a42 a43

a51 a52 a53




ϕT(k) =




−y1(k) u1(k) ξ1(k)

−y1(k) u2(k) ξ2(k)

−y1(k) u3(k) ξ3(k)

−y1(k) u4(k) ξ4(k)

−y1(k) u5(k) ξ5(k)




Taking the initial value θ(0) = 0, P(0) = 105 I, λ = 0.95, I is the unit matrix, and five mathematical
models of wind generation system can be obtained, as shown in Equation (11).



y1(k + 1) = 0.9374y1(k) + 0.3711u1(k) + v1(k)

y2(k + 1) = 0.9695y1(k) + 0.3371u1(k) + v2(k)

y3(k + 1) = 0.9217y1(k) + 0.2091u1(k) + v3(k)

y4(k + 1) = 0.9241y1(k) + 0.3821u1(k) + v4(k)

y5(k + 1) = 0.9801y1(k) + 0.2891u1(k) + v5(k)

(11)

where yi(k) is the output power of the wind generator, ui(k) is the pitch angle, and vi(k) is the wind
speed. Therefore, Equation (11) is taken as the prediction model for the system.

3. Design of the Generalized Predictive Controller

In this paper, the controlled auto-regressive integrated moving-average (CARIMA) model is used
as the prediction model [21,22]. The discrete difference equation is shown in Equation (12).

A
(
z−1

)
y(k) = B

(
z−1

)
u(k− 1) + C

(
z−1

)
ξ(k)/∆ (12)

where y(k) and u(k) are the output and input of the controlled object, ∆ = 1 − k−1 is the difference
operator, A(z−1), B(z−1), and C(z−1) are polynomials of backward operators, and ξ(k) is the white noise
sequence with zero mean value. If the time delay of the system d > 1, then let the coefficients of the
first d − 1 terms of B(z−1) be zero. The polynomials also satisfy the following:
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A(z−1) = 1 + a1,1z−1 + a1,2z−2 + · · ·+ a1,naz−na

B(z−1) = b1,0 + b1,1z−1 + b1,2z−2 + · · ·+ b1,nb z−nb , l1,0 , 0
C(z−1) = 1 + c1,1z−1 + c1,2z−2 + · · ·+ c1,ncz−nc

3.1. Objective Function

In general, for the sake of the following smoothness, tracking control is carried out by following
the reference track after softening. The reference trajectory is shown as follows:

w(k + j) = a jy(k) +
(
1− a j

)
yr(k) (13)

where yr(k) stands for a set value for output, w(k) represents the reference trajectory, and α is the
softening coefficient with 0 < α < 1.

The performance function can be represented by using the following equation:

minJ(k) =
n∑

j=1

[y(k + j) −w(k + j)]2 +
m∑

j=1

λ( j)[∆u(k + j− 1)]2 (14)

where n is the maximum prediction length, m is the control time-domain (m ≤ n), and λ(j) is the control
weighting coefficient. To prevent the variation caused by a drastic change of control increment, a certain
value is set for λ(j), while ∆u(k) is the control increment of the system. Therefore, the generalized
predictive control method can be understood to find a reasonable control increment sequence ∆u(k),
∆u(k + 1), . . . , ∆u(k + m − 1) to make the objective function J have the minimum value.

3.2. Output Prediction

In order to predict the output ahead of step j, the Diophantine equation is introduced in the
generalized predictive control method:

E j

(
z−1

)
A
(
z−1

)
∆ + z− jF j

(
z−1

)
= 1 (15)

where Ej and Fj are determined by prediction length and system parameter.
The optimal output prediction value can be obtained by combining Equations (13) and (15):

Y = G∆U + f (16)

with
Y = [y(k + 1), y(k + 2), · · ·, y(k + n)]T

∆U = [∆u(k), ∆u(k + 1), · · ·, ∆u(k + m− 1)]

f = H∆u(k) + Fy(k) = [ f (k + 1), f (k + 2), · · ·, f (k + n)]T

G =




g0 0
g1 g0
...

...
. . .

gn−1 gn−2 · · · g0



=




g11z−1 + g12z−2 + · · ·
g22z−1 + g23z−2 + · · ·

...
gnnz−1 + gn(n+1)z

−2 + · · ·




H =




G1 −G0

z
(
G2 − z−1g1 − g0

)

...
zn−1

(
Gn − z−n+1gn−1 − · · · − z−1g1 + g0

)




F = [F1, F2, · · ·, Fn]
T
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where G is the control matrix. The parameters of Ej, Fj, Gj, and Hj are determined by the prediction
length and system parameter, and satisfy the following:



E j

(
z−1

)
= e j,0 + e j,1z−1 + . . .+ e j, j−1z−( j−1)

F j

(
z−1

)
= f j,0 + f j,1z−1 + . . .+ f j, j−1z−( j−1)

G j

(
z−1

)
= g j,0 + g j,1z−1 + . . .+ g j, j−1z−( j−1)

H j

(
z−1

)
= h j,0 + h j,1z−1 + . . .+ h j, j−1z−( j−1)

3.3. Determination of the Optimal Control Law

The hypothesis is that W = [w(k + 1), w(k + 2), · · · , w(k + n)]T; when ∂J
∂∆u

= 0, the optimal
performance index function of Equation (17) can be obtained, as shown in Equation (18).

∆U =
(
GTG + λI

)−1
GT(W − f ) (17)

u(k) = u(k− 1) + ∆u (18)

To make full use of remaining control information and prevent the predictive control increament
of ∆u(k) from being reduced due to interference, a smooth filter is used as the input to carry out
weighted control, as shown in Equation (19).

u(k) =

s∑
i= j

q(i)u(k|k− i + 1 )

s∑
i=1

q(i)

(19)

where s stands for the control steps in the time domain and q(i) represents the control
weighting coefficient.

The generalized predictive control method can make the control output close to the reference
trajectory or target curve as much as possible through rolling optimization and feedback correction.
In this paper, the control input u(k + 1) optimizes and corrects the control input u(k) at step k through
the optimal prediction at step k + 1, which can slow down the excessive increase or decrease of the
control input increment in a certain trend and effectively reduce the occurrence probability of overshoot.
The actual control variable is

us(k) =
u(k) + u(k + 1/k)

2
= u(k) + ∆u

(k + 1/k)

2
(20)

with

∆u

(
k + 1

k

)
=

m∑
i=1

β(k)∆u(k + i/k)

m∑
i=1

β(k)

(21)

where ∆u(k + i/k) is the predictive control increment at time k + 1 and β(k) is the weighting factor
(0 < β < 1).

