
Edited by

Carnot Cycle 
and Heat Engine 
Fundamentals 
and Applications II

Michel Feidt

Printed Edition of the Special Issue Published in Entropy

www.mdpi.com/journal/entropy



Carnot Cycle and Heat Engine
Fundamentals and Applications II





Carnot Cycle and Heat Engine
Fundamentals and Applications II

Editor

Michel Feidt

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin



Editor

Michel Feidt

University of Lorraine

France

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Entropy (ISSN 1099-4300) (available at: https://www.mdpi.com/journal/entropy/special issues/

Carnot Cycle II).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-3260-8 (Hbk)

ISBN 978-3-0365-3261-5 (PDF)

© 2022 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.



Contents

About the Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Michel Feidt

The Carnot Cycle and Heat Engine Fundamentals and Applications II
Reprinted from: Entropy 2022, 24, 230, doi:10.3390/e24020230 . . . . . . . . . . . . . . . . . . . . 1

Michel Feidt and Monica Costea

A New Step in the Optimization of the Chambadal Model of the Carnot Engine
Reprinted from: Entropy 2022, 24, 84, doi:10.3390/e24010084 . . . . . . . . . . . . . . . . . . . . . 5

Shuangshuang Shi, Lingen Chen, Yanlin Ge and Huijun Feng

Performance Optimizations with Single-, Bi-, Tri-, and Quadru-Objective for Irreversible Diesel
Cycle
Reprinted from: Entropy 2021, 23, 826, doi:10.3390/e23070826 . . . . . . . . . . . . . . . . . . . . 15

Monica Costea, Stoian Petrescu, Michel Feidt, Catalina Dobre and Bogdan Borcila

Optimization Modeling of Irreversible Carnot Engine from the Perspective of Combining Finite
Speed and Finite Time Analysis
Reprinted from: Entropy 2021, 23, 504, doi:10.3390/e23050504 . . . . . . . . . . . . . . . . . . . . 33

Ruibo Wang, Yanlin Ge, Lingen Chen, Huijun Feng and Zhixiang Wu

Power and Thermal Efficiency Optimization of an Irreversible Steady-Flow Lenoir Cycle
Reprinted from: Entropy 2021, 23, 425, doi:10.3390/e23040425 . . . . . . . . . . . . . . . . . . . . 59

Chenqi Tang, Lingen Chen, Huijun Feng and Yanlin Ge

Four-Objective Optimizations for an Improved Irreversible Closed Modified Simple Brayton
Cycle
Reprinted from: Entropy 2021, 23, 282, doi:10.3390/e23030282 . . . . . . . . . . . . . . . . . . . . 71
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Editorial

The Carnot Cycle and Heat Engine Fundamentals and
Applications II

Michel Feidt

Laboratory of Energetics, Theoretical and Applied Mechanics (LEMTA), URA CNRS 7563, University of Lorraine,
54518 Vandoeuvre-lès-Nancy, France; michel.feidt@univ-lorraine.fr

This editorial introduces the second Special Issue entitled “Carnot Cycle and Heat
Engine Fundamentals and Applications II” https://www.mdpi.com/si/entropy/Carnot_
Cycle_II (accessed on 29 January 2022).

The editorial of this Special Issue comes after the review process. Nine papers have
been published between 26 February 2021 and 4 January 2022 due to the COVID-19
pandemic. These papers are listed hereafter in the inverse order of date of publication.
Thanks to all the authors for the various viewpoints expressed that unveil fundamental
and application aspects of the Carnot cycle and heat engines.

Authors are from Europe (four papers) and China (five papers). Each paper has been
viewed by 400 to 1100 persons, except the last published one. Four papers have been
presently cited 8 to 20 times.

Five papers address heat engines and Carnot configurations [1–5]. Papers by [2,4,5]
concern, respectively, diesel engine, Lenoir, and Brayton cycles. The papers by [1,2] are
related to Carnot engines. However, these five papers address real, irreversible cases.
Three papers from Chinese authors [2,4,5] deal with finite-time thermodynamics (FTT).
Papers by [2,5] use numerical methods such as genetic algorithm NASCA II (through
LINMAP method, TOPSIS method, and Shannon entropy method) to optimize engines.
The various objectives considered include power, power density, ecological function, and
first law efficiency.

The paper that discusses the Lenoir cycle is from a more conventional point of view.
It deals with the steady flow (such as Chambadal's original modeling). Objectives are
power and first law efficiency. The corresponding allocation of heat transfer conductance is
proposed, due to finite size constraints (i.e., the Utotal imposed).

In [2], the authors consider the optimization of an irreversible Carnot engine, com-
paring the FTT approach to the finite speed thermodynamics approach (FST). The direct
method combined with the first law efficiency takes irreversibility into account (heat
transfer gradients, pressure losses, and mechanical frictions). The main results include
the following:

- Maximum energy efficiency differs from maximum power through different variable
piston speed values;

- Results obtained through the FST method are different from those obtained from the
Curzon–Ahlborn model (with time duration), due to the steady-state hypothesis.

Paper [1] concerns the modified Chambadal model of Carnot engines. It, too, addresses
irreversibility but from a global point of view. This paper completes and improves the
one proposed in the preceding Special Issue. A sequential optimization corresponding to
various finite physical dimensions constraints is developed with the three objectives of
energy, first law efficiency, and power. Two new concepts of entropic action are proposed
and used—entropic action relative to production of entropy and entropic action relative to
the transfer of entropy.

Entropy 2022, 24, 230. https://doi.org/10.3390/e24020230 https://www.mdpi.com/journal/entropy

1



Entropy 2022, 24, 230

Papers by [6,7] extend the configuration from engines to reverse cycle machines
including Stirling refrigerating machine [6] and Brayton refrigerating machine [7]. The
paper by [7] combines, in fact, direct and inverse Brayton cycles, constituting more of a
system, with regeneration purposes (regeneration before the inverse cycle). Constraints
regarding pressure losses and size are considered.

The study by [6] is, in fact, related to the paper by [7], published in the preceding
Special Issue: It discusses a finite physical dimension in a Stirling refrigerating machine
according to Schmidt modeling. The paper uses entropy and exergy analysis. The most
important irreversibility mechanisms are thermal ones and, more precisely, those due
to regeneration.

Papers of [8,9] are specific but very interesting.
In [8], the authors discuss the chemical aspects of entropy and exergy analysis, includ-

ing reconsideration of concepts and definitions relating the entropy–exergy relationship,
with applications in industrial engineering and biotechnologies. The main objective is
to evaluate the performance associated with all interactions between the system and the
external environment. This is a crucial challenge today due to environmental concerns.

Paper by [9] is related to a very important and up-to-date subject—superconducting
quantum circuits. It concerns a new approach mixing finite-time and quantum thermo-
dynamics: quantum heat engine cycle. Closely linked to these fundamental aspects are
corresponding applications for quantum computers.

To conclude, this second Special Issue confirms and improves the preceding one in
terms of the following aspects:

• Systematic consideration of irreversibility (more than endo-reversibility);
• Two ways of optimization—namely, sequential (mainly analytical) and multiobjective

(mainly numerical) approaches;
• Various objectives including energy, power, and first law efficiency for the most

used approach;
• Various constraints; from a general point of view, the use of what we introduce as

finite physical dimensions of optimal thermodynamics (FDOT) with finite constraints
(see the book of the author of this editorial);

• The evolution of research from basic cycle to complex systems.

Perhaps these features could pave the way toward a third Special Issue, to expand and
build upon concepts and approaches presented thus far.

Funding: This research received no external funding.

Acknowledgments: We express our thanks to the authors of the above contributions, and to the
journal Entropy and MDPI for their support during this Special Issue.

Conflicts of Interest: The author declares no conflict of interest.
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Article

A New Step in the Optimization of the Chambadal Model of
the Carnot Engine

Michel Feidt 1 and Monica Costea 2,*
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060042 Bucharest, Romania
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Abstract: This paper presents a new step in the optimization of the Chambadal model of the Carnot
engine. It allows a sequential optimization of a model with internal irreversibilities. The optimization
is performed successively with respect to various objectives (e.g., energy, efficiency, or power when
introducing the duration of the cycle). New complementary results are reported, generalizing those
recently published in the literature. In addition, the new concept of entropy production action
is proposed. This concept induces new optimums concerning energy and power in the presence
of internal irreversibilities inversely proportional to the cycle or transformation durations. This
promising approach is related to applications but also to fundamental aspects.

Keywords: optimization; Carnot engine; Chambadal model; entropy production action; efficiency at
maximum power

1. Introduction

Sadi Carnot had a crucial contribution to thermostatics that designated him as a co-
founding researcher of equilibrium thermodynamics. He has shown that the efficiency
of a thermo-mechanical engine is bounded by the Carnot efficiency ηC [1]. Assuming an
isothermal source at THS, and an isothermal sink at TCS < THS, and in between the cycle
composed by two isothermals in perfect thermal contact with the source and sink, and two
isentropics, he obtained:

ηC = 1 − TCS
THS

. (1)

Since that time, many papers have used the keyword “Carnot engine” (1290 papers
from Web of Science on 17 September 2021). That same day on Web of Science, we noted
104 papers related to the keyword “Carnot efficiency”.

Among these papers, some are related to the connection between energy, efficiency,
and power optimization. The most cited paper is probably that of Curzon and Ahlborn [2,3].
These authors proposed in 1975 an expression of the efficiency according to the first law
of thermodynamics ηI(MaxW) at the maximum mechanical energy and at the maximum
power

.
W for the endo-reversible configuration of the Carnot cycle (no internal irreversibility

for the converter in contact with two isothermal heat reservoirs):

ηI,endo(MaxW) = 1 −
√

TCS
THS

(2)

This result is well-known as the nice radical, and it has been recently reconsidered
in the previous Special Issue Carnot Cycle and Heat Engine Fundamentals and Applications

Entropy 2022, 24, 84. https://doi.org/10.3390/e24010084 https://www.mdpi.com/journal/entropy
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I [3] and particularly in [4]. This last paper reports on the progress in Carnot and Cham-
badal modeling of thermomechanical engines by considering entropy production and heat
transfer entropy in the adiabatic case (without heat losses).

The proposed paper gives back the basis of the modeling and a summary of the
main results obtained recently for an endo-irreversible Carnot engine. Furthermore, the
performance analysis of an extended Chambadal configuration is considered by including
the converter irreversibilities. Emphasis is placed on the entropy production method, which
is preferred over the ratio method.

2. Summary of Obtained Results for Carnot Endo-Irreversible Configuration

The consideration of endo-irreversible Carnot engine modeling was recently devel-
oped [5]. The approach considering as a reference the heat transfer entropy released at the
sink ΔSS (maximum entropy available at the source in the reversible case) [5] confirmed
that the work per cycle results (see Appendix A):

W = (THS–TCS)(ΔSS–ΔSI), (3)

where ΔSI is the entropy production due to the internal irreversibilities of the cycle through-
out the four thermodynamic transformations (two adiabatic and two isothermal ones).

For an engine without thermal losses, the following expression of the thermal efficiency
was retrieved:

ηI = ηC(1 − dI), (4)

where dI =
ΔSI
ΔSS

is a coefficient of the converter’s internal irreversibility during the cycle.
This parameter was introduced by Novikov [6] and Ibrahim et al. [7] in slightly

different forms.
The reversible limit (dI = 0) in Equation (4) restores the Carnot cycle efficiency associ-

ated with equilibrium thermodynamics.
Since the reversibility is unattainable, it appears that the optimization (maximization)

of the mechanical energy at the given parameters (ΔSS, THS, and TCS) is related to the
minimization of the entropy production (as was proposed by Gouy [8]).

The assumption that each of the four transformations of the endo-irreversible cycle
takes place with a duration τi (i = 1–4), leading to the inverse proportionality to τi of the
corresponding entropy production:

ΔSIi =
CIi
τi

, (5)

where CIi represents the irreversibility coefficients, whose unit is Js/K [5].
These coefficients are irreversible entropic actions by analogy to the energy (mechanical)

action (Js).
By performing cycle energy optimization using the Lagrange multipliers method with

the constraint of the cycle’s finite time duration τ, one obtains the maximum work per
cycle [5]:

Max1W = Wendo − ΔTS
τ

(
∑i

√
CIi

)2
, (6)

where ΔTS = THS − TCS.
The efficiency at the maximum finite time work becomes

ηI(Max1W) = ηC

(
1–

(
∑i

√
CIi
)2

τ·ΔSS

)
, (7)

where τΔSS is the available entropic transfer action of the cycle.
The new result provided by Equation (7) gives back the Carnot efficiency limit for

the reversible case (CIi = 0). These calculations have been pursued for the case of power

6
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optimization, where ΔSS, THS, and TCS remain parameters. It was shown that a value of the

cycle duration τ∗ corresponding to Max
.

W, the mean power output over the cycle, exists,
and it is expressed as

τ∗ = 8
CIi
ΔSS

, (8)

and

Max
.

W =
ΔTS·ΔSS

2

16 CIi
. (9)

Equation (9) proves that Max
.

W is a decreasing function of the total entropic action of
the cycle and that the associated efficiency with the maximum of the mean power corre-
sponds to half the Carnot efficiency, as appeared repeatedly in some recent works [9–11].

3. Summary of the Obtained Results for the Chambadal Configuration

In the present paper, we intend to reconsider the approach of the Chambadal model
of a Carnot engine [12]. This configuration is common for thermomechanical engines,
since the cold sink mainly refers to the environment (i.e., the atmosphere or water sink).
This corresponds to the Chambadal approach (Figure 1), with a temperature gradient
at the hot source (THS, TH) but with perfect thermal contact at the sink (TCS or T0 at
ambient temperature).

Figure 1. Representation of the associated cycle with the Chambadal engine in a T-S diagram.

We propose here to extend the results (Equations (6)–(9)) to enhance the Chambadal
configuration modeling. This extension starts from the endo-irreversible case, to which
external irreversibilities due to heat transfer between the hot finite source and the converter
are added. Thus, the new results obtained complete the endo-irreversible Carnot model [5]
and an earlier paper on Chambadal configuration [12].

3.1. The Modified Chambadal Engine

To help understand the extension of the modeling in Section 3, we report here the case
with the following hypothesis:

1. Adiabaticity (no thermal losses);
2. Linear heat transfer law at the source such that

QH = GH(THS–TH), (10)

where GH is the heat transfer conductance expressed by GH = KHτ when we consider
the mean value over the cycle duration τ or GH = K′

HτH when we consider the mean

7
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value over the isothermal heat transfer at the hot source (as was performed by Curzon
and Ahlborn [2]).

Equation (10) corresponds to the heat expense of the engine.
Note that other heat transfer laws, namely the Stefan–Boltzmann radiation law, the

Dulong–Petit law, and another phenomenological heat transfer law can be considered in
the maximum power regime search [13];

3. Presence of irreversibility in the converter (internal irreversibility).

Two approaches are proposed in the literature, which introduce the internal irre-
versibility of the engine by (1) the irreversibility ratio IH, [6,7], respectively (2) the entropy
production over the cycle ΔSI, [5].

We preconized this second approach for a long time. We also note that the origi-
nal model of Chambadal is endo-reversible [14]. Hence, we prefer to name the present
model the “modified Chambadal model” due to some other differences that will be
specified hereafter.

Note that only the second approach regarding the presence of irreversibilities in the
converter will be considered in the following section.

3.2. Optimization of the Work per Cycle of the Modified Chambadal Engine with the Entropy
Production Method

The first law of thermodynamics applied to the cycle implies conservation of energy,
written as

W = Qconv − QS (11)

where Qconv and QS are defined in Appendix A.
One supposes here that ΔSI is a parameter representing the total production of entropy

over the cycle composed by four irreversible transformations. Thus, the entropy balance
corresponds to

Qconv

TH
+ ΔSI =

QS
T0

. (12)

By combining Equations (11) and (12), we easily obtained

W = Qconv

(
1 − T0

TH

)
− T0ΔSI . (13)

If Qconv (ΔSconv) is a given parameter, we retrieve the Gouy-Stodola theorem stating
that Max W corresponds to min ΔSI with the known consequences reported in Section 4.1.

3.3. Optimization of the Work per Cycle of the Modified Chambadal Engine with the Heat
Transfer Constraint

In this case, the energy balance between the source and isothermal transformation
implies the combination of Equations (13) and (A1):

W = (QH − THΔSIH)

(
1 − T0

TH

)
− T0ΔSI . (14)

Knowing QH from Equation (10), one obtains

W = GH(THS–TH)

(
1 − T0

TH

)
− THΔSIH − T0ΔS′

I , (15)

where ΔS′
I = ΔSIEx + ΔSIC + ΔSICo.

The maximum of W with respect to TH is obtained for

T∗
H =

√
THST0

1 + sI
, (16)

8
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where sI =
ΔSIH
GH

, a specific ratio relative to the irreversible isothermal transformation TH.
Finally, the expression of Max1W yields

Max1W = GH

(√
THS −

√
(1 + sI)T0

)2
− T0ΔSI . (17)

4. Complement to the Previous Results

Now, we will consider the time variable related to entropy production for each ther-
modynamic transformation, defined as ΔSIi =

CIi
τi

. This form of the entropy production
satisfying the second law induces that the entropy production method is well adapted to
subsequent optimizations of energy and power as well.

4.1. Work Optimization Relative to the Time Variables

The expression of Max1W with GH as an extensive parameter (Equation (17)) shows
that Max1W is always the optimum in the endo-reversible case. Nevertheless, if there are
separate irreversibilities for each cycle transformation (as is the case with finite entropic
actions), the irreversibility on the high temperature isotherm possesses a specific role (see
Equation (17) and the sI ratio).

The constraint on the transformation duration or preferably frequencies fi (finite
cycle duration) allows one to seek for the optimal transformation duration allocation (see
Appendix B for the derivation).

We obtained Max2W for the following optimal durations:

τH
∗ =

√√
T0THS

CIH
λ

, (18)

and

τi
∗ =

√
T0CIi

λ
, (19)

where λ is given in Appendix B and i = Ex, C, Co.
Thus, the second optimization of W (see Appendix B) leads to

Max2W ≈ Wendo − T0

τ
N2 . (20)

Furthermore, a third sequential optimization could be performed by considering the fi-
nite entropic action as a new constraint. This case is not developed here for brevity reasons.

4.2. Power Optimization in the Case of a Finite Heat Source (When GH Is the Parameter)

The mean power of the modified Chambadal cycle for the condition of maximum
work Max2W is defined by

.
W(Max2W) =

Wendo
τ

–
T0

τ2 N2, (21)

where Wendo = GH
(√

THS –
√

T0
)2 is the mechanical work output of the endo-reversible engine.

The power is maximized with respect to the cycle period τ. Thus, the expression of
the optimum period is

τ∗ = 2T0N2

Wendo
. (22)

This expression is analogous to the similar results obtained in [5], leading to

Max
.

W =
Wendo

2

4T0N2 . (23)

9
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The action of entropy production appearing in N diminishes the mean power of
the engine. At the given endo-reversible work, the maximum power corresponds to the
minimum of the N function, depending on the four entropy actions of the cycle, such that

N =

√
T0

THS
CIH +

√
CIEx +

√
CIC +

√
CICo . (24)

The main difference between Equation (23) and the previous results [5] comes from
the imperfect heat transfer between the source and the converter in the Chambadal model.

5. Discussion

This paper proposed that the Special Issue Carnot Cycle and Heat Engine Fundamentals
and Applications II completes the previous paper [12] published in Special Issue 1 and adds
new results to a recently published paper [5].

Whatever variable is chosen for the modified Chambadal model work optimization
(TH or ΔS), the same optimum for the work per cycle is obtained with parameters GH, THS,
and T0.

It appears that by introducing the duration of each transformation τi and the period of
the cycle τ, the modified Chambadal model satisfies the Gouy-Stodola theorem. At the min-
imum of entropy production, the optimal durations are dependent on the transformation
entropy actions. This result is new to our knowledge.

This new concept [5] allows a new subsequent sequential optimization. The optimal
allocation of the entropy action coefficients is slightly different from the equipartition (a
new form of the equipartition theorem [15,16]).

Thus, the fundamental aspect related to irreversibilities through the new concept of
entropy production action seems promising. Furthermore, this new concept could contribute
to the improvement of the global system analysis by conducting optimal dimension alloca-
tion. In this respect, finite physical dimensions analysis could be a complementary way to
correlate with exergy analysis.

Further extensions of this work are foreseen in the near future.

6. Conclusions

Similarities and differences present in the literature regarding the optimization of
energy, first law efficiency, and power of the modified Chambadal engine have been
resituated and summarized since the publication of [12].

This approach allows for highlighting the evolution of the obtained results from the
reversible Carnot engine case (thermostatics) to the endo-irreversible models related to the
approaches of Novikov [6] and Ibrahim et al. [7] or to the entropy production method that
we promote.

By generalizing a proposal from Esposito et al. [9] and defining the new concept of
entropic action through a coefficient CI (Js/K) for the entropy production of transformations
all along the cycle, we achieved a new form of power optimization different from the one
of Curzon and Ahlborn, since the internal converter irreversibilities and the heat transfer
irreversibility between the heat source and converter were accounted for.

The maximum work per cycle was obtained for the irreversible cycle case. It depended
on the entropic action coefficient of the four transformations of the cycle CIi, after which
the power of the engine was sequentially optimized.

An optimal period of the cycle τ* appeared, corresponding to the maximum mean
power of the cycle. It generalized the recent published results [5] for a modified Cham-
badal engine.

This research continues to be developed by our team to obtain more general results.
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Appendix A. Work per Cycle of the Modified Chambadal Engine with the Entropy

Production Method

ΔSIH 

ΔSIC 

ΔSconv 

2 

ΔSIEx 

1 

ΔSICo 

4 4’ 3 

ΔSS 

T0 

T 

S  

ΔSC 

TH 
2’ 

THS 

ΔSH 

Figure A1. Carnot engine cycle with internal irreversibilities along the four transformations of the
cycle, illustrated in a T-S diagram.

It results from Figure A1 that the various heats exchanged over the irreversible cycle
(1–2–3–4) are expressed as follows:

• QH = THΔSH is the heat received by the cycled medium from the hot source (energy
expense), corresponding to the heat transfer at the hot side;

• Qconv = THΔSconv, heat converted in mechanical energy during the isothermal process
at TH , with corresponding production of entropy ΔSIH such that:

Qconv = TH(ΔSH − ΔSIH). (A1)

• QC = T0ΔSC, where ΔSC = ΔSS − ΔSIC.

Note that ΔSIC is the entropy production during the irreversible isotherm at T0 and
ΔSS is the entropy rejected to the sink such that QS = T0ΔSS.

Thus, the entropy balance over the cycle is

ΔSconv + ΔSI = ΔSS (A2)

The total entropy production over the cycle ΔSI is represented by

ΔSI = ΔSIH + ΔSIEx + ΔSIC + ΔSICo, (A3)

where
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ΔSIH is the entropy production during the isothermal transformation at TH, ΔSIE is
the entropy production during the adiabatic expansion from TH to T0, ΔSIC is the entropy
production during the isothermal transformation at T0, and ΔSICo, is the entropy production
during the adiabatic compression from T0 to TH.

The energy balance over the cycle for the system comprising the converter, the heat
source, and the sink (with the source and sink as perfect thermostats) provides

W = Qconv − QS. (A4)

Various forms of mechanical energy are obtainable from this point by combining the
preceding relations. Thus, one may express W as follows:

1. With ΔSconv as the reference entropy:

W = THΔSconv − T0ΔSS, (A5)

W = (TH − T0)ΔSconv − T0ΔSI . (A6)

2. With ΔSS as the reference entropy:

W = (TH − T0)ΔSS − THΔSI . (A7)

3. With ΔSS or ΔSS as the reference entropy:

W = TH(ΔSH − ΔSIH)− TC(ΔSC + ΔSIC). (A8)

We prefer to choose between Equations (A6) and (A7). Note that Equation (A7) was
the one used by Esposito et al. [9].

We use Equation (A6) here because it gave back known results, particularly the Gouy-
Stodola theorem, with ΔSconv being a parameter. Thus, the maximum energy occurs when
ΔSI = 0 such that

Wendo = (TH − T0)ΔSconv. (A9)

This corresponds to the endo-reversible model of Chambadal.
In Section 3, we proposed a complete Chambadal model taking account entropy

production all along the cycle.

Appendix B. Work Optimization Relative to Time (Frequency)

Using the Lagrange multipliers method with the frequencies fi =
1
τi

as variables, we
get the following function:

L( fi) =
(√

GHTHS −√
(GH + CIH fH)T0

)2

−T0(CIH fH + CIEx fEx + CIC fC + CICo fCo)

−λ
(

1
fH

+ 1
fEx

+ 1
fC
+ 1

fCo
− τ

)
.

(A10)

The vector of optimal values is

f ∗Ex =

√
λ

T0CIEx
; f ∗C =

√
λ

T0CIC
; f ∗Co =

√
λ

T0CICo
, (A11)

Additionally, the following is a non-linear equation to solve numerically for f ∗H :

f 2
H = λ

√
GH + CIH fH

GH

1√
THST0CIH

. (A12)
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In the reasonable case of low irreversibility on the TH isotherm (CIH fH � GH), a good
approximation of f ∗H is

f ∗H =

√
λ√

THST0CIH
. (A13)

The finitude constraint on τi allows for determining the
√

λ expression as

√
λ =

N
√

T0

τ
, (A14)

where

N =

√
T0

THS
CIH +

√
CIEx +

√
CIC +

√
CICo . (A15)

Finally, we get

Max2W ≈ Wendo − T0

τ
N2 . (A16)
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Abstract: Applying finite time thermodynamics theory and the non-dominated sorting genetic
algorithm-II (NSGA-II), thermodynamic analysis and multi-objective optimization of an irreversible
Diesel cycle are performed. Through numerical calculations, the impact of the cycle temperature
ratio on the power density of the cycle is analyzed. The characteristic relationships among the cycle
power density versus the compression ratio and thermal efficiency are obtained with three different
loss issues. The thermal efficiency, the maximum specific volume (the size of the total volume of
the cylinder), and the maximum pressure ratio are compared under the maximum power output
and the maximum power density criteria. Using NSGA-II, single-, bi-, tri-, and quadru-objective
optimizations are performed for an irreversible Diesel cycle by introducing dimensionless power
output, thermal efficiency, dimensionless ecological function, and dimensionless power density as
objectives, respectively. The optimal design plan is obtained by using three solution methods, that
is, the linear programming technique for multidimensional analysis of preference (LINMAP), the
technique for order preferences by similarity to ideal solution (TOPSIS), and Shannon entropy, to
compare the results under different objective function combinations. The comparison results indicate
that the deviation index of multi-objective optimization is small. When taking the dimensionless
power output, dimensionless ecological function, and dimensionless power density as the objective
function to perform tri-objective optimization, the LINMAP solution is used to obtain the minimum
deviation index. The deviation index at this time is 0.1333, and the design scheme is closer to the
ideal scheme.

Keywords: irreversible Diesel cycle; power output; thermal efficiency; ecological function; power
density; finite time thermodynamics

1. Introduction

As a further extension of traditional irreversible process thermodynamics, finite time
thermodynamics [1–13] have been applied to analyze and optimize performances of actual
thermodynamic cycles, and great progress has been made. The application of finite time
thermodynamics to study the optimal performance of Diesel cycles represents a new
technology for improving and optimizing Diesel heat engines, and a new method for
studying Diesel cycles has been developed. Assuming the working fluid’s specific heats are
constants [14–24] and vary with its temperature [25–32], many scholars have studied the
performance of irreversible Diesel cycles with various objective functions, such as power
output (P), thermal efficiency (η), and ecological functions (E, which was defined as the
difference between the exergy flow rate and the exergy loss).

In addition to the above objective functions, Sahin et al. [33,34] took power density (Pd,
defined as the ratio of the cycle P to the maximum specific volume) as a new optimization
criterion to optimize Joule–Brayton engines and found that the heat engine designed under
the Pd criterion has higher η and a smaller size when no loss is considered. Chen et al. [35]

Entropy 2021, 23, 826. https://doi.org/10.3390/e23070826 https://www.mdpi.com/journal/entropy
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introduced the objective function Pd into the thermodynamic analysis and optimization
of the Atkinson cycle. Atmaca and Gumus [36] compared and analyzed the optimal
performance of a reversible Diesel cycle based on the P, Pd, and effective P (which was
defined as the product of power output and thermal efficiency) criteria. Raman and
Kumar [37] conducted thermodynamic analysis and optimization of a reversible Diesel
cycle under the criteria of P, Pd, and effective P when the working fluid’s specific heats
were linearly functioning with temperature. Rai and Sahoo [38] analyzed the influences
of different losses on the effective P, effective Pd, and total heat loss of an irreversible
Diesel cycle when the working fluid’s specific heats were non-linearly functioning with
temperature. Gonca and Palaci [39] analyzed and compared design parameters under the
effective P and effective Pd criteria of an irreversible Diesel cycle.

The research mentioned above only optimized a single-objective function and did not
optimize multiple objective functions at the same time. Therefore, NSGA-II can be used to
solve a multi-objective optimization (MOO) problem, and MOO can be performed for the
combination of different objective functions.

Ahmadi et al. [40–43] carried out MOO for an irreversible radiant heat engine [40], fuel
cell combined cycle [41,42], and Lenoir heat engine [43] with different objective functions.
Shi et al. [44] and Ahmadi et al. [45] performed MOO of the Atkinson cycle when the work-
ing fluid’s specific heats were constants [44] and varied with temperature non-linearly [45].
Gonzalez et al. [46] performed MOO on P, η, and entropy generation of an endoreversible
Carnot engine and analyzed the stability of the Pareto frontier. Ata et al. [47] performed
parameter optimization and sensitivity analysis for an organic Rankine cycle with a vari-
able temperature heat source. Herrera et al. [48] and Li et al. [49] performed MOO of η
and emissions of a regenerative organic Rankine cycle. Garmejani et al. [50] performed
MOO of P, exergy efficiency, and investment cost for a thermoelectric power generation
system. Tang et al. [51] and Nemogne et al. [52] performed MOO of an irreversible Brayton
cycle [51] and an absorption heat pump cycle [52]. MOO has been applied for performance
optimization of various processes and cycles [53–56].

Reference [24] established a relatively complete irreversible Diesel cycle model and
studied the optimal performance of E. Firstly, based on the model established in the
reference [24], this paper studies the optimal Pd performance of an irreversible Diesel cycle
while considering the impacts of the cycle temperature ratio and three loss issues. Secondly,
the maximum specific volume, maximum pressure ratio, and η are compared under the
maximum P and maximum Pd criteria. Thirdly, applying NSGA-II with a compression
ratio as the decision variable and cycle dimensionless P (P, which is defined as P divided
by maximum P), η, dimensionless Pd (Pd, which is defined as Pd divided by maximum
Pd), and dimensionless E (E, which is defined as E divided by maximum E) as objective
functions, the single-, bi-, tri-, and quadru-objective optimizations of an irreversible Diesel
cycle are performed. Through three different solutions, that is, LINMAP, TOPSIS, and
Shannon entropy, the deviation indexes obtained under different solutions are compared,
and the optimized design scheme with the smallest deviation index is finally obtained.

2. Cycle Model

The working fluid is assumed to be an ideal gas. Figures 1 and 2 show the T − s and
P − v diagrams of an irreversible Diesel cycle. It can be seen that 1 − 2 is an adiabatic
process, 2 − 3 is a constant-pressure process, 3 − 4 is an adiabatic process, and 4 − 1 is a
constant-volume process. The processes 1 − 2s and 3 − 4s are the isentropic and adiabatic
processes, respectively.
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Figure 1. T − s representation of the Diesel cycle.

Figure 2. P − v representation of the Diesel cycle.

The heat absorption and release rates are, respectively,

.
Qin =

.
mCp(T3 − T2) (1)

.
Qout =

.
mCv(T4 − T1) (2)

where
.

m is the mass flow rate, and Cv and Cp are the specific heats under constant volume
and pressure, respectively.

Some internal irreversibility loss (IIL) is caused by friction, turbulence, and viscous
stress. The irreversible compression and expansion internal efficiencies are expressed
as [16,19,20,30]

ηc = (T2s − T1)/(T2 − T1) (3)

ηe = (T3 − T4)/(T3 − T4s) (4)

The cycle compression ratio γ and temperature ratio τ are

γ = V1/V2 (5)

τ = T3/T1 (6)

According to the property of isentropic process, one has

T2s = T1γk−1 (7)
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(T3/T2s)
k = T4s/T1 (8)

According to Equations (3)–(8), one has

T2 = T1[(γ
k−1 − 1)/ηc + 1] (9)

T4s = τkT1/γk(k−1) (10)

T4 = T1[τ
kηe/γk(k−1) − τηe + τ] (11)

For the actual heat engine, there is heat transfer loss (HTL) between the working fluid
and the cylinder. According to Refs. [14,24,27], it is known that the fuel exothermic rate is
equal to the sum of the total endothermic rate and the HTL rate; one has

.
Qleak = A −

.
Qin = B(T3 + T2 − 2T0) (12)

where A is the fuel exothermic rate and B is the HTL coefficient.
Similarly, as the piston generates friction with the cylinder wall when running at high

speed, the friction loss (FL) of the cycle cannot be ignored. As a four-stroke heat engine, a
Diesel heat engine has four strokes of intake, compression, expansion, and exhaust, and all
of them produce FL. According to Refs. [24,32], for the treatment of FL in each stroke, the
FL during compression and expansion is included in internal irreversible losses. According
to Refs. [57–59], the piston motion resistance in the intake process is greater than that in
the exhaust process. If the friction coefficient in the exhaust process is μ, the equivalent
friction coefficient, which includes the pressure drop loss in the intake process, is 3μ. The
friction coefficients on the exhaust and intake stroke are μ and 3μ, respectively. There is a
linear relationship between friction force and speed: fμ = −μv = −μdx/dt, where x is the
piston displacement and μ is the FL coefficient. The power consumed due to FL during the
exhaust and intake strokes can be derived as

Pμ = dWμ/dt = 4μ(dx/dt)2 = 4μv2 (13)

For a Diesel cycle, the average speed of the piston in four reciprocating motions is

v = 4Ln (14)

where n is the rotating speed and L is the stroke length.
Therefore, the power consumed by cycle FL is

Pμ = 4μ(4Ln)2 = 64μ(Ln)2 (15)

The cycle P and η are, respectively,

P =
.

Qin −
.