4. Multi-Model Switching Control

The structure diagram of the MMPC system of the wind generation system is given in Figure 1,
where the stability of the multi-model switching control system has been demonstrated in Equation [18].
In the figure, ŷi(i = 1, 2, . . . , 5) is the output of M1, M2, . . . , M5, and yr is the reference input. At each
sampling time, the optimal sub-model will be selected for predictive control [19,21].
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ŷω

my

yury −

…

+

−
−−

( )k= −

=

= + −∑ ρ

ρ

ρ 0.7, the softening coefficient α
λ

Figure 1. Structure diagram of the multi-model predictive control (MMPC) system.

Suppose at time k, ei(k) = y(k) − ŷi(k) represents the error between actual output and the output
of sub-model i, define the switching performance index function:

Ji(k) = ae2
i (k) + b

l∑

j=1

ρ je2
i (k− j) (22)

where l is the time length, a and b (a > 0, b > 0) are the error weighting coefficients representing
the matching degree of current and past time length l, respectively, while ρ is the forgetting factor.
The smaller the Ji(k), the higher the matching degree of model Mi.

5. Case Study and Simulation Analysis

In order to verify the effectiveness of the proposed method, the wind turbines with a doubly-fed
induction generator (DFIG) in Guazhou Wind Farm of Western China are utilized for the case study.
The parameters of wind turbine can refer to the Appendix A.

The wind generation system is given in Equation (11) and is adopted for simulation analysis (see
in Figure 2), where the pitch angle is taken as the control variable and the wind speed is considered
as a disturbance. The pitch angle is controlled according to the disturbance signal to ensure that the
output of the wind turbine can follow the predetermined target. In this paper, the forgetting factor
ρ = 0.7, the softening coefficient α = 0.35, the unit value is adopted as the control length, and the value
of control weighting coefficient λ(j) is 0.9. The simulation results of the single MPC and the MMPC are
given in the following figures.

=

ω
ω

−

+

−
−−

= −

=

= + −∑ ρ

ρ

ρ 0.7, the softening coefficient α
λ

0 100 200 300 400 500 600 700 800 900 1000

Number of sampling

0

5

10

15

20

W
in

d
 s

p
e

e
d

 (
m

/s
)

Figure 2. Field-measured wind speed data.

From Figure 3, it is apparent that the tracking effect of the MPC algorithm is satisfactory, and the
maximum error of output power is 2.8 kW for the wind farm. As presented in Figures 3c and 4c (the
local zoom of Figures 3a and 4a), it is apparent that the output active power from the results derived
by the MMPC method is more smooth than that yield from the single MPC method. In comparison,
the MMPC can derive a much smaller output error under the same model switch strategy shown
in Figure 3e or Figure 4e. The maximum active output error using the single MPC is almost 3 kW
(in Figure 3c), while that yield from MMPC is about 2kW (in Figure 4c). It is mainly because that the
proposed adaptive multi-model switching predictive control method can switch to different models
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according to the wind speed variation, which can ensure the wind generation system operates in an
optimal condition by selecting the most suitable model given in Figure 1. For the single MPC method,
however, there is no additional choice but to adapt to the variation of the wind speed and tune the
control parameters according to the predicted control error. Since the wind speed sometimes varies
rapidly in a very short time, the performance of the MPC method becomes inferior when compared
with the MMPC method.
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Figure 3. Simulation results using the single model predictive control (MPC). (a) The output power of
wind farm using a single MPC; (b) Local zoom of (a), (c) output power error between target curve and
control output, (d) control incremental of the single MPC, (e) model selection during the control process.

Additionally, as is reflected in Figures 3d and 4d, the switching control accuracy of MMPC is much
higher than that of the single MPC. The results show that the MMPC strategy can reduce the tracking
error in the dynamic process of the system and improve the convergence speed and tracking accuracy
of the system. The simulation results proves that, with the fuzzy clustering method used, the wind
speed data is pre-processed and classified to certain groups, and corresponding predictive control
scheme with suitable model given in Figure 1 is assigned, which enables the MMPC outperformances
the single MPC to a great extent.

229



Energies 2020, 13, 1329

(a) 

(b) (c) 

(d) (e) 

0 100 200 300 400 500 600 700 800 900 1000

Numberof Sampling

0

0.5

1

1.5

2

O
u
tp

u
r 

a
c
ti
v
e
 p

o
w

e
r 

(k
W

)

10
6

Target curve

MMPC

330 340 350 360 370 380 390 400

Numberof Sampling

1

2

3

4

5

O
u
tp

u
r 

a
c
ti
v
e
 p

o
w

e
r 

(k
W

)

10
5

Target curve

MMPC

0 200 400 600 800 1000

Number of sampling

-4

-2

0

2

4

O
u
tp

o
w

e
r 

E
rr

o
r 

(k
W

)

0 200 400 600 800 1000

Number of sampling

-3

-2

-1

0

1

2

3

u
 

0 200 400 600 800 1000

Number of Sampling

1

2

3

4

5

M
o

d
e

ls
 S

w
it
c
h

in
g

Figure 4. Simulation results using the MMPC. (a) The output power of wind farm using MMPC;
(b) local zoom of (a), (c) output power error between the target curve and control output, (d) control
incremental of the single MMPC, (e) model selection during the control process.

6. Conclusions

In this paper, up to 1000 groups of field-collected datasets are adopted for the case study. These data
are firstly classified into five groups using the classical clustering algorithm–fuzzy c-means clustering.
After this, the predictive controller is designed for multi-model switching control, and both the single
MPC and MMPC are applied to the wind generation system for the active power control of a local
wind farm in Gansu Province. For the case study and result analysis, it is proved that the proposed
adaptive MMPC for the active power of a wind generator is effective and efficient, and the combination
of the fuzzy c-means clustering and the MMPC solves the problem of randomness and uncertainty
in the active power prediction of the wind generation system. By pre-clustering and multi-model
switching, the impact of wind speed randomness and uncertainty on the output power is minimized,
and the prediction accuracy is effectively improved. The proposed method is of guiding significance
for the active power prediction in the system and the near future.
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Appendix A

Parameters of the Wind Turbine with DFIG Used for Case Study in Section 5

Rated power 1.5 MW
Operation wind speed range 3 m/s~25 m/s
Rated wind speed 11 m/s
Semi-diameter of the rotor 31.4 m
Air density 1.225 kg/m3

References

1. Gu, H.; Wang, J.; Lin, Q.; Gong, Q. Automatic Contour-Based Road Network Design for Optimized Wind
Farm Micrositing. IEEE Trans. Sustain. Energy 2015, 6, 281–289. [CrossRef]

2. Chen, J.; Hu, W.; Cao, D.; Zhang, B.; Huang, Q.; Chen, Z.; Blaabjerg, F. An Imbalance Fault Detection
Algorithm for Variable-Speed Wind Turbines: A Deep Learning Approach. Energies 2019, 12, 2764. [CrossRef]

3. Gao, X.; Meng, K.; Dong, Z. Cooperation-driven distributed control scheme for large-scale wind farm active
power regulation. IEEE Transactions on Energy Conversion 2017, 32, 1240–1250. [CrossRef]

4. Huang, S.; Wu, Q.; Guo, Y.; Rong, F. Optimal active power control based on MPC for DFIG-based wind
farm equipped with distributed energy storage systems. Int. J. Electr. Power Energy Syst. 2019, 113, 154–163.
[CrossRef]

5. Arasteh, F.; Riahy, G.H. MPC-based approach for online demand side and storage system management in
market based wind integrated power systems. Int. J. Electr. Power Energy Syst. 2019, 106, 124–137. [CrossRef]

6. Liu, M.; Zou, J.; Peng, C.; Xie, Y.; Li, M. Active power control for wind farms based on MPC combined with
state classification. IFAC-Pap. OnLine 2017, 50, 2137–2144. [CrossRef]

7. Luo, Z.; Wei, S.; Chai, Y.; Liu, Y.; Sun, X. Simulation of wind farm scheduling algorithm based on predictive
model control. In Proceedings of the 2017 Chinese Intelligent Systems Conference, Mudanjiang, China,
14–15 October 2017.

8. Liu, J.; Yao, Q.; Hu, Y. Model predictive control for load frequency of hybrid power system with wind power
and thermal power. Energy 2019, 172, 555–565. [CrossRef]

9. Guo, Y.; Gao, H.; Wu, Q.; Østergaard, J.; Yu, D.; Shahidehpour, M. Distributed coordinated active and reactive
power control of wind farms based on model predictive control. Int. J. Electr. Power Energy Syst. 2019, 104,
78–88. [CrossRef]

10. Mousa, H.H.H.; Youssef, A.R.; Mohamed, E.E.M. Model predictive speed control of five-phase permanent
magnet synchronous generator-based wind generation system via wind-speed estimation. Int. J. Electr.

Power Energy Syst. 2019. [CrossRef]
11. Li, L.; Zhang, D. Model predictive control for wind farm integration through VSC-HVDC. In Proceedings of

the 2018 13th IEEE Conference on Industrial Electronics and Applications, Wuhan, China, 1–2 June 2018.
12. Mallick, A.; Singh, S.N.; Mohapatra, A. Active power regulation by MPC based flywheel energy storage

system. Adv. Energy Power Syst. 2018, 508, 57–71.
13. Lin, Z.; Chen, Z.; Liu, J.; Wu, Q. Coordinated mechanical loads and power optimization of wind energy

conversion systems with variable-weight model predictive control strategy. Appl. Energy 2019, 236, 307–317.
[CrossRef]

14. Cui, J.; Liu, X. Economic model predictive control of variable-speed wind energy conversation systems.
Control Eng. China 2019, 26, 431–439. (In Chinese)

231



Energies 2020, 13, 1329

15. Ye, H.; Chen, C.; Li, S.; Ding, C. Model predictive current control of inverters to meet low-voltage ride-through
requirements. Control Eng. China 2018, 25, 795–798.

16. Fan, X.; Lei, M. Research on three-level wind power generation system based on predictive control.
Electric Drive. 2018, 48, 8–11+36.

17. Liu, X.; Wang, W.; Guo, J.; Guo, D. Research on predictive control of active power for direct-driven permanent
magnet wind turbine generators. Acta Energ. Sol. Si. 2018, 39, 210–217. [CrossRef]

18. Wang, Y.; Yu, M.; Li, Y. Model predictive controller-based distributed control of wind turbine DC microgrid.
Trans. China Electrotech. Soc. 2016, 31, 57–66. (In Chinese)

19. Zhou, K.; Yang, S.; Ding, S.; Luo, H. On cluster validation. Syst. Eng. Theory Pract. 2014, 34, 2417–2431.
20. Lu, X.; Wang, X.; Dong, H.; Ma, B. Research on Sliding Mode Predictive Control of Energy-saving Operation

of High-speed Train. Control Eng. China 2016, 23, 389–393.
21. Guo, Z.; Song, A.; Mao, J. Nonlinear generalized predictive control based on least square support vector

machine. Control Decis. 2009, 24, 520–525. [CrossRef]
22. Lu, X.; Dong, H. Application of multi-model active fault-tolerant sliding mode predictive control in solar

thermal power generation system. Acta Autom. Sin. 2017, 43, 1241–1247.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

232



energies

Article

A Modified Reynolds-Averaged Navier–Stokes-Based
Wind Turbine Wake Model Considering
Correction Modules

Yuan Li 1,*, Zengjin Xu 2, Zuoxia Xing 3, Bowen Zhou 4,* , Haoqian Cui 5, Bowen Liu 1

and Bo Hu 6

1 School of Science, Shenyang University of Technology, Shenyang 110870, China; sy_lbw@sina.com
2 School of Chemical Equipment, Shenyang University of Technology, Shenyang 110870, China;

zengjin_xu@sut.edu.cn
3 School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China;

xingzuoxia@sut.edu.cn
4 College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
5 Fuxin Electric Power Supply Company, State Grid Liaoning Electric Power Co. Ltd., Fuxin 123000, China;

cpschq@sina.com
6 State Grid Liaoning Electric Power Co. Ltd., Shenyang 110004, China; dianlihubo@sina.com
* Correspondence: syliyuan@sut.edu.cn (Y.L.); zhoubowen@ise.neu.edu.cn (B.Z.);

Tel.: +86-150-0401-9739 (B.Z.)

Received: 14 July 2020; Accepted: 25 August 2020; Published: 27 August 2020
����������
�������

Abstract: Increasing wind power generation has been introduced into power systems to meet the
renewable energy targets in power generation. The output efficiency and output power stability are
of great importance for wind turbines to be integrated into power systems. The wake effect influences
the power generation efficiency and stability of wind turbines. However, few studies consider
comprehensive corrections in an aerodynamic model and a turbulence model, which challenges
the calculation accuracy of the velocity field and turbulence field in the wind turbine wake model,
thus affecting wind power integration into power systems. To tackle this challenge, this paper
proposes a modified Reynolds-averaged Navier–Stokes (MRANS)-based wind turbine wake model to
simulate the wake effects. Our main aim is to add correction modules in a 3D aerodynamic model and
a shear-stress transport (SST) k-ω turbulence model, which are converted into a volume source term
and a Reynolds stress term for the MRANS-based wake model, respectively. A correction module
including blade tip loss, hub loss, and attack angle deviation is considered in the 3D aerodynamic
model, which is established by blade element momentum aerodynamic theory and an improved
Cauchy fuzzy distribution. Meanwhile, another correction module, including a hold source term,
regulating parameters and reducing the dissipation term, is added into the SST k-ω turbulence
model. Furthermore, a structured hexahedron mesh with variable size is developed to significantly
improve computational efficiency and make results smoother. Simulation results of the velocity field
and turbulent field with the proposed approach are consistent with the data of real wind turbines,
which verifies the effectiveness of the proposed approach. The variation law of the expansion effect
and the double-hump effect are also given.