Qout − Pμ =
.

m[Cp(T3 − T2)− Cv(T4 − T1)]− 64μ(Ln)2 (16)

η =
P

.
Qin +

.
Qleak

=

.
m[Cp(T3 − T2)− Cv(T4 − T1)]− 64μ(Ln)2

.
mCp(T3 − T2) + B(T2 + T3 − 2T0)

(17)

According to the definition of Pd in Refs. [33–35], the Pd is expressed as

Pd = P/v4 (18)

According to Refs. [38,39], the total volume vt, stroke volume vs, and gap volume vc
of the cycle are defined as

vt = vs + vc (19)

vs = πd2L/4 (20)

vc = πd2L/4(γ − 1) (21)
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In the Diesel cycle, vt = vmax = v1, vc = v2. According to Equations (5) and (17)–(19),
one has

Pd = P/vmax = P/vt = 4(γ − 1)P/πd2Lγ (22)

According to Ref. [24], an irreversible Diesel cycle has four kinds of entropy generation
due to FL, HTL, IIL, and exhaust stroke to the environment. The four entropy generation
rates are expressed as

σq = B[1/T0 − 2/(T2 + T3)](T3 + T2 − 2T0) (23)

σμ = Pμ/T0 = 64μ(Ln)2/T0 (24)

σ2s→2 =
.

m
∫ T2

T2s

CpdT/T =
.

mCp ln(T2/T2s) (25)

σ4s→4 =
.

m
∫ T4

T4s

CvdT/T =
.

mCv ln(T4/T4s) (26)

σpq =
.

m
∫ T4

T1

CvdT(1/T0 − 1/T) =
.

mCv[(T4 − T1)/T0 + ln(T1/T4)] (27)

Therefore, the total entropy generation rate is

σ = σq + σμ + σ2s→2 + σ4s→4 + σpq (28)

According to the definition of E in Ref. [24], the E is expressed as

E = P − T0σ (29)

According to the processing method of Refs. [35,44], P, Pd, and E are respectively
defined as

P = P/Pmax (30)

Pd = Pd/(Pd)max (31)

E = E/Emax (32)

According to Equations (4), (9) and (11) and given the compression ratio γ, the initial
cycle temperature T1, and the cycle temperature ratio τ, by solving the temperatures at
the 2, 3, and 4 state points, the corresponding numerical solutions of P, η, Pd, and E can
be obtained.

3. Maximum Power Density Optimization

The working fluid is assumed to be an ideal gas. According to the nature of the air,
T0 = 300 K, T1 = 350 K,

.
m = 1 mol/s, k = 1.4, Cv = 20.78 J/(mol ·K), and τ = 5.78 − 6.78.

According to Refs. [24,44], the cycle parameters are determined: γ = 1 − 100, B = 2.2 W/K,
μ = 1.2 kg/s, L = 0.07 m and n = 30 s−1.

The relationships between the objective functions (Pd and η) of an irreversible Diesel
cycle and the cycle design parameters (the cycle temperature ratio, HTL, FL, and IIL) are
shown in Figures 3–6. It can be noticed that the relationship between Pd and γ (Pd − γ)
is a parabolic-like one. When no loss is considered, the relationship between Pd and η
(Pd − η) is a parabolic-like one, and when there is loss, the relationship curve of Pd − η is a
loop-shaped one.
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Figure 3. The effect of τ on Pd − γ.

Figure 4. The effect of τ on Pd − η.

Figure 5. The effects of ηc, ηe, B, and b on Pd − γ.
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Figure 6. The effects of ηc, ηe, and b on Pd − η.

Figures 3 and 4 show the effects of τ on the performances of Pd − γ and Pd − η.
According to Figure 3, it can be seen that there is an optimal compression ratio (γPd

),
which makes Pd reach the maximum. As τ increases, γPd

increases; when τ increases from
5.78 to 6.78, γPd

increases from 12.7 to 16 (an increase of 25.98%). According to Figure 4,
there is thermal efficiency (ηPd

) corresponding to the maximum Pd. As τ increases, ηPd
increases; when τ increases from 5.78 to 6.78, ηPd

increases from 45.82% to 49.29% (an
increase of 7.40%). It can be seen that with the increase in τ, γPd

, and ηPd
corresponding to

the maximum Pd also increases.
Figures 5 and 6 show the Pd − γ and Pd − η curves of the cycle when there are three

different losses. Table 1 lists ηPd
when considering different losses and the percentage of

the decrease in ηPd
compared with when no loss is considered. It can be seen that, with the

increase in the losses considered, ηPd
decreases. When the three losses are considered at

the same time, ηPd
decreases by 22.55% compared to that without any losses. According to

Figure 5, it can be seen that as the compression ratio increases, Pd first increases and then
decreases. According to Figure 6, it can be seen that when there are increases in HFL, FL,
and IIL, ηPd

corresponding to the maximum Pd decreases.

Table 1. Comparison of the ηPd
in 8 cases.

Curve Number Considered Loss η¯
Pd

Percentage of η¯
Pd

Decrease

1 No loss 61.51% 0%
2 FL 60.36% 1.87%
3 HTL 56.45% 8.23%
4 FL and HTL 55.41% 9.92%
1′ IIL 52.97% 13.88%
2′ IIL and FL 51.84% 15.72%
3′ IIL and HTL 48.67% 20.87%
4′ IIL, HTL and FL 47.64% 22.55%

Figures 7–9 show the change trends of the corresponding maximum specific volume,
maximum pressure ratio, and η with the τ under the maximum P and maximum Pd
criteria of an irreversible Diesel cycle. According to Figures 7 and 8, compared with the
corresponding results under the maximum P criterion, the maximum specific volume is
smaller and the maximum pressure ratio is larger under the maximum Pd criterion. It
is observed that the Diesel heat engine designed under the maximum Pd criterion has a
smaller size.
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Figure 7. Variations of various v1/vs with τ.

Figure 8. Variations of various p3/p1 with τ.

Figure 9. Variations of various η with τ.

According to Figure 9, the η of the cycle under the maximum Pd criterion is higher.
When τ = 6.28, the η obtained under the maximum P and maximum Pd criterion are 46.04%
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and 47.64%, respectively. The latter is an increase of 3.54% over the former. Therefore,
compared with the maximum P criterion, the engine designed under the maximum Pd
criterion has a smaller size and a higher η.

4. Multi-Objective Optimization with Power Output, Thermal Efficiency, Ecological
Function, and Power Density

MOO cannot make multiple objective functions reach the optimal value at the same
time. The best compromise is achieved by comparing the pros and cons of each objective
function. Therefore, the MOO solution set is not unique, and a series of feasible alternatives
can be obtained, which are called Pareto frontiers. In this section, P, η, E, and Pd are used
as objective functions; the compression ratio (γ) is used as an optimization variable; and
NSGA-II [44–52] is used to perform bi-, tri-, and quadru-objective optimizations for an
irreversible Diesel cycle. Through three different solutions, that is, LINMAP, TOPSIS, and
Shannon entropy, the optimization results under different objective function combinations
are obtained.

In the LINMAP solution, a minimum spatial distance from the ideal point is selected
as the desired final optimal solution. In the TOPSIS solution, a maximum distance from the
non-ideal point and a minimum distance from the ideal point are selected as the desired
final optimal solution. In the Shannon entropy solution, a maximum value corresponding
to a certain objective function is selected as the desired final optimal solution.

The optimization problems are solved with different optimization objective combina-
tions, which form different MOO problems.

The six bi-objective optimization problems are as follows:

max
{

P(γ)
η(γ)

, max
{

P(γ)
E(γ)

, max
{

P(γ)
Pd(γ)

, max
{

η(γ)
E(γ)

, max
{

η(γ)
Pd(γ)

, max
{

E(γ)
Pd(γ)

(33)

The four tri-objective optimization problems are as follows:

max

⎧⎨
⎩

P(γ)
η(γ)
E(γ)

, max

⎧⎨
⎩

P(γ)
η(γ)
Pd(γ)

, max

⎧⎨
⎩

P(γ)
E(γ)
Pd(γ)

, max

⎧⎨
⎩

η(γ)
E(γ)
Pd(γ)

(34)

The one quadru-objective optimization problem is as follows:

max

⎧⎪⎪⎨
⎪⎪⎩

Pd(γ)
η(γ)
E(γ)
Pd(γ)

(35)

The evolution flow chart of NSGA-II is shown in Figure 10. The optimization results
obtained by the combination of different objective functions in the three solutions are listed
in Table 2. It can be seen that when single-objective optimization is performed under the
criterions of maximum P,η, E, and Pd, the deviation indexes (0.5828, 0.5210, 0.2086, and
0.4122, respectively) obtained are much larger than the result obtained by MOO. This
indicates that the design scheme of MOO is more ideal. When taking P, E, and Pd as the
optimization objectives to perform tri-objective optimization, the deviation index obtained
by the LINMAP solution is smaller, and the design scheme is closer to the ideal scheme.
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Figure 10. Flow chart of NSGA-II.

Figures 11–16 show the Pareto frontiers of bi-objective optimization (P − η, P − E
.
,

P − Pd, η − E
.
, η − Pd, and E − Pd). When P increases, η, E, and Pd all decrease; when η

increases, E and Pd both decrease; when E increases, Pd decreases. According to Table 1,
when P and η or P and E are the objective functions, the deviation index obtained by the
LINMAP solution is smaller. When P and Pd or η and E are the optimization objectives, the
deviation index obtained by the Shannon entropy solution is smaller. When E and Pd are
the optimization objectives, the deviation indexes obtained by the LINMAP and TOPSIS
solutions are smaller than those obtained by the Shannon entropy solution. When η and Pd
are the objective functions, the deviation index obtained by the TOPSIS solution is smaller.

Figure 11. Bi-objective optimization on P − η.
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Table 2. Optimization results obtained by combining different objective functions.

Optimization Methods Solutions

Optimization Variable Optimization Objectives Deviation Index

γ
¯
P η

¯
E

¯
Pd

D

Quadru-objective
optimization

(P, η, E, and Pd)

LINMAP 18.0466 0.9615 0.5008 0.9809 0.9804 0.1342
TOPSIS 18.0822 0.9611 0.5010 0.9815 0.9801 0.1346

Shannon entropy 14.3437 0.9958 0.4769 0.8359 1.0000 0.4068

Tri-objective optimization
(P, η, and E)

LINMAP 18.2403 0.9591 0.5017 0.9842 0.9785 0.1366
TOPSIS 18.5159 0.9556 0.5029 0.9882 0.9758 0.1422

Shannon entropy 20.3584 0.9299 0.5095 1.0000 0.9545 0.2068

Tri-objective optimization
(P, η, and Pd)

LINMAP 17.1965 0.9715 0.4966 0.9624 0.9878 0.1443
TOPSIS 16.8933 0.9749 0.4949 0.9540 0.9900 0.1574

Shannon entropy 14.3433 0.9958 0.4768 0.8359 1.0000 0.4068

Tri-objective optimization
(P, E, and Pd)

LINMAP 17.8459 0.9640 0.4999 0.9772 0.9823 0.1333
TOPSIS 17.9598 0.9626 0.5004 0.9793 0.9812 0.1336

Shannon entropy 14.3437 0.9958 0.4768 0.8359 1.0000 0.4068

Tri-objective optimization
(η, E, and Pd)

LINMAP 18.7911 0.9520 0.5040 0.9916 0.9729 0.1495
TOPSIS 18.7911 0.9520 0.5040 0.9916 0.9729 0.1495

Shannon entropy 14.3437 0.9958 0.4769 0.8359 1.0000 0.4068

Bi-objective optimization
(P and η)

LINMAP 17.4129 0.9691 0.4977 0.9678 0.9860 0.1380
TOPSIS 17.3189 0.9722 0.4962 0.9655 0.9868 0.1384

Shannon entropy 26.2726 0.8327 0.5176 0.9166 0.8647 0.5193

Bi-objective optimization
(P and E)

LINMAP 18.0043 0.9620 0.5006 0.9802 0.9808 0.1339
TOPSIS 18.2236 0.9593 0.5016 0.9839 0.9787 0.1364

Shannon entropy 20.3584 0.9299 0.5095 1.0000 0.9545 0.2068

Bi-objective optimization
(P and Pd)

LINMAP 13.5850 0.9989 0.4699 0.7800 0.9989 0.5004
TOPSIS 13.5850 0.9989 0.4699 0.7800 0.9989 0.5004

Shannon entropy 14.3437 0.9958 0.4768 0.8359 1.0000 0.4068

Bi-objective optimization
(η and E)

LINMAP 21.6879 0.9097 0.5129 0.9948 0.9367 0.2645
TOPSIS 21.6879 0.9097 0.5129 0.9948 0.9367 0.2645

Shannon entropy 20.3584 0.9299 0.5095 1.0000 0.9545 0.2068

Bi-objective optimization
(η and Pd)

LINMAP 18.4344 0.9566 0.5026 0.9871 0.9766 0.1403
TOPSIS 18.1938 0.9597 0.5015 0.9834 0.9790 0.1359

Shannon entropy 14.3437 0.9958 0.4768 0.8359 1.000 0.4068

Bi-objective optimization
(E and Pd)

LINMAP 18.5178 0.9555 0.5029 0.9882 0.9758 0.1422
TOPSIS 18.5178 0.9555 0.5029 0.9882 0.9758 0.1422

Shannon entropy 14.3437 0.9958 0.4769 0.8359 0.9999 0.4068
Maximum of P - 12.8106 1.0000 0.4617 0.7090 0.9952 0.5828
Maximum of η - 26.2980 0.8323 0.5176 0.9160 0.8643 0.5210
Maximum of E - 20.4061 0.9293 0.5096 1.0000 0.9540 0.2086
Maximum of Pd - 14.3205 0.9960 0.4765 0.8330 1.0000 0.4122

Positive ideal point - 1.0000 0.5176 1.0000 1.0000 -
Negative ideal point - 0.8328 0.4618 0.7105 0.8647 -

Figure 12. Bi-objective optimization on P − E
.
.

25



Entropy 2021, 23, 826

Figure 13. Bi-objective optimization on P − Pd.

Figure 14. Bi-objective optimization on η − E
.
.

Figure 15. Bi-objective optimization on η − Pd.
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Figure 16. Bi-objective optimization on E − Pd.

Figures 17–20 show the Pareto frontiers of the tri-objective optimization (P − η − Pd,
P − η − E, η − E − Pd, and P − E − Pd). When P increases, η decreases, and E and Pd
first increase and then decrease. When η increases, Pd decreases, and E first increases and
then decreases. When η, E, and Pd are the optimization objectives, the deviation indexes
obtained by the LINMAP and TOPSIS solutions are smaller than those obtained by the
Shannon entropy solution. When the combination of the other three objective functions
are the optimization objectives, the deviation index obtained by the LINMAP solution is
smaller, and the result is better.

Figure 21 shows the Pareto frontier of the quadru-objective optimization (P − η −
E − Pd). With the increase in P, η increases, Pd decreases, and E first increases and then
decreases. When P, η, E, and Pd are the optimization objectives, the deviation index
obtained by the LINMAP solution is the smallest, and the result is the best.

Figure 17. Tri-objective optimization on P − η − Pd.
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Figure 18. Tri-objective optimization on P − η − E.

Figure 19. Tri-objective optimization on η − E − Pd.

Figure 20. Tri-objective optimization on P − E − Pd.
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Figure 21. Quadru-objective optimization on P − η − E − Pd.

5. Conclusions

The expression of the Pd of an irreversible Diesel cycle was derived in this paper, and
the impacts of τ and three loss issues on the cycle of Pd versus γ and η characteristics were
analyzed. The performance parameters (maximum specific volume, maximum pressure
ratio, and η) of an irreversible Diesel cycle based on the criteria of maximum P and Pd
were compared. Using three different solutions, including LINMAP, TOPSIS, and Shannon
entropy, the results of single-, bi-, tri-, and quadru-objective optimization for an irreversible
Diesel cycle were analyzed and compared. Comparing the deviation indexes obtained
under different objective function combinations, the optimal design scheme was selected.
The results showed the following:

1. The relationship curves of the cycles Pd − γ and Pd − η were a parabolic-like one and
a loop-shaped one, respectively. With the increases in the cycle temperature ratio, the
γPd

and ηPd
corresponding to the maximum Pd increased. With the increases in HFL,

FL, and IIL, the γPd
and ηPd

corresponding to the maximum Pd decreased.
2. Under the maximum Pd criterion, a smaller size and higher efficiency engine will

be designed.
3. The deviation index of MOO was smaller. When taking P, E, and Pd as the optimiza-

tion objectives to perform tri-objective optimization, the deviation index obtained
by the LINMAP solution was smaller, and the design scheme was closer to the
ideal scheme.

4. The next step will be to use exergy efficiency optimization to further reinforce the
results of MOO.
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Nomenclature

B Heat transfer loss coefficient (W/K)
Cp Specific heat at constant pressure (J/(mol · K))
Cv Specific heat at constant volume (J/(mol · K))
E Dimensionless ecological function
P Dimensionless power output
Pd Dimensionless power density
Q Heat transfer rate (W)
T Temperature (K)
Greek symbols
γ Compression ratio (-)
η Thermal efficiency (-)
μ Friction coefficient (kg/s)
σ Entropy generation rate (W/K)
τ Temperature ratio (-)
Subscripts
Pd Max power density condition
0 Environment
1 − 4,2s,4s Cycle state points
Abbreviations
FL Friction loss
HTL Heat transfer loss
IIL Internal irreversibility loss
MOO Multi-objective optimization
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Abstract: An irreversible Carnot cycle engine operating as a closed system is modeled using the
Direct Method and the First Law of Thermodynamics for processes with Finite Speed. Several models
considering the effect on the engine performance of external and internal irreversibilities expressed
as a function of the piston speed are presented. External irreversibilities are due to heat transfer at
temperature gradient between the cycle and heat reservoirs, while internal ones are represented by
pressure losses due to the finite speed of the piston and friction. Moreover, a method for optimizing
the temperature of the cycle fluid with respect to the temperature of source and sink and the piston
speed is provided. The optimization results predict distinct maximums for the thermal efficiency
and power output, as well as different behavior of the entropy generation per cycle and per time.
The results obtained in this optimization, which is based on piston speed, and the Curzon–Ahlborn
optimization, which is based on time duration, are compared and are found to differ significantly.
Correction have been proposed in order to include internal irreversibility in the externally irreversible
Carnot cycle from Curzon–Ahlborn optimization, which would be equivalent to a unification attempt
of the two optimization analyses.

Keywords: irreversible Carnot engine; optimization; thermodynamics with finite speed; internal and
external irreversibilities; entropy generation calculation; thermodynamics in finite time

1. Introduction

Recent work [1] has emphasized that an analysis using the finite time of the process
rather convey to a “physical potential optimization” than to an “engineering optimization”
of thermal machine [2]. What is called physical optimization could provide more realistic
performance compared to reversible Carnot cycle one, but it is still overvalued with respect
to the actual one. Thus, the results of the physical optimization can be considered as upper
bounds for real machine performance [3–5].

Moreover, criticisms have been addressed [6–11] to the results of Finite Time Thermo-
dynamics (FTT) analysis of thermal machines, claiming that it failed to keep the promises,
at least from the engineer’s point of view. The main reason is the fact that FTT does not con-
sider the internal losses generated by irreversibilities on a fundamental basis, since they have
been introduced through a constant coefficient [12], factor of non-endoreversibility [13],
degree of internal irreversibility [14], entropy variation ratio [15], ratio of two entropy
differences [16], or entropy generation term as a function of temperature [17,18]. Therefore,
the studies based on FTT approach cannot be effectively used by engineers for a better de-
sign and optimization study, leading to the conception and build of more efficient thermal
machines since to apply optimization in a thermodynamic analysis, it needs to advance to
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the higher phases of the system design than the one based on endoreversibility assumption
that is considered very early [10]. Furthermore, the internal irreversibilities contributed by
the system components are inherently interconnected with external irreversibilities in real
operation conditions, so the performance reported by FTT analysis may be even smaller
compared to that of a real system [8].

These criticisms did not remain without reply [19–23]. Thus, some authors of the
anti-criticism papers addressed the clarification of finite-time thermodynamics objectives
and their inclusion in the efforts to approach the irreversible systems and their perfor-
mance [21]. Others emphasized the meaning of time for thermodynamic processes, namely
that of providing bounds by discussing nine general principles for finding bounds on the
effectiveness of energy conversion [22] or bounds relative to the efficiency versus maximum
power efficiency of heat engines [23].

However, regarding the usefulness of the FTT, the endoreversible model has the merit
of launching nowadays the competition of finding new upper bounds of thermal machines
performance, closer to the real one. Thus, progress has been made in the modeling and
optimization of thermodynamic processes and cycles [24–32], with special attention to the
common ones in thermal machines: Otto cycle [27], Stirling engine [28], Kalina cycle [30],
and Brayton cycle [31,32]. The results obtained [30,31] have shown that besides the gains
of FTT optimization with three or four objectives, the original results reported in the initial
work of the FTT theory [3–5] are also revealed.

The engineering optimization is mainly concerned about internal irreversibility assess-
ment by insight in dissipation mechanism, to approach and model the irreversible cycle
performance. Both internal and external irreversibility are considered, conveying an actual
optimization of thermal machine performance.

Although there is no operational Carnot machine, much has been written on the opti-
mization of Carnot cycle, and in particular, on the heat engine cycle, endoreversible [33–39]
or with internal and external irreversibilities [40–61]. One reason could be that the per-
formance of the Carnot cycle represents upper bounds for actual operating machines.
However, only in the 1990s was attention focused on analysis of the Carnot cycle that also
includes internal irreversibilities [12,16–18,41,42,46–49].

The Thermodynamics with Finite Speed (TFS) has been shown to be able to provide
analytical evaluation of internal irreversibilities in several machines (Stirling, Otto, Diesel,
Brayton, Carnot) [60–68] and electrochemical devices [69], as a function of the speed of the
piston. Actually, the finite speed of the piston (and process implicitly) is also responsible
of external irreversibilities, namely the finite heat transfer rate from source to cycle fluid
and then to sink. The computation scheme developed in TFS using the Direct Method is
based on the First Law of Thermodynamics for Processes with Finite Speed that contains the
main internal irreversibility causes of thermal machines expressed as a function of the
average piston speed. By integration of the new expression of the First Law on each cycle
process, analytical expression for performance (Power and Efficiency) is provided. It can
be used to optimize theoretical cycles of actual thermal machines and most importantly, it
was validated for 12 performing Stirling Engines (in 16 operational regimes) [63,64] and
4 Solar Stirling Motors [49,50].

In recent publications [54–58], it has been mentioned that only Thermodynamics with Fi-
nite Speed (TFS) developed the necessary tools to optimize thermal machines by considering
internal losses in addition to external ones by analytical means. Based on these statements,
it was concluded that using the above-mentioned achievements of TFS in combination
with FTT tools could convey a more realistic and efficient approach of thermal machines.

The analytical approach relative to this combination is presented here by original
models introducing irreversibilities step by step and leading to important results that are
more accurate than those obtained by each irreversible thermodynamics branch separately.

Firstly, a brief presentation of the Curzon–Ahlborn modeling of an endoreversible
Carnot engine is given, together with the discussion relative to the presence of the nice
radical in other works.
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Then, optimization models for a Carnot cycle engine in a closed system that operates
with finite speed of the piston are presented. The speed is considered constant and equal
to the average speed of the piston that moves with a classical rod–crankshaft mechanism;
by using the First Law of Thermodynamics for Processes with Finite Speed and the Direct
Method, the optimization analysis of this cycle with external and internal irreversibilities
is developed. Heat losses between the two heat reservoirs temperature level through the
engine are considered. External irreversibilities are due to the finite heat transfer rate
at the source and sink are modeled by an irreversible coefficient added to the classical
expression of heat transfer on isothermal process. Internal irreversibilities are included
in the mathematical expression of the First Law of Thermodynamics for Processes with
Finite Speed as non-dimensional pressure losses due to the non-uniformity of the fluid
pressure in the cylinder and friction. The piston speed for maximum power and for
maximum efficiency is found for a particular set of engine parameters and it is shown
that the minimum entropy generation per cycle occurs at maximum power. This analysis
provides lower values of Carnot cycle efficiency than predicted by the Curzon–Ahlborn
approach that was considered for comparison.

A further development of the model aims to combine the analysis of the Carnot cycle
engine with only external irreversibility from Finite Time Thermodynamics (FTT) with
the main advantage of the Thermodynamics with Finite Speed (TFS) approach, namely
the internal irreversibility quantification as a function of the speed of the process (piston).
Thus, corrections of the power output, efficiency, and optimized cycle fluid temperature
in FTT optimization results based on the calculated speed of processes from the duration
time in FTT and average piston speed in TFS. It results that when internal ireversibilities
(speeds and friction) are included, the performance predicted by a TFS analysis is better
than that predicted by an FTT analysis.

The first unification attempt between TFS and FTT considers only pressure losses due
to the non-uniformity of the pressure in the cylinder as a function of piston speed. The
analytical development of the model provides modified Curzon–Ahlborn expression for
the externally irreversible Carnot cycle to also include the internal irreversibility. Equations
for the optimum cycle temperature, maximum power, and efficiency for the internally
and externally irreversible cycle are presented. The corrections are shown to increase
with increased piston speed and to be significant at high but realizable piston speeds.
The optimum temperature corresponding to maximum power is shown to increase with
increased piston speed.

Then, a further step in the unification attempt between TFS and FTT is done by
considering in addition to the Finite Speed, two other causes of internal irreversibility
given by friction and throttling. Thus, based on the first unification achievement, new
expressions are derived for the power output and efficiency of the direct Carnot cycle with
finite speed processes. The results emphasize optimum speed values generating maximum
power output, as well as the effect of irreversibilities on the optimum high temperature of
the cycle.

The overview on the results of these models emphasizes that a significant difference
exists between the results of the two optimization analyses in the sense that FTT optimiza-
tion seems to be an upper bound when compared to the engineering optimization based
on TFS and the Direct Method.

2. Optimization Models of Carnot Cycle Engine

2.1. Models in Thermodynamics in Finite Time Analysis Seeking for Maximum Power Output of
Carnot Cycle Engine

The Curzon–Ahlborn modeling of the Carnot-type engine [3] refers to a cycle that
is internally reversible but with no thermal equilibrium between the working fluid and
the thermal reservoirs during the isothermal heat input and heat rejection, respectively.
Furthermore, there exists a finite time duration of heat transfer given by Newton’s heat
transfer law during the isothermal processes. The expression of the power output of the
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Curzon and Ahlborn cycle allows a maximum for which the corresponding efficiency is
given by what was called nice radical.

Actually, the efficiency of a Carnot engine is treated for the case where the power
output is limited by the rates of heat transfer to and from the working substance. It
is shown that the efficiency, ηCA, at maximum power output is given by the expres-
sion ηCA = 1 − (T2/T1)1/2 where T1 and T2 are the respective temperatures of the heat
source and heat sink. It results in an efficiency less than the one introduced by Carnot
(η = 1 − (T2/T1)), and it is shown that the existing engines performance is well described
by the above result.

Before the Curzon and Ahlborn analysis, a similar approach aiming to maximize the
power output and the nice radical has appeared in Chambadal modeling of the Carnot
engine [4], but its model used heat capacity rate instead of heat conductances.

Almost at the same time, Novikov [5] has also found the nice radical.
The above-mentioned models and mainly the Curzon–Ahlborn one, which remain as

references for the Carnot machine optimization in the frame of what was called Thermody-
namics in Finite Time.

2.2. Models of Irreversible Carnot Cycle Engine in Thermodynamics with Finite Speed
2.2.1. First Law of Thermodynamics for Processes with Finite Speed in Closed System

The optimization modeling presented in this section proceeds from a basis of ther-
modynamic fundamentals, systematically detailed and developed, starting from a unique
equation called the First Law of Thermodynamics for Processes with Finite Speed [59,70–79]. The
advantages of using this equation instead of the one from Classical Reversible Thermody-
namics consists of its capability to account for both causes and mechanisms of irreversibility
generation in complex cycles or real machines such as Stirling Engines, as well as in other
cycles such as Otto, Diesel, Brayton, and Carnot cycles [60,71–73]. In addition, it is capable
to consider both internal and external irreversibilities.

By integrating this equation for irreversible process step by step on each transfor-
mation of the cycle, the efficiency and power output are determined analytically. These
expressions contain the causes of irreversibility, namely, the finite speed of the piston, an
important parameter that can be optimized, for Maximum Efficiency or Maximum Power.

The mathematical expression of the First Law of Thermodynamics for Processes with
Finite Speed in a closed system in its differential form is [59,70–76,78]:

dU = δQ − pav,i

(
1 ± aw

c
± f · Δp f

pav,i

)
dV, (1)

and the irreversible work for these processes [59,70–76,78]:

δWirrev = pav,i

(
1 ± aw

c
± Δp f

pav,i

)
dV (2)

where U—internal energy, Q—heat, W—mechanical work, pav,i—instantaneous average
pressure of the gas, w—average speed of the piston, c—average molecular speed, Δpf—
pressure losses due to friction, a—coefficient depending the gas nature, f —coefficient
relative to the amount of heat generated by friction that remains in the cycle, and V—
volume.

In the previous equations, the plus sign corresponds to the compression processes and
the minus sign corresponds to the expansion ones.

Regarding the terms appearing in the right member, the first term in the parenthesis
accounts for the irreversibility generated by the Finite Speed of the piston, w, and due to
the non-uniformity of the pressure in the cylinder. Therefore, the pressure on the piston
pp is larger during compression and smaller during expansion than the pressure on the
head of the cylinder pc, and this is also the case for the instantaneous average pressure in
the gas pav.i [47,59–61,76]. The experimental verification of this term is described in refer-
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ences [51,59–61]. The second term in the parenthesis takes into account the irreversibility
generated by the friction between moving parts of the machine (piston–cylinder, bearings,
etc.) [47,60,61]. When the processes in the machine involve internal throttling, a third term
is added in the First Law for Processes with Finite Speed [47,60,61], playing an important
role in the optimization of Stirling machines [51,59–67,77,80]. This term is less important in
the Carnot cycle modeling, so that it is neglected in this study.

Other terms from the right member of Equations (1) and (2) have the following
expressions:

a =
√

3γ, c =
√

3RT, (3)

with γ—ratio of specific heat at constant pressure and constant volume, and R—gas specific
constant.

The pressure losses due to friction expressed as function of rotation per minute and
based on their experimental evaluation for classical thermal engines operating upon Otto
and Diesel cycles [81] were adapted to speed [76], and their expression resulted as:

Δp f = (0.97 + 0.045w)/N (4)

where N—parameter depending on structural characteristics of the engine.
Note that Equations (1) and (2) completed by Equations (3) and (4) clearly show that

the finite speed of the piston is responsible for all irreversibility causes, since it appears in
both terms in the parentheses.

2.2.2. Model of Carnot Cycle Engine with Analytically Modeled Internal and External
Irreversibility

The cyclic system of a Carnot heat engine, including irreversibilities of finite-rate heat
transfer between the gas in the thermal engine and its heat reservoirs, heat leakage between
the reservoirs, and internal dissipations of the working fluid, is shown schematically in
Figure 1 [48,49]. The working fluid in the system is alternately connected to a hot reservoir
at constant temperature TH,S and to a cold reservoir at constant temperature TL,S and its
temperatures are, respectively, TH and TL.

Figure 1. Carnot engine cycle with finite speed of the piston illustrated in p-V diagram [48,49].

Heat losses between the two heat reservoirs temperature level through the engine
are considered by the heat rate term

.
Qlost. In addition, irreversible adiabatic processes are

shown by the curves 2-3′ and 4′-1.
Inside the cylinder with the piston illustrated in the bottom side of Figure 1 appears

several pressures that are used in a process with finite speed analysis: on the piston, pp, on
the cylinder, pc, and the instantaneous average pressure in the gas, pav,i.

37



Entropy 2021, 23, 504

By integrating Equations (1) and (2) over the isothermal processes of the Carnot cycle,
the following expressions for the energy exchanges are dependent of the average piston
speed yield:

• The irreversible heat received by the cycle gas from the source:

QH = z′H · mRTHln
V4

V3
= z′H · mRTH ·lnε, (5)

with z′H—irreversible coefficient that accounts for a limited heat input in the cycle due to
the finite speed of the process:

z′H =

(
1 − aw√

3RTH
− f · Δp f

pav,34

)
. (6)

This irreversible coefficient shows that regardless of the heat available at the source,
the cycle gas can only receive a limited amount of heat from the source.

• The irreversible heat rejected by the cycle gas to the sink:

QL = z′L · mRTLln
V2

V1
= −z′L · mRTL·lnε, (7)

with z′L—irreversible coefficient that accounts for a limited heat rejected by the cycle gas to
the sink due to the finite speed of the process:

z′L =

(
1 +

aw√
3RTL

+
f · Δp f

pav,12

)
. (8)

• The irreversible work produced/consumed during the isothermal processes of the cycle:

WH,w = zH · mRTH ·lnε, (9)

|WL,w| = zL · mRTL·lnε, (10)

with the corresponding irreversible coefficients:

zH =

(
1 − aw√

3RTH
− Δp f

pav,34

)
, (11)

zL =

(
1 +

aw√
3RTL

+
Δp f

pav,12

)
. (12)

with
mR = P1rV1r/T1r, (13)

and
T1r = TL,S, V1r = V1. (14)

and
V4

V3
=

V1

V2
= ε. (15)

The work per cycle results from Equations (9) and (10) as:

Wcycle,w = mR(zHTH − zLTL)lnε. (16)

The non adiabaticity of the engine suggested in Figure 1 by the term
.

Qlost is better
explained in Figure 2 by the insulating wall between the two semi-cylinders that form the
heat conduction path between the heat source and sink.
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Figure 2. The cylinder configuration used in heat transfer area computation [48,49].

The heat transfer rate lost through this conduction path is:

.
Qlost = kins Alost(THS − TLS)/Bins, (17)

where kins—thermal conductivity of the insulation, and Bins—insulation thickness.
Equation (17) expressed on the cycle becomes:

Qlost,cycle =
.

Qlost · τcycle. (18)

The cycle time duration can be expressed as:

τcycle =
2(V1 − V3)

wAp
, (19)

with Ap—piston area.
The area associated to the heat transfer rate lost between the source and sink yields

(see Figure 2):
Alost = (D + 2L4)(De − D), (20)

where D is the inner diameter of the cylinder.
This heat transfer rate lost per cycle will modify the heat supply from the source and

the heat rejected to the sink as follows:

QH,tot = QH + Qlost,cycle, (21)

|QL,tot| = |QL|+ Qlost,cycle. (22)

In the above equations, the heat input to the cycle gas and heat rejected from the gas
to the sink may be considered those already given by Equations (5) and (7), or it can be
expressed in terms of heat transfer as follows:

QH = UH(w) · AH · (TH,S − TH) · τH , (23)

|QL| = UL(w) · AL · (TL − TL,S) · τL. (24)

where UH(w) and UL(w) are the overall heat transfer coefficient during the heat exchange at
the source and sink, respectively, and AH and AL are the area of the heat transfer surfaces.

The heat transfer expressed using the Finite Speed analysis (Equations (5) and (7))
should be the same as the heat transfer corresponding to the above Equations (23) and (24).
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Therefore, the two equalities allow expressing the temperature of the gas at the hot end and at
the cold end respectively, in connection with the source and sink temperature:

TH = TH,S ·
[

1 +
z′H · mR · lnε

UH(w) · AH · τH

]−1

(25)

TL = TL,S ·
[

1 − z′L · mR · lnε

UL(w) · AL · τL

]−1

. (26)

The overall heat transfer coefficients of the heat exchanger at source and sink, UL,
UH are calculated based on average bulk fluid temperatures by using well-known equa-
tions [82]:

NuD =

⎧⎨
⎩ 1.86(ReDPr)

1
3
(

D
L

) 1
3
(

μ
μwall

)0.14
, f or ReD ≤ 2300

0.023 Re0.8
D Prn, f or ReD ≥ 3000

, (27)

with n = 0.4 for heating, respectively, n = 0.3 for cooling.
Similarly, the dynamic viscosity and the thermal conductivity of the gas are calculated

using polynomial functions [64], based on the bulk gas temperature.
The contact time per cycle for the heat transfer from the heat source to the engine

corresponding to the isothermal process is:

τH = (L4 − L3)/w =
L1

(
1 − 1

ε

)(
TL
TH

) 1
γ −1

w
, (28)

while the contact time per cycle for heat transfer from the gas engine to the sink is:

τL = (L1 − L2)/w =
L1

(
1 − 1

ε

)
w

. (29)

The area for the heat transfer between the source and the hot gas during the isothermal
heat addition process (see Figure 2) is:

AH = 0.5D
(

πD
4

− Bins

)
+ 0.5L1

(
1 +

1
ε

)(
πD

2
− Bins

)
·
(

TL
TH

) 1
γ −1

. (30)

Similarly, the area for heat transfer between the cold gas and the sink during the
isothermal heat rejection process is expressed as:

AL = 0.5D
(

πD
4

− Bins

)
+ 0.5L1

(
1 +

1
ε

)(
πD

2
− Bins

)
, (31)

with
L1

ε
= L2. (32)

The power output of the irreversible Carnot engine is given by:

PΔT,w,Qlost =
Wcycle,w

τcycle
. (33)

The efficiency of the Carnot cycle with internal and external irreversibility is:

ηΔT,w,Qlost = 1 − |QL,w|
QH,w

= 1 − TL
TH

· z′L
z′H

. (34)
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Then, the entropy generation per cycle can be expressed as:

ΔScycle =
QH,w

TH
+

QL,w

TL
= mRlnε · (z′H − z′L

)
, (35)

and its corresponding expression per unit time is:

.
Sgen =

ΔScycle

τcycle
. (36)

The results of this optimization model will be given in Section 3.