Keywords: Reynolds-averaged Navier–Stokes method; wind turbine wake model; 3D aerodynamic
model; turbulence model; correction modules

1. Introduction

In the wake region of a wind turbine, the energy absorption rate of the wind turbine is decreased
and the fatigue load is increased due to the decreasing wind speed and increasing intensity of
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turbulence [1–3]. The wind turbine wake model can provide a basic theory for micro-location, power
prediction and the assessment of wind turbine performance in wind energy engineering [4]. However,
in the existing wake model, corrections are not comprehensively considered in the aerodynamic model
and turbulence model, which challenges its calculation accuracy [5,6].

The study of wind turbine wakes focuses on the velocity distribution, the wake zone width,
and the details of the development and change of flow structure at different locations of the wake region.
Figure 1 shows the ideal region division of wind turbine wakes, which is recognized as a hypothetical
model in wake research. The area with a 3–5-time diameter behind the wind turbine is called the near
wake region, and that with a 5-time diameter is called the far wake region [7,8].
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Figure 1. Ideal hypothesis and regional distribution of wind turbine wakes.

The existing wake models are divided into three categories: semi-empirical engineering
models [9,10], vortex method models [11,12] and computational fluid dynamics (CFD) models [13].
The state-of-the-art CFD models can be divided into two classes: Reynolds-averaged Navier–Stokes
(RANS) [14] and large-eddy simulation (LES) [15,16]. As the semi-empirical engineering model
is one-dimensional, the computation is small, and the velocity distribution of the wake region
can be located quickly. This model is often used in the software of engineering design, such as
Windsim and Windfarmer. However, the calculation results are far from the measured data of wind
farms [16]. The vortex method uses a lift line or lift face blade to simulate for the steady wind flow
and simple unsteady conditions, especially for the aerodynamic characteristics and wake tip vortex
of the wind turbine in the random wind velocity field with the wind shear effect [11]. The CFD
method is a general method, which describes the flow field by using hydrodynamic control equations,
and it obtains the numerical results of the flow field by using computer program design. The results
are affected by the design of RANS and LES models in the CFD method, which needs to improve
the accuracy of turbulence models. Moreover, computational cost is also an index to assess the CFD
method [17–19]. The advantages and disadvantages of research on wind turbine wake models are
shown in Table 1 [20–23].

Table 1. The advantages and disadvantages of research on wind turbine wake models.

Category Models Advantages Disadvantages

Semi-empirical
model

Jensen [20] Widely used in industry Suitable for the far wake region

Fuga [21]
Widely used in industry
with medium accuracy

Only uses for offshore wind farms

Simulation model
DNS [22]

Direct numerical simulation
with high accuracy

Requires a lot of computing
resources and simulation time

LES [23]
Widely used in research with

high accuracy
Appropriate assumptions

are necessary

DNS (direct numerical simulation), LES (large-eddy simulation).
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Concerning LES, a full-scale 3D wind turbine model by using sliding tetrahedron mesh is
established to calculate the wakes in the rotor diameter range of 20 times [24]. The authors of [23]
designs a non-full-scale model combined with the model of the wind turbine, and they discuss the
function of each sub-grid model under the LES method. Concerning the RANS, a shear-stress transport
(SST) k-ω turbulence model, a 2D high-precision computational grid, is used to calculate the wakes [15].
A tree crown model is applied in the turbulence model [13]. Its effect on the wind turbine in regard
to incoming airflow is similar to that of tree crown on airflow. Based on the tree crown model, a
modified calculation of the turbulence model is proposed by adding a source term [25]. Its calculation
results are compared with the measured data of the Danish Nibe B wind turbine. The results show
that the modified model is feasible in the near wake region. However, the wake velocity deficit in
the far wake region is underestimated. Furthermore, Shen et al. obtain the surface pressure and
friction of airfoil by X foil software, and distribute them into the 2D actuator surface model as volume
force [26]. The blade surface lift force is calculated by utilizing the vortex method in [27]. In [28] and [29],
the scholars develop an aeroelastic fatigue, aerodynamics, structures, and turbulence (FAST) model of
a wind turbine and offshore wind farm application (OWFA) model combined with an actuation model
considering the influence of blade deformation on wind turbine wakes. An improved k-ε turbulence
model is presented for the numerical simulation of wind turbine wakes. However, in the vertical
direction, the simulation results do not have good agreement with the experimental results [30].

In summary, the above approaches lack the consideration of comprehensive corrections in the
aerodynamic model and turbulence model. Motivated by the above discussion, the velocity field and
turbulence field of wind turbines are simulated by a modified RANS (MRANS) method in this paper.
The main contributions of this paper are summarized as follows:

• This paper proposes a modified Reynolds-averaged Navier–Stokes (MRANS)-based wind turbine
wake model to simulate the wake effects. Based on the correction module, the proposed blade
element momentum (BEM) -fuzzy aerodynamic model can amend the inconsistent condition
between the wake simulation and the experiment test. For the turbulence model, the turbulence
attenuation is effectively avoided by adding the hold source term. The accuracy of the turbulence
intensity distribution is improved by correcting the closure constant and the dissipation term.

• Simulation results of the velocity field and turbulent field with the proposed approach are
consistent with the data of real wind turbines, which verifies the effectiveness of the proposed
approach. Furthermore, the computation efficiency is significantly improved by the developed
mesh partition method.

The rest of this paper is organized as follows: Section 2 describes the overall proposed wind turbine
wake model. The modified wind turbine 3D model with BEM and fuzzy theory is studied in Section 3.
The SST k-ω turbulence model is presented in Section 4. The variable size hexahedron mesh partition
method is developed in Section 5. Numerical simulations are given in Section 6. Finally, conclusions
are drawn in Section 7.

2. Overall Wind Turbine Wake Model

In this paper, the RANS model is adopted in the wind turbine wake model. Wind turbine wakes
can be regarded as an incompressible flow field, and energy equations are not considered in this
paper in accordance with the Reynolds-averaged equations [5]. The continuity equation is given by
Equation (1).

∂ui

∂xi
= 0, (1)

where ui is the average velocity component in direction xi, i = 1, 2, 3 . . .
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The momentum equations are given by Equation (2).