2.3. The Curzon–Ahlborn Model of the Carnot Cycle Engine Combined with the Analysis Based on
Thermodynamics with Finite Speed (TFS)

The model aims to combine the analysis of the Carnot cycle engine with only external
irreversibility in Thermodynamics in Finite Time (FTT) with the main advantage of the
Thermodynamics with Finite Speed (TFS) approach, namely the internal irreversibility
quantification as a function of the speed of the process.

The main differences of this model compared to the previous one are represented by:

• The absence of heat losses Qlost, in order to consider similar cycles in both analyses.
• The presence of losses in the work expression, so that the work lost in the two adiabatic

processes due to finite speed is obtained by integrating the irreversible work for
processes with finite speed in the processes 2-3′ and 4′-1 (Equation (2)) and subtracting
the reversible work in the processes 2-3 and 4-1 (see Figure 1):

Wlost, ad, int =

(
aw
c23′

+
Δp f

p23′

)
(V3′ − V2)23′ −

(
aw
c4′1

+
Δp f

p4′1

)
(V1 − V4′)4′1. (37)

where p23′ and p4′1 are the average gas pressure on the irreversible adiabatic compres-
sion and expansion, respectively.

This lost work term is then subtracted from the work per cycle given by Equation (16),
since it does not include the effect of internal irreversibilities of the adiabatic processes.

By including this lost work term in the analysis, an expression for the efficiency of the
Carnot cycle, considering all internal and external irreversibilities yields as:

ηΔT,w, f =

(
zH
z′H

− zL · TL
z′H · TH

)
− Iad

1 − TL/TH
z′H(γ − 1)lnε

, (38)

where the irreversible adiabatic process contribution of the internal irreversibility of the
cycle, due to the finite piston speed and friction, Iad, results as:

Iad = aw
(

1
c23′

+
1

c4′1

)
+ Δp f

(
1

p23′
+

1
p4′1

)
. (39)

Note that the second term in Equation (38) is obtained by integration of the First Law
for Processes with Finite Speed (TFS) for the adiabatic processes 23′ and 4′1 (see Figure 1),
Equations (1) and (2).

The combination of the two analyses based on FTT and TFS models will include a
similar term to that given by Equation (39) in the Curzon–Ahlborn approach. As previously
mentioned, this approach included the time duration of the cycle processes, with the
assumption that the adiabatic processes occur rapidly and accordingly consume far less
time than the isothermal processes. Based on this assumption, the FTT and TFS analyses
can be rationally compared only if the Carnot cycle engine dimensions and number of
cycles per unit time are made equal in both cases. In a TFS analysis, the speed of the
piston, w, is assumed constant in each of the four processes and equals the average speed
based on the number of cycles per unit time. However, in a Curzon–Ahlborn type analysis
(FTT optimization), the speed of isothermal compression wL, the speed of isothermal
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expansion wH, and the speed of the adiabatic processes wad (assumed equal for both
adiabatic processes), are calculated. The result must be consistent with the total cycle time
optimized for maximum power.

When this comparison is performed, the following process speeds, in terms of the
average speed, are obtained (see Figure 2) [49]:

wL =
a′(L1 − L2)(1 + Z∗)

2L1/w
, (40)

wH =
a′(L4 − L3)(1/Z∗ + 1)

2L1/w
, (41)

wad =
a′w[(L2 − L3) + (L1 − L4)]

2L1(a′ − 1)
, (42)

where Z*—ratio of the optimized duration of the isothermal processes in the Curzon–
Ahlborn treatment (FTT), a’—coefficient depending on time to speed transfer.

The optimized temperatures in the Curzon–Ahlborn analysis [3] are expressed based
on corresponding optimized times for each process, as follows:

TL,FTT = TL
1 +

√
TH
TL

· 1
Z∗

1 + 1
Z∗

, (43)

TH,FTT = TH
1 +

√
TL
TH

· Z∗

1 + Z∗ . (44)

By using the above expressions of temperatures and including the effect of internal
irreversibility, the corresponding power of Carnot cycle in FTT analysis is:

PowerFTT =
ALUL

a′ .
(√

TH −√
TL
)2

(Z∗ + 1)2 − (Wloss,ad,int + Wloss,isot,int)
1

τcycle
. (45)

Equation (45) appears as a combination of the two analyses as the first term is the
original Curzon–Ahlborn term [3] taking account of only external irreversibilities generated
by the temperature difference, and the second term accounts for internal irreversibilities
generated by the finite speed and friction from the TFS approach.

Nevertheless, a simpler expression of the power output can be also given as:

PowerΔT,w, f ,FTT = QH · η′
ΔT,w, f ,FTT · 1

τcycle
, (46)

where the efficiency term contains all irreversibility causes of the Carnot cycle engine.
The passage from the efficiency of the Carnot cycle including only external irre-

versibilities and corresponding to maximum power output in the original Curzon–Ahlborn
analysis [3]:

ηΔT,FTT = 1 − TL,FTT

TH,FTT
= 1 −

√
TLS
THS

, (47)

will be performed here by including the effects of internal irreversibilities. Similarly,
Equations (5)–(12) are expressed by evaluating ZFTT and Z′

FTT irreversible coefficients at
the appropriate speeds (wL and wH) on the isothermal processes at TL and TH respectively,
and on the adiabatic processes (wad) conveying to the following corrected efficiency:

ηirr,int,FTT =
ZH,FTT

Z′
H,FTT

− ZL,FTT · TL,FTT

Z′
L,FTT · TH,FTT

− I′ad
1 − TL,FTT/ · TH,FTT

Z′
H,FTT(γ − 1)lnε

(48)
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where the equivalent term Iad
′ to that from Equation (39) is similar, but it is based on wad

(Equation (42)) instead of w and also on the resulting temperatures and pressures from the
Curzon–Alhborn. Ref. [3] analysis of the Carnot cycle completed by TFS tools (Equations
(43) and (44)).

2.4. Unification Attempts of Thermodynamics in Finite Time and Thermodynamics with Finite
Speed Analyses

The first unification attempt is based on [47] that had a very important role in the
development of Thermodynamics with Finite Speed (TFS) and the Direct Method, for
analytical evaluation of the performances of irreversible cycles with internal and external
irreversibilities. Later, it was completed by [31,34].

Specific issues addressed in this model are illustrated on cycle Carnot engine repre-
sented in T-S coordinates in Figure 3. There are shown to have external irreversibility due to
heat transfer from the source (with fixed temperature TH,S) to the cycle temperature at the
hot end, TX, during the isothermal heat addition process 2–3. Then, internal irreversibilities
due to the finite piston speed are considered during only the adiabatic compression and
expansion processes. The sink temperature and the cycle temperature at the cold end are
the same. The sink temperature, T0, is fixed, while the cycle temperature at the hot end, TX,
is a variable.

Figure 3. Carnot engine cycle with internal irreversibilities illustrated in T-S diagram [47,52].

Another novelty compared to previous model consists of the use of entropy variation
calculation on the irreversible cycle processes that will provide a term in the cycle efficiency
expression that could unify the two analyses.

The first unification attempt is based on the First Law of Thermodynamics for Pro-
cesses with Finite Speed [70–73] in its reduced form that considers only the internal irre-
versibility due to the finite speed of the piston:

dU = δQ − pav,i

(
1 ± aw

c

)
dV. (49)

43



Entropy 2021, 23, 504

From the equation for adiabatic irreversible processes of ideal gases with constant
specific heats that is derived from Equation (49) by integration [72,73,75,76], one can express
the temperature T2 at the end of an irreversible adiabatic process as

T2 =

(
1 ± aw

c1

)2

(
1 ± aw

c2

)2 T1

(
V1

V2

)γ−1
= δirrT1

(
V1

V2

)γ−1
, (50)

where γ is the ratio of the specific heat at constant pressure and at constant volume.
For a compression process with finite speed w << c, one could express δirr.cpr as

follows:

δirr,cpr =

(
1 + aw

c1

)2

(
1 + aw

c2

)2
∼=
[(

1 +
aw
c1

)(
1 − aw

c2

)]2
=

[
1 +

aw
c1

− aw
c2

]2
, (51)

if a2w2 << c1·c2 and the corresponding term is neglected.
Note that for compression, the plus sign is used in parenthesis.
Note that the average molecular speed c2 depends on temperature T2 that contains

δirr.cpr. Thus, the calculation should be done by using approximations.
The first approximation considers the temperature at the end of the reversible adiabatic

compression for which one gets (see Equation (3)):

T2 = T1

(
V1

V2

)γ−1
⇒ c2 = c1

(
V1

V2

) γ−1
2

. (52)

By substituting Equation (52) in Equation (51), a first evaluation of δirr.cpr is done:

δirr.cpr =

⎡
⎣1 +

aw
c1

− aw
c1

(
V2

V1

) γ−1
2

⎤
⎦

2

. (53)

Note that a more precise approximation is possible by combining Equations (50) and
(53) that yields:

T2 = δirr.cprT1

(
V1

V2

)γ−1
, (54)

and a better approximation for the adiabatic irreversible coefficient is given by:

δ′irr.cpr =

⎡
⎣1 +

aw
c1

− aw
c1

(
V2

V1

) γ−1
2 (

δirr,cpr
)− 1

2

⎤
⎦

2

. (55)

For simplicity, the first approximation expression of the adiabatic irreversible coeffi-
cient (Equation (53)) is used hereafter.

The entropy variation computation in the case of an adiabatic irreversible process of
compression with finite speed when the results from Equations (50) and (53) are introduced
in the classical formula of ΔS:

ΔS = S f − Si = mcvln
Tf

Ti
+ mRln

Vf

Vi
, (56)

which provides:

ΔSirr,cpr = mcvln

⎡
⎣1 +

aw
c1

− aw
c1

(
V2

V1

) γ−1
2

⎤
⎦

2

. (57)
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Similarly, the entropy variation expression on the adiabatic irreversible expansion
can be derived showing that the only difference consists in the change of signs in the
parentheses, so that one can give a general form of both compression and expansion
processes, as:

ΔSw
ad,irr = mcvln

⎡
⎣1 ± aw

c1
∓ aw

c1

(
V2

V1

) γ−1
2

⎤
⎦

2

. (58)

By using Equations (56) and (58) in the present analysis on the two irreversible
adiabatic processes and on the isothermal expansion, the following expressions result:

ΔSw
ad.irr.cpr = ΔS12 = mcvln(α1), with α1 =

⎡
⎣1 +

awcpr

c1
− awcpr

c1

(
V2

V1

) γ−1
2

⎤
⎦

2

, (59)

ΔSw
ad.irr.exp = ΔS34 = mcvln(α2), with α2 =

⎡
⎣1 − awexp

c3
+

awexp

c3

(
V4

V3

) γ−1
2

⎤
⎦

2

, (60)

ΔS23 = S3 − S2 = mRln
p2

p3
. (61)

with cv—specific heat at constant volume, R—specific constant of the cycle fluid.
Then, the actual thermal efficiency of the Carnot cycle engine with irreversibilities can

be expressed based on previous calculation (see Figure 3) as:

ηact = 1 − Q41

Q23
= 1 − TCΔS14

TXΔS23
= 1 − T0(ΔS23 + ΔS12 + ΔS34)

TXΔS23
, (62)

and together with Equations (59)–(61), the following expression results:

ηact = 1 − T0

TX

[
1 +

2ln(α1α2)

(γ − 1)ln p2
p3

]
. (63)

When the piston speed is much less than the average molecular speed, namely awcpr
<< c1, and aexp << c3, one gets a simplified form of Equation (63):

ηact = 1 − T0

TX

[
1 +

2(β1 + β2)

(γ − 1)ln p2
p3

]
, (64)

where

β1 =
awcpr

c1

(
1 −

√
T0

TX

)
, (65)

β2 =
awexp

c3

(√
TX
T0

− 1

)
. (66)

For the same speed of the piston on the two adiabatic processes of the cycle, Equation
(64) becomes:

ηact = 1 − T0

TX

⎧⎪⎨
⎪⎩1 +

4aw
c1

(
1 −

√
T0
TX

)
(γ − 1)ln p2

p3

⎫⎪⎬
⎪⎭. (67)

Once having the actual efficiency of the cycle, the power output of the engine can be
easily derived as:

.
Wact =

.
QHηact = UH AH(TH,S − TX)ηact. (68)
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To render the model more general, a non-dimensional form of the power output of
the Carnot engine will be optimized, namely:

PND =

.
Wact

UH AHTH,S
. (69)

Moreover, the actual efficiency is expressed as a product of the Carnot reversible
efficiency:

ηCC =

(
1 − T0

TX

)
, (70)

and the second law efficiency accounting for irreversibilities:

ηw
IIad.irr =

⎡
⎢⎣1 −

C
(

T0
TX

)
(

1 +
√

T0
TX

)
⎤
⎥⎦, (71)

with the internal irreversible coefficient C given by:

C =
4aw

c1(γ − 1)ln p2
p3

. (72)

By combining Equation (69) with Equations (68), (70)–(72) and term rearrangement,
one gets:

PND =

(
1 − TX

TH,S

)(
1 − T0

TXΦ

)
, (73)

With
Φ =

1

1 + C
(

1 −
√

T0
TX

) . (74)

Note that for a given cycle fluid, coefficient Φ depends only on the fluid temperature
at the hot end, TX, and the piston speed, w. Thus, the non-dimensional power (Equation
(73)) is seen to be a complex function of TX and the piston speed by the term C. Searching
for an analytic expression of the optimum temperature to maximize the non-dimensional
power can be done in the first approximation, for Φ = constant in Equation (73). This is in
good agreement with Ibrahim’s approach [16], where for Φ constant, the expression of the
optimal temperature of the cycle fluid at the hot end that maximizes the power output of
the engine was established as:

TmaxPND
X → Topt =

√
TH,S·T0

Φ
. (75)

Although this is a simple expression, the value of Φ is not known. It is indicated as a
parameter with a given (not computed) value.

In the present analysis, one can approximate the value of Topt by iterations. Thus:

• For w = 0, which means an internally reversible cycle, Equations (72) and (74) lead to
Φ = 1, so that Equation (75) becomes:

T(w=0)
opt =

√
TH,S·T0. (76)

• For w = 0, by combining Equations (74) and (76), a first approximation of the term
responsible for cycle irreversibilities is expressed as:

Φw =

[
1 + C

(
1 − 4

√
T0

TH,S

)]−1

, (77)
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and the corresponding optimum temperature yields from Equation (75) as:

T(w =0)
opt =

√√√√TH,S·T0

[
1 + C

(
1 − 4

√
T0

TH,S

)]
. (78)

Equation (78) is the first approximation of the optimum temperature to maximize
the non-dimensional power when the piston speed is not zero and when therefore both
internal and external irreversibilities are accounted for.

Furthermore, the next step in the approximation procedure is to replace Tx in Equation
(74) by Equation (78), that allows obtaining a more accurate expression of Φ term:

Φ′
w =

[
1 + C

(
1 − 4

√
T0Φw

TH,S

)]−1

. (79)

One could continue the iteration, but the gain in accuracy would become insignificant.
Thus, the optimized temperature of the cycle fluid at the hot end of the engine coming out
of TFS analysis is:

T
′(w =0)
opt =

√
TH,S·T0

Φ′
w

, (80)

and the maximum non dimensional power output of the internally and externally irre-
versible Carnot cycle becomes:

PND,maxZ =

⎛
⎝1 −

T
′(w =0)
opt

TH,S

⎞
⎠
⎛
⎝1 − T0

Φ′
wT

′(w =0)
opt

⎞
⎠ =

(
1 −

√
T0

TH,SΦ′
w

)2

. (81)

Then, the efficiency of the irreversible Carnot cycle is calculated by substituting T
′(w =0)
opt

into Equation (67) that leads to:

ηact = 1 −
√

T0

TH,S
Φ′

w ·
[

1 + C

(
1 − 4

√
T0

TH,S
Φ′

w

)]
. (82)

One can see now that Equation (82) unifies the FTT and TFS analyses by the same
expression of the actual efficiency of an irreversible Carnot cycle engine. Thus:

• For internally reversible, externally irreversible Carnot cycle engine for which w = 0
and consequently, Φ′

w = 1, one gets the Curzon–Ahlborn “nice radical” [3]:

ηCA = 1 −
√

T0

TH,S
. (83)

• For an internally and externally irreversible Carnot cycle engine for which w = 0 and
consequently, Φ′

w > 1, one gets:

ηact = 1 −
√

T0

TH,S
ζw, (84)

with

ζw =
√

Φ′
w

[
1 + C

(
1 − 4

√
T0

TH,S
Φ′

w

)]
. (85)

Note that ζw ≥ 1 and it accounts for internal irreversibilities of the cycle when
depending on the piston speed. Equations (83)–(85) clearly show that the nice radical of
FTT analysis overestimates the actual efficiency of the engine evaluated by TFS analysis.
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A second unification attempt is under development. It aims to extend the modeling
by considering, in addition to the finite speed, two other causes of internal irreversibility:
friction and throttling.

Based on previous equations of the first unification attempt, a new expression was
derived for the actual efficiency of the Carnot cycle engine:

ηirr
act = 1 − T0

TX

⎧⎪⎨
⎪⎩1 + 4

(
aw
c1

+
Δp f

pav,34
+

Δpthr
pav,34

)(1 −
√

T0
TX

)
(γ − 1)ln p2

p3

⎫⎪⎬
⎪⎭, (86)

where Δpthr is estimated as [62–64,83]:

Δpthr = Cthr · w2, (87)

with Cthr = 0.005.
Then, the irreversibility coefficient yields:

Cirr = 4
(

aw
c1

+
Δp f

pav,34
+

Δpthr
pav,34

)
1

(γ − 1)ln p2
p3

. (88)

The power output and efficiency of the Carnot cycle engine with finite speed processes
considering all internal irreversibility causes are smaller compared to those determined
from Equations (81) and (82), since the new correction is more substantial by its three terms
(Equation (88)).

The results of this modeling emphasize optimum speed values generating maximum
power output, as well as the effect of irreversibilities on the optimum cycle high tempera-
ture.

3. Results

The results of TFS analysis presented in Section 2.2 relative to a Carnot cycle engine
with internal and external irreversibilities generated by losses due to (1) heat transfer
between the cycle and the heat source and sink, (2) the effect of variation in the area for
heat transfer and in the dwell time for heat transfer due to the movement of the piston
during the isothermal expansion and compression processes, and (3) non adiabaticity of
the engine are presented in Figures 4–6. The following fixed parameters entering in the
equations of the model were used: D = 0.015 m; L1 = 2 m; ε = 3; f = 0; p1r = 0.05 bar (pressure
of the gas in state 1r); Δpf = (0.97 + 0.045 w)/80; TH,S = 1200 K; TL,S = 300 K; γ = 1.4; Bins =
0.002 m; kins = 0.01 W/mK; De = 0.019 m. The cycle fluid is air that is considered as an ideal
gas with specific heat, conductivity, and viscosity varying as a function of temperature.

Figure 4 illustrates the effect of irreversibilities introduced gradually on the power
output showing the important difference between the cycle power output for the reversible
Carnot cycle and for the Carnot cycle with irreversiblities due to the finite speed of the
piston. Then, the cycle efficiency including internal and external irreversibilities, ηΔT,w,Qlost ,
is represented as a function of piston speed showing optimum values for maximum
performance. In addition, the time rate of entropy generation is added in order to compare
the optimization results in terms of optimal speed.

One can see that the piston speed for maximum efficiency is only 4 m/s, for which the
rate of entropy generation (per unit of time) is very low. Moreover, the piston speed for
maximum power is near 17 m/s, and the rate of entropy generation (per unit of time) at
this speed is significantly higher. As expected, the power output decreases, as additional
irreversibilities are included in the analysis.
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Figure 4. Power, efficiency and entropy generation per time as a function of the piston speed.

Figure 5. Power, efficiencies and entropy generation per cycle as a function of average piston speed.
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Figure 6. Power, efficiencies and temperatures as a function of average piston speed.

Figure 5 brings together the efficiency of the Carnot cycle determined by the TFS
analysis when it is gradually affected by irreversibility, the one based on Curzon–Ahlborn
analysis, the power output, and the entropy variation per cycle as functions of piston
speed. The efficiency of the Carnot cycle as determined by TFS analysis is at all piston
speeds less than the efficiency based on the Curzon–Ahlborn analysis. In addition, for
piston speeds greater than wopt, the efficiency of the Carnot cycle at maximum power as
determined by TFS is less than the efficiency based on the Curzon–Ahlborn analysis, even
if only the external irreversibility is included. For example, the TFS efficiency, at the speed
corresponding to maximum power, is 0.29 when only external irreversibilities are included
and is 0.15 when both internal and external irreversibilities are included in the analysis.

An important aspect is related to the entropy generation per cycle and per time as
functions of piston speed from Figures 4 and 5. Their evolution with the piston speed is
completely different, in that only ΔScycle shows a minimum for the speed as the maximum
power output.

The hot and cold heat reservoir temperatures, the hot and cold end gas temperatures,
and the Curzon–Ahlborn optimized temperature are shown in Figure 6 as a function of the
piston speed. The hot-end gas temperature optimized for maximum power is shown to be
nearly the same over a large variation range of piston speeds (5 to 10 m/s), as the Curzon–
Ahlborn optimized temperature. In addition, the predicted temperature difference between
the high and low gas temperature is shown to increase as the piston speed decreases and
to be especially great at piston speeds less than the speed for maximum efficiency.

Some results of the second model (Section 2.3) are shown in Figures 7–9.
Figure 7 illustrates the relative speed of the adiabatic processes and of each of the

isothermal processes in FTT optimization compared to the average speed of the piston
considered in TFS optimization. The curves show that the optimization results in lower
speed than the average speed of the piston wTFS, for the two isothermal processes in FTT
optimization. In addition, the high temperature isothermal process has the lowest speed;
then, it follows the low temperature isothermal process with a higher speed, while the
adiabatic processes occur at a much higher speed. However, the internal irreversibilities
were not included in the original Curzon–Ahlborn analysis [3], so the high piston speed
during the adiabatic process had no negative effect on the cycle efficiency and power.
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In fact, the resulting slower piston speed during the isothermal processes significantly
enhanced the cycle efficiency and power in FTT optimization.

Figure 7. Piston speeds for process in TFS and FTT analyses as function of average piston speed.

Figure 8. Power output of the Carnot engine for processes in TFS and FTT optimizations as function
of average piston.
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Figure 9. Carnot cycle efficiency based on TFS and FTT optimizations as function of average
piston speed.

The effect of the piston speed on the power output and efficiency for a Carnot engine
with external irreversibilities and internal ones gradually introduced in both TFS and FTT
analyses is shown in Figures 8 and 9, respectively. These results are based on the following
fixed parameters: D = 0.015 m; L1 = 0.5 m; ε = 2; f = 0.3; a′ = 1.1; p1r = 0.01 bar (pressure of
the gas in state 1r); Δpf = (0.97 + 0.045 w)/60 bar; THS = 800 K; TLS = 300 K; γ = 1.4.

The FTT optimization predicts greater power output from the Carnot engine at almost
all piston speeds than the TFS optimization when only external irreversibilities (ΔT) are
considered. It is due to the little cycle time that was allocated to the adiabatic processes in
the FTT optimization. This allowed more time for the isothermal processes without any
penalty associated with the more rapid adiabatic processes, since the internal irreversibili-
ties of these processes are not considered. In the TFS optimization for example, at 9 m/s
the power is 0.33 W, and the efficiency is 25%. In the FTT optimization at the same speed,
by comparison, the power is 0.6 W, and the efficiency is 39%. However, when the internal
irreversibilities are included in the analyses, the TFS optimization results in greater power
and efficiency than FTT, even though both are less than when the internal irreversibilities
were neglected.

It is also important to keep in mind that a cycle that operates with three different
piston speeds for the four processes presents a huge mechanical complication in the design
of the actual engine. While it may be possible to design such an engine (for example, using
cams with different profiles for each process), there is no need to do so, since the TFS
optimization predicts superior operating performance.

The non-dimensional power as determined from Equation (77) as a function of the
cycle high temperature and the piston speed is shown in Figure 10. In addition, the
power output of the reversible Carnot cycle is added for comparison purposes. The non-
dimensional power reveals the maximum value for any fixed piston speed or internal
irreversibility consequence, and this maximum is moving toward growing temperature Tx
as the piston speed increases.
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Figure 10. The non-dimensional power of the Carnot cycle engine as a function of the cycle high
temperature and the piston speed w, as determined from TFS analysis.

Figure 11 presents the second law efficiency variation versus the cycle high temper-
ature for different values of the piston speed. The curves show that this irreversibility
coefficient decreases as piston speed increases, as expected, and the decrease is more
important at lower values of the cycle high temperature.

Figure 11. The effect of the piston speed, w, on the second law efficiency variation with the cycle
high temperature.

Regarding the irreversible term Φ determined from Equation (74), its variation with
the cycle high temperature and piston speed becomes important mainly at high speeds,
as illustrated in Figure 12. However, there is little change of Φ in the region of optimal
temperatures (from 800 to 1000 K).

The comparison of the results before (Figure 10) and after (Figure 13) using approx-
imations in search of optimal temperature expression that optimizes the power output
of the engine shows good agreement and lends confidence that a first iteration provides
sufficiently accurate results for most purposes. However, it is possible to improve the
accuracy of the results by making a new iteration.
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Figure 12. Parameter Φ variation with the cycle high temperature TX for different piston speed values.

Figure 13. Graphical determination of optimal temperature.

4. Conclusions

Important performance parameters of an irreversible Carnot cycle engine based on
optimization models developed in Thermodynamics with Finite Speed and by using the
Direct Method have been presented. This analysis predicts lower values of Carnot cycle
efficiency than is predicted by the Thermodynamics in Finite Time (FTT), as originated
by Chambadal and Curzon–Ahlborn. The piston speed for maximum power and for
maximum efficiency has been found for two sets of engine parameters, and it has been
shown that entropy generation per time clearly differs from entropy generation per cycle.
Moreover, a minimum occurs for the entropy generation per cycle at optimum piston speed
corresponding to maximum power.

This study produces a more realistic model for the design of Carnot cycle engines since
it includes many of the various internal and external irreversible processes that occur in the
actual operation of these engines and correlates them with the finite speed of the piston.

The present analysis has shown that the first unification attempt of TFS and FTT
optimization involves analytical correction of the Curzon–Ahlborn efficiency, which is well
known as a nice radical, by a term accounting for internal irreversibilities of the Carnot
cycle engine. They were evaluated based on the Fundamental Equation of TFS, the First
Law for Processes with Finite Speed, where the main irreversibility causes are accounted
for, namely, finite speed of the piston, friction, and throttling. This correction appears not
only in the Carnot cycle efficiency but also in the optimum temperature of the gas at the
hot end of the engine for maximum power, and in the non-dimensional power output of
the engine. Thus, the engine performances were derived analytically for a Carnot engine
with external and internal irreversibilities generated by finite speed w.
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A step further in this first unification approach did a comparison between TFS and
FTT optimization results for a Carnot cycle emphasizing that TFS analysis can account for
both kind of irrevesibilities, and it can also provide improvement of FTT results.

Thermodynamic analysis based on the Direct Method and Finite Speed of the processes
is shown to be especially effective for engineering optimizations since the efficiency and
power can each be optimized based on gas temperatures and process speed. The fact that it
is already used by other researchers [54–58,84–87] proves its capability to become a useful
tool in thermal machine analysis and optimization.

We do hope that this work marks an important step toward the development of
a more powerful Engineering Irreversible Thermodynamics, which could be a synthe-
sis unifying the three important branches, namely Thermodynamics with Finite Speed,
Thermodynamics with Finite Dimensions, and Thermodynamics in Finite Time.
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Abstract: Using finite time thermodynamic theory, an irreversible steady-flow Lenoir cycle model
is established, and expressions of power output and thermal efficiency for the model are derived.
Through numerical calculations, with the different fixed total heat conductances (UT) of two heat
exchangers, the maximum powers (Pmax), the maximum thermal efficiencies (ηmax), and the corre-
sponding optimal heat conductance distribution ratios (uLP(opt)) and (uLη(opt)) are obtained. The
effects of the internal irreversibility are analyzed. The results show that, when the heat conductances
of the hot- and cold-side heat exchangers are constants, the corresponding power output and thermal
efficiency are constant values. When the heat source temperature ratio (τ) and the effectivenesses of
the heat exchangers increase, the corresponding power output and thermal efficiency increase. When
the heat conductance distributions are the optimal values, the characteristic relationships of P − uL

and η − uL are parabolic-like ones. When UT is given, with the increase in τ, the Pmax, ηmax, uLP(opt),
and uLη(opt) increase. When τ is given, with the increase in UT , Pmax and ηmax increase, while uLP(opt)
and uLη(opt) decrease.

Keywords: finite time thermodynamics; irreversible Lenoir cycle; cycle power; thermal efficiency;
heat conductance distribution; performance optimization

1. Introduction

Finite time thermodynamic (FTT) theory [1–4] has been applied to the performance
analysis and optimization of heat engine (HEG) cycles, and fruitful results have been
achieved for both reciprocating and steady-flow cycle models. For the steady-flow models,
FTT was also termed as finite physical dimensions thermodynamics by Feidt [5–10]. The
famous thermal efficiency formula η = 1−√

TL/TH , where TH and TL are the temperatures
of the heat source and heat sink of a HEG, was derived by Moutier [11] in 1872, Cotterill [12]
in 1890, and Novikov [13] and Chambadel [14] in 1957 for steady-flow power plants, while
the systematical analysis combining thermodynamics with heat transfer for Carnot cycle
was performed by Curzon and Ahlborn [15] in 1975 for reciprocating model, and FTT
development was promoted by Berry’s group [4].

A large number of works have been performed for reciprocating (finite time) mod-
els [16–25] by applying FTT. While finite size is the major feature for steady-flow devices,
such as closed gas rubine (Brayton cycle) power plants and steam (Rankine cycle) and
organic Rankine cycle power plants, many scholars have performed FTT studies for various
steady-flow cycles with the power output (POW), thermal efficiency (TEF), exergy effi-
ciency, profit rate, and ecological function as the optimization goals, under the conditions
of different losses and heat transfer laws [26–51].

Lenoir [52] first proposed the Lenoir cycle (LC) model in 1860. The simple LC consists
of only three processes of constant-volume endothermic, adiabatic expansion, and constant-
pressure exothermic; the LC is also called the triangular cycle. According to the cycle

Entropy 2021, 23, 425. https://doi.org/10.3390/e23040425 https://www.mdpi.com/journal/entropy
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form, LC can be divided into steady-flow and reciprocating. Georgiou [53] first used
classical thermodynamics to study the performances of simple, regenerated, and modified
regenerated steady-flow Lenoir cycles (SFLCs).

Following on from [53], Shen et al. [54] applied FTT theory to optimize the POW and
TEF characteristics of the endoreversible SFLC with only the loss of heat resistance, and
they studied the influences of heat source temperature ratio and total heat conductance
(HC) on cycle performance. Ahmadi et al. [55] used a genetic algorithm to carry out
multiobjective optimization for endoreversible SFLC, and they obtained the optimal values
of ecological performance coefficient and thermal economy under different temperature
ratios.

In this paper, an irreversible SFLC model will be established on the basis of [54], while
the cycle performance will be analyzed and optimized with the POW and TEF as objective
functions, the optimal HC distributions of hot- and cold-side heat exchangers (HACHEX) of
the cycle will be studied under different fixed total HCs, and the characteristic relationships
between POW and TEF versus HC distribution are obtained. The effect of the internal
irreversibility will be analyzed.

2. Cycle Model

Figures 1 and 2 show the T − s and p − v diagrams of the irreversible SFLC. As can
be seen, 1 → 2 is the constant-volume endothermic process, 2 → 3 is the irreversible
adiabatic expansion process (2 → 3S is the corresponding isentropic process), and 3 → 1
is the constant-pressure exothermic process. Assuming the cycle WF is an ideal gas, the
entire cycle needs to be completed between the heat source (TH) and heat sink (TL).

 

Figure 1. T − s diagram for the irreversible steady-flow Lenoir cycle (SFLC).

 

Figure 2. p − v diagram for the irreversible SFLC.
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In the actual work of the HEG, there are irreversible losses during compression and
expansion processes; thus, the irreversible expansion efficiency ηE is defined to describe
the irreversible loss during the expansion process.

ηE =
T2 − T3

T2 − T3S
, (1)

where Ti (i = 2, 3, 3S) is the corresponding state point temperature.
Assuming that the heat transfer between the WF and heat reservoir obeys the law of

Newton heat transfer, according to the theory of the heat exchanger (HEX) and the ideal
gas properties, the cycle heat absorbing and heat releasing rates are, respectively,

.
Q1→2 =

.
mCvEH(TH − T1) =

.
mCv(T2 − T1), (2)

.
Q3→1 =

.
mCPEL(T3 − TL) =

.
mCP(T3 − T1), (3)

where
.

m is the mass flow rate of the WF, Cv(CP) is the constant-volume (constant-pressure)
SH (CP = kCv, k is the cycle SH ratio), and EH(EL) is the effectiveness of hot-side (cold-side)
HEX.

The relationships among the effectivenesses with the corresponding heat transfer unit
numbers (NH , NL) and HCs (UH , UL) are as follows:

NH = UH/(
.

mCv), (4)

NL = UL/(
.

mkCv), (5)

EH = 1 − exp(−NH), (6)

EL = 1 − exp(−NL). (7)

3. Analysis and Discussion

3.1. Power and Thermal Efficiency Expressions

According to the second law of thermodynamics, after a cycle process, the total entropy
change of the WF is equal to zero; thus, one finds

Cv ln(T2/T1)− CP ln(T3S/T1) = 0. (8)

From Equation (8), one obtains

T2

T1
= (

T3S
T1

)k. (9)

From Equations (2) and (3), one has

T2 = EH(TH − T1) + T1, (10)

T3 = (ELTL − T1)/(EL − 1). (11)

Combining Equations (1), (9), and (10) with Equation (11) yields

T1 =
EHTH(ηE − 1) + (T1 − ELTL)/(1 − EL)

{(1 − EH)(1 − ηE) + {[EHTH + (1 − EH)T1]/T1}
1
k ηE}

. (12)

From Equations (2), (3) and (9)–(11), the POW and TEF expressions of the irreversible
SFLC can be obtained as

P =
.