∂
(
ρuiu j

)

∂x
j

=
∂p

∂x
i

+
∂(2µSi j − ρu′

i
u′

j
)

∂x
j

+ fi, (2)

where ρ is the air density, ui is the i-th velocity component, p is positive stress, µ is the dynamic viscosity

coefficient, Si j =
1
2

(
∂u j

∂xi
+ ∂ui

∂x j

)
is the average strain tensor, u′

i
is the pulsation velocity component in

direction xi, and fi is the volume source term.
In the process of Reynolds time averaging, an unknown tensor additional term ρu′

i
u′

j
is derived,

which is called the Reynolds stress tensor and represents energy transfer caused by turbulence pulsation.
Due to this unknown additional term, the Reynolds time-averaged Equations (1) and (2) cannot be
closed. The turbulence model can calculate the Reynolds stress tensor by the vorticity viscosity
hypothesis. The Boussinesq equation is shown in Equation (3) [5].

ρu′
i
u′

j
= 2µtSi j −

2
3
ρkδi j, (3)

where the turbulent kinetic energy k = 0.5u′
i
u′

j
, δi j =

{
i = j 1
i , j 0

, and µt is the eddy viscosity coefficient

determined by the turbulence model.
To enhance the accuracy of the abovementioned Reynolds stress tensor and eddy viscosity

coefficient, we develop a correction module for an SST k-ω turbulence model. Meanwhile, to further
comprehensively complete the volume source term of the RANS model, another correction module is
also introduced to the BEM-fuzzy 3D aerodynamic model. By combining the turbulence model and
the aerodynamic model, we propose an M-RANS wake model; the overall modeling framework is
shown in Figure 2.
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–Figure 2. The overall framework of the modified Reynolds-averaged Navier–Stokes-based wind turbine
wake model.
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3. BEM-Fuzzy 3D Aerodynamic Model

As shown in Figure 2, the BEM-fuzzy model is established to obtain the volume source term.
When compared to the traditional 2D BEM model of the actuator hypothesis, this model is modified by
three corrections to the 2D model and by Cauchy fuzzy distribution of the 3D model.

Figure 3 illustrates the principle of the BEM theory calculation, which can effectively obtain the
lift and resistance of wind turbines [31]. According to BEM theory, the element of local velocity is
calculated by Equation (4).

Vr =

√
[V∞(1− a)]2 + [Ω r(1 + b)]2, (4)

where Ω is the angular velocity of wind wheel rotation, r is the span position of the blade element
airfoil section, V∞ is the axial atmospheric free flow velocity, and a and b are the axial induction factor
and tangential induction factor, which are determined by iterative methods [32].
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Figure 3. Blade element stress analysis diagram.

The inflow angle φ is calculated by Equation (5).

φ = tan−1
[

V∞(1− a)

Ω γ(1 + b)

]
, (5)

where α = φ− γ is the attack angle, and γ is the local pitch angle.
The force vector of the blade element at the span position in the 2D plane is obtained by Equation (6).

F2D(r) =

[
FL(r)

FD(r)

]
=

1
2

nbρV2
r c

[
CLeL

CDeD

]
, (6)

where nb is the number of blades, CL = CL(a, Re) and CD = CD(a, Re) (determined by the airfoil
aerodynamic characteristic curve) are the lift coefficient and drag coefficient, Re is the Reynolds number
of the local chord length c, and eL and eD are the unit vectors for the directions of lift and drag,
respectively. Due to the poor precision of the traditional 2D model, it is necessary to add corrections to
improve accuracy. The traditional 2D model is modified from the following three aspects.

3.1. Tip Loss Correction

Due to the pressure difference between the lift surface and the pressure surface of the blade, the
airflow at the tip and root of the blade will flow twice along the blade radial direction. The moment
that acting on the blade is reduced, the blade element force at the tip has a great influence on the
aerodynamic performance of the whole blade. Therefore, the tip loss correction is considered. The tip
loss coefficient is defined by Equation (7) [33].

η1 =
2
π

cos−1
[
exp

(
−g

n
b
(D/2− r)

2r sinφ

)]
, (7)
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where the parameter g is obtained by Equation (8).

g = exp[−c1(nbΩD/2V∞ − c2)] + c3. (8)

The recommended values of the empirical parameters c1, c2, c3 are 0.125, 21, and 0.1, respectively.

3.2. Hub Loss Correction

The hub aerodynamic performance is affected by the separation of airflow to the root of the
blade. Similar to the blade tip loss, the hub loss is considered. The hub loss coefficient is defined by
Equation (9) [32].

η2 =
2
π

cos−1
[
exp

(
−g

n
b
(r−Rhub)

2Rhub sinφ

)]
, (9)

where Rhub is the hub radius, and the correction factor η is η = η1.η2.

3.3. Attack Angle Correction

The blade has a certain thickness and width, especially at the root of the blade, which makes the
direction of the airflow change greatly. In the front and rear edge of the airfoil, the circumferential
velocity of the airflow increases. At the same time, the cross-section area of airflow decreases, and the
axial velocity of airflow increases due to the thickness of airfoil. The thickness and width of the blade
affect the attack angle. Attack angle changes are given by Equation (10) [34].



∆α1 = 1
4

[
tan−1

(
V∞(1−a)
Ωr(1+2b)

)
− tan−1

(
V∞(1−a)

Ωr

)]

∆α2 = 16
15

V∞gc

ΩD2

( 2V∞
D )+( 2r

D )
tmax

c

, (10)

where tmax is the maximum thickness of blade element airfoil, ∆α1 is the attack angle change caused
by the influence of blade width on the direction of airflow, and ∆α2 is the attack angle change caused
by the influence of blade thickness on airflow direction.

The attack angle is revised by Equation (11).

α = φ− β− ∆α1 − ∆α2 (11)

The modified blade element aerodynamic force in the 2D plane is expressed by Equation (12).

F2D(r) =

[
FL(r)

FD(r)

]
= η

1
2

nbρV2
r c

[
CL
′eL

CD
′eD

]
. (12)

Here, we have obtained the 2D model, and it is necessary to establish the 3D model via the
improved Cauchy fuzzy distribution.

The thickness of wind turbine volume force distribution in the axis is uncertain. To ensure the
stability of numerical simulation and increase the convergence rate of calculation, it is necessary to
smooth the volume force to both sides of the neutral layer. Take an observation point of blade airfoil as
an example; the volume force of wind turbine firstly remains unchanged in a small range of the axial
direction. Subsequently, both ends of the axis are rapidly attenuated to zero. This is essentially a fuzzy
problem, as shown in Figure 4. Therefore, the mapping can be obtained by Equation (13).

{
A : U→ (0, 1], A ∈ F(U)

l→ A(l)
, (13)

where the domain U is the volume force at a distance l from the origin, the fuzzy rule A is the stable
condition of the domain element, and A(l) is the membership function of domain U.
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(a) Actuator hypothesis model (b) Improved Cauchy fuzzy distribution 
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Figure 4. Schematic diagram of the 3D fuzzy model.