Q1→2 −
.

Q3→1 =
.

mCv[EH(TH − T1)− kEL(T1 − TL)

1 − EL
], (13)
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η = P/
.

Q1→2 = 1 − kEL(T1 − TL)

EH(1 − EL)(TH − T1)
. (14)

When ηE = 1, Equation (12) simplifies to

T1 − ELTL = (1 − EL)[EHTH + (1 − EH)T1]
1
k T1

1− 1
k . (15)

Equation (15) in this paper is consistent with Equation (15) in [54], where T1 was
obtained for the endoreversible SFLC. Combining Equations (13)–(15) and using the nu-
merical solution method, the POW and TEF characteristics of the endoreversible SFLC
in [54] can be obtained.

3.2. Case with Given Hot- and Cold-Side HCs

The working cycles of common four-branch HEGs, such as Carnot, Brayton, and Otto
engines, can be roughly divided into four processes: compression, endothermic, expansion,
and exothermic. Compared with these common four-stroke cycles, the biggest feature of
the SFLC is the lack of a gas compression process, presenting a relatively rare three-branch
cycle model.

When the hot- and cold-side HCs are constant, it can be seen from Equations (4)–(7)
that the effectivenesses of the HACHEX which are directly related to each cycle state point
temperature will be fixed values; as a result, the POW and TEF will also be fixed values.

3.3. Case with Variable Hot- and Cold-Side HCs When Total HC Is Given

When the HC changes, the POW and TEF of the cycle will also change; therefore, the
HC can be optimized and the optimal POW and TEF can be obtained. Assuming the total
HC is a constant,

UL + UH = UT . (16)

Defining the HC distribution ratio as uL = UL
UT

(0 < uL < 1), from Equations (4)–(7),
the effectivenesses of the HACHEX can be represented as

EH = 1 − exp[−(1 − uL)UT/(
.

mCv)], (17)

EL = 1 − exp[−uLUT/(
.

mkCv)]. (18)

Combining Equations (12)–(14) and (17) with Equation (18) and using a numerical
solution method, the characteristic relationships between POW and the hot- and cold-side
HC distribution ratio, as well as between TEF and the hot- and cold-side HC distribution
ratio, can be obtained.

4. Numerical Examples

It is assumed that the working fluid is air. Therefore, its constant-volume specific heat
and specific heat ratio are Cv = 0.7165 kJ/(kg·K) and k = 1.4. The turbine efficiency of the
gas turbine is about ηE = 0.92 in general. According to the [51–55],

.
m = 1.1165 kg/s and

TL = 320 K were set.
Figure 3 shows the POW and TEF characteristics when the HCs of the HACHEX and

temperature ratio are different values. When the HCs and temperature ratio are fixed
values, the effectivenesses of the HEX are fixed values, and the corresponding POW and
TEF are also fixed values. The POW and TEF characteristics are reflected in the graph
as a point. As can be seen, when τ(τ = TH/TL) and the HCs of the HEXs increase,
the corresponding POW and TEF increase. Figure 4 shows the influence of ηE on P − η
characteristics when the HCs of HACHEX and temperature ratio are given. As can be
seen, with the increase in ηE (the decrease of irreversible loss), the corresponding P and η
increase.
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Figure 3. The power output (POW) and thermal efficiency (TEF) characteristics when the HCs of
HACHEX are given.

 

Figure 4. Effect of ηE on P − η characteristics when the HCs of HACHEX are given.

Figures 5–8 show the influences of UT on the P − uL and η − uL characteristics when
τ = 3.25 and τ = 3.75. The relationship curves of P − uL and η − uL are parabolic-like
changes. With the increase in uL, the corresponding POW and TEF first increase and then
decrease, and there are optimal HC distribution values uLP(opt) and uLη(opt), which lead to
POW and TEF reaching their maximum values Pmax and ηmax.

Figures 5 and 6 show the influence of UT on P − uL characteristics when τ = 3.25 and
τ = 3.75. As can be seen, with the increase in UT , Pmax increases and uLP(opt) decreases.
When UT is 2.5, 5, 7.5, and 10 kW/K and τ = 3.25, the corresponding Pmax is 23.04, 56.58,
70.25, and 74.39 W, while uLP(opt) is 0.58, 0.575, 0.574, and 0.573, respectively. When UT
changes from 2.5 to 10 kW/K, the corresponding Pmax increases by about 222.9%, while the
uLP(opt) decreases by about 1.21%. When UT is 2.5, 5, 7.5, and 10 kW/K and τ = 3.75, the
corresponding Pmax is 33.06, 80.06, 90.24, and 105.06 W, while uLP(opt) is 0.586, 0.579, 0.5785,
and 0.5782, respectively. When UT changes from 2.5 to 10 kW/K, the corresponding Pmax
increases by about 217.8%, while the uLP(opt) decreases by about 1.33%.
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Figures 7 and 8 show the influence of UT on η − uL characteristics when τ = 3.25 and
τ = 3.75. As can be seen, with the increase in UT , ηmax increases and uLη(opt) decreases.
When UT is 2.5, 5, 7.5, and 10 kW/K and τ = 3.25, the corresponding ηmax is 0.066, 0.111,
0.126, and 0.1303, while uLη(opt) is 0.629, 0.614, 0.605, and 0.6, respectively. When UT
changes from 2.5 to 10 kW/K, the corresponding ηmax increases by about 97.4%, while
uLP(opt) decreases by about 4.61%. When UT is 2.5, 5, 7.5, and 10 kW/K and τ = 3.75, the
corresponding ηmax is 0.0774, 0.129, 0.1458, and 0.1506, while uLη(opt) is 0.644, 0.624, 0.608,
and 0.606, respectively. When UT changes from 2.5 to 10 kW/K, the corresponding ηmax
increases by about 94.6%, while uLP(opt) decreases by about 5.9%.

From Figures 5–8 and Equations (12)–(14), (17), and (18), one can see that, when τ
is given, the POW and TEF are mainly affected by the total HC; with the increase in UT ,
the Pmax and ηmax increase. When the total HC is small, the corresponding Pmax and ηmax
change more significantly. When the total HC is large, the corresponding Pmax and ηmax
change little. When UT is given, with the increase in τ, the uLP(opt) and uLη(opt) increase.
When τ and UT are given, the corresponding uLη(opt) > uLP(opt).

 

Figure 5. Effect of UT on P − uL characteristics when τ = 3.25.

 

Figure 6. Effect of UT on P − uL characteristics when τ = 3.75.
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Figure 7. Effect of UT on η − uL characteristics when τ = 3.25.

 

Figure 8. Effect of UT on η − uL characteristics when τ = 3.75.

Figures 9 and 10 show the influences of ηE on P − uL and η − uL characteristics when
τ = 3.75 and UT = 7.5 kW/K. As can be seen, when τ = 3.75 and UT = 7.5 kW/K, with
the increase in ηE (the decrease in irreversible loss), the Pmax and ηmax increase, while the
corresponding uLP(opt) and uLη(opt) decrease. When ηE is 0.75, 0.8, 0.85, 0.9, 0.95, and 1.0,
the corresponding Pmax is 30.2431, 50.4808, 70.7674, 91.0982, 111.4719, and 131.8876, ηmax is
0.0445, 0.0743, 0.1041, 0.1339, 0.1637, and 0.1935, uLP(opt) is 0.601, 0. 593, 0.586, 0.581, 0.576,
and 0.572, and uLη(opt) is 0.619, 0.617, 0.615, 0.613, 0.611, and 0.609, respectively. When ηE
changes from 0.75 to 1.0, the corresponding Pmax increases by about 336.1%, ηmax increases
by about 334.8%, uLP(opt), and uLη(opt) decreases by about 4.83% and 1.62%, respectively.
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Figure 9. Effect of ηE on P − uL characteristics.

 

Figure 10. Effect of ηE on η − uL characteristics.

5. Conclusions

In this paper, an irreversible SFLC model is established on the basis of [54], while
the POW and TEF characteristics of the irreversible SFLC were studied using FTT theory,
and the influences of τ, UT and ηE on Pmax, ηmax, uLP(opt), and uLη(opt) were analyzed. The
main conclusions are as follows:

(1) When the HCs are constants, the corresponding POW and TEF are fixed values.
When τ and the HCs of the HEXs increase, the corresponding POW and TEF increase.
When τ and HCs of the HEXs are constants, with the increase in ηE (the decrease in
irreversible loss), the corresponding P and η increase.

(2) When the distribution of HCs can be optimized, the relationships of P− uL and η − uL
are parabolic-like ones.

(3) When UT is given, with the increase in τ, Pmax, ηmax, uLP(opt), and uLη(opt) increase.
(4) When τ is given, with the increase in UT , Pmax and ηmax increase, while uLP(opt) and

uLη(opt) decrease. When τ and UT are given, the corresponding uLη(opt) is bigger than
uLP(opt).
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(5) When τ = 3.75 and UT = 7.5kW/K, with the increase in ηE, Pmax and ηmax increase,
while the corresponding uLP(opt) and uLη(opt) decrease.
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Nomenclature

CP Specific heat at constant pressure (kJ/(kg · K))
Cv Specific heat at constant volume (kJ/(kg · K))
E Effectiveness of heat exchanger
k Specific heat ratio (-)
.

m Mass flow rate of the working fluid (kg/s)
N Number of heat transfer units
P Cycle power (W)
.

Q Quantity of heat transfer rate (W)
T Temperature (K)
U Heat conductance (kW/K)
UT Total heat conductance (kW/K)
u Heat conductance distribution
Greek symbols
τ Temperature ratio
η Cycle thermal efficiency
Subscripts
H Hot-side
L Cold-side
max Maximum value
opt Optimal
P Maximum power point
η Maximum thermal efficiency point
1 − 3, 3S Cycle state points

Abbreviations

FTT Finite time thermodynamic
HACHEX Hot- and cold-side heat exchangers
HC Heat conductance
HEG Heat engine
HEX Heat exchanger
LC Lenoir cycle
POW Power output
SFLC Steady flow Lenoir cycle
SH Specific heat
TEF Thermal efficiency
WF Working fluid
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Abstract: An improved irreversible closed modified simple Brayton cycle model with one isothermal
heating process is established in this paper by using finite time thermodynamics. The heat reservoirs
are variable-temperature ones. The irreversible losses in the compressor, turbine, and heat exchangers
are considered. Firstly, the cycle performance is optimized by taking four performance indicators,
including the dimensionless power output, thermal efficiency, dimensionless power density, and
dimensionless ecological function, as the optimization objectives. The impacts of the irreversible
losses on the optimization results are analyzed. The results indicate that four objective functions
increase as the compressor and turbine efficiencies increase. The influences of the latter efficiency on
the cycle performances are more significant than those of the former efficiency. Then, the NSGA-II
algorithm is applied for multi-objective optimization, and three different decision methods are used
to select the optimal solution from the Pareto frontier. The results show that the dimensionless
power density and dimensionless ecological function compromise dimensionless power output and
thermal efficiency. The corresponding deviation index of the Shannon Entropy method is equal to
the corresponding deviation index of the maximum ecological function.

Keywords: closed simple Brayton cycle; power output; thermal efficiency; power density; ecological
function; multi-objective optimization

1. Introduction

Some scholars have studied performances of gas turbine plants (Brayton cycle (BCY)) [1–4]
all over the world for their small size and comprehensive energy sources. The gas-steam
combined, cogeneration, and other complex cycles have appeared for the requirements of
energy conservation and environmental protection. The thermal efficiency (η) of a simple
BCY is low, and the NOx content in combustion product is high. To further improve the
cycle performance, it has become a key research direction to improve the initial temperature
of the gas or to adopt the advanced cycles (such as regenerative, intercooled, intercooled
and regenerative, isothermal heating, and other complex combined cycles).

In the case of simple heating, when the compressible subsonic gas flows through the
smooth heating pipe with the fixed cross-sectional area, the gas temperature increases along
the pipe direction; in the case of simple region change, when the compressible subsonic
gas flows through the smooth adiabatic reductive pipe, the gas temperature decreases
along the pipe direction. Based on these two gas properties, the isothermal heating process
(IHP) can be realized when the compressible subsonic gas flows through the smooth
heating reductive pipe. The combustion chamber, which can recognize the IHP, is called
the convergent combustion chamber (CCC). The pipe of the CCC is assumed to be smooth.
During the heating process, the temperature of the gas is always constant. According to the
energy conservation law, the kinetic energy of the gas increases, that is, the pushing work of
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the gas increases. From the definition of enthalpy, it can be seen that enthalpy includes two
parts: the thermodynamic energy and the pushing work. Therefore, the enthalpy increases.
Based on this, Vecchiarelli et al. [5] proposed the CCC to perform the IHP of the working
fluid. The power output (W) and η of the BCY could be improved, and the emission of
harmful gases such as NOx could be reduced by adding this combustion chamber model.
The regenerative BCYs [6–8] and binary BCY [9] with IHPs were also studied by applying
the classical thermodynamics.

Finite time thermodynamics (FTT) is a useful thermodynamic analysis theory and
method [10–19]. In general, it is known that Curzon and Ahlborn [12] initialized FTT in
1975. In fact, the classical efficiency bound at the maximum power was also derived by
Moutier [10] in 1872 and Novikov [11] in 1957. The applications of FTT include majorly
two fields: optimal configurations [20–36] and optimal performances [37–61] studies for
thermodynamic cycles and processes. The W and η have been often considered as the
optimization objectives (OPOs) of the heat engines [62–72]. When the power density
(P) [73–81] was taken as the OPO, the operating unit had a smaller size and higher η.
Aditionally, the ecological function (E) [82–88] is also an OPO that balances the conflict
between W and η.

Kaushik et al. [89] first applied the FTT to studying the regenerative BCY with an
IHP. The regenerative, intercooled and regenerative complex BCYs with isothermal heating
combustor were further investigated [90–96]. Based on this, Chen et al. [97–99] studied
the endoreversible simple isothermal heating BCY with the W, η and E as OPOs. Arora
et al. [100,101] adopted NSGA-II and evolutionary algorithms to optimize the irreversible
isothermal heating regenerative BCY with the W and η as the OPOs. Chen et al. [102]
considered the variable isothermal pressure drop ratio (πt), established an improved
isothermal heating regenerative BCY model, and studied the regenerator’s role on cycle
performance. Qi et al. [103] demonstrated a closed endoreversible modified binary BCY
with IHPs and found the W and η raised as the heat reservoirs’ temperature ratios. Tang
et al. [104] considered the variable πt and established an improved irreversible binary BCY
model modified by isothermal heating. The heat exchanger’s heat conductance distribu-
tions (HCDs) and the top and bottom cycles’ pressure ratios were taken as optimization
variables to optimize the cycle performance.

In the process of the thermodynamic system optimization, single-objective optimiza-
tion often led to unacceptable objectives for other objectives when there were conflicts
among the considered goals. Multi-objective optimization would consider the trade-offs
among the goals, and the optimized results were more reasonable [99,100,102,105–125].

In applying the FTT, the heat transfer was introduced into the thermodynamic anal-
ysis of the thermodynamic process, and finite temperature difference was considered in
Refs. [11,12]. In this paper, the same method in Refs. [11,12] will be used, and the finite
temperature difference will be considered when establishing the model, which is the key
relation among this paper and the Refs. [11,12]. On this basis, the cycle’s irreversibility
will be further considered, and the corresponding conclusion will be more in line with the
actual situation. The compression and expansion losses in the model in Refs. [97–99] were
not considered, and they will be further considered in this paper alongside the losses in
the heat exchangers. Meanwhile, the thermal resistance loss and the optimal HCD will be
considered. With the W, η, P and E, respectively, as the OPOs, an improved irreversible
closed modified simple BCY with one IHP and coupled to variable-temperature heat reser-
voirs (VTHRs) will be optimized, and the optimization results will be compared. The
effects of the compressor and turbine efficiencies on optimization results will be analyzed.
The NSGA-II algorithm will be applied for multi-objective optimization to obtain the
Pareto frontier further. The results obtained in this paper will reveal the original results in
Refs. [10–12], which were the initial work of the FTT theory.
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2. Cycle Model and Performance Analytical Indicators

The schematic diagram of an improved irreversible closed modified simple BCY
with one IHP and coupled to VTHRs is shown in Figure 1. A compressor (C), a regular
combustion chamber (RCC), a CCC, a turbine (T), and a precooler are the main parts of
the cycle. The corresponding T − s diagram of the cycle is shown in Figure 2. The cycle
consists of five processes in total:

1. The process 1 → 2 is an irreversible adiabatic compression process in C, and the
process 1 → 2s is an isentropic process corresponding to the process 1 → 2 .

2. The process 2 → 3 is an isobaric endothermic process in RCC.
3. The process 3 → 4 is an IHP in CCC. In CCC, the working fluid is isothermally

heated, and its flow velocity rises from V3 to V4 (the Mach number increases from M3
to M4), and its specific enthalpy rises from h3 to h4. The parameter πt(= p4/p3 ≤ 1)
is the isothermal pressure drop ratio. The πt needs to be given in Refs. [97,98], but
the πt of the improved cycle established in this paper will change with the operation
state. The degree of the IHP can be represented by πt, and the greater the πt, the
greater the degree.

4. The process 4 → 5 is an adiabatic exothermic process in turbine, and the process
4 → 5s is the isentropic process corresponding to the process 4 → 5 .

5. The process 5 → 1 is an isobaric exothermic process in a precooler.

 

Figure 1. Schematic diagram of the cycle.

 

Figure 2. Diagram of the cycle.

73



Entropy 2021, 23, 282

The working fluid is the ideal gas. The pressures and temperatures of the working
fluid are pi(i = 1, 2, 3, 4, 5, 2s, 5s) and Ti, and the ratio of specific heat is k. The outside
fluids’ temperatures are Tj(j = H1, H2, H3, H4, L1, L2). The specific heat at constant
pressure and the working fluid’s mass flow rate are Cp and

.
m. The working fluid’s thermal

capacity rate is Cw f where Cw f = Cp
.

m. The outer fluids’ thermal capacity rates at the RCC,
CCC, and precooler are CH , CH1 and CL, respectively; then, one has:

CHmax = max
{

CH , Cw f

}
, CLmax = max

{
CL, Cw f

}
, CHmin = min

{
CH , Cw f

}
, CLmin = min

{
CL, Cw f

}
(1)

The heat exchangers’ heat conductance is the product of the heat transfer coefficient
and the heat transfer area. The heat exchangers’ heat conductance values in the RCC, CCC,
and precooler are UH , UH1 and UL, the heat transfer units’ numbers are NH , NH1 and NL,
and the effectiveness values are EH , EH1 and EL, respectively:

NH = UH/CHmin, NH1 = UH1/CH1, NL = UL/CLmin (2)

EH =
1 − e−NH(1−CHmin/CHmax)

1 − (CHmin/CHmax)e−NH(1−CHmin/CHmax)
(3)

EH1 = 1 − e−NH1 (4)

EL =
1 − e−NL(1−CLmin/CLmax)

1 − (CLmin/CLmax)e−NL(1−CLmin/CLmax)
(5)

When CHmax = CHmin and CLmax = CLmin, Equations (3) and (5) are, respectively,
simplified as:

EH = NH/(NH + 1) (6)

EL = NL/(NL + 1) (7)

The outside fluids’ temperature ratios at the RCC and CCC are:

τH1 = TH1/T0 (8)

τH3 = TH3/T0 (9)

where T0 is the ambient temperature.
The process 1 → 2s is the isentropic one, namely:

T2s/T1 = πm = x (10)

where m = (k − 1)/k and π is the pressure ratio of the compressor.
The process 4 → 5s is the isentropic one, namely:

T4/T5s = πmπm
t = xy (11)

The process 3 → 4 is the isothermal one, namely:

T3 = T4 (12)

.
Q3−4 =

.
m(h4 − h3)− .

m
∫ 4

3
vdp = − .

mRgT3 ln πt (13)

where πt, M3 and M4 must satisfy the following relation:

ln πt = −cp(k − 1)(M2
4 − M2

3)/(2Rg) (14)

where the working fluid’s flow velocity must be subsonic, namely, M3, M4 < 1 Because
the working fluid has an initial speed, (M2

4 − M2
3) < 0.96 and πt > 0.5107 when M3 = 0.2.
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Because of M4 > M3, πt < 1. When πt = 1, the cycle model in this paper can be simplified
to a simple Brayton cycle.

According to the definition of πt, it can be obtained that:

πt =
p4

p3
=

p4

p3
· p1

p1
=

p4

p1
· π−1 ≥ π−1 (15)

Considering the irreversibilities in the compressor and the turbine, the efficiencies of
them are:

ηc = (T1 − T2s)/(T1 − T2) (16)

ηt = (T5 − T4)/(T5s − T4) (17)

The pressure drop is not considered in this paper. It will be considered in future, as it
was by Ref. [126]. The study in Ref. [126] showed that the pressure drop loss has a little
influence on the cycle performance quantitatively, and has no influence qualitatively.

The working fluid’s heat absorption rates at RCC and CCC are
.

Q2−3 and
.

Q3−4, respec-
tively:

.
Q2−3 = CH(TH1 − TH2) = Cw f (T3 − T2) = CHminEH(TH1 − T2) (18)
.

Q3−4 = CH1(TH3 − TH4) = CH1EH1(TH3 − T3) =
.

m(V2
4 − V2

3 )/2 (19)

The heat releasing rate at the precooler is
.

Q5−1, namely:

.
Q5−1 = CL(TL2 − TL1) = Cw f (T5 − T1) = CLminEL(T5 − TL1) (20)

The heat leakages between the heat source and the environment [127,128] are ne-
glected. Therefore, the W and η are:

W =
.

Q2−3 +
.

Q3−4 −
.

Q5−1 (21)

η = W/(
.

Q2−3 +
.

Q3−4

)
(22)

The dimensionless power output (W) is:

W = W/(Cw f T0) (23)

The maximum specific volume corresponding to state point 5 is v5. The P is calculated
as:

P = W/v5 (24)

The specific volume corresponding to state point 1 is v1. The dimensionless power
density (P) and dimensionless maximum specific volume (v5/v1) are obtained as:

P =
P

Cw f T0/v1
=

W/v5

Cw f T0/v1
=

W
Cw f T0

× T1

T5
= W × T1

T5
(25)

v5/v1 = T5/T1 (26)

There are two different methods for calculating the entropy production rate. One was
suggested by Bejan [129,130], and the another was suggested by Salamon et al. [131]. In
this article, the method used is the one suggested by the latter.

The entropy production rate (sg) and E are, respectively, calculated as:

sg = CH ln(TH2/TH1) + CH1 ln(TH4/TH3) + CL ln(TL2/TL1) (27)

E = W − T0sg (28)
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The dimensionless ecological function (E) is obtained as:

E = E/(Cw f T0) (29)

Equations (10)–(12) and (16)–(29) are combined, and the four dimensionless perfor-
mance indicators of the cycle are obtained as follows:

W =

Cw f xy(CH1EH1TH3 + CLminELTL1) + CHminEHTH1

{
xy[Cw f

−CH1EH1 + CLminEL(ηt − 1)]− CLminELηt}+ a1{CLminEL
×[(ηt − 1)xy − ηt](Cw f − EHCHmin)− xy[Cw f CHminEH

+CH1EH1(Cw f − CHminEH)]
}

C2
w f T0xy

(30)

η =

CHminCLminEHELηtTH1 −
{

CHminEHTH1[Cw f − CH1EH1 + CLminEL(ηt − 1)]

+Cw f xy(CH1EH1TH3 + CLminELTL1)
}
+ a1

{
[CHminCw f EH + CH1EH1(Cw f

−EHCHmin)]xy − CLminEL(Cw f − CHminEH)[(ηt − 1)xy − ηt]
}

xy
{

a1[CH1Cw f EH1 + CHminEH(Cw f − CH1EH1)] + CHminEH(CH1EH1

−Cw f )TH1 − CH1Cw f EH1TH3

}
(31)

P =

{
a1(Cw f − CHminEH)(Cw f − CLminEL)[xy(ηt − 1)− ηt]− CLminCw f ELTL1x

×y + EHCHminTH1(Cw f − CLminEL)[(ηt − 1)xy − ηt]
}{

Cw f xy(CH1EH1TH3

+CLminELTL1) +
{

xy[Cw f − CH1EH1 + CLminEL(ηt − 1)]− CLminELηt

}
CHmin

×EHTH1 + a1

{
CLmin(Cw f − EHCHmin)EL

{
(ηt − 1)xy − ηt − xy[CHminCw f EH

+CH1EH1(Cw f − CHminEH)]
}
}}

C3
w f T0xy[a1(Cw f − CHminEH) + CHminEHTH1][(ηt − 1)xy − ηt]

(32)

E =

{
Cw f xy(CH1EH1TH3 + CLminELTL1) + CHminEHTH1

{
xy[Cw f − CH1EH1

+CLminEL(ηt − 1)]− CLminELηt}+ a1

{
CLminEL(Cw f − CHminEH)[(ηt

−1)xy − ηt]− xy[Cw f CHminEH + CH1EH1(Cw f − CHminEH)]
}
}/(T0

×xy)− Cw f

{
CL ln

{
1 +

{
CLminEL

{
a1Cw f ηt − Cw f xy[a1(ηt − 1) + TL1]

+CHminEH(a1 − TH1)[(ηt − 1)xy − ηt]}}/(CLCw f TL1xy)
}
+ CH ln{[a1

×CHminEH + (CH − CHminEH)TH1]/(CHTH1)}+ CH1 ln
{

1 +
{

EH1[Cw f

×(a1 − TH3) + EHCHmin(TH1 − a1)]}/(Cw f TH3)
}
}

C2
w f

(33)

where

a1 =
(ηc + x − 1)

{
CLminCw f ELTL1xy − CHminEHTH1(Cw f − CLminEL)[(ηt − 1)xy − ηt]

}
CHminCLminEHEL(ηc + x − 1)(ηtxy − xy − ηt) + C2

w f [xy − x2y + ηt(ηc + x
−1)(xy − 1)]− Cw f (ηc + x − 1)(EHCHmin + ELCLmin)[(ηt − 1)xy − ηt]

(34)

Parameters x and y in Equations (30)–(34) can be obtained by Equations (13) and (19),
and then the arithmetic solution of W, η, P and E can be gained. When CH , CH1, CL, EH ,
EH1, EL, ηc and ηt are specific values, the cycle could be transformed into different cycle
models. Equations (30)–(34) could be simplified into the performance indicators of the
various cycle models, which have certain universality.

76



Entropy 2021, 23, 282

1. When CH1 = CL → ∞ , Equations (30)–(34) can be simplified into the performance indi-
cators of the irreversible simple BCY with an IHP and coupled to constant-temperature
heat reservoirs (CTHRs) whose T − s diagram is shown in Figure 3a:

W =

Cw f xy(CH1EH1TH3 + CLminELTL1) + CHminEHTH1

{
xy[Cw f

−CH1EH1 + CLminEL(ηt − 1)]− CLminELηt}+ a1{CLminEL
×[(ηt − 1)xy − ηt](Cw f − EHCHmin)− xy[Cw f CHminEH

+CH1EH1(Cw f − CHminEH)]
}

C2
w f T0xy

(35)

η =

Cw f EHELηtTH1 −
{

EHTH1[Cw f − CH1EH1 + Cw f EL(ηt − 1)] + (CH1EH1TH3

+Cw f ELTL1)
}

xy + a2

{
[Cw f EH + CH1EH1(1 − EH)]xy − Cw f EL(1 − EH)

×[−ηt + (−1 + ηt)xy]}
xy
{

a2[CH1EH1 + EH(Cw f − CH1EH1)] + EHTH1(CH1EH1 − Cw f )− CH1EH1TH3

} (36)

P =

Cw f {−ELTL1xy + a2(1 − EH)(1 − EL)[(ηt − 1)xy − ηt] + EHTH1(1 − EL)[(ηt

−1)xy − ηt]}
{

xy(CH1EH1TH3 + Cw f ELTL1) + EHTH1

{
xy[Cw f − CH1EH1 + Cw f

×EL(ηt − 1)]− Cw f ELηt

}
+ a2Cw f (1 − EH)EL

{
(ηt − 1)xy − ηt − Cw f xy[Cw f EH

+CH1EH1(1 − EH)]}}
C3

w f T0xy[a2(1 − EH) + EHTH1][(ηt − 1)xy − ηt]
(37)

E =

{
xy(CH1EH1TH3 + Cw f ELTL1) + EHTH1

{
[Cw f − CH1EH1 + Cw f EL(ηt − 1)]xy − ELηt

}
+a2Cw f

{
Cw f EL(1 − EH)[(ηt − 1)xy − ηt]− xy[Cw f EH + CH1(1 − EH)EH1]

}
}/(T0xy)

−
{

CH ln[(a2Cw f EH + CHTH1 − Cw f EHTH1)/(CHTH1)] + CH1 ln
{

1 +
{

EH1[a2 + Cw f EH

×(TH1 − a2)/Cw f − TH3]
}

/TH3}+ CL ln
{

1 +
{

Cw f EL{a2ηt − xy[a2(ηt − 1) + TL1] + EH

×(a2 − TH1)[(ηt − 1)xy − ηt]}}/(CLTL1xy)}}
Cw f

(38)

where

a2 =
(ηc + x − 1){−ELTL1xy − EHTH1(1 − EL)[(ηt − 1)xy − ηt]}

EHEL(ηc + x − 1)[(xy − 1)ηt − xy] + [xy − x2y + ηt(ηc + x − 1)
×(xy − 1)]− [(ηt − 1)xy − ηt](ηc + x − 1)(EH + EL)

(39)

2. When ηc1 = ηt1 = 1, Equations (30)–(34) can be respectively simplified into the
performance indicators of the endoreversible simple BCY with an IHP and coupled to
VTHRs [99], whose T − s diagram is shown in Figure 3b:

W =

Cw f x
{

CLminCw f ELTL1(y − 1) + CH1EH1[Cw f TH3(y − 1) + CLminEL(TH3

−TL1xy)]}+ EHCHmin

{
CLminEL[Cw f TH1(x − 1) + Cw f TL1x(1 − xy) + CH1

×EH1x(TL1xy − TH3)] + xCw f [(y − 1)Cw f TH1 + CH1EH1(TH3 − TH1y)]
}

Cw f T0x[C2
w f y − (Cw f − CHminEH)(Cw f − CLminEL)]

(40)

η =

Cw f T0x
{

CLminCw f ELTL1(y − 1) + CH1EH1[Cw f TH3(y − 1) + CLminEL(TH3 − TL1xy)]
}

+CHminEH

{
CLminEL[Cw f TH1(x − 1) + Cw f TL1x(1 − xy) + CH1EH1x(TL1xy − TH3)]

+Cw f x[Cw f TH1(y − 1) + CH1EH1(TH3 − TH1y)]
}

Cw f T0x{CHminEH [C2
w f TH1(y − 1) + CH1Cw f EH1(TH3 − TH1y) + CLminCw f EL(TH1 − TL1xy)

+CH1CLminEH1EL(TL1xy − TH3)] + CH1Cw f EH1[Cw f TH3(y − 1) + CLminEL(TH3 − TL1xy)]}
(41)
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P =

[CHminEHTH1(Cw f − CLminEL) + CLminCw f ELTL1xy]
{

Cw f x
{

CLminCw f ELTL1(y − 1) + CH1EH1

×[Cw f TH3(y − 1) + CLminEL(TH3 − TL1xy)]
}
+ CHminEH

{
Cw f x[Cw f TH1(y − 1) + (TH3 − TH1

×y)CH1EH1] + CLminEL[Cw f TH1(x − 1) + Cw f TL1x(1 − xy) + CH1EH1x(TL1xy − TH3)]
}
}

Cw f T0x[C2
w f y − (Cw f − CHminEH)(Cw f − CLminEL)][CLmin(Cw f − CHminEH)EL

×TL1x + CHminCw f EHTH1]

(42)

E =

Cw f x
{

CLminCw f ELTL1(y − 1) + CH1EH1[Cw f TH3(y − 1) + CLminEL(TH3

−TL1xy)]}+ CHminEH

{
CLminEL[Cw f TH1(x − 1) + Cw f TL1x(1 − xy) + CH1

×EH1x(TL1xy − TH3)] + Cw f x[Cw f TH1(y − 1) + (TH3 − TH1y)CH1EH1]
}

Cw f T0x[C2
w f y − (Cw f − CHminEH)(Cw f − CLminEL)]

− CH
Cw f T0

ln{1 +

CHminCw f EH(Cw f TH1 − CLminELTH1 − Cw f TH1y + CLmin
×ELTL1xy)

TH1[CHC2
w f y−CH(Cw f −CHminEH)(Cw f −CLminEL)]

}

− CH1
Cw f T0

ln

{
(Cw f − CHminEH)(EH1 − 1)(Cw f − CLminEL)TH3 + Cw f y

×[CHminEHEH1TH1 − Cw f (EH1 − 1)TH3] + CLminEH1ELTL1xy

×(Cw f − CHminEH)
}

C2
w f TH3y−TH3(Cw f −CHminEH)(Cw f −CLminEL)

− CL
Cw f T0

ln{1 +
CLminCw f EL [CHminEH(TH1−TL1x)−Cw f TL1x(y−1)]

CLTL1[(CHminEH−Cw f )(Cw f CLminEL)x+C2
w f xy]

}

(43)

3. When ηc1 = ηt1 = 1 and CH1 = CH2 = CL → ∞ , Equations (30)–(34) can be simpli-
fied into the performance indicators of the endoreversible simple BCY with an IHP
and coupled to CTHRs, whose T − s diagram is shown in Figure 3c:

W =

Cw f x
{

Cw f ELTL1(y − 1) + CH1EH1[ELTH3 − ELTL1xy + TH3(y − 1)]
}

+Cw f EH

{
EL[TH1Cw f (x − 1) + Cw f TL1x(1 − xy) + CH1EH1x(TL1xy

−TH3)] + x[Cw f TH1(y − 1) + CH1EH1(TH3 − TH1y)]
}

C2
w f T0x(EH + EL + y − EHEL − 1)

(44)

η =

T0x
{

Cw f ELTL1y − Cw f ELTL1 + CH1EH1[TH3y − TH3 + TH3EL − ELTL1xy]
}

+
{

EH

{
x[Cw f TH1y − Cw f TH1 + CH1EH1(TH3 − TH1y)] + EL[Cw f TH1x − Cw f

×TH1 + Cw f TL1x(1 − xy) + CH1EH1x(−TH3 + TL1xy)]
}

Cw f T0x
{
[Cw f TH1y − Cw f TH1 + CH1EH1(TH3 − TH1y) + Cw f EL(TH1 − TL1xy)

+CH1EH1EL(TL1xy − TH3)]EH + CH1EH1[TH3(y − 1) + EL(TH3 − TL1xy)]}

(45)

P =

[EHTH1(1 − EL) + ELTL1xy]
{

Cw f x
{

Cw f ELTL1(y − 1) + CH1EH1[TH3(y − 1)

+EL(TH3 − TL1xy)]}+ EHCw f

{
x[Cw f TH1(y − 1) + CH1EH1(TH3 − TH1y)]

+EL[Cw f TH1(x − 1) + Cw f TL1x(1 − xy) + CH1xEH1(TL1xy − TH3)]
}
}

C2
w f T0x(EH + EL + y − EHEL − 1)(EHTH1 + ELTL1x − ELTL1xEH)

(46)
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E =

{
Cw f ELTL1(y − 1) + CH1EH1[TH3(y − 1) + ELTH3TL1xy]

}
x

+EH

{
EL[Cw f TH1(x − 1) + (1 − xy)Cw f TL1x + CH1EH1x(TL1

×xy − TH3)] + x[Cw f TH1(y − 1) + CH1EH1(TH3 − TH1y)]
}

Cw f T0xy − Cw f T0x(1 − EH − EL + EHEL)

− CH1
Cw f T0

ln

Cw f TH3(1 − EH − EL + EHEL)(EH1 − 1) + Cw f
×y[EHEH1TH1 − TH3(EH1 − 1)] + EH1ELTL1xy
×(1 − EH)

Cw f [TH3y−TH3(1−EH)(1−EL)]

− CH
Cw f T0

ln{1 +
EHCw f (TH1−EL×TH1−TH1y+ELTL1xy)

TH1CH [y−(1−EH)(1−EL)]
}

− CL
Cw f T0

ln{1 +
ELCw f [EH(TH1−TL1x)−TL1x(y−1)]

CLTL1[(EH−1)(1−EL)x+xy] }

(47)

4. When EH1 = 0, Equations (30)–(34) can be simplified into the performance indicators
of the simple irreversible BCY coupled to VTHRs [79], whose T − s diagram is shown
in Figure 3d:

W =

CLminCw f ELTL1x + CHminEHTH1

{
CLminEL[ηt(x − 1)− x] + Cw f x

}
+a3

{
CLmin(Cw f − CHminEH)EL[ηt(x − 1)− x]− CHminCw f EHx

}
C2

w f T0x
(48)

η =

a3

{
CHminCw f EHx − CLminEL(Cw f − CHminEH)[ηt(x − 1)− x]

}
− CLmin

×Cw f ELTL1x + CHminEHTH1[CLminEL(ηt + x − ηtx)− Cw f x]
xCHminEHCw f (a3 − TH1)

(49)

P =

{
−a3[ηt(x − 1)− x](Cw f − CHminEH)(Cw f − CLminEL)− CHminEHTH1[ηt(x − 1)− x]

×(Cw f − CLminEL) + CLminCw f ELTL1x
}{

a3

{
CLminEL[ηt(x − 1)− x](Cw f − CHminEH)

−CHminCw f EHx
}
+ CHminEHTH1

{
CLminEL[ηt(x − 1)− x] + Cw f x

}
+CLminCw f ELTL1x

}
−C3

w f T0x[ηt(x − 1)− x][a3(Cw f − CHminEH) + CHminEHTH1]
(50)

E =

{
CLminCw f ELTL1x + CHminEHTH1

{
CLminEL[ηt(x − 1)− x] + Cw f x

}
+ a3

{
CLmin(Cw f

−CHminEH)EL[ηt(x − 1)− x]− CHminCw f EHx
}
}/(T0x)− Cw f {CH ln[1 + CHminEH

×(a3 − TH1)/(CHTH1)] + CL ln
{

1 + CLminEL

{
a3Cw f ηt + CHminEH(a3 − TH1)[ηt(x − 1)

−x]− Cw f [a3(ηt − 1) + TL1]x
}

/(CLCw f TL1x)
}
}

C2
w f

(51)

where

a3 =
(ηc + x − 1)

{
CLminCw f ELTL1x − CHminEHTH1(Cw f − CLminEL)[(ηt − 1)x − ηt]

}
CHminCLminEHEL(ηc + x − 1)(ηtx − x − ηt) + C2

w f [x − x2 + ηt(ηc + x − 1)(x
−1)]− Cw f (ηc + x − 1)(EHCHmin + ELCLmin)× [(ηt − 1)x − ηt]

(52)

5. When EH1 = 0 and CH = CL → ∞ , Equations (30)–(34) can be simplified into the
performance indicators of the simple irreversible BCY coupled to CTHRs [76], whose
T − s diagram is shown in Figure 3e:

W =
ELTL1x − a4{(EH − 1)EL[ηt(x − 1)− x] + EHx}+ EHTH1[ELηt(x − 1) + x − ELx]

T0x
(53)
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η =

a4(EH − 1)EL[ηt(x − 1)− x] + a4EHx − EHTH1x − ELTL1x
+EHELTH1(ηt + x − ηtx)

xEH(a4 − TH1)
(54)

P =

{a4(EH − 1)(EL − 1)[ηt(x − 1)− x]− EHTH1(EL − 1)[ηt(x
−1)− x]− ELTL1x}{a4(EH − 1)EL[ηt(x − 1)− x] + a4EHx
−EHTH1x − ELTL1x + EHELTH1(ηt + x − ηtx)}

T0[a4(EH − 1)− EHTH1][ηt(x − 1)− x]x
(55)

E = {ELTL1x − a4{EL(EH − 1)[ηt(x − 1)− x] + EHx}+ EHTH1[ELηt(x
−1) + x − ELx]}/(T0x)− CH ln[1 + Cw f EH(a4 − TH1)/(CHTH1)]/Cw f

−CL ln
{

1 + Cw f EL{a4(EH − 1)[ηt(x − 1)− x]− TL1x + EHTH1(ηt + x
−ηtx)}/(CLTL1x)}/Cw f

(56)

where

a4 =
(ηc + x − 1)EHTH1(EL − 1)[ηt(x − 1)− x] + ELTL1x}

(EH − 1)(EL − 1)(x − 1)(ηc + x − 1)ηt − x[x − 1 + EH(EL − 1)(ηc + x − 1)− EL(ηc + x − 1)]
(57)

6. When EH1 = 0 and ηc = ηt = 1, Equations (30)–(34) can be simplified into the
performance indicators of the simple endoreversible BCY coupled to VTHRs [78],
whose T − s diagram is shown in Figure 3f:

W =
CHminCLminEHEL(−1 + x)(TH1 − TL1x)

T0x[CLminCw f EL + CHminEH(Cw f − CLminEL)]
(58)

η = (x − 1)/x (59)

P =

CHminCLminEHEL(−1 + x)(TH1 − TL1x)[CHminEH(Cw f
−CLminEL)TH1 + CLminCw f ELTL1x]

T0x[CLminCw f EL + CHminEH(Cw f − CLminEL)][CLminCw f
×ELTL1x + CHminEH(Cw f TH1 − CLminELTL1x)]

(60)

E =

CHminCLminCw f EH EL(x−1)(TH1−TL1x)

[CLminCw f EL + CHminEH(Cw f
−CLminEL)]T0x

− CH ln[1 +
CHminCLminCw f EH EL(TL1x−TH1)

CH [CLminCw f EL + CHminEH
(Cw f − CLminEL)]TH1

]

−CL ln{CLCLminCw f ELTL1x+CHminEH [CLCw f TL1x+CLminEL(Cw f TH1−CLTL1x−Cw f TL1x)]
CL [CLminCw f EL+CHminEH(Cw f −CLminEL)]TL1x }

Cw f
(61)

7. When EH1 = 0, ηc = ηt = 1 and CH = CL → ∞ , Equations (30)–(34) can be simpli-
fied into the performance indicators of the simple endoreversible BCY coupled to
CTHRs [77], whose T − s diagram is shown in Figure 3g:

W =
EHEL(−1 + x)(TL1x − TH1)

[EH(EL − 1)− EL]T0x
(62)

η = (x − 1)/x (63)

P =
EHEL(x − 1)(TL1x − TH1)[EH(EL − 1)TH1 − ELTL1x]
T0x(EHELTL1x − EHTH1 − ELTL1x)[EH(EL − 1)− EL]

(64)

E =

Cw f EHEL(x − 1)(TL1x − TH1) + CHT0x(EH + EL − EHEL) ln
{

1 − Cw f EH

×EL(TH1 − TL1x)/[CHTH1(EH + EL − EHEL)]}+ CLT0x(EH + EL − EH
×EL) ln[1 + Cw f EHEL(TH1 − TL1x)/(CL(EH + EL − EHEL)TL1x)]

Cw f [EH(EL − 1)− EL]T0x
(65)
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8. When EH = EL = 0, ηc = ηt = 1 and Cw f → ∞ , the cycle in this paper can become the
endoreversible Carnot cycle coupled to VTHRs [14], whose T − s diagram is shown
in Figure 3h. However, Equations (30), (33), and (34) need to be de-dimensionalized
to simplify to W, P and E of the endoreversible Carnot cycle coupled to VTHRs. The
performance indicators of the cycle are:

W =
CHCLEHEL(x − 1)(TH1 − TL1x)

x(CHEH + CLEL)
(66)

η = (x − 1)/x (67)

P =
CHCLEHEL(x − 1)(TH1 − TL1x)

x(CHEH + CLEL)
(68)

E = CHCLEH EL(x−1)(TH1−TL1x)
(CH EH+CLEL)x − CHT0 ln[1 + CLEH EL(TL1x−TH1)

(CH EH+CLEL)TH1
]

−CLT0 ln[CH EH ELTH1+CH EH TL1x+CLELTL1x−CH EH ELTL1x
CH EH TL1x+CLELTL1x ]

(69)

9. When EH = EL = 0, ηc = ηt = 1 and CH1 = CL = Cw f → ∞ , the cycle in this paper
can become the endoreversible Carnot cycle coupled to CTHRs [12], whose T − s
diagram is shown in Figure 3i. However, Equations (30), (33), and (34) also need to be
de-dimensionalized to simplify to W, P and E of the cycle [12,74,82]. The performance
indicators of the cycle are:

W =
UHUL(−1 + x)(TH1 − TL1x)

(UH + UL)x
(70)

η = (x − 1)/x (71)

P =
UHUL(−1 + x)(TH1 − TL1x)

(UH + UL)x
(72)

E =
UHUL(TH1 − TL1x)[(T0 + TH1)TL1x − TH1(T0 + TL1)]

TH1TL1(UH + UL)x
(73)

10. When EH = EL = 0, ηc = ηt = 1, CH1 = CL = Cw f → ∞ , and UL → ∞ , the cycle
in this paper can become the endoreversible Novikov cycle coupled to CTHRs [11],
whose T − s diagram is shown in Figure 3j. However, Equations (30), (33), and (34)
also need to be de-dimensionalized to simplify to W, P and E of the cycle [11]. The
performance indicators of the cycle are:

W =
UH(x − 1)(TH1 − TL1x)

x
(74)

η = (x − 1)/x (75)

P =
UH(x − 1)(TH1 − TL1x)

x
(76)

E =
UH(TH1 − TL1x)[TH1TL1(x − 1) + T0(TL1x − TH1)]

TH1TL1x
(77)
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11. Through comparison with the results in Refs [11–14,59,76–79,99], it is found that
the results of this paper are consistent with those in Refs [11–14,59,76–79,99], which
further illustrates the accuracy of the model established in this paper. In particular,
when the powers in Equations (58), (62), (66), (70), and (74) take the maximum values,
namely x =

√
TH1/TL1, the efficiencies at the maximum power point, Equations (59),

(63), (67), (71), and (75) are η = 1 −√
TL1/TH1, which was derived in Refs. [10–12]

by Moutier [10], Novikov [11], and Curzon and Ahlborn [12]. One can see that the
results of this paper include the Novikov–Curzon–Ahlborn efficiency.

12. FTT is the further extension of conventional irreversible thermodynamics. The cycle
model established by Curzon and Ahlborn [12] was a reciprocating Carnot cycle, and
the finite time was its major feature. The methods used for solving the FTT problem
are usually variational principle and optimal control theory. Therefore, such prob-
lems of extremal of thermodynamic processes were first named as FTT by Andresen
et al. [132] and as Optimization Thermodynamics or Optimal Control in Problems
of Extremals of Irreversible Thermodynamic Processes by Orlov and Rudenko [133].
When the research object was extended from reciprocating devices characterized by
finite-time to the steady state flow devices characterized by finite-size, one realizes
that the physical property of the problems is the heat transfer owing to temperature
deference. Therefore, Grazzini [14] termed it Finite Temperature Difference Ther-
modynamics, and Lu [134] termed it Finite Surface Thermodynamics. In fact, the
works performed by Moutier [10] and Novikov [11] were also steady state flow device
models. Bejan introduced the effect of temperature difference heat transfer on the total
entropy generation of the systems, taking the entropy generation minimization as the
optimization objective for designing thermodynamic processes and devices, termed
“Entropy Generation Minimization” or “Thermodynamic Optimization” [15,135]. For
the steady state flow device models, Feidt [136–146] termed it Finite Physical Di-
mensions Thermodynamics (FPDT). The model established herein is closer to FPDT.
For both reciprocating model and steady state flow model, the suitable name may
be thermodynamics of finite size devices and finite time processes, as Bejan termed
it [15,135]. According to the idiomatic usage, the theory is termed FTT in this paper.
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

 
(j) 

Figure 3. Diagrams of (a) irreversible simple BCY with an IHP and coupled to CTHRs; (b) endoreversible simple BCY with
an IHP and coupled to VTHRs; (c) endoreversible simple BCY with an IHP and coupled to CTHRs; (d) simple irreversi-ble
BCY coupled to VTHRs; (e) simple irreversible BCY coupled to CTHRs; (f) simple endoreversible BCY coupled to VTHRs;
(g) simple endoreversible BCY coupled to CTHRs; (h) endoreversible Carnot cycle coupled to VTHRs; (i) endoreversible
Carnot cycle coupled to CTHRs; (j) endoreversible Novikov cycle coupled to CTHRs.
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3. Analyses and Optimizations with Each Single Objective

3.1. Analyses of Each Single Objective

The impacts of the irreversibility on cycle performance indicators (W, η, P and E)
are analyzed below. In numerical calculations, it is set that CL = CH = 1.2 kW/K,
Cw f = 1 kW/K, T0 = 300 K, CH1 = 0.6 kW/K, k = 1.4, Rg = 0.287 kJ/(kg · K), EH =
EH1 = EL = 0.9, Cp = 1.005 kW/K, τH1 = 4.33, τH3= 5 and τL = 1.

Figures 4–6 present the relationships of W, η, P, E, πt and v5/v1 versus π with
different ηt. As shown in Figures 4 and 5, W, η, P and E increase and then decrease as
π increases. In the same situation, W, E, P and η reach the maximum value successively.
When ηt = 0.7 and π = 32.3, W = P = 0. If π keeps going up, W and P are going to go
negative. W, η, P and E increase as ηt increases. As π increases, W, η, P and E are affected
more significantly by ηt. As shown in Figure 6, πt goes up but v5/v1 goes down as π goes
up. πt and v5/v1 decrease as ηt rises. It illustrates that the degree of the IHP is improved
and the device’s volume is reduced as ηt increases.

 
Figure 4. Relationships of W and η versus π with different ηt.

Figure 5. Relationships of P and E versus π with different ηt.
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Figure 6. Relationships of πt and v5/v1 versus π with different ηt.

By numerical calculations, the influences of ηc on W, η, P, E and πt are the same as
those of ηt on W, η, P, E and πt. When ηt = 0.7 and π = 32.8, W = P = 0. However, the
impacts of ηc on W, η, P and E are less than those of ηt on W,

η, P, E. The effect of ηc on πt is more significant than that of ηt on πt. ηc has little
effect on v5/v1. In the actual design process, it is suggested that ηt should be given priority.

To further explain the difference between the models in this paper and Ref. [101], the
comparison of W under the variable and constant π is shown in Figure 7. As shown in
Figure 7, W increases and then decreases as π increases in both cases; that is, the qualitative
law is the same. However, there is an apparent quantitative difference between the two
points. Under the constant π, W corresponding to the constant π is always greater than
W conforming to the variable π. Similarly, there are quantitative differences in η, P and E
under the variable and constant π. The model whose π is variable is more realistic.

Figure 7. Comparison of W under the variable and constant π.

3.2. Performance Optimizations for Each Single Objective

With four performance indicators as the OPOs, respectively, the HCDs are optimized
under the condition of given total heat conductance (UT). The optimal results under
different OPOs are compared. The HCDs among the RCC, CCC, and precooler are:

uH = UH/UT , uH1 = UH1/UT , uL = UL/UT (78)

The HCDs are must larger than 0, the sum of them is 1, and 2 ≤ π ≤ 50.
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Figure 8 shows the flowchart of HCD optimization. The steps are as follows:

1. Enter the known data and the initial values of the HCDs.
2. The πt is calculated according to Equation (13).
3. Judge whether the πtπ and HCDs meet the constraints. If they are satisfied, perform

step 4; if they are not satisfied, go back to step 1.
4. The performance indicator is solved.
5. Determine whether the inverse objective function is minimized by using the “fmincon”

in MATLAB. If it is the smallest, perform step 6; if it is not the slightest, go back to
step 1.

6. Calculate the other thermodynamic parameters, and the maximum of the performance
indicator is obtained.

Figure 8. Flowchart of HCD optimization.

3.2.1. Optimizations of Each Single Objective

The optimization results of four performance indicators are similar. The optimization
results with η as the performance indicator will be mainly discussed herein, while the
results with W, P and E as the performance indicators are briefly discussed. The rela-
tionships of the optimal thermal efficiency (ηopt) and the corresponding dimensionless
power output (Wηopt ) versus π are shown in Figure 9. The relationships of the correspond-
ing dimensionless power density (Pηopt ) and the corresponding dimensionless ecological
function (Eηopt ) versus π are demonstrated in Figure 10. As shown in Figures 9 and 10,
Wηopt , ηopt, Pηopt and Eηopt first rise and then drops as π rises, which indicates a parabolic
relationship with the downward opening. The corresponding isothermal pressure drop
ratio ((πt)ηopt

) and dimensionless maximum specific volume ((v5/v1)ηopt
) versus π are

shown in Figure 11. (πt)ηopt
decreases and then increases as π increases. It indicates that

there is a πt that maximizes the degree of isothermal heating in the cycle. (v5/v1)ηopt

decreases as π increases. The relationships of the HCDs ((uH)ηopt
, (uH1)ηopt

and (uL)ηopt
)

versus π are shown in Figure 12. As π increases, (uH)ηopt
decreases, (uH1)ηopt

increases
rapidly and then slowly, and (uL)ηopt

decreases first and then increases gradually.
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Figure 9. Relationships of Wηopt and ηopt versus π.

 

Figure 10. Relationships of Pηopt and Eηopt versus π.

Figure 11. Relationships of (πt)ηopt
and (v5/v1)ηopt

versus π.
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Figure 12. Relationships of (uH)ηopt
, (uH1)ηopt

and (uL)ηopt
versus π.

By numerical calculations, Wopt, ηWopt
, PWopt

, EWopt
,WPopt

,.ηPopt
., Popt, EPopt

, WEopt
,

ηEopt
, PEopt

and Eopt increase first and then decrease as π increases. As π increases, (πt)Wopt
,

(πt)Popt
and (πt)Eopt

reduce first and then increase, and (πt)Wopt
, (πt)Eopt

, (πt)ηopt
and

(πt)Popt
reached the minimum successively. As π increases, (v5/v1)Wopt

, and (v5/v1)Eopt

decline, and their values have little difference. (uH)Wopt
, (uH)ηopt

, (uH)Popt
and (uH)Eopt

decrease as π increases, and (uH)ηopt
is always the smallest. (uH1)Wopt

and (uH1)Eopt
rise

firstly and then tend to keep constant as π rises. (uH1)Popt
first increases then decreases and

finally tends to stay stable as π rises. (uL)Wopt
, (uL)Popt

and (uL)Eopt
first increase rapidly

and then slowly as π increases.

3.2.2. Influences of Temperature Ratios on Optimization Results

With η as the performance indicator, the influences of the temperature ratios on the
optimization results are discussed. The relationship of the maximum thermal efficiency
(ηmax) versus τH1 and τH3 is shown in Figure 13. According to Figure 12, the surface is
divided into three parts by line τH3 = τH1 + 0.27 (the correlation coefficient is r1 = 0.9969)
and τH3 = 1.2τH1 + 0.1 (the correlation coefficient is r2 = 1.0000). τH1 has little influence on
ηmax. When τH3 < 1.2τH1 + 0.1, ηmax increases as τH3 increases; when τH3 > 1.2τH1 + 0.1,
τH3 has little impact on ηmax. It is recommended to magnify τH1.

Figure 13. Relationships of ηmax versus τH1 and τH3.

By numerical calculations, the surface is divided into three parts by line τH3 =
0.84τH1 + 0.41 (the correlation coefficient is r1 = 0.9973) and τH3 = 1.2τH1 + 0.23 (the
correlation coefficient is r2 = 0.9988) with W as the performance indicator. The surface
is divided into three parts by line τH3 = 0.78τH1 + 0.6 (the correlation coefficient is r1 =
0.9574) and τH3 = 1.2τH1 + 0.33 (the correlation coefficient is r2 = 0.9991) with P as the
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performance indicator. The surface is divided into three parts by line τH3 = 0.93τH1 +
0.058 (the correlation coefficient is r1 = 0.9978) and τH3 = 1.1τH1 + 0.41 (the correlation
coefficient is r2 = 0.9990) with E as the performance indicator. In practice, the difference
between τH1 and τH3 should be controlled and should not be too large.

3.2.3. Influences of the Compressor and the Turbine’s Irreversibilities on Optimization
Results

With the four performance indicators as OPOs, respectively, the influences of ηc and ηt
on optimization results are considered, and the thermodynamic parameters under various
optimal performance indicators are compared. Figures 14 and 15 show relationships of W
and π under various optimal performance indicators versus ηc and ηt, respectively Wmax,
Pmax, and Emax are the maximum dimensionless power output, maximum dimensionless
power density, and maximum dimensionless ecological function, respectively. When Wmax,
ηmax, Pmax, and Emax are used as subscripts, they indicate the corresponding values at
Wmax, ηmax, Pmax, and Emax points.

 
Figure 14. Relationships of W under various optimal performance indexes versus ηc and ηt.

Figure 15. Relationships of π under various optimal performance indexes versus ηc and ηt.

As shown in Figure 14, W under various optimal performance indicators increases as
ηc or ηt increases. When ηc and ηt both approach 1, Wηmax first increases and then decreases
as ηc or ηt increases. When ηc = ηt = 1, η rises monotonically as π gains, and there is no
maximum value. In the case of the same ηc and ηt, there is Wmax > WEmax

> WPmax
>

Wηmax . As shown in Figure 15, π under various optimal performance indicators all increase
as ηc or ηt increases. But the influence of ηt on π is more significant than that of ηc on π.
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When ηc and ηt both approach 1, πηmax is always 50. Because the upper limit of π is 50. In
the case of the same ηc and ηt, there is πηmax > πPmax

> πEmax
> πWmax

. The given range
of π is 2 ≤ π ≤ 50, so when π= 50, the trends of Wηmax and πηmax change significantly.

By numerical calculations, η, P, and E under various optimal performance indicators
increases as ηc or ηt increases. When ηc and ηt both approach 1, Pηmax and Eηmax first rises
and then drops as ηc or ηt rises. In the same ηc and ηt, there are ηmax > ηPmax

> ηEmax
>

ηWmax
, Pmax > PEmax

> PWmax
> Pηmax , (when ηc and ηt both tend to 1, the relationship

does not work) and Emax > EPmax
> EWmax

> Eηmax (the difference between EPmax
and

EWmax
is very small).

The calculations also show that the thermal capacitance rate matchings among the
VTHRs and working fluid have influences on the cycle performance. Wmax, ηmax, Pmax,
and Emax increase first and then keep constants as CH/Cw f or CH1/Cw f increases, and
the effects of CH/Cw f on Wmax, ηmax, Pmax, and Emax are more significant than that of
CH1/Cw f .

4. Multi-Objective Optimization

4.1. Optimization Algorithm and Decision-Making Methods

It is impossible to achieve the maximums of W, η, P, and E under the same π. It shows
that there is a contradiction among the four performance indicators. The multi-objective
optimization problem is solved by applying the NSGA-II algorithm [99,100,102,105–125].
The detailed optimization process is shown in Figure 16. The Pareto frontier of the cycle
performance is obtained by taking W, η, P, and E as OPOs, using the NSGA-II algorithm.
The optimal scheme is selected by using the LINMAP, TOPSIS, and Shannon Entropy
methods [99,102], and the algorithm of “gamultiobj” in MATLAB is based on the NSGA-II
algorithm. The calculations are assisted by applying the “gamultiobj”, and the correspond-
ing Pareto frontier could be obtained. The parameter settings of “gamultiobj” are listed in
Table 1.

 

Figure 16. Flowchart of NSGA-II algorithm.
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Table 1. Parameter settings of “gamultiobj”.

Parameters Values

Nvars 4
ParetoFraction 0.3
PopulationSize 300

Generations 500
CrossoverFraction 0.8

The positive and negative ideal points are the optimal and inferior schemes of each
performance indicator. The LINMAP method is the Euclidian distance between each
scheme and the positive ideal point, among which the one with the smallest distance is the
best scheme. Suppose that the Pareto front contains n feasible solutions, and each viable
solution contains m objective values Fij(1 ≤ i ≤ m and 1 ≤ j ≤ n). After normalizing Fij,
the value Bij is:

Bij = Fij/
√

∑n
i=1 F2

ij (79)

The weight of the j-th OPO is wLINMAP
j , and the weighted value of Bij is Gij:

Gij = wLINMAP
j · Bij (80)

The j-th objective of the positive ideal point is normalized and weighted, and the
corresponding value is Gpositive

j . The Euclidean distance between the i-th feasible solution

and the positive ideal point is ED+
i :

ED+
i =

√
∑m

j=1 (Gij − Gpositive
j )

2
(81)

The best viable solution to the LINMAP method is iopt:

iopt ∈ min
{

ED+
i
}

(82)

The TOPSIS method considers the Euclidean distance among each scheme and the
positive and negative ideal points comprehensively, to further obtain the best scheme. The
weight of the j-th OPO is wTOPSIS

j , and the weighted value of Bij is Gij:

Gij = wTOPSIS
j · Bij (83)

The j-th objective of the negative ideal point is normalized and weighted, and the
corresponding value is Gnegative

j . The Euclidean distance between the i-th feasible solution

and the negative ideal point is ED−
i :

ED−
i =

√
∑m

j=1 (Gij − Gnegative
j )

2
(84)

The best feasible solution of the TOPSIS method is iopt:

iopt ∈ min{ ED−
i

ED+
i + ED−

i
} (85)

The Shannon Entropy method is a method to get the weight of multi-attribute decision-
making.
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After normalization of Fij, Pij is obtained:

Pij = Fij/
n

∑
i=1

Fij (86)

The Shannon Entropy and weight of the j-th OPO are:

SEj = − 1
ln n

n

∑
i=1

Pij ln Pij (87)

wShannon Entropy
j = (1 − SEj)/

n

∑
j=1

(1 − SEj) (88)

The best feasible solution of the TOPSIS method is iopt:

iopt ∈ min
{

Pij · wShannon Entropy
j

}
(89)

The deviation index D is defined as:

D =

√
∑m

j=1 (Giopt j − Gpositive
j )

2

√
∑m

j=1 (Giopt j − Gpositive
j )

2
+

√
∑m

j=1 (Giopt j − Gpositive
j )

2
(90)

In this paper, wLINMAP
j = wTOPSIS

j = 1 is chosen for the convenience of calculation.

4.2. Multi-Objective Optimization Results

Figure 17 shows the Pareto frontier and optimal schemes corresponding to the four
objectives (W, η, P and E) optimization. The color on the Pareto frontier denotes the size
of E. To facilitate the observation of the changing relationships among the objectives, the
pure red projection indicates the changing relationship between W and η. The pure green
projection shows the changing relationship between W and P, and the pure blue projection
indicates the changing relationship between η and P. It is easy to know that W and η, W
and P, η and P are all parabolic-like relationships with the opening downward. To analyze
the influence of the corresponding optimization variables ((uH)opt, (uH1)opt, (uL)opt and
πopt) on cycle performance, the distributions of (uH)opt, (uH1)opt, (uL)opt and πopt within
the Pareto frontier’s value range are shown in Figures 18–21. As shown in Figure 18, the
value range of (uH)opt is 0–1, but its distribution is between 0.167 and 0.272. As (uH)opt

increases, W, P, and E gradually increase, but η gradually decreases. As shown in Figure
19, the value range of (uH1)opt is 0–1, but its distribution is between 0.151 and 0.181. As
(uH1)opt increases, W, P, and E gradually decrease, but the changing trend of η is not
apparent. As shown in Figure 20, the value range of (uL)opt is 0–1, but its distribution is
between 0.568 and 0.662. As (uL)opt increases, W, P, and E gradually decrease, but the
changing trend of η is not apparent. As shown in Figure 21, the value range of πopt is 2–50,
but its distribution is between 9.692 and 24.426. As πopt increases, W gradually decreases,
η gradually increases, and P and E rise and then reduce.
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Figure 17. Pareto frontier and optimal schemes corresponding to the four objectives (W, η, P and E )
optimization.

 
Figure 18. Distribution of (uH)opt within the value range in the Pareto frontier.

Figure 19. Distribution of (uH1)opt within the value range in the Pareto frontier.
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Figure 20. Distribution of (uL)opt within the value range in the Pareto frontier.

Figure 21. Distribution of πopt within the value range in the Pareto frontier.

The Pareto frontier includes a series of non-inferior solutions, so the appropriate
solution must be chosen according to the actual situation. The results of the triple- and
double-objective optimizations are further discussed to compare the results of multi-
objective optimizations more comprehensively. The comparison of the optimal schemes
gotten by single- and double-, triple-, and quadruple-objective optimizations are listed in
Table 2. The deviation index (D) is applied to represent the proximity between the optimal
scheme and the positive ideal point. The appropriate optimal schemes are chosen by using
the three methods. For the quadruple-objective optimization, W, η, P, and E corresponding
to the positive ideal point are the maximum of the single-objective optimization. It indicates
that the Pareto frontier includes all single-objective optimization results. The D obtained by
the Shannon Entropy method is significantly smaller than that obtained by the LINMAP
and TOPSIS methods. Simultaneously, it can be found that the D obtained by the Shannon
Entropy method is the same as that with E as the OPO. For the triple-objective optimization,
the triple-objective (W, η and E) optimization D obtained by the LINMAP or TOPSIS
method is the smallest. For the double-objective optimization, the double-objective (W and
P) optimization D obtained by the LINMAP method is the smallest. For the single-objective
optimization, the D corresponding to Emax is the smallest. For single- and double-, triple-,
and quadruple-objective optimizations, the double-objective (W and P) optimization D
obtained by the LINMAP method is the smallest.
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5. Conclusions

Based on FTT, an improved irreversible closed modified simple BCY model with one
IHP and coupled to VTHRs is established and optimized with four performance indicators
as OPOs, respectively. The optimization results are compared, and the influences of
compressor and turbine efficiencies on optimization results are analyzed. Finally, the cycle
is optimized, and the corresponding Pareto frontier is gained by adopting the NSGA-II
algorithm. Based on three different methods, the optimal scheme is gotten from the Pareto
frontier. The results obtained in this paper reveal the original results in Refs. [10–12], which
were the initial work of the FTT theory. The main results are summarized:

1. For the single-objective analyses and optimizations, performance indicators all rise as
ηc and ηt rise. The influences of ηt on four performance indicators are greater than
those of ηc. W of the models in this paper increase and then decrease as π increases
in both cases; that is, the qualitative law is the same. However, there is an apparent
quantitative difference between the two points. In practice, the difference between
τH1 and τH3 should be controlled and not be too large. P and E are the trade-offs
between W and η.

2. For single- and double-, triple-, and quadruple-objective optimizations, the Pareto
frontier includes a series of non-inferior solutions. The appropriate solution could
be chosen according to the actual situation. By comparison, it is found that the
double-objective (W and P) optimization D obtained by the LINMAP method is the
smallest.

3. The optimization results gained in this paper could offer theoretical guidelines for
the optimal designs of the gas turbine plants. In the next step, the improved closed
intercooling regenerated modified BCY model with one IHP will be optimized with
real gas as the working fluid, and the internal friction-based pressure drops during
heating and cooling processes and other processes, as well as the heat leakage losses
between the heat source and the environment, will be taken into account.
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Nomenclature

a, x, y Intermediate variables
C Thermal capacity rate (kW/K)
Cp Specific heat at constant pressure (kJ/(kg·K))
E Effectiveness of heat exchanger or ecological function (kW)
E Dimensionless ecological function
k Specific heat ratio
M Mach number
N Number of the heat transfer unit
.

Q Heat absorbing rate or heat releasing rate (kW)
P Dimensionless power density
T Temperature (K)
U Heat conductance (kW/K)
u Heat conductance distribution
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W Dimensionless power output
Greek symbols

η Efficiency
π Pressure ratio
τ Temperature ratio
Subscripts

H Hot-side heat exchanger
L Cold-side heat exchanger
w f Working fluid
1, 2, 3, 4, 5, 2s, 5s State points

Abbreviations

Brayton cycle BCY
CCC Convergent combustion chamber
CTHR Constant-temperature heat reservoir
FPDT Finite Physical Dimensions Thermodynamics
FTT Finite time thermodynamics
HCD Heat conductance distribution
IHP Isothermal heating process
OPO Optimization objective
RCC Regular combustion chamber
VTHR Variable-temperature heat reservoir
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Abstract: The purpose of the study is to show that two simple models that take into account only
the irreversibility due to temperature difference in the heat exchangers and imperfect regenera-
tion are able to indicate refrigerating machine behavior. In the present paper, the finite physical
dimensions thermodynamics (FPDT) method and 0-D modeling using the Schmidt model with
imperfect regeneration were applied in the study of a β type Stirling refrigeration machine.The 0-D
modeling is improved by including the irreversibility caused by imperfect regeneration and the finite
temperature difference between the gas and the heat exchangers wall. A flowchart of the Stirling
refrigerator exergy balance is presented to show the internal and external irreversibilities. It is found
that the irreversibility at the regenerator level is more important than that at the heat exchangers level.
The energies exchanged by the working gas are expressed according to the practical parameters,
necessary for the engineer during the entire project. The results of the two thermodynamic models
are presented in comparison with the experimental results, which leads to validation of the proposed
FPDT model for the functional and constructive parameters of the studied refrigerating machine.

Keywords: Stirling refrigerator; thermodynamic analysis; numerical model; imperfect regeneration

1. Introduction

The continued growth in the demand for refrigeration in almost all parts of the world
and global warming due to the consumption of chlorofluorocarbon (HCFC) refrigerant has
led the engineering community to seek applications for vapor-compression refrigeration.
The Stirling refrigeration cycle is an important cycle model in the research and manufacture
of refrigerators. The Stirling cycle machine is an alternative that could work with an
environmentally friendly cooling fluid [1].

The Stirling cycle refrigerating machine was first developed in 1832 [2] but the system
was first practically made in 1862, when Alexander Kirk built and patented a closed-cycle
refrigerator. In 1971, Beale stated that by reversing the cycle, the Stirling cycle could be
used for both work production and refrigeration purposes [3].

The Stirling reversible refrigeration cycle, for the same temperature range under
perfect regenerative conditions [4], has the same coefficient of performance as the Carnot
reversible refrigeration cycle according to classical thermodynamics.

The Stirling refrigerator is composed of two chambers with variable volume (ex-
pansion and compression) physically separated from the regenerator and with different
temperatures. The presence of the regenerator (an economizer) qualifies the Stirling cycle
machine as a regenerative machine.
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According to the classical theory of thermodynamics, the performance of a Stirling
cycle machine is a function of pressure, the ratio between temperature, speed and phase
angle, fluid type, the efficiency of heat exchangers and volume [1].