The membership function A(l) can be determined by the improved Cauchy fuzzy distribution
as follows.

A(l) =



1
1+α(∆L−l)β

i f l ≤ −∆L

1 i f − ∆L < l ≤ ∆L
1

1+α(l−∆L)β
i f l > ∆L

, (14)

where ∆L =

∫ D
2

0 c(r)dr

D sinφ is the interval element as shown in Figure 4b; the parameters α and β are
1.5 and 3.

The cut set Aλ =
{
l
∣∣∣l ∈ U, A(l) ≥ λ

}
under the accuracy λ level determines the calculation area.

The axial distribution is treated as square intervals ∆L in Figure 4 to reduce the computation time.
The calculated thickness L under accuracy λ is expressed by Equation (15).

{
L = 2N∆L

N = [max(Aλ(l))/∆L]
, (15)

where [ ] is the downward rounding operation.
The attenuation coefficient at any location l within the calculated thickness is obtained by

Equation (16).
An(l) =

{
A(n∆L)

∣∣∣n = [l/∆L], l ∈ R
}
. (16)

According to the theory of actuator hypothesis [35], the average lift and drag distribution of the
wind turbine in the 2D plane is calculated by Equation (17).

f2D(r) =

[
fL(r)

fD(r)

]
= nbρV2

r c/(4πr)

[
CLeL

CDeD

]
. (17)

The volume force of the discrete fuzzy distribution along the normal direction of the wind turbine
in 3D space is obtained by Equation (18).

f3D(r, l) =

[
fL(r, l)

fD(r, l)

]
= ηnbρV2

r cAn(l)/(4πr∆L)

[
CL
′eL

CD
′eD

]
. (18)

The volume forces at three different dimensions are calculated by Equation (19).

f3D(x, y, z) =




fx
fy

fz



= X2X1 f3D(r, l), (19)

where the original point of the right angle coordinate system is the model center, x-direction is the

axial direction, z-direction is the height direction, X2 =

[
cosφ sinφ
sinφ − cosφ

]
is the transformation matrix
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for a direct coordinate system, X1 =




1 0
0 cosψ
0 sinψ




is the transformation matrix for the normal force as

well as tangential force, and Ψ is the polar angle in a polar coordinate system.

4. SST k-ω Turbulence Model

As shown in Figure 2, the modified SST k-ωmodel is established to obtain the Reynold stress term
of the global RANS model.

The SST k-ω model includes a k-ω model in the outer layer (near the wall) and a k-ε model in the
inner layer (the outer edge of the boundary layer, the free shear layer and the fully developed region of
turbulence) [36]. This method combines the k-ω model and the k-ε model by the mixed function of
weighted average. The k-εmodel has less dependence on the far field condition, and the k-ωmodel has
a high accuracy in the near wall simulation. To improve the simulation accuracy in the strong adverse
pressure gradient and separation flow, a modified vortex viscosity coefficient is proposed. The SST k-ω
two-equation model is expressed by Equation (20).



∂(ρk)
∂t

+
∂(ρuik)
∂x

i
= min

(
µt
∂ui

∂x j

(
∂ui

∂x j
+
∂u j

∂xi

)
, 10β∗ρkω

)

︸                                      ︷︷                                      ︸
turbulent kinetic energy generation term

− β∗ρkω
︸︷︷︸

dissipative term

+
∂

∂x
i

[
(µ+ σkµt)

∂k

∂x
i

]

︸                   ︷︷                   ︸
diffusion term

∂(ρω)
∂t

+
∂(ρuiω)
∂xi

= α′ρS2

︸︷︷︸
turbulent kinetic energy generation term

− β′ρω2

︸︷︷︸
dissipative term

+
∂

∂x
i

[
(µ+ σωµt)

∂ω

∂x
i

]

︸                   ︷︷                   ︸
diffusion term

+ 2(1− F1)ρσω2
1
ω

∂k

∂xi

∂ω

∂xi︸                        ︷︷                        ︸
cross diffusion term

, (20)

where

µt =
a1ρk

max
(
a1ω,

√
2Si jSi jtanh

[(
max

(
2
√

k
β∗ωy , 500µ

ρωy2

))2
]) ,

ξ = F1ξ1 + (1− F1)ξ2 (ξ =
{
α′, β′, σk, σω

}
), (21)

F1 = tanh(min (max



√

k

β∗ωy
,

500µ

ρωy2


,

4ρσω2k

max
(
2σω2ρ

1
ω
∂k
∂x j

∂ω
∂x j

, 10−20
) ))4,

where y is the distance from the nearest wall to the calculation point, and the closed constants are set as:

β∗ = 0.09, a1 = 0.31
α′1 = 5/9, β′1 = 3/40, σk1 = 0.085, σω1 = 0.5 in layer
α′2 = 0.44, β′2 = 0.0828, σk2 = 1, σω2 = 0.856 out layer

If the two-equation model is used to simulate the free stream, the initial value of the inlet boundary
will gradually decrease with the downstream flow. When the fluid approaches to the wind turbine,
the local turbulent variable value is no longer the initial value of the inlet boundary, which may cause
turbulence attenuation.

The turbulent kinetic energy generation term of the equations is zero due to no velocity gradient
in the inlet free flow. The diffusion term and cross diffusion term can be ignored due to no gradient of
turbulence variables. Solving Equation (20), we can obtain the result in the X direction as follows:

ω = ωI

(
1 +

ωIβ
′x

u

)−1

, k = kI

(
1 +

ωIβ
′x

u

)− β∗
β′

(22)

where the index I is the initial inlet boundary, x is the downstream distance, and u is local wind velocity.
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4.1. Hold Source Term

It can be seen from Equation (22) that the turbulent kinetic energy and the specific dissipation rate
will be attenuated from the initial stage of the inlet boundary to the outlet of the computational domain.
Therefore, the turbulence attenuation effect must be corrected in the wake calculation. To reduce the
turbulence attenuation, the dissipative term caused by turbulence attenuation can be offset by adding
the hold source term in the turbulence model. The turbulent equations of the inlet free flow can be
obtained by Equation (23).



∂(ρk)
∂t

+
∂(ρuik)
∂x

i
= −β∗ρkω+ β∗ρkRωR

∂(ρω)
∂t

+
∂(ρuiω)
∂xi

= −β′ρω2 + β′ρωR
2

, (23)

where kR and ωR are the atmospheric real environmental turbulence values calculated by Equation (24).


kR = 3

2 (U0.I0)
2

ωR =
ρkR

µ

(
µt

µ

)−1 , (24)

where U0 is the average velocity of incoming flow, I0 is the atmospheric turbulence intensity, and µt

µ is
the vortex–viscosity ratio.