Various thermodynamic models of Stirling machine operations have been proposed
in the literature, with various assumptions. Schmidt developed the first performance
analysis of the Stirling machine in 1871 and this proved to be an effective aspect of its
design [5]. After Curzon and Ahlborn [6] studied the Carnot direct cycle using finite heat
transfer, models were developed using finite time thermodynamics (FTT) [7], finite physical
dimensions thermodynamics (FPDT) [8,9], and finite speed thermodynamics (FST) [10],
which have been applied to several types of machines, including Stirling machines.

A finite time heat transfer analysis [7] was performed in 1998 for an air refrigeration
cycle with non-isentropic compression and expansion. The relation between the coefficient
of performance (COP) and the cooling load with the pressure ratio was obtained.

Petrescu et al. [10] developed an analytical model for estimating the performance of a
Stirling engine based on the first and second laws of thermodynamics, called finite speed
thermodynamics (FST). The model [11] directly connects the irreversibilities, and the flow
and mechanical friction are taken into account.

Chen [12] developed an irreversible cycle model in order to predict the performance
and input power required for a Stirling refrigerator optimized to a specified cooling capacity.

A β-type Stirling cycle refrigeration machine was mathematically designed and exper-
imentally tested in [13]. Those authors studied the types of working fluids, the effect of
the phase difference of the piston and the displacer on the refrigeration performance, the
effect of parameters such as the ratio between the expansion volume and the compression
volume and the dead volume ratio.

For the Stirling cycle refrigerator, Ataer and Karabulut [14] performed an analysis
on the thermodynamic control volume subjected to periodic mass flow and evaluated the
performed activity, instantaneous pressure and coefficient of performance.

A nonlinear mathematical model was developed for an air-filled Stirling alpha re-
frigerator by incorporating thermodynamics, wall heat transfer and fluid resistance in the
regenerator. Different variables were also determined for both workspaces [15].

The effects of different parameters on the cooling performance of a Stirling cryocooler
were also investigated [16]. It was found that the highest work loss was due to mechanical
friction loss and the highest heat loss was due to conduction loss.

The performance of a β-type Stirling refrigeration machine with a regenerative dis-
placer was studied by Hachem et al. [17,18], considering the complex phenomena related
to the mechanics of compressible fluids, heat transfer and thermodynamics for energy
analysis. An experimental validation with a focus on evaluating the effect of geometric
parameters, such as the expansion space, the volume of the dead space and the compres-
sion of the swept volume was performed in [18]. The authors analyzed and optimized the
parameters of the regenerator regarding the performance of the refrigerator. The various
losses associated with the Stirling refrigerator that directly affect its cooling performance
were evaluated. They described these losses as a function of the length and diameter of
the regenerator.

Given the imperfection of the practical regenerator, researchers [19,20] have developed
many thermodynamic models of Stirling engines using finite time thermodynamics (FTT).
Based on finite speed thermodynamics (FST), Petrescu et al. [21] developed a method for
calculating the coefficient that characterizes regenerative loss in a Stirling machine, based
on the first law for processes with finite speed. Based on isothermal theory, Kongtragool
and Formosa [22] studied the effect of regenerative efficiency and dead volume on a Stirling
engine with an imperfect regenerator.

In the present paper, a finite physical dimensions thermodynamic (FPDT) method and
0-D modeling (isothermal analysis) using the Schmidt model (second order) with imperfect
regeneration were applied in the study of a β-type Stirling refrigeration machine, with
academic use and benefit.
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The findings of Feidt et al. [23] show that the most significant reduction in performance
is due to the non-adiabatic regenerator. The isotherm model in this paper is improved by
including the irreversibility caused by imperfect regeneration and the finite temperature
difference between the gas and the wall of the heat exchangers (cold and hot). The nu-
merical model describes the evolution of instantaneous variables (pressure, volume, mass,
changed energy, irreversibility) depending on the rotation angle of the shaft.

The FPDT model [16,24] is based on the irreversible thermodynamics approach, which
is an old approach, but has had some improvements and engineering adjustments, which
were the aims of recent papers by Grosu et al. [25–27].

The results obtained after applying the two models of thermodynamic analysis justify
a more realistic evaluation of the FPDT model by reporting the experimental results. In
this context, in order to identify the limitations of the isothermal model, this research
was completed with an exergetic analysis of a β-type Stirling refrigerator that allows the
development of a system of equations that describes the processes that take place at each
element of the machine. The purpose of developing this method of thermodynamic analysis
was to establish the value of irreversible losses in the actual cycle of the refrigeration
machine and determine the cycle component to be improved in order to reduce the degree
of irreversibility of the cycle.

2. Materials and Method

2.1. Description of Experimental Installation

A β-type Stirling refrigerator consisting of an arrangement with a displacer, power pis-
ton and regenerator in line was analyzed. A cylinder of highly resilient glass is surrounded
by a water jacket in which a stream of water is the hot tank of the system operating as a
refrigeration machine. The displacer forces the gas (air) to pass from the bottom space to
the top space of the cylinder and vice versa. It also has an extremely conductive material,
which is used for heat storage/release, thus acting as a regenerator, in order to improve
the efficiency. The two pistons perform an alternating reciprocating motion with an angle
of 110◦.

The experimental device can function as an engine by providing mechanical work,
or as a refrigerating machine (reverse cycle) by using an electric motor that drives the
machine shaft [28]. The configuration of the Stirling refrigerator proposed for this study is
shown in Figure 1. At the top of the cylinder is a thermocouple that allows temperature
measurement and an electrical resistance that helps to determine the refrigerating power
through a compensation method.

Figure 1. Experimental device using a β-type Stirling refrigerating machine.
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2.2. Application of Schmidt Method with Imperfect Regeneration in the Study of a β-Type Stirling
Refrigerating Machine

The isothermal analysis (Schmidt method) takes into account the external and internal
irreversibility of the machine and the kinematics of the pistons. In addition, the uneven dis-
tribution of time and space of the working fluid in the machine is taken into consideration
by dividing the refrigerator into three volumes associated with a characteristic temperature.
The assumptions that Schmidt considered in his analysis included the following: (a) the
fluid in the compression volume of the refrigerating machine and the cold exchanger is
always kept at a constant temperature, and the fluid temperature in the expansion volume
and the hot-end heat exchanger is constant; (b) the surface temperature of the cylinder
and the piston is constant; (c) the mass of the fluid is constant, which implies that there
is no leakage and the same instantaneous pressure on the whole machine; (d) an ideal
gas is used as a working fluid (perfect gas equation of state is applied); (e) there is har-
monic/sinusoidal movement of the pistons (idealized crankshaft); and (f) the speed of
working fluid within the machine is constant. The hypothesis of energy loss independence
is used in this method [28].

In practice, this hypothesis, according to which the gas behaves isothermally in the
expansion and compression spaces, is not true at high speeds. At high speeds, compression
and expansion processes are closer to adiabatic processes [5].

Given the constructive peculiarities of the machine studied in this paper, it was
operated at very low speeds and in order to model the Stirling refrigeration machine with
some realism, the isothermal model was adapted.

The Schmidt method is based on dividing the refrigeration machine into three spaces:
the expansion volume, the regenerator volume, and the compression volume. (Figure 2).
Each part is considered a control volume, to which the laws of energy and mass conserva-
tion are applied.

Figure 2. Representation of three volumes of machine and their boundaries.

According to the assumption, the gas temperature history will remain the same and
part of the regenerated heat loss will be continuously compensated by a heat supplement
Qp,reg provided by the source, as each cycle is driven by imperfect regeneration (Figure 3).
Using refrigerator geometry, the volumes of compression and expansion spaces can be
expressed according to the instantaneous positions of the pistons [29].

The following equation is used to determine the instantaneous volume of the com-
pression space (hot):

VC =
VC0

2
[1 − cos ϕ] + VmC, (1)

where ϕ is the idealized crankshaft rotation angle and VC0 is the swept compression
volume; this is the displacer swept volume in the case of β-type Stirling machines.
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Figure 3. Temperature gradient in refrigerator regenerator.

The instantaneous volume of the expansion space (cold) is a combination of several
volumes and can be determined as:

VE =

{
VC0

2
· [1 + cos(ϕ)] +

VE0

2
[1 − cos(ϕ − ϕ0)]− V0l

}
+ VmE, (2)

where ϕ0 is the phase lag angle of the piston movements and VE0 is the swept expansion
volume. V0l is the overlapping volume in the case of a β-type Stirling machine and is due
to the intrusion of the displacer piston into the working piston swept volume.

The dead volumes VmE and VmC on the heat exchangers are also taken into account.
To evaluate the mass of fluid in each volume, the state equation of the perfect gases is

used. The instantaneous pressure is assumed to be uniform in the machine and its variation
can be determined by using the mass balance:

p =
mR

Vh
Th

+
Vreg
Tr

+ Vl
Tl

(3)

The elementary masses of each volume are calculated with:⎧⎪⎪⎨
⎪⎪⎩

dml =
pdVl+Vldp

RT1
= dm1

dmh = pdVh+Vhdp
RT5

= dm5

dmreg = mreg
dp
p = dm5

(4)

Considering the mass flow direction on the interface, the interface temperatures can
be expressed as follows:

dm2 = −dml if dm2 < 0, then T2 = T1 + ΔTreg, otherwise, T2 = T1;
dm4 = −dmh if dm4 < 0, then T4 = T5, otherwise, T4 = T5 − ΔTreg.
While differentiating Equation (3) and considering that the temperatures are constant,

dp is obtained in the following form:

dp =
−p

(
dVl
T1

+ dVh
T5

)
Vl
T1

+
Vreg
T3

+ Vh
T5

(5)

The internal irreversibility of the studied Stirling cycle is assumed to be due to the
imperfect regeneration. The regenerator/displacer reciprocating movement forces the air
of the cooling space toward the heating space and conversely: it is also useful to store and
release the heat exchanged with the regenerator material during this transfer (Figure 3).
The difference is the temperature gap on the regenerator ΔTreg, assumed to be constant on
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the whole length of the regenerator [28]. Therefore, in the case of the Stirling refrigerator,
the regenerator efficiency is defined by:

ηreg =
T5 − T4

T5 − T1
=

T2 − T1

T5 − T1
=

ΔTreg

T5 − T1
(6)

Thus:
T5 = T4 + ηreg(T5 − T1)
T2 = T1 + ηreg(T5 − T1)

(7)

In the regenerator, the changed work is zero and the average temperature is supposed
to be constant Treg. The regenerator temperature, Treg = T3, is a logarithmic average of
cold and hot space (VC and VE) temperatures:

T3 = Treg =
Th − Tl

ln Th
Tl

=
T5 − T1

ln T5
T1

(8)

The quantity of heat changed at the level of the three volumes is obtained starting
from the energy conservation equation applied to each volume:

⎧⎨
⎩

δQl =
( cv

R + 1
)

pdVl +
cv
R Vldp + cpT2dm2

δQreg = Vreg
cv
R dp + cp(T4dm4 − T2dm2)

δQh =
( cv

R + 1
)

pdVh +
cv
R Vhdp − cpT4dm4

(9)

The elementary mechanical work in the compression δWh = −pdVh and expansion
δWl = −pdVl spaces allow, after integration, calculation of the mechanical work consumed
in a cycle:

W = Wl + Wh (10)

The temperatures of the expansion and compression spaces are determined starting
with heat flow rates and from the global heat transfer coefficients, experimentally obtained:

∣∣∣ .
Qh

∣∣∣ = hAh(Th − Twh) → Th = Twh +

∣∣∣ .
Qh

∣∣∣
hAh

(11)

.
Ql = hAl(Twl − Tl) → Tl = Twl −

.
Ql

hAl
(12)

The equations presented above were solved using the Simulink simulation tool. In
order to improve the obtained results based on the isothermal method (Schmidt) by taking
temperature levels into account, an exergetic analysis is required for the β-type Stirling
refrigerating machine.

2.3. Application of Exergetic Method in the Study of β-Type Stirling Refrigerating Machine
2.3.1. Exergetic Analysis Applied in the Study of the β-Type Stirling Refrigeration Machine

The simple and fast processing of the energy balance and exergetic balance equations
leads to obtaining the classic exergetic balance equations customized on the reversed cycle
(refrigeration installation), written at the consumer level:∣∣∣ .

W
∣∣∣ = ∣∣∣ .

ExTwl
Qwl

∣∣∣+ ∣∣∣ .
ExTh

Qh

∣∣∣+ .
ExD

l +
.
ExD

reg, (13)

where:.
ExD

l is exergy destruction due to heat transfer at the finite difference in the cooler;
.
ExD

reg is

the exergy destruction in the regenerator and
∣∣∣ .
ExTh

Qh

∣∣∣ is loss of exergy with heat discharged
into the environment.
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The schematic of the exergy balance for the Stirling refrigerating machine is presented
in Figure 4.

Figure 4. Exergy balance for β-type Stirling refrigerating machine.

For the calculation of terms in Equation (13), in the following, the exergetic balances
are established at the level of each element of the Stirling machine, depending on the
kinematics of the pistons.

The exergetic balance in differential form is applied for each heat exchanger:

dEx = δExT
Q + δW + p0dV + ex f

i dmi − ex f
e dme − T0δΠ, (14)

where δExT
Q is the exergy of heat at the temperature T of the system.

Then we obtain:

dExreg =

(
1 − T0

Treg

)
δQreg + δWreg + p0dVreg + ex f

2 dm2 − ex f
4 dm4 − T0δΠreg (15)

dExl =

(
1 − T0

Tl

)
δQl + δWl + p0dVl − ex f

2 dm2 (16)

dExh =

(
1 − T0

Th

)
δQh + δWh + p0dVh + ex f

4 dm4 (17)

For a cycle, the balance can be written as follows:

dExl + dExreg + dExh = 0 (18)

Using the equations presented above, δΠreg and Πreg can also be calculated.

2.3.2. Study of Heat Exchangers (Compression and Expansion Volume) and Calculation of
Exergy Destroyed due to Temperature Differences
Cold-End Heat Exchanger Study

A functional diagram of the expansion volume (Figure 5) shows the entropies and
exergies exchanged by the air in the expansion volume of the refrigeration machine with a
cold source (cylinder head).

The exergetic balance allows the determination of exergy lost due to temperature
differences between the expansion volume and the cylinder head:∣∣∣δExTl

Ql

∣∣∣ = δExD
l + δExTwl

Qwl
, (19)

where:

δExTl
Ql

=

(
1 − T0

Tl

)
δQl < 0 (20)

represents the exergy of heat δQl at temperature Tl .
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The exergy of heat δQwl at temperature Twl is given by the equation:

δExTwl
Qwl

=

(
1 − T0

Twl

)
δQwl > 0, (21)

where δExTwl
Qwl

is the useful effect of the refrigeration machine in exergetic terms.

Figure 5. Exergetic and entropic functional diagram of expansion volume.

Replacing relations (20) and (21) in Equation (19) of the exegetical balance, the de-
stroyed exergy at the level of the cold exchanger results in:

δExD
l =

∣∣∣δExTl
Ql

∣∣∣− δExTwl
Qwl

=

(
T0

Tl
− 1

)
δQl −

(
1 − T0

Twl

)
(−δQl) (22)

By grouping the terms, we can obtain:

δExD
l = T0δQl

(
1
Tl

− 1
Twl

)
(23)

The destroyed exergy flow rate is calculated by integrating relation (23) over the entire
cycle of the refrigeration machine during a complete rotation of the shaft:

.
ExD

l = n
∮

δExD
l (24)

The exergetic efficiency of the cold exchanger is:

ηexl =

.
ExTwl

Qwl∣∣∣ .
ExTl

Ql

∣∣∣ , (25)

and the dissipation coefficient is:

ζl =

.
ExD

l∣∣∣ .
ExTl

Ql

∣∣∣ (26)

Hot-End Heat Exchanger Study

The gas temperature of the compression volume is higher than the ambient tempera-
ture, and as the gas is cooled, its exergy will decrease, so the exergy flow rate will have the
same direction as the heat transfer.

A functional diagram of the compression volume shows the exchanged air exergy
with a cold source (Figure 6).
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Figure 6. Exergetic and entropic functional diagram of compression volume.

The exergetic balance of the compression chamber can be written as follows:∣∣∣δExTh
Qh

∣∣∣ = δExD
h + δExTwh

Qwh
, (27)

where the exergy ofheat δQh at temperature Th is:

δExTh
Qh

=

(
1 − T0

Th

)
δQh < 0 (28)

The exergy of heat δQwh at temperature Twh is:

δExTwh
Qwh

=

(
1 − T0

Twh

)
δQwh > 0 (29)

The exergy lost at the hot-end heat exchanger due to the temperature difference
between the compression room and the hot source can be calculated as follows:

δExD
h =

∣∣∣δExTh
Qh

∣∣∣− δExTwh
Qwh

= −
(

1 − T0

Th

)
δQh +

(
1 − T0

Twh

)
δQh (30)

δExD
h = T0δQh

(
1
Th

− 1
Twh

)
, (31)

and the exergy destroyed at the hot-end heat exchanger level is:

.
ExD

h = n
∮

δExD
h (32)

The exergetic efficiency of the hot-end heat exchanger can be calculated as:

ηexh =

.
ExTwh

Qwh∣∣∣ .
ExTh

Qh

∣∣∣ , (33)

and its dissipation coefficient as:

ςh =

.
ExD

h∣∣∣ .
ExTh

Qh

∣∣∣ (34)
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2.4. Application of TDFF in the Study of the β-Type Stirling Refrigerating Machine

Finite physical dimensions thermodynamics (FPDT) [13–17] is a method that regroups
the techniques of thermodynamics in finite time, speed and geometric dimensions. This
method introduces the exo-irreversibilities due to the finite heat transfer between sources
(hot source, cold source, regenerator) and the working fluid. In addition, it considers the
constraints faced by engineers. Using classical thermodynamics, it has been shown that
machines with or without heat generation operating after cycles similar to the Carnot cycle
can be described by using physical parameters such as pmax, Vmax, Th, and Tl as reference
parameters. It is essential to consider the rotation speed as the main variable, because heat
and mass transfer are dependent in a straightforward manner on speed and naturally must
be expressed accordingly.

In the following, the FPDT method is applied in the study of the exo-irreversible
reversed Stirling cycle with imperfect regeneration, represented in Figure 7.

Figure 7. Exo-irreversible reversed Stirling cycle. (A) Logp-LogV diagram in the range limit of pmax,
Vmax, Tl and Tl ; (B) energy balance scheme.

The main hypothesis of this method of thermodynamic analysis is that the reheater
and the compression space are at the same temperature, as are the cooler and the expan-
sion space.

It is also considered that the gas that is used is a perfect gas and its total mass is
supposed to be transferred entirely from the hot volume to the cold volume and vice
versa (neglecting the dead volume), remaining constant throughout the experiment (it is
considered a closed thermodynamic system).

The energies transferred in the cycle are given by the following relations.
The heat given to the hot tank (water) by the working gas at temperature Th, in the

case of perfect regeneration, in absolute value, is:

|Qh.rev| = |Q34| = pmaxVmax
ln ε

ε
= Eε, (35)

where Eε is the reference energy of the FPDT model.
The heat taken from the cold tank by the working gas at temperature Tl , in the case of

perfect regeneration, is:

Ql.rev = Q12 = pmaxVmax
ln ε

ε

Tl
Th

= Eε
Tl
Th

(36)
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The heat exchanged with the regenerator (stored and detached) during an isochoric
transformation is:

Qreg = mcv(Th − Tl) = m
R

γ − 1
Th

(
1 − Tl

Th

)
(37)

The regeneration efficiency is described by the relation:

ηreg =
Qreg − Qp,reg

Qreg
, (38)

where Qp,reg is the amount of heat to be added to that received by the hot source and given
by the cold source (Qp,reg > 0).

It follows that:

Qp,reg =
(
1 − ηreg

)
Qreg = Eεk

(
1 − Tl

Th

)
(39)

The notation k is used to define the regenerative loss factor:

k =
1 − ηreg

ln ε(γ − 1)
(40)

Heat quantities change in the case of imperfect regeneration:

|Qh| = |Q34| − Qp,reg = Eε

[
1 − k

(
1 − Tl

Th

)]
(41)

Ql = Q12 − Qp,reg = Eε

[
Tl
Th

− k
(

1 − Tl
Th

)]
(42)

The mechanical work consumed per cycle in absolute value results in:

W = |Qh| − Ql (43)

It should be mentioned here that the mechanical work consumed in a cycle is inde-
pendent of the regeneration efficiency ηreg.

Using Equation (41), the balance of heat flows at the hot/cold source are obtained:

∣∣∣ .
Qh

∣∣∣ = n|Qh| = nEε

[
1 − k

(
1 − Tl

Th

)]
= Kh(Th − Twh) (44)

.
Ql = nQl = nEε

[
Tl
Th

− k
(

1 − Tl
Th

)]
= Kl(Twl − Tl) (45)

The COP performance coefficient of the Stirling refrigeration machine can be deter-
mined with the equation:

COP =
Ql
W

(46)

3. Results and Discussions

3.1. Experimental Results

The considered experimental device is a reversible thermal machine (motor and/or re-
ceiver) that operates between two heat sources at constant temperature. It works according
to the Stirling cycle.

The Stirling refrigerator analyzed is equipped with several sensors: thermocouples,
position sensors, pressure sensors, instantaneous position piston sensor, and a device
composed of photodiodes and a drilled disk to measure the speed of rotation of the
flywheel. The rotation speed n of the electric motor can be varied by means of a control
and adjustment device.
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The refrigerating power of the analyzed cooling system is estimated by a compensation
method by means of a small electric resistance placed inside the cold room (located at the
top of the cylinder). In this way, the air at the top of the cylinder cools and heats at the
same time. A temperature equal to the ambient temperature can be set inside the cylinder
in order to limit the losses through the cylinder wall. In this way, the refrigeration power
that corresponds to the heat flow rate taken from the cylinder head of the refrigeration
machine is determined with the relation:

.
Ql = UI (47)

where U is the voltage (V) and I is the intensity of the electric current (A) corresponding to
the electrical compensation resistance.

The thermal conductivity of the cold tank wall can be determined starting from
the relation: .

Ql = KlΔTl , (48)

where
.

Ql is the refrigerating power of the cooling system, determined by the compensation
method, (W); ΔTl = Tl − Twl , with Tl representing the gas temperature measured inside
the cold volume (K); and Twl is the wall temperature of the cold volume, measured with a
thermocouple (K).

From the relation of thermal conductivity, we can calculate the global heat exchange co-
efficient:

h =
Kl
Al

, (49)

where Al is the contact area of the cold exchanger (upper part of the cylinder) (m2).
The parameters Tl , Twl and

.
Ql are experimentally determined for several operating

modes. The heat transfer coefficient h is calculated for each speed; as expected, and
according to the existing data in the literature [30], the overall heat transfer coefficient h
increases with increasing rotational speed n (Figure 8).

Figure 8. Variation of overall heat transfer coefficient h depending on rotational speed n.

The variation of cooling water temperature and the circulating water flow rate allow
us to calculate the power yielded to the water, with the relation:

.
Qh =

.
mwcwΔTw, (50)
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where

cw is water-specific heat (J/kgK); and ΔTw = Te
w − Ti

w, with Te
w representing the output

water temperature (K) and Ti
w the input water temperature.

It can be concluded from Table 1 that as the rotation speed n increases, the temperature
of the cold gas increases and the temperature of the hot gas decreases. The difference
between the two temperatures decreases, which implies increased COP of the refrigerating
machine with increased speed.

Table 1. Centralization of experimental data obtained for the Stirling refrigerator.

n
(rot/s)

Tl
(K)

Th
(K)

Δ T
(K)

.
Ql

(W)

.
Qh
(W)

.
Wexp

(W)

COPexp
(–)

2.85 249 348.69 99.69 12.35 32.57 20.22 0.61
3.04 249.5 343.99 94.49 13.40 33.56 20.16 0.66
3.31 250.3 338.03 87.73 14.70 34.54 19.84 0.74
3.47 250.4 332.72 82.32 16.50 35.53 19.03 0.87
3.60 249 330.34 81.34 17.94 37.51 19.57 0.92
3.86 250.7 329.10 78.40 19.20 39.48 20.28 0.95

3.2. Thermodynamic Analysis and Analytical Simulation Results

Using geometric and functional parameters (Table 2) measured or determined by
the acquisition program (CassyLab) and using the calculation algorithm, the following
developments are obtained depending on the engine rotation speed.

Table 2. Dimensional data of the actual engine.

Ah
(m2)

Al
(m2)

Vmin·10−4

(m3)
Vmax·10−4

(m3)
Dp=Dd

(m)
Cp=Cd

(m)
ϕ0

(◦)

0.01885 0.03717 1.906 3.278 0.06 0.0484 110

The rotation speed of cooling varied between 2.5 and 3.86 rot/s during the tests,
when air was used as working fluid.Any fluid change is not appropriate, as this system
has academic use and benefit. The pressure load is 1 bar and should remain, so this
refrigerator requires a small amount of mechanical power. The two pistons perform
alternating reciprocating motion with an angle of 110◦.

The initial data of the simulated point (n = 3.86 rot/s) are listed in Table 3.

Table 3. Initial conditions of a simulated point.

pmin = 70,000 Pa pmax = 211,600 Pa

n
(rot/s)

Tl
(K)

Twl
(K)

Th
(K)

Twh
(K)

T0
(K)

3.86 250.7 268.5 329.1 295 293

Comparable values were obtained for the exchanged heat flow rates and the mechani-
cal power required to operate the refrigerating machine (Table 4), calculated by processing
the experimental data with the two calculation models, 0-D and FPDT.

Table 4. Analyzed heat flow rates.

Experiment 0-D Model 0-D Error (%) FPDT Model FPDT Error (%)
.

Ql(W) 19.21 29.17 51.92 17.79 7.39∣∣∣ .
Qh

∣∣∣(W) 39.47 40.22 1.90 37.48 5.04
.

Wl(W) 20.28 11.26 44.47 19.68 2.95
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The differences obtained between the experimentally processed values and those
obtained using of the Schmidt analysis model with imperfect heat regeneration (0-D
model) and FPDT model are also reflected in the exergetic calculation of the exchangers.
(Tables 5 and 6).

(a) Cold-End Heat Exchanger

Table 5. Exergetic calculation of cold-end heat exchanger.

Experiment 0-D Model 0-D Error (%) FPDT Model FPDT Error (%)∣∣∣ .
ExTl

Ql

∣∣∣(W) 3.24 4.92 51.85 3 7.41
.
ExTwl

Qwl
(W) 1.75 2.66 52 1.62 7.43

.
ExD

l (W) 1.49 2.26 51.67 1.38 7.38
ηexl (%) 54.01 54.06 0.09 54.08 0.13
ζl(%) 45.98 45.93 0.10 46 0.15

(b) Hot-End Heat Exchanger

Table 6. Exergetic calculation of the hot-end heat exchanger.

Experiment 0-D Model 0-D Error (%) FPDT Model FPDT Error (%)∣∣∣ .
ExTh

Qh

∣∣∣(W) 4.33 4.41 1.85 4.11 5.08
.
ExTwh

Qwh
(W) 0.27 0.27 0 0.25 7.40

.
ExD

h (W) 4.06 4.13 1.70 3.86 4.92
ηexh (%) 6.23 6.12 1.76 6.18 0.80
ζh(%) 93.76 93.65 0.11 93.91 0.16

A flowchart of the exergy balance equation [31] (Equation (27)) is presented in Figure 9.

Figure 9. Flowchart of exergy balance equation.
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The percentage share in the mechanical power input of each exergy current is pre-
sented in Figure 9 as well. Figure 9 shows the difference between the results obtained
based on the experimental values presented by comparison with those obtained using the
0-D model. The irreversibility at the level of the regenerator is more important than that at
the level of the heat exchangers.

The values obtained when applying the global exergetic efficiency formula

(
ηEX =

.
Ex

Twl
Qwl.

W

)

are shown in Table 7.

Table 7. Global exergetic efficiency values.

Experiment 0-D Model FPDT Model

ηEX(%) 8.63 23.65 8.23

Table 8 compares the results of the two models of thermodynamic analysis and the
experimentally obtained results for the Stirling machine.

Table 8. Comparison of experimental and analytical results from analyzed methods.

n = 3.86 (rot/min)

COPexp
.

Wexp COP0−D
.

W0−D COPFPDT
.

WFPDT

(–) (W) (–) (W) (–) (W)
0.947 20.280 2.570 11.260 0.905 19.68

The experimental COP of the refrigerating machine for a cold temperature of −22.45 ◦C
is found to be 0.947. From the same cold temperature, the COP obtained after applying the
0-D model was found to be 2.57, with an error of 171.38%.

Applying the FPDT model returns a value of 0.905 for the COP. This shows that the
simulation results approach the experimental results with an error of 4.43%.

In terms of evaluating the mechanical power input at the same speed, n = 3.86 rot/min
(corresponding to the cold space air temperature th = −22.45 ◦C), after numerical simulation
the 0-D model returns a value of 11.26 W (error of 44.47%), while in the FPDT model, the
mechanical power required for operating the Stirling refrigerator is 19.68 W, with an error
of 2.95%.

In addition, and after comparing the values of the global exergetic efficiency (Table 7)
obtained for the two proposed thermodynamic analysis methods, the 0-D model provides
an ηEX of 23.65 with an error of 174%, while the global exergetic efficiency calculated with
the FPDT model is 8.23 (error of 4.63%).

4. Conclusions

A 0-D numerical model describing the evolution of variables (pressure, volume, mass,
exchanged energy, irreversibility) as a function of the crankshaft angle is presented. The
model uses the energy and exergy balance in a controlled volume, assuming a steady-state
operation in the Stirling refrigerator, in order to obtain the overall irreversibility of the
heat exchangers. External irreversibility is due to a finite temperature difference between
gas and heat exchangers, while internal irreversibility is due to regenerative heat loss and
entropy generation. It is found that the irreversibility at the level of the regenerator is more
important than that at the level of the heat exchangers (Figure 9).

A flowchart of the exergy balance of the Stirling refrigerator is presented to show
the internal and external irreversibilities (destroyed exergy flow). In the flow diagram
(Figure 9), the exergy flows of the working gas with two reservoirs (heat from hot source
and heat to cold sink) are shown at different temperatures, Th and Twh for the source and
Tl and Twl for the sink.
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The study was completed by comparing the results obtained with the isothermal
model and the FPDT model. The irreversibilities that FPDT model takes into account are
exo-irreversibilities due to the finite heat transfer between the sources (hot source, cold
source, regenerator) and the working fluid.

Regarding the evaluation of the mechanical power necessary for operating the re-
frigeration machine using the Schmidt isothermal model with imperfect regeneration, the
difference between the experimental results and the results given by the thermodynamic
model is justified by the fact that friction and aerodynamic losses are not taken into account
in this model.

The results of the two thermodynamic models are presented in comparison with
the experimental results, which leads to validation of the proposed FPDT model for the
functional and constructive parameters of the studied refrigerating machine. It is found
that the calculated values are very close to the experimental values, which validates the
proposed analysis model for the β-type Stirling refrigerator. Therefore, the FPDT model
proves to be a useful tool for analyzing the performance (COP and input power) of β-type
Stirling refrigeration machines.
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Abbreviations

A heat exchange surface, m2

c specific heat, Jkg−1K−1

C stroke of the piston, m
D diameter of the piston, m
Ex Exergy, J
.
Ex exergy flow rate, W
h convective heat transfer coefficient, Wm−2K−1

I current, A
k losses factor in regenerator,
K heat exchanger conductance, WK−1

m mass, kg
n engine rotation speed, rot·s−1

p pressure, Pa
Q heat, J
.

Q heat transfer rate, W
R gas constant, Jkg−1K−1

S entropy, JK−1

s specific entropy, Jkg−1K−1

T temperature, K
U voltage, V
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V volume, m3

W work, J
.

W mechanical power, W
Greek symbols
γ adiabatic exponent, -
ϕ rotation angle, ◦
ϕ0 phase lag angle, ◦
ε volumetric compression ratio (Vmax/Vmin), -
η efficiency, -
Π entropy increase, JK−1
.

Π rate of entropy increase, WK−1

ξ dissipation coefficient, -
Subscripts
C compression
ε depending on ε

ex exergetic
E expansion
d displacer
h hot on working gas side
l low on working gas side
m dead
max maximum
min minimum
p piston
rev reversible
reg regenerator
v constant volume (specific heat)
wl wall on source side
wh wall on sink side
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Abstract: A theoretical model of an open combined cycle is researched in this paper. In this combined
cycle, an inverse Brayton cycle is introduced into regenerative Brayton cycle by resorting to finite-time
thermodynamics. The constraints of flow pressure drop and plant size are taken into account. Thirteen
kinds of flow resistances in the cycle are calculated. On the one hand, four isentropic efficiencies are
used to evaluate the friction losses in the blades and vanes. On the other hand, nine kinds of flow
resistances are caused by the cross-section variances of flowing channels, which exist at the entrance of
top cycle compressor (TCC), the entrance and exit of regenerator, the entrance and exit of combustion
chamber, the exit of top cycle turbine, the exit of bottom cycle turbine, the entrance of heat exchanger,
as well as the entrance of bottom cycle compressor (BCC). To analyze the thermodynamic indexes of
power output, efficiency along with other coefficients, the analytical formulae of these indexes related
to thirteen kinds of pressure drop losses are yielded. The thermodynamic performances are optimized
by varying the cycle parameters. The numerical results reveal that the power output presents a
maximal value when the air flow rate and entrance pressure of BCC change. In addition, the power
output gets its double maximal value when the pressure ratio of TCC further changes. In the premise
of constant flow rate of working fuel and invariant power plant size, the thermodynamic indexes can
be optimized further when the flow areas of the components change. The effect of regenerator on
thermal efficiency is further analyzed in detail. It is reported that better thermal efficiency can be
procured by introducing the regenerator into the combined cycle in contrast with the counterpart
without the regenerator as the cycle parameters change in the critical ranges.

Keywords: combined cycle; inverse Brayton cycle; regenerative Brayton cycle; power output; thermal
efficiency; finite time thermodynamics

1. Introduction

A theoretical model of an open combined Brayton cycle (OCBC) was built by Chen et al. [1] on the
bases of the models provided by Refs. [2–15]. In the OCBC model built in Ref. [1], an inverse Brayton
cycle was introduced into regenerative Brayton cycle by resorting to the finite-time thermodynamics
(FTT) [16–30], which has been applied for various processes and cycles [31–40]. The thermodynamic
indexes of the OCBC have been analyzed in Ref. [1]. In order to further optimize the thermodynamic
indexes, such as the power output (PO), thermal efficiency (TE), and pressure ratio (PR) of top cycle
compressor (TCC), the analytical formulae related with 13 kinds of pressure drop losses (PDLs) are
yielded. These PDLs take place in the whole cycle, such as the combustion chamber, the compressors,
the regenerator, the turbines, as well as various flow processes. By employing the similar principle
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according to Refs. [41–47] and the method according to Refs. [2–7,12–15], the PO and TE will be
numerically optimized in this paper.

In this paper, the performance optimizations of the OCBC will be conducted by means of varying
the PR of TCC, mass flow rate (MFR), as well as PDL allocation. The maximum PO and TE of the
OCBC will be gained after optimizations. Furthermore, the influences of cycle parameters on the
optimal results will be numerically yielded.

2. Brief Introduction of the OCBC Model

Alabdoadaim et al. [11] proposed new configuration of an OCBC. It has a top cycle and a bottom
cycle. The former is a regenerative Brayton cycle and is applied as a gas generator to power bottom
one. The latter is an inverse Brayton cycle. The PO of the OCBC is totally produced by bottom
cycle. As shown in Figure 1 [1,11], the top cycle contains compressor 1 (top cycle compressor (TCC)),
regenerator, combustion chamber, and turbine 1 (top cycle turbine), whereas the bottom cycle contains
turbine 2 (bottom cycle turbine), heat exchanger, and compressor 2 (bottom cycle compressor (BCC)).

 
Figure 1. Pressure drop loss (PDL) and mass flow rate (MFR) distributions for the combined regenerative
Brayton and inverse Brayton cycles [1,11].

According to FTT theory for open cycles [2–7,12–15], there are 13 kinds of flow resistances in the
OCBC, 4 of them are evaluated by isentropic efficiencies of turbines and compressors, which take into
account the friction losses in the blades and vanes, and the other nine kinds of them are caused by the
cross-section variances of flowing channels, which exist at the entrance of TCC, the entrance and exit
of regenerator, the entrance and exit of combustion chamber, the exit of turbine 1, the exit of turbine 2,
the entrance of heat exchanger, as well as the entrance of BCC.

The model of the OCBC, which is expressed using PDL and MFR distributions and temperature–
entropy diagram, is shown in Figure 2 [1].

According to Chen et al. [1], after analyzing the OCBC, all of the PDLs in the system can be
expressed as functions of the relative PD (ψ1) of the entrance of TCC, ψ1 = ΔP1/P0, where P0 is
the atmosphere pressure and ΔP1 = K1(ρ0V2

1/2) is the PD of the entrance of TCC, where K1 is
the contraction pressure loss coefficient and V1 is average air velocity through the entrance flow
cross-section A1 (see Figure 1).
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Besides, all of the dimensionless power inputs of the compressors, power outputs of the turbines,
as well as the heat transfer rate produced by fuel were obtained [1]; they are functions of the relative
PD (ψ1) of the entrance of TCC:

Wc1 =
γa1(θc1s − 1)
ηc1(γa1 − 1)

ψ1
1/2 (1)

Wc2 = [1 + 1/(λL0)]
τ(T6/T5)(θc2s − 1)γgc2

ηc2(γgc2 − 1)θiθt1θt2
ψ1/2

1 (2)

Wt1 = [1 + 1/(λL0)]
ηt1τ(1− 1/θt1s)γg1

γg1 − 1
ψ1/2

1 (3)

Wt2 = [1 + 1/(λL0)]
ηt2τ(1− 1/θt2s)(T6/T5)γg2

(γg2 − 1)θt1
ψ1/2

1 (4)

Q f =

(
1 +

1
λL0

)
γgc(τ− T3/T0)

(γgc − 1)ηc f
ψ1/2

1 (5)

where γa1 is air specific heat ratio, θc1s = T2s/T1 = βc1
(γa1−1)/γa1 is isentropic temperature ratio of TCC,

βc1 = P2/P1 = β1/(1−ψ1) is effective pressure ratio (PR) of TCC, β1 = P2/P0 is apparent compressor
PR, ηc1 is isentropic efficiency of TCC; L0 and λ are theoretical air quantity and excess air ratio of

the combustor, τ = T4/T0, γgc2 is gas specific heat ratio in turbine 2, θc2s = T9s/T8 = β
(γgc2−1)/γgc2

c2 is
isentropic temperature ratio of turbine 2, βc2 = P9/P8, ηc2 is isentropic efficiency of BCC, θi = T7/T8,
θt2 = T6′/T7, θt1 = T4/T5; ηt1 is isentropic efficiency of turbine 1, γg1 is gas specific heat ratio in
turbine 1, θt1s = T4/T5s = βt1

(γg1−1)/γg1 is isentropic temperature ratio of turbine 1, βt1 = P4/P5; ηt2 is

isentropic efficiency of turbine 2, γg2 is gas specific heat ratio in turbine 2, θt2s = T6′/T7s = β
(γg2−1)/γg2

t2
is isentropic temperature ratio of turbine 2, βt2 = P6/P7; γgc is specific heat ratio in combustor; and
ηc f is combustor efficiency. All of the specific heat ratios for air and gas are evaluated according to
empirical correlation based on averaged temperatures of air and gas [48,49].

Figure 2. Temperature–entropy diagram and the flow resistances for the combined regenerative Brayton
and inverse Brayton cycles [1].
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According to two operation principle [11], one has Wc1 = Wt1. The net PO and TE are as
follows [1]:

.
W =

.
Wt2 −

.
Wc2 = [1 + 1/(λL0)]{

ηt2(1− 1/θt2s)(T6/T5)γg2

(γg2 − 1)θt1
− (T6/T5)(θc2s − 1)γgc2

ηc2(γgc2 − 1)θiθt1θt2
}τψ1/2

1 (6)

η1 =
(γgc − 1)ηc fτ

γgc(τ− T3/T0)

[
ηt2(1− 1/θt2s)(T6/T5)γg2

(γg2 − 1)θt1
− (T6/T5)(θc2s − 1)γgc2

ηc2(γgc2 − 1)θiθt1θt2

]
(7)

3. Power Output Optimization

In this section, a series of numerical solutions are conducted to examine the influences of PR
of bottom cycle, MFR of working air, as well as PDs on the net PO. In order to carry out numerical
examples, the pertinent variation ranges and values of the cycle parameters are listed as: 0 ≤ ψ1 ≤ 0.2,
5 ≤ β1 ≤ 40, 1 ≤ βi ≤ 2.5, 4 ≤ τ ≤ 6, P0 = 0.1013MPa, T0 = 300K, ηc1 = 0.9, ηc2 = 0.87, ηt1 = 0.85,
ηt2 = 0.83, ηc f = 0.99, ε = 0.9, and εR = 0.9 [2,3,11]. In addition, ratio of the outermost equivalent
flow cross-sections (entrance of TCC/outlet of BCC) covered the range 0.25 ≤ a1−9 ≤ 4, where a1−9 is
the dimensionless group [1–3]:

a1−9 =
A1

A9

(
K9

K1

)1/2

(8)

a1−i =
A1

Ai

(
Ki
K1

)1/2

, i = 2, 3, 4, 5, 6, 7, 8, 9 (9)

where a1−2 = a1−3 = a1−5 = a1−6 = a1−7 = a1−8 = a1−9 = 1/3, a1−4 = 1/2, and 0.25 ≤ a1−9 ≤ 4 are
selected [1–3].

Figures 3–6 present the relationships of the maximum dimensionless PO (Wmax) of the OCBC,
relative optimal PR ((βiopt)W) of BCC, as well as optimal entrance PD ((ψ1opt)W) of TCC versus the PR
(β1) of TCC, temperature ratio (τ) of top cycle (TC), effectiveness (ε) of heat exchanger, as well as the
effectiveness (εR) of regenerator, respectively. On the one hand, it is manifest that Wmax exhibits an
increasing trend as τ and ε increase. However, it exhibits a decreasing trend as εR increases. W can
be twice maximized (Wmax,2) at the (β1opt)W . On the other hand, it can also be found that (βiopt)W
increases as β1 and ε increase, while it decreases as τ and εR increase. It is obvious that the relationships
of (ψ1opt)W versus β1 and εR exhibit the parabolic-like curves. (ψ1opt)W increases as τ increases because
the larger τ corresponds lager MFR of the working air.

Figure 3. Relationships of Wmax − β1, (βiopt)W − β1, and (ψ1opt)W − β1.
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Figure 4. Relationships of Wmax − τ, (βiopt)W − τ, and (ψ1opt)W − τ.

Figure 5. Relationships of Wmax − ε, (βiopt)W − ε, and (ψ1opt)W − ε.

Figure 6. Relationships of Wmax − εR, (βiopt)W − εR, and (ψ1opt)W − εR.

Figures 7–12 present the influences of a1−9 on the relationships of Wmax,2, relative optimal PD
((ψ1opt,2)W), (β1opt)W , as well as relative entrance pressure ((P8opt,2)W) of BC versus τ of TC, effectiveness
(ε) of heat exchanger, as well as effectiveness (εR) of regenerator, respectively. According to these figures
for the fixed τ, ε, and εR, both Wmax,2 and (ψ1opt,2)W decrease as a1−9 increases, and on the contrary,
both (β1opt)W and (P8opt,2)W exhibit an increasing trend as a1−9 increases. The twice maximized PO
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(Wmax,2) increases about 100% when a1−9 decreases from 3 to 1 for the fixed τ. It shows that the size
parameters of the entrance of TCC and outlet of BCC affect the performance of OCBC greatly. One
can also see that Wmax,2 exhibits an increasing trend as τ and ε increase, while it exhibits a decreasing
trend as εR increases. It shows that the regeneration cannot increase the PO in the discussed conditions
because of the increase of PDL by adding a regenerator. In the case of a1−9 = 1/3, (ψ1opt,2)W increases
as τ and ε increase. In addition, (β1opt)W tends to gradually increase as τ and εR increase. Besides,
(P8opt,2)W will be equal to environment pressure when a1−9 is big enough. In this case, the BCC can
be disregarded.

Figure 7. Influences of a1−9 on the relationships of Wmax,2 − τ and (ψ1opt,2)W − τ.

Figure 8. Influences of a1−9 on the relationships of (β1opt)W − τ and (P8opt,2)W − τ.

128



Entropy 2020, 22, 677

Figure 9. Influences of a1−9 on the relationships of Wmax,2 − ε and (ψ1opt,2)W − ε.

 
Figure 10. Influences of a1−9 on the relationships of (β1opt)W − ε and (P8opt,2)W − ε.

Figure 11. Influences of a1−9 on the relationships of Wmax,2 − εR and (ψ1opt,2)W − εR.
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Figure 12. Influences of a1−9 on the relationships of (β1opt)W − εR and (P8opt,2)W − εR.

4. Thermal Efficiency Optimization

In this section, the aforementioned theoretical model is optimized herein by considering two
practical constraints. The heat transfer rate (

.
Q f ) discharged by working fuel is invariant. As a result,

.
Q f constraint is expressed by [1–3]

.
Q f = A1(2/K1)

1/2P0(RT0)
1/2Q fψ

1/2
1 /(λL0RT0 ) = const (10)

In addition, the other constraint is the total size of the OCBC, which is characterized by A1 + A5 +

A7 + A9. For simplification, the following constraint considering the areas (A1 and A7) of turbine 2 exit
and TCC entrance is introduced [1–3]

A1/K1/2
1 + A7/K1/2

7 = A∗ = const (11)

It is used to search for the optimal allocation ratio (x) of flow area defined by A1/K1/2
1 = xA∗ and

A7/K1/2
7 = (1− x)A∗. From Equations (10) and (11), Q f ∗ is given as

Q f ∗ =
.

Q f /
[
A∗P0(RT0)

1/2
]
= Cxψ1/2

1 /λ = const (12)

where C = 21/2Q f /(L0RT0).
On this basis, the POs of turbine 2 and BCC can be, respectively, calculated as

Wt2∗ =
.

Wt2

A∗P0(RT0)
1/2

= [1 + 1/(λL0)]

√
2xηt2τ(1− 1/θt2s)(T6/T5)γg2

(γg2 − 1)θt1
ψ1/2

1 (13)

Wc2∗ =
.

Wc2

A∗P0(RT0)
1/2

= [1 + 1/(λL0)]

√
2xτ(T6/T5)(θc2s − 1)γgc2

ηc2(γgc2 − 1)θiθt1θt2
ψ1/2

1 (14)

From Equations (12)–(14), the TE derived by the first law of thermodynamics is written as

η1 =
Wt2∗ −Wc2∗

Q f ∗
=

√
2λ
C

[
1 +

1
λL0

][
ηt2τ(1− 1/θt2s)(T6/T5)γg2

(γg2 − 1)θt1
− τ(T6/T5)(θc2s − 1)γgc2

ηc2(γgc2 − 1)θiθt1θt2

]
(15)

Figure 13 presents the relationship of the excessive air ratio (λ) versus relative PD (ψ1) of TCC
entrance. As shown in Figure 13, it is indicated that λ increases as ψ1 increases. Figure 14 presents the
influences of regenerator effectiveness (εR) on the relationships of TE (η1) versus PR (βi) of BCC, relative
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PD (ψ1) of TCC entrance, as well as area allocation ratio (x). As shown in Figure 14, it is indicated
that η1 can be maximized by selecting optimal values ((βiopt)η, (ψ1opt)η and xopt) of βi, ψ1, and x in the
both cases (εR = 0.9 and εR = 0). Moreover, in the discussed ranges of βi, ψ1, and x, the OCBC with
regenerator can procure a better TE in contrast with the counterpart without regenerator. It shows that
the regeneration can increase the TE.

Figure 13. Relationships of λ−ψ1.

Figure 14. Influences of εR on the relationships of η1 − βi, η1 −ψ1, and η1 − x.

Figure 15, Figure 16, Figure 17, Figure 18 andFigure 19 present the relationships of the maximum
TE (η1max), optimal PD (ψ1opt)η of TCC entrance, optimal pressure (P8opt)η of BCC entrance, as well as
xopt versus the PR (β1) of TCC, temperature ratio (τ) of TC, ε of heat exchanger, εR of regenerator, as
well as fuel constraint Q f ∗, respectively. According to these figures, it is manifest that η1 can be twice
maximized (η1max,2) at the optimal value (β1opt) of β1. Besides, η1max exhibits an increasing trend as
τ, ε, and εR increase, while it exhibits a decreasing trend as Q f ∗ increases. One can also see that as
β1 increases, (ψ1opt)η first decreases and then increases. However, (ψ1opt)η always increases as τ, ε,

εR, and Q f ∗ increase. It is shown that xopt exhibits an increasing trend as β1 and Q f ∗ increase, while
exhibits a decreasing trend as τ, ε, and εR increase. In addition, one can also note that (P8opt)η increases

as τ, εR, and Q f ∗ increase, while it decreases as β1 and ε increase.
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Figure 15. Relationships of η1max − β1, xopt − β1, (ψ1opt)η − β1, and (P8opt)η − β1.

Figure 16. Relationships of η1max − τ, xopt − τ, (ψ1opt)η − τ, and (P8opt)η − τ.

Figure 17. Relationships of η1max − ε, xopt − ε, (ψ1opt)η − ε, and (P8opt)η − ε.
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Figure 18. Relationships of η1max − εR, xopt − εR, (ψ1opt)η − εR, and (P8opt)η − εR.

Figure 19. Relationships of η1max −Q f ∗, xopt −Q f ∗, (ψ1opt)η −Q f ∗, and (P8opt)η −Q f ∗.

5. Conclusions

In order to meet the increased request to the effective thermodynamic cycles, more and more
new cycle models have been proposed in recently years. Agnew et al. [8] proposed combined Brayton
and inverse Brayton cycles in 2003. Based on the combined Brayton and inverse Brayton cycles,
Alabdoadaim et al. [9–11] proposed its developed configurations including regenerative cycle and
reheat cycle and using two parallel inverse Brayton cycles as bottom cycles. The model cycle discussed
in this paper was proposed by Alabdoadaim et al. [11] in 2006. They found that the regenerative
combined cycle obtains higher thermal efficiency than that of the base combined cycle but smaller
power output at small compressor inlet relative pressure drop of the top cycle based on the first law
analysis. Chen et al. [1] established FTT model for this model cycle. This paper is to study the FTT
performance in depth. Based on the OCBC model in Ref. [1], performance optimizations of the OCBC
are conducted by means of varying the PR of TCC, MFR, as well as PDL allocation in this paper.
The maximum PO and TE of the OCBC are gained after optimizations. Furthermore, the influences of
cycle parameters on the optimal results are yielded. The numerical results reveal that:

1) Better TE can be procured by introducing the regenerator into the OCBC in contrast with the
counterpart without the regenerator put forward by Ref. [7]. However, the performance of PO is
inferior in the case of small PD of TCC entrance.

2) The net PO can be maximized by selecting the optimal PD of TCC and PR of BCC. Beyond this,
the net PO can be twice maximized at the optimal PR of TCC.
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3) The TE can be maximized by selecting the optimal PR of BCC. Additionally, it decreases as the
PD of TCC entrance increases.

4) In the premise of constant rate of working fuel and total size of the power plant, TE can be
maximized by selecting optimal values of βi, ψ1, and x. Furthermore, the TE can be twice
maximized by varying the PR of TCC.

5) With consideration of area constraint of the flow cross-sections, TE can be maximized by reasonably
selecting the flow areas of the components.

6) There exists optimal PD of TCC entrance. This means that there exist optimal MFR of the working
air for the OCBC.

Although the discussed cycle model herein is not validated, the authors of this paper have studied
other research objects and partially validated the theoretical models for open Brayton cycles [50,51].
Those can be seen as an illustration for the model herein.
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Nomenclature

A area
a cross-section ratio
K contraction pressure loss coefficient
L excess air ratio
P pressure
Q heat
r compression ratio
T temperature
W power output
x area allocation ratio
Greek symbol
β pressure ratio
ε effectiveness
γ ratio of specific heats
η efficiency
λ excessive air ratio
θ adiabatic temperature ratio
τ temperature ratio
ψ pressure drop
Subscripts
c compressor
c f combustor
f working fuel
g gas
max maximum
opt optimal
R regenerator
t turbine
0 ambient
1, 2, 3, . . . , 9 state points in the cycle/sequence numbers
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Abbreviations

BCC bottom cycle compressor
MFR mass flow rate
OCBC open combined Brayton cycle
PDL pressure drop loss
PO power output
PR pressure ratio
TCC top cycle compressor
TE thermal efficiency
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Abstract: The present research focuses the chemical aspect of entropy and exergy properties. This
research represents the complement of a previous treatise already published and constitutes a set of
concepts and definitions relating to the entropy–exergy relationship overarching thermal, chemical
and mechanical aspects. The extended perspective here proposed aims at embracing physical and
chemical disciplines, describing macroscopic or microscopic systems characterized in the domain of
industrial engineering and biotechnologies. The definition of chemical exergy, based on the Carnot
chemical cycle, is complementary to the definition of thermal exergy expressed by means of the
Carnot thermal cycle. These properties further prove that the mechanical exergy is an additional
contribution to the generalized exergy to be accounted for in any equilibrium or non-equilibrium
phenomena. The objective is to evaluate all interactions between the internal system and external
environment, as well as performances in energy transduction processes.

Keywords: Carnot cycle; Carnot efficiency; thermal entropy; chemical entropy; mechanical entropy;
thermal exergy; chemical exergy; mechanical exergy; metabolic reactions

1. Introduction

The research here present follows, and is complementary to, a previous treatise
already published and entitled “Thermal and Mechanical Aspect of Entropy-Exergy Rela-
tionship” [1]. The purpose is to further extend the perspective already adopted to provide
an overarching generalization to include chemical systems and phenomena: in particular,
an extension to biological molecules, and molecular aggregates, represents the basis to
demonstrate the rigorous and reliable analysis of the relationship between entropy and
exergy properties and their applications to chemical non-living and living systems. The
interest of such an extension relies in the fact that design and experimental analyses and
verifications in different fields of application require implementation of extrema principles
based on entropy and exergy as non-conservative and additive state properties. Indeed, in
non-equilibrium phenomena, maximum or minimum entropy generation (at macroscopic
level) or production (at microscopic level) constitute a methodological paradigm implied
in the exergy property founded on the very entropy–exergy relationship. Though, exergy
property provides a more complete evaluation of processes since it accounts for: (i) re-
versible non-dissipative conversions among different forms of energy; and (ii) irreversible
dissipative conversions determining entropy creation and related exergy destruction. This
dual meaning completeness of the exergy property suggests the research of extrema prin-
ciples in terms of maximum or minimum exergy disgregation (at macroscopic level) and
maximum or minimum exergy degradation (at microscopic level). This extension in turn re-
quests a generalization of properties and processes to chemical internal energy in addition
to thermal internal energy usually focused to provide demonstrations and applications of
exergy property definitions and exergy method applications. Specific reference is made to
the school of thought developed at MIT and reported in publications, textbooks and papers,
duly mentioned to describe the paradigm of the methodology as well as the conceptual
framework of thermodynamics foundations [2].
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As it is used in many different contexts and dissertations, it is worth clarifying that
the term “generalized” is here used to refer to thermal, chemical and mechanical (and
electro-magnetic) aspects of systems and phenomena pertaining to the domain of physical,
chemical and biological foundations and applications [3,4].

Moreover, it is worth positing a caveat relating to the concept of heat, mass and
work interactions characterizing processes among systems. Indeed, heat, mass and work
represent thermal, chemical and mechanical energy transfer and the use of this concept
introduces a logical loop in the definition of thermodynamic properties that has been
overcome by means of a different set of definitions, assumptions and theorems [5,6].
Despite the use of terms such as “heat or mass or work interaction” should be avoided for
this reason, though it is adopted here only to address thermal, chemical and mechanical
energy flows and exchanges among systems. In particular, the mass interaction is the
homology of heat interaction, whereby particles’ potential energy, in terms of chemical
potential, is transmitted between two interacting systems, instead of particles’ kinetic
energy transmitted in the form of heat interaction. In finite terms, the mass interaction
occurs through mass entering and exiting the system at constant overall mass, implying
that chemical potential is the driving force moving chemical energy associated to chemical
entropy fluxes. Nevertheless, mass interaction can be obtained with no bulk-flow through
the system and by means of stereochemical variations characterized by isomerization of
molecules and polymers.

The interest in developing exergy property and the exergetic method has been high-
lighted in different domains, spreading from industry, ecology, biology, as reported in
the literature [7]. In exergo-economic applications, exergy has even become the central
quantity of a theory of exergetic cost [8].

2. Assumptions and Methods

The dualism consisting of the chemical and mechanical aspects of thermodynamic
systems and phenomena represents the chemical–mechanical perspective complemen-
tary to the thermal–mechanical one. This conceptual symmetry is further analyzed to
provide a definition of the components of entropy and exergy properties relating to mass
interactions, typically characterizing chemical processes and chemical internal energy
transfer, and work interactions, always occurring along the interaction of any system with
a thermal–chemical–mechanical reservoir. Again, in this framework the correlation of
chemical potential μ (corresponding to temperature) with respect to chemical internal
energy UC, and the correlation of pressure P with respect to mechanical internal energy
UM, constitute an axiomatic schema. This very schema allows to achieve an extended
definition of chemical exergy determined by both chemical potential and pressure, both ac-
counted for in terms of difference with respect to the stable equilibrium state of the external
reference system (reservoir) state, is considered. A reservoir is posited to be characterized
as behaving at constant chemical potentials and constant pressure (in addition to constant
temperature) moving along stable equilibrium states [2].

3. Chemical and Mechanical Components of Entropy Property

As a logical implication of the second law, stated in terms of existence and uniqueness
of the stable equilibrium state of a system, the definition of entropy property is proved by
using the non-existence of perpetual motion machines of the second kind (PMM2) [2]; the
definition of entropy is expressed through the difference between energy and available
energy, or exergy, times a parameter characterizing the reservoir [2]. This inferential method
is valid for both thermal and chemical components contributing to the entropy balance
of any system in any state. Hence, chemical entropy SC, in addition to thermal entropy
ST , constitutes a property determining the overall internal energy content according to the
Euler relation as reported in the literature [2]:

U = UT + UC + UM = TS + ∑r
i=1 μini − PV (1)
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where μi and ni are the chemical potential and the number of moles, respectively, of the i-th
chemical species for substances composed by r chemical species; this relation, applicable to
closed or open systems, hence accounting for “permanent” internal system (non-flow) or
“transit” external system (bulk-flow) interactions, can be used to argue for a confrontation
between two canonical thermodynamic processes, namely, isothermal and isopotential, as
described hereafter. The validity of the phase rule is duly considered since it governs the
number of independent intensive quantities determining the thermodynamic state of any
system: F = C − P + 2, where F is the degree of freedom, C is the number of components,
or chemical constituents, and P is the number of phases (solid, liquid, vapor, gas).

In case of isothermal reversible or irreversible processes, the temperature is assumed
to remain constant while the system undergoes heat interactions and work interactions
simultaneously so that δQ = δW ⇒ dU = 0 ; in the general case of systems undergoing
physical operations or chemical reactions, the chemical potential may change along the
isothermal process; this is the case of physical operations, such as phase changes (liquid-
to-vapor evaporation of vapor-to-liquid condensation), or direct and inverse chemical
or stereochemical reactions in which constitutional, conformational or configurational
molecular changes occur. In all those different types of isothermal processes, the only result
is that heat interaction is transformed into work interaction, or vice versa; hence, in general,
the system undergoes chemical potential variations, even though no mass interactions
occur and contribute, with interactions intensity and system density, to determine the
pressure of the system in addition to the temperature that, instead, remains constant as
assumed to characterize the process.

In cases where an isopotential reversible or irreversible process of open systems
is analyzed, chemical potentials are assumed to remain constant within the internal
system. Notwithstanding both physical operations or chemical reactions may occur,
the system undergoes mass interaction and work interaction simultaneously so that
δM = δW ⇒ dU = 0 . Indeed, high chemical potential mass input is compensated for
by low chemical potential mass output to ensure no variation of the total mass constituting
the system and no variation of chemical potential while a portion of input mass chemical
potential is transformed into pressure to allow work interaction. Along an isopotential
process, the system may undergo temperature variations (e.g., due to compression or
expansion of vapors or gases) even though no heat interactions occur; the temperature
contributes towards determining the internal pressure of the system; on this basis, the
internal energy variation is formulated by means of the total differential of Euler relation
and is expressed, in the specific case of isopotential processes, in the following terms:

dU = dUC + dUM = d
(
∑r

i=1 μini

)
− d(PV) = δM + δW = 0 (2)

as far as the mechanical term appearing in this relation is concerned, it is null because the
isopotential process at constant mass implies that the mechanical internal energy of the
whole system remains constant:

− d(PV) = −PdV − VdP = 0 (3)

where, for the general case of an open system undergoing an isopotential process, the
equality PdV = −VdP applies.

Without limiting the generality of this approach, the system considered can be an ideal
gas and the thermal form of state equation PV = RT applies; though, considering the
chemical aspect of the internal system, reference can be made to the chemical form of the
state equation that is expressed by means of the chemical potential in lieu of temperature [3];
hence the chemical form of state equation PV = Rμ [9] is used to infer that, at constant
chemical potential dUM = −d(PV) = 0 as a consequence of the definition of isopotential
process, and Equation (2) becomes:

dU = dUC = d
(
∑r

i=1 μini

)
= 0 (4)
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The chemical energy can also be expressed by means of a formulation relating to the
chemical potential and the chemical entropy in the same form of thermal energy, that is:

r

∑
i=1

μini = ∑r
i=1 μiSC

i (5)

Besides an equivalence factor, the chemical entropy is directly related to the number
of molecules, or moles, of any chemical species constituting the internal system; hence, the
total differential is:

d
(
∑r

i=1 μiSC
i

)
= ∑r

i=1 μidSC
i + ∑r

i=1 SC
i dμi (6)

However, as the process is isopotential, thus behaving at constant μi, then the above
equation becomes:

dU = dUC = ∑r
i=1 μidSC

i = 0 that requires dSC
i = 0 (7)

The mass interaction occurring along an isopotential process can be realized by means
of the addition or subtraction of mass determining the total mass variation of the internal
system under consideration; in such a process, both physical operations and chemical
reactions are allowed to occur: dSC

i = 0 implies dni = 0 that is valid if, and only if, the
total mass remains constant but, on the other side, the total mass itself has to change due
to mass interaction characterizing the assumed isopotential process; hence, the total mass
should remain constant and should change at the same time along the same isopotential
process, thus representing an apparent contradiction. The resolution of this contradiction
relies in the physical meaning of chemical entropy that, instead, is to be considered as
a total entropy (of chemical origin), including chemical and mechanical contributions due
to mass interaction related to chemical potential, and work interaction related to pressure.

In this regard, as far as the mechanical aspect of the isopotential process is concerned,
a further argument relates to the adiabatic reversible process (non-heat and non-mass
interactions with external system) that, hence, is accomplished at constant chemical entropy
and constant thermal entropy while chemical potential and pressure change along the
process; according to the following equations:

SC(μ, V)− SC
0 = Cn ln μ

μ0
+ R ln V

V0

SC(μ, P)− SC
0 = CP ln μ

μ0
− R ln P

P0

(8)

The above expressions are obtained from the homologous ones depending on temper-
atures of the system; the first term of the second member relates to the chemical potential
variation due to chemical reactions occurring in the internal system (with inter-particle
potential energy variation and no inter-particle kinetic energy variation), and the second
term of the second member relates to the mechanical potential, that is to say, pressure
variation due to (internal) work interaction; hence, it can be inferred that the chemical en-
tropy variation, associated to mass interaction, is null by definition of non-mass interaction
process; therefore, the way chemical entropy remains constant is because of a compensation
effect due to the combination of increasing chemical potential and decreasing pressure, or
vice versa, in the internal system.

The specific case of an isopotential reversible or irreversible process is typically rep-
resentative of a system interaction at constant chemical internal energy. This process
requires that both chemical internal energy and chemical entropy remain constant since
a mass-to-work or work-to-mass conversion occurs isopotentially by definition, i.e., at
constant chemical potential (and constant or variable temperature). This operation is
determined by equal quantities of mass input and work output, or work input and mass
output. Nevertheless, the mass input or output is associated with a transfer of chemical
entropy between internal and external system: hence, a transfer of entropy under “chem-
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ical” form requires an entropy transformation into “mechanical” form in order to close
the total balance of entropy components to zero, as required by Equation (7), reported
here again: dU = dUC = ∑r

i=1 μidSC
i = 0 that implies dSC

i = 0; as mechanical internal
energy does not undergo any variation as assumed, this mechanical form of entropy is
correlated to work output or input and is determined by pressure and volume variations.
In this regard, mechanical entropy is an additional component, and is consistent with, the
canonical formulation of entropy calculated for any process, including isopotential, imply-
ing that chemical entropy is determined solely by the mass interaction. This conclusion
is in compliance with the result provided with the same rationale as for an isothermal
reversible process and is described in the process reported in the homologous procedure
already mentioned [1].

The analysis described above demonstrates that entropy, in its more general meaning
and characterizing internal energy, is constituted by two different and independent com-
ponents; the first one is the “chemical entropy” that remains constant along an adiabatic
reversible process (usually termed as isoentropic), where, instead, only work interaction
occurs; the second one is the “mechanical entropy” that remains constant along an iso-
volumic reversible process where mass interaction (or heat interaction) only occurs. In
addition, it can be posited that entropy property S, appearing in the expression of internal
energy U = TS + ∑r

i=1 μini − PV, specifically represents the thermal component, or ther-
mal entropy, out of the overall contribution that, nevertheless, remains consistent with, and
does not disprove, the above analysis. From a methodological standpoint, the relationship
between entropy and exergy properties represents the basis for assuming and proving
that chemical and mechanical components set forth for entropy remain valid for chemical
exergy and mechanical exergy, respectively.

4. Chemical Exergy Derived from Carnot Chemical Direct Cycle

The definition of chemical exergy analyzed here, among others reported in the lit-
erature [10], is based on mass and work interactions and addresses the chemical aspect
as a symmetric concept with respect to thermal aspects in the consideration of internal
energy contributions. In terms of interactions with the reservoir, the chemical exergy is
formulated as the maximum theoretical net useful work withdrawn as a portion of the
internal energy of the system, constituting the available energy, along a process leading the
system-reservoir composite to the stable equilibrium state. This useful work is calculated
on the basis of thermodynamic efficiency of the Carnot chemical direct cycle operating be-
tween the variable chemical potential μ of a system A, and the constant chemical potential
μR of a reservoir R assumed as the external reference system:

dEXC = δWNET
REV = δWCONVER

REV + δWTRANSF
REV (9)

where the differential form of chemical exergy is expressed by means of the sum of
two terms: (i) a first contribution δWCONVER

REV deriving from the conversion of mass in-
teraction into work interaction through a mass-to-work Carnot chemical direct cyclic
process [11,12] converting the chemical energy, available at higher chemical potential μHC,
by means of an ideal cyclic machinery operating between μHC and the reservoir at μLC

R ;
(ii) a second contribution δWTRANSF

REV deriving from the transfer of mechanical energy by
means of work interaction through a cyclic process resulting from system volume variation
by means of an ideal machinery operating between PHP and the reservoir at PLP

R ; for sake of
generality, mass and work interactions can occur either sequentially in different processes
or concurrently within the same process; both result from the generalized available energy
of a simple system as defined in the approach by Gyftopoulos and Beretta [2].

The rationale to define chemical exergy is based on the confrontation of thermal and
chemical aspect of cyclic processes. Usually, temperature is the intensive property deter-
mining the Carnot cycle representing the highest efficiency cyclic process and constituting
the consequence of the non-existence of perpetual motion machine of the second kind
(PMM2) [13]. However, if the same Carnot cycle is regarded as characterized by the chemi-
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cal potential as an intensive property, instead of temperature, then the Carnot chemical
cycle constitutes the symmetric process of a Carnot thermal cycle, considering pressure as
the common reference [13]. Hence, based on the chemical potential, a chemical machine
model can be described in terms of a chemical conversion cyclic process as the homology of
a thermal conversion cyclic process for which balances and efficiencies can be stated [11,12].
In this sense, the above equation, expressing the chemical exergy in differential terms, can
be reformulated in the following form:

dEXC = δWNET
REV = ηCARNOT−CHEMICAL−DIRECT

id ·δMHC + δWTRANSF
REV

= δW
δMHC

ISOPOTENTIAL
·δMHC − PdV + PRdV

=
(

1 − μR
μ

)
·δMHC +

(
1 − PR

P

)
·δWHP

(10)

where δMHC
ISOPOTENTIAL represents the infinitesimal mass interaction along the process

at higher chemical potential μ different from the chemical potential μR of the reservoir;
δMHC represents the infinitesimal mass interaction along any process for which chemical
exergy is calculated; δWHP is the infinitesimal work interaction at (variable) high pressure
P alongside the process, higher (or lower) with respect to the reservoir (constant) pressure
PR; and the two terms in the last member of the above equation are the consequence of
the role of pressure corresponding to the role of chemical potential with respect to mass in
chemical exergy.

The above equation is similar to the already known canonical definition of physical ex-
ergy [14–16]; this expression is used to define the exergy that is identified by the superscript
“C”, standing for “Chemical”, according to the definition reported in the literature [13] as
pointed out above.

In finite terms, considering that δWHP = −PdV:

EXC = W10

=
∫ 1

0

(
1 − μR

μ

)
·δMHC +

∫ 1
0

(
1 − PR

P

)
·δWHP

= MHC
10 − μR

∫ 1
0

dμHC

μHC + WHP
10 + PR·(V1 − V0)

(11)

where W10 is the maximum theoretical net useful work output extracted from the gen-
eralized available energy as results from the interaction between system and reservoir;
MHC

10 is the mass interaction alongside the process from the higher isopotential process at
μ to the lower isopotential process at μR (as a particular case, mass interaction can occur
alongside an isopotential process); and WHP

10 is again the work interaction from the higher
isopotential process at μ to the lower isopotential process at μR. This equation expresses
the chemical exergy EXC in finite terms as the sum of contributions deriving from cyclic
processes where the first one is a mass-to-work ideal cyclic conversion and the second one
is an HP-work-to-LP-work ideal cyclic transformation.