The new source term is smaller than the dissipative term of the original equation for the wind
turbine wakes region due to the introduced turbulence attenuation. The addition of the hold source
term has little effect on the original SST k-ω model. Meanwhile, to avoid the numerical oscillation
caused by the addition and switch of the hold source term in the free flow region and the non-free flow
region, the hold source term is adopted in the whole computational domain.

The overestimation of the turbulent dissipation rate will result in the slow recovery rate of
the wakes predicted by the RANS model [35]. The higher turbulent kinetic energy can promote the
convection–diffusion between the wake region and the surrounding free fluid, and accelerate the
recovery of wake velocity, which can be obtained by reducing the dissipation term. We reduce the
turbulent dissipation by closure constant correction and correction factor addition, as discussed in the
following subsection.

4.2. Closure Constant Correction

Based on the equilibrium flow theory, the surface friction velocity u* is introduced. The turbulent
kinetic energy k is calculated by Equation (25).

k =
u∗2√
β∗

, (25)

where u∗2/k belongs to [0.17, 0.18], and the turbulent attenuation ratio β∗/β′ is 1.2 [37]. The constant
values of the modified closure are obtained by Equation (26).

{
β∗ = 0.033→ 0.090
β′1 = 0.025→ 0.075

, (26)

4.3. Correction Factor Addition

The purpose of the dissipative correction is to modify the dissipation in the near wake region,
but the previously modified equation is not universal in the whole. In this paper, a dissipative correction
adaptive factor with the full computational domain is proposed. This method can highlight the effect
of the correction term in the near wakes and reduce the correction in other regions. Dissipative item
revision for the k-ω equation is expressed by Equation (27).
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−
(
1 + η3.

ωI

ω

)
β′ρω2, (27)

where η3 = 1 + exp
(
−
(
1− u

u0

)−1
)
.

5. Mesh Partition Method

The Semi-implicit method for pressure-linked equations (SIMPLE) solution is used under Fluent
6.0 solver considering two initial conditions. One is the neutral atmospheric condition, the other is
the wind shear effect. The source term and turbulence are set by the user-defined function. The shear
effect is represented by the logarithmic function.

U(z) =
u∗

K
ln

(
z

z0

)
(28)

where u∗ =
√
τω/ρ is the surface friction velocity, τω is the shear stress, K is the Karman constant and

the value is 0.41, z is the altitude from the ground, and z0 is the surface roughness.
The 3D wind turbine model of the computational domain is completed by SolidWorks. The model

is imported to the Ansys ICEM program to achieve mesh partition as shown in Figure 5. With the
variable size regular hexahedron method, three different mesh average sizes (1/3D, 1/10D and 1/40D)
are applied. The cartesian coordinate system is used, the center of the wind turbine is the coordinate
origin, and the number of meshes is about 0.5 million. Compared with the general hexahedron sweep
method, the developed method saves three-quarters of the mesh number.
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Figure 5. Mesh design scheme.

Figure 6 shows the calculation domain dimension design. The computational domain is extended
25D in the streamwise direction (x-direction), 6D in the lateral direction (y-direction) and 6D in the
vertical direction (z-direction). The wind turbine (mesh size is 1/40D) is located at 0D in the x-direction.
The inner layer encryption region (mesh size is 1/10D) is close to the wind turbine. In the front view,
the inlet of airflow direction is on the left end, and the exit is on the right.
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Figure 6. Calculation domain dimension design.
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6. Simulation Results

6.1. Simulation Setup

To verify the effectiveness of the proposed method, experimental data are acquired from two wind
turbines at Nibe, in Northern Denmark. The experiment data are tested by the actual measurement of
the wind farm [38]. As shown in Figure 7, four meteorological masts (MMs) are placed in a line at
downstream distances, 2.5D, 4D, 6D and 7.5D, concerning the Nibe B wind turbine. The data consist of
average values every 1 min for two years. The specific operating parameters of the wind turbines are
shown in Table 2. The neutral atmospheric condition with wind shear effect is used as the boundary
condition in this paper.

Nib

∞

∞

Ω

Figure 7. Measurement schematics of meteorological masts (MMs) at Nibe.

Table 2. Parameters of the wind turbines.

Parameters Nibe Measurement

Wind turbine model Nibe B
Wind speed (U∞) 8.5 m/s

Turbulence intensity (I∞) 10.1%
Boundary condition Uniform

The wind turbine rotor diameter (D) 40 m
The wind turbine rotor rotating speed (Ω) 34 rpm

The coefficient of axial thrust (CT) 0.89
The wind turbine hub height (ZH) 45 m

Six modified items in two correction modules are proposed to improve the accuracy of the wake
calculation, which are tip loss correction (Equation (7)), hub loss correction (Equation (9)), attack angle
correction (Equation (10)), turbulence attenuation correction (Equation (23)), closure constant correction
(Equation (26)) and dissipative item correction (Equation (27)). Thus, six models are designed and
compared as shown in Table 3.

Table 3. Six models for comparison.

Correction Item Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Tip loss correction
√

× ×
√ √ √

Hub loss correction
√

× ×
√ √ √

Attack angle correction
√ √

×
√ √ √

Turbulence attenuation correction
√ √ √

×
√ √

Closure constant correction
√ √ √

× ×
√

Dissipative item correction
√ √ √

× × ×

243



Energies 2020, 13, 4430

6.2. Velocity Field under the Uniform Inflow Condition

6.2.1. Comparison and Analysis of Velocity Field Results at the Center Axis

Figure 8 shows the influence of each correction item on the change in wake velocity. The comparison
between model 1 and exe1 (measured at Nibe) data shows that all the six correction items can ensure
the agreement between the calculated results and the experimental values. The overall velocity changes
to the lowest value of 0.48 at the position of 2.5D behind the wind turbine, increases rapidly in the
near wake region, and reaches 0.64 and 0.75 at 4D and 6D, respectively. The overall velocity slowly
increases in the far wake region and reaches 0.85 and 0.97 at 7.5D and 20D, respectively.

√ √ √ √
√ √ √ √
√ √ √ √ √

√ √ √ √ √

√ √ √ √

√ √ √

 

– –

–

Figure 8. Velocity field at the center axis.

The comparison between models 2 and 3 and model 1 shows the influence of three correction
items on the position and amount of wake velocity valley. Models 2 and 3 overestimate the wake drop
velocity at the valley by 0.41 and 0.38, respectively. The results show that the correction of tip loss and
hub loss reduces the overestimated volume source term by a large margin. The correction of the attack
angle can also adjust the valley value.

The comparison between models 4–6 and models 1–3 shows the effects of the modified turbulence
equation on the wake velocity recovery, especially in the far wake region. At 20D, the velocity recovery
of models 4–6 is slower than that of model 1 in the far wake region with 0.79, 0.81, 0.87, respectively,
while models 2 and 3 can still show a faster recovery velocity in the far wake region with 0.88, 0.89,
respectively, which indicates that the three turbulence correction terms could affect the far wakes. The
recovery of far wakes is significantly higher in model 1 than models 5 and 6. This shows that increasing
the sealing parameter and reducing the dissipative term affect the increase in velocity recovery.

6.2.2. Correction Velocity Results at the Different Cross-Sections of Axial Direction

Figure 9a shows that the correction of the wind turbine model wake field is obvious in the near
wake region. The comparison between model 2 and model 3 shows that the modification of tip loss and
hub loss can effectively narrow the profile velocity change curve and reduce the expansion range of the
wake flow field. At the same time, the velocity valley value is increased from 0.38 to 0.42 due to the
decreasing of the volume source term by the blade tip and hub modification. Meanwhile, the valley
difference between model 1 and model 4 is only 2%. The whole curvature is nearly closed to model 1,
which indicates that the correction of the turbulence equation in the near wakes has less effect.

Figure 9b indicates that the effect of turbulence correction increases gradually with the increase in
horizontal distance, while the effect of wind turbine correction gradually decreases. The comparison
between model 1 and model 4 indicates that the wake velocity recovery without turbulence correction
is not satisfactory, as the velocity changes from higher than 2% at 2.5D to lower than 5% at 4D.

Figure 9c shows that the correction of the turbulence equation in the far wakes of the wind turbine
is obvious. Compared with models 4 and 5, the correction effect of the decreasing dissipation term in
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model 6 is obvious in the range of −1.5D to 1.5D in the y-direction, which causes the wind velocity
curve to reach to the maximum. On the whole, comparing the 7.5D section with the 2.5D section,
the velocity from the 0.5D to 1D in the y-direction gradually decreases in the axial direction.

 

(a) At 2.5D 

 
(b) At 4D 

 
(c) At 7.5D 

−

Figure 9. Correction velocity at the different cross-sections of axial direction.

6.2.3. Velocity at Different Altitudes

Figure 10 demonstrates that the valley position moves forward slightly from 2.5D to the horizontal
distance with the increasing height. There is no significant change in the near and far wake regions.
The wake drop slows down after 0.3D and increases from 3% to 10–20% per 0.1D in the direction of height.

Figure 11 indicates that the expansion effect is obvious in the 10D range behind the wake,
and shows a nonlinear boundary curve. The expansion range decreases gradually, and the nonlinearity
of the expansion boundary curve decreases with the increasing elevation. When compared with
Figure 11a,b, the velocity valley decreases from 0.48 at 0D to 0.58 at 0.3D, and the velocity gradient
decreases gradually. The range of wake expansion at 0D is a reference for the wake velocity model,
which is used in the microscopic site selection of a flat surface.
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(a) center axis 

 
(b) the cross-section at 2.5D 

Figure 10. Velocity comparison at 0D, 0.15D, 0.3D and 0.45D heights.
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(a) 0D 

 
(b) 0.3D 

ω

“ ” “ ”
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Figure 11. Wake velocity clouds on the neutral layer of different heights.
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6.3. Turbulence Field Result under the Uniform Inflow Condition

It can be seen from Figure 12 that the initial turbulence intensity of models 1, 5 and 6 is maintained
in the free flow region. The result of model 4 shows that the turbulence attenuation is not corrected.
In the near wake region of the wind turbine, the turbulence intensity simulated by models 1, 5 and 6 is
higher than that of model 4. Notably, the result of model 5 is about 30% higher than that of model 4.
With the increasing position, the wake effect starts to weaken, and the turbulence intensity decreases
correspondingly. The performance of model 1 is the best, as the result of the modified model is also
extremely close to the experimental value with 16% at the peak. As the dissipative term of model
1 is about twice that of the original one, the specific dissipation rate is lower, and the turbulence
intensity is larger.

 

(a) Model 4 

 
(b) Models 1, 5 and 6 

ω

“ ” “ ”
–

Figure 12. The turbulence of different models at the central axis.

As shown in Figure 13, the result of the 2.5D position shows that the standard SST k-ω model
underestimates the magnitude of turbulence intensity qualitatively, but the model can well predict the
“double peak” effect of turbulence intensity. The “double peak” effect of turbulent intensity weakens
gradually with the development and fragmentation of the tip vortex convection–diffusion of wakes,
and the shear mixing layer continues to expand, which can be seen from the distribution of turbulence
intensity at 4D. Through the comparison of models 1 and 3–6, it can be seen that the modified wind
turbine model has no obvious effect on the turbulence field. At the same time, the effect of each
turbulence correction term is obvious. The proposed model is more effective than model 5.

The turbulence intensity above the Z = 0D plane is shown in Figure 14. The maximum turbulence
intensity is 21.8%. The whole variation of the “double peak” effect can be seen. In the y-direction,
the turbulent peak occurs mainly at ±0.5D (the blade tip), and the diffusion range is from −1D to 1D.
In the x-direction, a rapid decay state that approaches the inlet turbulence value after 2.5 D is observed.
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(a) 2.5D 

 
(b) 4D 
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Figure 13. Turbulence intensity at the different cross-sections of the axial direction.

–

the “ ”
−

 

Figure 14. Distribution of turbulence intensity on the z = 0 plane.

6.4. Computation Evaluation

Table 4 shows the computational cost of different schemes.

Table 4. Mesh number for three items.

Average Size
Proposed Scheme

(Thousand)
Scheme A [32]

(Thousand)
Scheme B [22]

(Thousand)

1/3D 30 20 150
1/10D 500 400 900
1/40D 2000 1500 3800

Compared with Denmark’s 2D mesh scheme (Scheme A) [25], the mesh amount of our scheme is
slightly larger than scheme A. However, it should be noted that scheme A sacrifices the third dimension
of mesh modeling. Compared with Xu’s half-axis hypothesis 3D scheme (Scheme B) [34], the mesh
amount of our scheme is substantially less than scheme B under the same average size, although
scheme B uses axisymmetric assumptions to build only a half 3D model.
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7. Conclusions

This paper proposes a modified Reynolds-averaged Navier–Stokes (MRANS)-based wind turbine
wake model to simulate wake effects. Based on the correction module, the proposed BEM-fuzzy
aerodynamic model can amend the inconsistent condition between wake simulation and experiment
tests, which affects the simulation of the near wake. For the turbulence model, the turbulence
attenuation is effectively avoided by adding the hold source term to ensure the global correctness of
boundary conditions. The accuracy of the turbulence intensity distribution is improved by correcting
the closure constant and the dissipation term. The turbulence model affects the whole wakes, especially
the far wakes.

The simulation results of the velocity field and turbulent field with the proposed approach
are consistent with the data of real wind turbines, which verifies the effectiveness of the proposed
approach. Furthermore, the computation efficiency is significantly improved by the developed mesh
partition method.
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