The sum of MHC
10 and WHP

10 can also be expressed by integrating the Equation (2):

MHC
10 + WHP

10 = U1 − U0 = MV ·(μ1 − μ0) (12)

where the equivalence represents the amount of mass interaction only in the isovolumic
processes connecting two states at different chemical potentials. Therefore, chemical exergy
can also be associated to sequential isovolumic-isopotential processes connecting any state
1 with a different state 0 of the system. The integral operation results in the expression
of chemical exergy, Equation (11). In infinitesimal terms, it constitutes the definition
of entropy according to the canonical formulation or, as here proposed, the chemical
component of entropy property identified by the superscript “chemical”; the expression in
finite terms becomes:

EXC = W10 = (U1 − U0)− μR·
(

SC
1 − SC

0

)
+ PR·(V1 − V0) (13)
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where the system-reservoir composite interaction at constant chemical potential μR and
constant pressure PR of the reservoir results. This formulation does not contradict the
homologous one, proposed by Gyftopoulos and Beretta, deduced from the definition
of generalized available energy with respect to an external reference system at constant
chemical potential μR and constant pressure PR behaving as a reference external system.

5. Mechanical Exergy Derived from Carnot Chemical Inverse Cycle

The correlation between chemical entropy and chemical exergy clarified in the previ-
ous sections is the basis to analyze the entropy–exergy relationship. This analysis is carried
out starting from a mechanical standpoint to develop the concept of exergy related, in this
case, to work and pressure. To do so, the existence of the mechanical component of entropy
already proved is taken into consideration. This different standpoint is viable because
the equality of pressure between system and reservoir is an additional condition of the
existence and uniqueness of stable equilibrium states of the system-reservoir composite,
other than the equality of chemical potential. Indeed, both pressure and chemical potential
are thermodynamic potentials driving any equilibrium or non-equilibrium process in the
direction of stable equilibrium.

The definition of exergy formulated by the Carnot chemical direct cycle consists of
chemical exergy which highlights the role of chemical potential in mass-to-work conver-
sions. On this basis, the research for a definition of mechanical exergy expressed by the
inverse cycle is the logical consequence. The objective becomes the physical meaning of
the pressure in the opposite process, that is work-to-mass conversion. For the mechanical
standpoint too, the general formulation of exergy, in infinitesimal terms, derives from the
relationship founded on the Carnot chemical (inverse) cycle and the related expression of
thermodynamic efficiency determined by chemical potentials of system and reservoir.

As far as the Carnot cycle is concerned, the usual expression of its performance in
terms of thermodynamic efficiency is related to high temperature and low temperature
isothermal processes through heat interactions with two reservoirs. Though, the thermo-
dynamic potential constituted by the temperature, or by the inter-particle kinetic energy
within the internal system, is continuously transformed into inter-particle potential energy
constituting the chemical potential of molecules. In turn, the chemical potential constitutes
a thermodynamic potential determining the performance of such a chemical cyclic process.
Focusing the performance of chemical cyclic process, it is expressed by means of homolo-
gous expression as thermal cyclic processes. Hence, if reference is made to high and low
chemical potentials defined as μHC and μLC characterizing isopotential processes of the
“Carnot chemical cycle”, then the formulation of ideal cycle efficiency ηC

id is stated as:

ηC
id = 1 − μLC

μHC (14)

These isopotential processes are intended to be characterized by mass interaction
input and work interaction output, and vice versa, while the chemical potential of the mass
constituting the system remains constant: this means that entering mass implies reducing
chemical potential due to chemical reactions occurring at constant temperature while work
is exiting the system.

The chemical Carnot cycle considered here will be used to define chemical exergy
on the basis of its homology with the canonical thermal Carnot cycle usually referred to
in the literature. This chemical cycle, elaborated through ideal processes, is symmetric
because it consists of four elaborations, each pair of which is of the same type (isodiabatic),
as represented in Figure 1. In case the operating internal system is a perfect gas as assumed,
the alternating polytropic processes (two adiabatic and two isopotential), behave according
to the following property:

V1

V0
=

V1C
V0C

;
P1

P0
=

P1C
P0C

;
μ1

μ0
=

μ1C
μ0C

(15)
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where the meaning of these ratios is that properties at the end of isodiabatic processes are
proportional, therefore the amount of work interaction between internal and external sys-
tem is the same for both adiabatic compression from 0 to 1 and expansion from 1C to 0C pro-
cesses; this amount of work interaction is calculated by means of the following expression:

W =
1

K − 1
P0V0

[(
P1

P0

) K−1
K − 1

]
(16)

where this depends on the equality P1
P0

= P1C
P0C

and therefore input and output W (with
different sign) is equal for the two adiabatic reversible processes. The resulting work inter-
action balance along the whole cycle accounts for the algebraic sum of work interaction
contributions due to both isopotential processes only where mass and work interactions
are exchanged simultaneously in directly proportional and equal amounts. This property
enables expression of the thermodynamic efficiency of the Carnot chemical cycle of an
open bulk-flow system both in terms of mass interaction or work interaction. That thermo-
dynamic efficiency can be expressed either in terms of mass interaction only or in terms
of work interaction only due to the equality of mass-work input-output, or vice versa,
alongside the isopotential processes as represented in Figure 1:

ηC−DIR
id =

W
MHC =

WHP − WLP

MHC =
WHP − WLP

WHP =
MHC − MLC

MHC (17)

Figure 1. Carnot Chemical Cycle.
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As far as the inverse cycle is concerned, if the role of used mass interaction at high
chemical potential MHC and utilized total work interaction MHC are replaced by used work
interaction WHP and utilized total mass interaction M, the following expression applies:

ηC−INV
id =

M
WHP =

MHC − MLC

WHP =
MHC − MLC

MHC =
WHP − WLP

WHP = ηC−DIR
id (18)

where this equation, for a Carnot chemical inverse cycle, is obtained by assuming the
meaning of used and utilized interactions with proper input and output: used mass MHC

in the direct cycle corresponds to the used work WHP in the inverse cycle; moreover, the
utilized total work W in the direct cycle corresponds to the utilized total mass M in the
inverse cycle; as a consequence, the efficiency of a Carnot chemical direct cycle, depending
on isopotential processes only, remains unchanged if the Carnot chemical inverse cycle
is considered with the corresponding opposite processes; hence the following equality
is demonstrated:

ηC−INV
id =

M
WHP =

W
WHC = 1 − μLC

μHC = ηC−DIR
id (19)

It is noteworthy that this approach focuses the concept of exergy and its definitions in
terms of used and utilized quantities; thus, it is different from the concept of coefficient of
performance (CoP) adopted for refrigeration and cryogenic processes for which used and
utilized flows are different and in compliance with operative performances in applications
in machinery and plants.

The definition of exergy based on the direct cycle as chemical exergy which is deter-
mined by chemical potential in mass-to-work conversion, can be complemented by the
symmetric definition of mechanical exergy founded on the inverse cycle; in this case, the
physical meaning of pressure in the opposite work-to-mass conversion, determines the
pressure level of work interactions alongside the higher chemical potential, and higher
pressure, isopotential processes of the Carnot chemical inverse cycle.

The concept of equivalence and interconvertibility, demonstrated by Gaggioli [14–16],
can be stated in different terms: “useful work is not better than useful mass, and the
available energy results in maximum net useful mass or, equivalently, maximum net useful
work, or the combination of both.” Thus, the definition of mechanical exergy representing,
in this case, the maximum net useful mass withdrawable from the available energy, in
infinitesimal terms, can be expressed as:

dEXM = δMNET
REV = δMCONVER

REV + δMTRANSF
REV (20)

where the first term of the last member δMCONVER
REV is the net amount of mass interaction

resulting from the balance of a Carnot chemical inverse cycle converting the available
work at pressure P into mass through the interaction with a reservoir at constant pressure
PR; the second term of the last member δMTRANSF

REV is the net amount of available energy
transferred from the external to the internal system by means of mass interaction alongside
a non-cyclic or cyclic process; mass and work interactions are accounted for occurring either
successively or simultaneously, and both derive from the generalized available energy of
a simple system as defined by Gyftopoulos and Beretta [2]. Hence, in differential terms:

dEXM = δMNET
REV = ηCHEMICAL−CARNOT−INVERSE

id ·δWHP + δMTRANSF
REV (21)

On the basis of Equation (15):

dEXM = δM
δWHP

ISOTHERMAL
·δWHP + μdSC − μRdSC

= δM
δWHP

ISOTHERMAL
·δWHP + (μ − μR)dSC

=
(

1 − μR
μ

)
·δWHP +

(
1 − μR

μ

)
dMHC

(22)
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The formulation of chemical exergy is now reversed to define the mechanical exergy,
identified by the superscript “M”, that is not related to exergy associated to center-of-mass
macroscopic kinetic and potential energy, already termed as “kinetic exergy” and “potential
exergy” according to the literature.

After replacing work with mass, the mechanical exergy in finite terms is formulated as:

EXM = M10 =
∫ 1

0

(
1 − μR

μ

)
·δWHP +

∫ 1
0 (μ − μR)·dSC

= WHP
10 − μR

∫ 1
0

δWHP

μ + MHC
10 − μR

(
SC

1 − SC
0
) (23)

where M10 is the maximum theoretical net useful mass output obtained by means of the
generalized available energy resulting from the interaction process between system and
reservoir; WHP

10 is the work interaction from higher isopotential curve at μ and corresponds
with the state at pressure P to lower isopotential curve at μR; as a particular case, the work
interaction can occur alongside an adiabatic reversible process; the sum of terms WHP

10 and
MHC

10 in the last member of previous equation can also be expressed as:

WHP
10 + MHC

10 = U1 − U0 = CV(μ1 − μ0) (24)

This equation expresses the equivalence with the sole amount of work interaction
in a chemical (and thermal) isoentropic process (where work interaction only occurs),
between two different chemical potentials. Hence, the mechanical exergy characterizes
an isoentropic-isopotential sequential process connecting the generic state 1 with the stable
equilibrium state 0 of the system–reservoir composite. If the chemical state equation
PV = Rμ is adopted and used in the expression of mechanical exergy, then:

EXM = Q10 = (U1 − U0)− RμR

∫ 1

0

δWHP

PV
− μR

(
SC

1 − SC
0

)
(25)

The integrand term δWHP

PV of the above equation is formally homologous of the inte-

grand term dMHC

μ representing the very definition of chemical entropy according to the
concept and the definition of entropy property as per Clausius formulation; on the basis of
this formal homology extended to work interaction and the mechanical internal energy, the
definition of mechanical entropy is derived and formulated as:

dSM =
δWHP

PV
(26)

where the factor 1/PV is the integrating factor of the infinitesimal work interaction δWHP

that changes the integrand function into an exact differential function; indeed, assuming
the expression of mechanical exergy previously reported as Equation (22), and considering
that δWHP = −PdV then it is allowed to differently express the mechanical exergy (of
chemical origin) as:

EXM = M10

= (U1 − U0)− RμR
∫ 1

0
δWHP

PV − μR
(
SC

1 − SC
0
)

= (U1 − U0) + μR
∫ 1

0 R dV
V − μR

(
SC

1 − SC
0
)

= (U1 − U0) + μR
(

R ln V1 − R ln V0
)− μR

(
SC

1 − SC
0
)

(27)

where it relates to the work interaction with the environmental system represented by the
mechanical reservoir; therefore, considering that the chemical state equation PV = Rμ
applies, then:

EXM = M10 = (U1 − U0) + PRVR(ln V1 − ln V0)− μR

(
SC

1 − SC
0

)
(28)
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where the homology with the expression of chemical exergy (and thermal exergy) demon-
strates the common origin of all exergy components deriving from conversion processes
from one energy form to a different one characterized by entropy variations occurring
along those processes; to complete this homology, the integrating factors included in the
integration function are similar:

dST =
δQHT

T
similar to dSC =

δMHC

μ
similar to dSM =

RdV
V

(29)

where the last differential is integrated, the equation in finite terms becomes:

SM = R ln V + C (30)

Hence, dSM being an exact differential function, then SM is a state property depending
on the state parameter volume and can be adopted as the formal definition of mechanical
entropy; moreover, as volume is additive, the mechanical entropy is an additive property.
As far as the dimensional analysis is concerned, since the logarithmic function is dimen-
sionless, then the dimension of mechanical entropy is related to R having dimensions(

J·kg−1·K−1
)

or
(

J·mol−1·K−1
)

that are identical to the chemical entropy and thermal en-
tropy dimensions. In this regard, the relationship between mechanical exergy and volume,
and pressure as a consequence, constitutes the rationale for considering the equality of
pressure between system and reservoir, as an additional condition of mutual stable equilib-
rium to be accounted for in the definitions of available energy and exergy, and hence in the
definition of entropy property related to, and derived from, energy and available energy or
exergy according to the proof method demonstrated and reported in the literature. The
physical meaning of mechanical exergy can be ascribed to the combination of pressure
characterizing the mechanical internal energy of the system, and the pressure of work in-
teraction occurring between system and reservoir. It is noteworthy that the demonstration
procedure described here is, in its rationale, identical to the one stated to achieve the me-
chanical entropy definition based on thermal entropy using the corresponding quantities
to replicate the proof.

6. Generalized Chemical Exergy Related to Chemical-Mechanical Reservoir

The definition of chemical entropy and mechanical entropy, derived and expressed
from chemical exergy and mechanical exergy, respectively, is accounted for here to general-
ize the conceptual definition of chemical exergy including mass interaction, in addition to
work interaction, characterizing interaction processes occurring between system and reser-
voir. On the basis of equivalence and interconvertibility proposed by Gaggioli et al. [9,10]
for thermal and mechanical aspect of interactions, and here mutuated for chemical and
mechanical interactions, the exergy of a system interacting with a reservoir results in the
following statements:

(1) Exergy is the available work or maximum theoretical net useful work constituting the
chemical exergy;

(2) Exergy is the available mass or maximum theoretical net useful mass constituting the
mechanical exergy;

The generalization of chemical exergy proposed here is, for the above rationale,
implicated with the chemical exergy underpinned by the Carnot chemical direct cycle
efficiency and the high chemical potential mass interaction; chemical exergy additionally
contributes to the mechanical exergy underpinned by the Carnot chemical inverse cycle
efficiency and the high pressure work interaction; both exergies are defined considering
a chemical–mechanical reservoir at constant chemical potential and constant pressure
behaving at permanent stable equilibrium according to the canonical definition of reservoir.
The generalized chemical exergy outlined above takes into account the implication of
pressure in work interaction that generates different amounts of mass interaction depending
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on different pressure values at which the work interaction occurs. In different terms, it
can be stated that the same amount of available mechanical internal energy transferred by
means of work interaction can be used at different pressure of the system with respect to
the constant pressure of the (mechanical) reservoir, to be converted into mass interaction at
different chemical potentials. Hence, the useful work, available in the form of mechanical
available energy, is also evaluated in terms of the second law by means of the Carnot
chemical inverse cycle, producing the mass interaction output: therefore, mass-to-work
conversion and work-to-mass conversions are accounted for simultaneously—this implies
that the generalized chemical exergy can be regarded in the perspective of an “exergy
of exergy” that makes work interaction equivalent to, and interconvertible with, mass
interaction, and vice versa.

Before achieving the formulation of the generalized chemical exergy, the differential
form of internal energy in differential terms according to Gibbs’ equation is considered:

dU = ∑r
i=1 μidni − PdV = δM + δW (31)

This can be reformulated in different terms by adopting the chemical entropy and the
mechanical entropy previously defined and specified for all chemical substances constitut-
ing the internal system; this reformulation is a crucial step in the direction of a generalized
Gibbs equation that, in this perspective, is modified into the following:

dU = ∑r
i=1 μidSC

i − ∑r
i=1

PiVi

R
dSM

i = δM + δW (32)

where, in turn, it can be expressed by means of the chemical state Equation [5]:

dU = ∑r
i=1 μidSC

i − ∑r
i=1 μidSM

i

= ∑r
i=1 μi

(
dSC

i − dSM
i
)
= δM + δW

(33)

The term
(
dSC

i − dSM
i
)

represents the differential generalized entropy dSG
i which, in

finite terms, is SG
i = SC

i − SM
i associated to, and depending on, the chemical potentials and

is determined by mass interaction and work interaction contributing to the variation of the
internal energy. Equation (33) above can be expressed as:

dU = ∑r
i=1 μidSG

i = δM + δW (34)

where, in finite terms, U being a state property determined by two independent variables,
the following generalized Gibbs equation is deduced:

U = U(S, V) = ∑r
i=1 μiΔSG = M + W (35)

The generalized entropy is the result of the contribution of chemical and mechanical
components and represents the rationale for resolving the apparent inconsistency expressed
by the statement: dU = dUC = ∑r

i=1 μidSC
i = 0 implying that dSC

i = 0; indeed, the Gibbs
equation is allowed to be null because of the two terms of SG

i = SC
i − SM

i , which, in the
special case of an isopotential process of a perfect and single-phase homogeneous gas
describing the internal system, are expressed as:

ΔSC
ISOPOTENTIAL = Cn ln

μ

μ0
+ R ln

V
V0

(36)

ΔSM
ISOPOTENTIAL = R ln

V
V0

(37)

These two terms used to replace the corresponding ones in the SG
i = SC

i − SM
i become:

ΔSG
ISOPOTENTIAL = ΔSC

ISOPOTENTIAL − ΔSM
ISOPOTENTIAL = Cn ln

μ

μ0
= 0 (38)
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confirming that ΔU = 0 for an isopotential reversible or irreversible process as ΔSG
ISOPOTENTIAL = 0

as required to resolve the inconsistency of conditions dU = dUC = ∑r
i=1 μidSC

i = 0
implying dSC

i = 0 before positing.
As far as isovolumic processes are concerned, the same approach is applied by evalu-

ating the two components of generalized entropy along the process:

ΔSC
ISOVOLUMIC = Cn ln

μ

μ0
(39)

ΔSM
ISOVOLUMIC = 0 (40)

Thus, the sum of the two contributions is:

ΔSG
ISOVOLUMIC = ΔSC

ISOVOLUMIC − ΔSM
ISOVOLUMIC = Cn ln

μ

μ0
(41)

Therefore, the generalized entropy is identical to the chemical entropy, that confirming
the dependence on the chemical potential as the overall and unique thermodynamic
potential determining the state of the system.

In case of an isobaric process, the following applies:

ΔSC
ISOBARIC = CP ln

μ

μ0
− R ln

P
P0

(42)

ΔSM
ISOBARIC = R ln

V
V0

(43)

Again, the sum of the two contributions is:

ΔSG
ISOBARIC = ΔSC

ISOBARIC − ΔSM
ISOBARIC

= CP ln μ
μ0

− R ln P
P0

− R ln V
V0

= Cn ln μ
μ0

+ R ln V
V0

− R ln V
V0

= Cn ln μ
μ0

(44)

Finally, for an adiabatic reversible process:

ΔSC
ADIABATIC = 0 (45)

ΔSM
ADIABATIC = R ln

V
V0

(46)

ΔSG
ADIABATIC = ΔSC

ADIABATIC − ΔSM
ADIABATIC = 0 − ΔSM

ADIABATIC

= −R ln V
V0

= Cn ln μ
μ0

(47)

hence demonstrating, by means of Equations (8), the existence of the relationship between
pressure, that changes with volume, and the generalized entropy in the special case of
absence of mass interaction determining chemical entropy null variations.

To summarize, a first outcome is that the method applied to explain the mechanical
entropy contribution has led to resolve the apparent controversy already mentioned and
provides a formal definition of mechanical entropy related to the pressure, with a direct
implication with the definition of mechanical exergy property. A second outcome, deriving
from the above method, concerns the dependence of the generalized chemical entropy
solely on the chemical potential in all thermodynamic processes analyzed above; this
outcome can be derived from the physical meaning of internal energy pertaining to a real,
multi-phase, non-homogeneous, internal system characterized by atomic-molecular chemi-
cal bonds and interactions regardless of the thermal state and heat interactions between
internal and external systems.
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A caveat concerning the assumption that the canonical processes above are not limited
to reversible conditions, irreversible processes are accounted for.

That said, on the basis of the relationship between generalized entropy and internal
energy, if the external system behaves as a chemical and mechanical reservoir in stable
equilibrium state at constant chemical potential and pressure, the internal energy balance
of the system-reservoir composite is expressed as:

EXC = −(WAR←)− (
MAR←)

= ΔUSYSTEM + ΔURESERVOIR

= ΔUSYSTEM
W + ΔUR,W + ΔUSYSTEM

M + ΔUR,M

(48)

The conceptual meaning of this expression is that ΔUSYSTEM
W + ΔUR,W equals the

mechanical exergy converted into chemical exergy, and ΔUSYSTEM
M + ΔUR,M equals the

chemical exergy converted into mechanical exergy; in different terms:

EXC = −
(

WAR←
)
−
(

MAR←
)
= (U − U0)− MR − WR (49)

where MR is the minimum mass interaction representing the (minimum) mechanical exergy
(Equation (28)) lost to the chemical reservoir and WR is the minimum work interaction rep-
resenting the (minimum) chemical exergy (Equation (13)) lost to the mechanical reservoir.
The symbol EXC (or, according to some authors, XC), in lieu of M and W, is adopted here to
identify the chemical exergy generalized in its physical and chemical meaning as deriving
from the combination of useful work and useful mass. The arrow in the superscript means
that the interaction enters the system, according to the symbology adopted by Gyftopoulos
and Beretta [2].

The Carnot cycle represented in Figure 1 constitutes the rationale for the generalized
formulation of chemical exergy; indeed, the isopotential process verifies the equality
MAR = WAR alongside both high and low chemical potential processes where, instead, the
chemical potential is constant but the pressure is not; therefore, WAR at decreasing pressure
constitutes an amount of (chemical) exergy that should be considered a loss of mechanical
internal energy since it is released isopotentially to the reservoir while chemical internal
energy is transferred from the reservoir to the system at stable equilibrium conditions;
those isopotential processes are the result of chemical-to-mechanical and mechanical-to-
chemical internal energy transformations implying entropy transformation appearing in
the equation of generalized chemical exergy:

EXG = −(WAR←)− (
MAR←) = ΔUSYSTEM + ΔURESERVOIR

= (U1 − U0) variation of internal energy of the system

−∑r
i=1 μiΔSC

i energy conversion within the system

−∑r
i=1 μiΔSC,R

i chemical energy transfer between system and reservoir

+PRΔVR mechanical energy transfer system − to − reservoir

(50)

It is of crucial importance highlighting that the concept of entropy conversion is
inherent to the concept of energy conversion occurring in any cyclic process, and, for
this very reason, intrinsic to the concept of exergy; hence, entropy conversion occurring
along a cyclic process implies the additional term expressing the contribution of the
mechanical component to the overall cycle entropy balance and the subsequent exergy
balance representing the basis of a property’s efficiency and, finally, the performance
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quantification. Replacing the expressions of chemical exergy EXC and mechanical exergy
EXM in the above equation of generalized exergy EXG, the following equation is derived:

EXG = (U1 − U0)

−∑r
i=1 μi,RΔSC

i chemical energy conversion loss released to reservoir

+PRΔVR mechanical energy transformation loss released to reservoir

+PRVR(ln V1 − ln V0) mechanical energy conversion loss released to reservoir

−∑r
i=1 μi,RΔSC

i chemical energy transformation loss released to reservoir

(51)

The term PRVR(ln V1 − ln V0) constitutes the “entropic-mechanical” component taking
into account the entropy conversion undergone by the system along the conversion cycle
(and in particular due to adiabatic processes) and representing a contribution, in addition
to the chemical entropy, to the overall cycle balance.

As all properties are additive, the generalized chemical exergy can be stated in the
following explicit form:

EXG = −
(

WAR←
)
−
(

MAR←
)

+
[
(U − U0)− ∑r

i=1 μi,RΔSC
i + PRΔVR

]C
(52)

+
[
(U − U0) + PRVR(ln V1 − ln V0)− ∑r

i=1 μi,RΔSC
i

]M

where: the first term, that is the first square parenthesis (“chemical”) of the second mem-
ber of Equation (52), is the contribution relating to the variation of internal energy due
to the mass interaction corresponding to the chemical exergy; the second term, that is
second square parenthesis (“mechanical”) of the second member of Equation (52), is the
contribution relating to the variation of internal energy due to the work interaction corre-
sponding to the mechanical exergy; both chemical exergy and mechanical exergy constitute
the two components of the generalized chemical exergy along any process. Indeed, as
the internal energy is an additive state property, both contributions determined by mass
interaction or work interaction with the external system (useful of reservoir), can occur
sequentially or simultaneously to connect any pair of thermodynamic states. Hence, the
first term constitutes the chemical exergy calculated alongside an isovolumic-isopotential
process and the second term constitutes the mechanical exergy calculated alongside an
isoentropic-isopotential process.

The meaning of the generalized chemical exergy is highlighted for an adiabatic and
esoergonic reversible process for which work interaction only characterizes the thermo-
dynamic state and no mass interaction and no heat interaction occur. This process is
determined by absence of chemical entropy and thermal entropy variations (due to absence
of mass interaction and heat interaction, respectively) and a non-null variation of mechan-
ical entropy (due to occurring work interaction). As a consequence of the generalized
formulation, if this adiabatic process is calculated in terms of exergy, the available energy
(in the form of pressure mechanical energy withdrawable from the system) is accounted
for in terms of its capability to be converted (and not directly transferred) into useful mass;
the consequence is that the exergy analysis implies a lower amount if compared with the
canonical method that identifies exergy exclusively with work interaction output conveyed
to, and used by, the external system, as it is. In this regard, the entropic-mechanical adden-
dum of the generalized chemical exergy, Equations (28) and (52), determines a reduction
due to the work interaction undergoing the (reversible) entropy conversion that makes this
work input not useful for a work-to-mass conversion into mass output.

7. Outcomes and Applications

The domain of applications of the generalized chemical exergy spreads to inor-
ganic and organic chemistry including metabolic biological processes in living organisms.
Metabolic processes determine morphological development and homeostasis as well as en-
ergetic transduction in living cells and are subdivided into two main categories: (i) catabolic

153



Entropy 2021, 23, 972

processes implying the demolition of molecule aggregates and (ii) anabolic processes aimed
at building-up proteins, enzymes and other organic substances and precursors. In catabolic
processes, such as glycolysis, the chemical energy of glucose is transformed into chemical
energy in the form of free enthalpy of adenosine tri-phosphate (ATP) [17]. The glycolysis
is subdivided in two phases: (i) storing phase and (ii) releasing phase. The ATP releases
chemical energy to the D-glyceraldehide-3-phosphate and is stored in these molecules dur-
ing the first phase in 5 steps; instead, during the 5 steps of the second phase of glycolysis,
the same chemical energy is released back to ATP, NADH and pyruvate which are products
of the whole glycolysis catabolic process. The complete glycolysis process encompasses
chemical exergy storage and subsequent release and the corresponding mechanical exergy
and chemical exergy characterize the bi-directional inverse and direct conversions. Three,
out of ten, of these processes (1st, 3rd and 10th), are irreversible and govern the entire
series of reactions. The pyruvate undergoes a subsequent aerobiotic oxidation process,
followed by the Krebs cycle and ending with the oxidative phosphorylation characterized
by the following final oxidation reaction: NADH + H+ + 1/2 O2 → NAD+ + H2O . The
ATP is used in multiple anabolic processes and the NADH and FADH2, reduced electron
transporters, are involved in several metabolic processes [17]. In particular, the ATP is used
by living organisms to release mechanical work interaction as chemical exergy output used
for locomotion, for food, recovery, defense, reproduction and all other activities needed
for life. Using the generalized chemical exergy provides a method to analyze aggregates,
such as amino acids, proteins, enzymes and nucleic acids, constituting molecular machines,
non-cyclic or cyclic, characterized by phenomena, balances and efficiencies governed by
the microscopic thermodynamics at atomic and molecular level [18–21]. In this perspective,
a contribution could arise in the direction of researches focusing metabolic paths and cell
membrane role [22]. This approach is in use in various diseases already undergoing studies
and experimental investigations [23–25].

8. Conclusions

The main outcome of the procedure described is that the generalized chemical exergy
can be expressed by the sum of the two components defined as chemical exergy and
mechanical exergy:

EXCHEMICAL = EXC + EXM = WCONVER
REV + WTRANSF

REV + MCONVER
REV + MTRANSF

REV (53)

This does not depend on a particular process adopted for its definition; thus, it can be
considered as a general formulation which valid for any process, reversible or irreversible,
connecting two different thermodynamic states.

Another outcome is that the generalized chemical exergy is determined by the equality
of pressure, in addition to the equality of chemical potential, as a further condition of
mutual stable equilibrium between system and reservoir. In the perspective of implications
of this additional condition and the generalization to any system (large and small) in any
state (equilibrium and non-equilibrium), the concept of generalized chemical exergy would
require the reference to a mechanical reservoir behaving at constant pressure in addition to
the chemical reservoir.

In the framework of the Gyftopoulos and Beretta perspective, the formulation of
chemical entropy can be expressed in the following form adopting the symbol E to denote
energy and Ω to denote available energy [2]:

(S1 − S0)
C =

1
μR

[
(E1 − E0)−

(
ΩR

1 − ΩR
0

)]C
(54)

where, if the concept of mechanical reservoir is introduced, and the equality of pressure
between the system and the mechanical reservoir is considered as an additional condition
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for mutual stable equilibrium between system and reservoir, it remains valid. The additive
property of entropy would lead to assuming that [2,13]:

(S1 − S0)
M =

R
PRVR

[(E1 − E0)−
(

ΩR
1 − ΩR

0

)
]M (55)

where the mechanical component of entropy would be defined with reference to a mechan-
ical reservoir at constant pressure.

Finally, the additivity of entropy components allows stating the following:

(S1 − S0)
G = (S1 − S0)

C + (S1 − S0)
M (56)

This should be proved to complete the formulation of generalized entropy which takes
into account the general definitions proposed for chemical entropy and mechanical entropy.

As a conclusion of the present research, the methodology adopted has achieved
a result for the chemical aspect that can be considered homologous to the result in the
procedure already adopted for the thermal aspect and mentioned at the outset of this
treatise. The equality of chemical potentials, as a condition of mutual stable equilibrium in
addition to the equality of temperature and pressure of the composite system-reservoir, is
an important result. Hence, the set of all conditions of mutual stable equilibrium enables
establishing a more complete formulation of generalized exergy with the contribution
of chemical, thermal and mechanical exergy related to a ‘thermo-chemical-mechanical’
reservoir. As a consequence, the definition of chemical entropy has been derived in relation
with the molecular geometry of any system in any state, including non-equilibrium. In con-
sideration of the importance of thermodynamic methods in chemistry and biology [26–29],
different studies and applications have been developed focusing extrema principles and
constructal laws [30–32]. In this regard, it would be worth thinking and fostering a line of
research aimed at building up a rational and systematic paradigm including thermody-
namic and informational aspects both constituting of intrinsic fundamentals of systems
and phenomena associated with life.
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Nomenclature

C specific heat or specific mass
E energy
EX exergy
M mass interaction
P pressure
Q heat interaction
R universal constant of gases
S entropy
T temperature
U internal energy
V volume
W work interaction
Greek Symbols

μ chemical potential
Ω available energy
Superscripts

← heat, mass or work interaction entering the system
→ heat, mass or work interaction exiting the system
AR composite of interacting system A and reservoir R
C chemical
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CONVER conversion
DIR direct
G generalized
HC high chemical potential
HP high pressure
INV inverse
LC low chemical potential
LP low pressure
M mechanical
T thermal
TRANSF transfer
Subscripts

0 initial state
1 final state
i i-th chemical constituent
n number of moles
r number of chemical constituents
R reservoir
V constant volume
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Abstract: Finite-time isothermal processes are ubiquitous in quantum-heat-engine cycles, yet com-
plicated due to the coexistence of the changing Hamiltonian and the interaction with the thermal
bath. Such complexity prevents classical thermodynamic measurements of a performed work. In
this paper, the isothermal process is decomposed into piecewise adiabatic and isochoric processes to
measure the performed work as the internal energy change in adiabatic processes. The piecewise
control scheme allows the direct simulation of the whole process on a universal quantum computer,
which provides a new experimental platform to study quantum thermodynamics. We implement the
simulation on ibmqx2 to show the 1/τ scaling of the extra work in finite-time isothermal processes.

Keywords: quantum thermodynamics; quantum circuit; open quantum system; isothermal process;
IBM quantum computer

1. Introduction

Quantum thermodynamics, originally considered an extension of classical thermody-
namics, has sharpened our understanding of the fundamental aspects of thermodynam-
ics [1–6]. Along with the theoretical progress, experimental tests and validations of the
principles are relevant in the realm. Simulation of the quantum thermodynamic phenom-
ena [7–10], as one of the experimental efforts, has been intensively explored with specific
systems, e.g., a single trapped particle for testing the Jarzynski equation [11,12], the trapped
interacting Fermi gas for quantum work extraction [13,14], and the superconducting qubits
for the shortcuts to adiabaticity [15,16]. These specific systems often have limited functions
to test generic quantum thermodynamic properties. In quantum thermodynamics, the
concerned system, as an open quantum system, generally evolves with the coupling to
the environment. Simulations of open quantum systems have been proposed theoretically
in terms of quantum channels [17–21], and realized experimentally on various systems,
e.g., trapped ions [22], photons [23], nuclear spins [24], superconducting qubits [25], and
IBM quantum computer recently[26,27]. The previous works mainly focus on simulating
fixed open quantum systems, where the parameters of the systems are fixed with the
evolution governed by a time-independent master equation. To devise a quantum heat
engine, it is necessary to realize tuned open quantum systems to formulate finite-time
isothermal processes.

Simulation with generic quantum computing systems shall offer a universal system to
demonstrate essential quantum thermodynamic phenomena. Yet, simulation of a tuned
open quantum system remains a challenge mainly due to the inability to physically tune
the control parameters and the difficulty to measure the work extraction. In quantum ther-
modynamics, the work extraction, as a fundamental quantity [28–30], requires the tuning of
the control parameters. Such requirement is achievable in the specifically designed system,
e.g., the laser-induced force on the trapped ion [11], the trapped frequency of the Fermi
gas [13,14], and the external field in the superconducting system [15,16]. However, on a
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universal quantum computer, e.g., IBM quantum computer (ibmqx2), the user is forbidden
to tune the actual physical parameters since the parameters have been optimized to reduce
errors. An additional problem is the measurement of the work extraction. In classical
thermodynamics, it is obtained by recording the control parameters and measuring the
conjugate quantities, but such measurement is not suitable in the quantum region [31].

In this paper, an experimental proposal is given to overcome the difficulty in sim-
ulating a finite-time isothermal process. We introduce a virtual way to tune the control
parameters, i.e., without physically tuning the parameters. The dynamics are realized
by quantum gates encoded the parameter change. As a demonstration, we realize the
simulation of a two-level system on ibmqx2 [32] for the isothermal processes, which are
fundamental to devise quantum heat engines, yet complicated due to the coexistence of
the changing Hamiltonian and the interaction with the thermal bath.

To implement the simulation on a universal quantum computer, we adopt a discrete-
step method to approach the quantum isothermal process [33–38]: the isothermal process
is divided into series of elementary processes, each consisting of an adiabatic process and
an isochoric process. In the adiabatic process, the parameter tuning is performed virtually
with the unitary evolution implemented by quantum gates. In the isochoric process, the
dissipative evolution is carried out with quantum channel simulation [23,25,39–42] with
ancillary qubits, which play the role of the environments[18,21,26]. With this approach,
we achieve the simulation of the isothermal process on the generic quantum computing
system without physically tuning the control parameters. The piecewise control scheme
distinguishes work and heat, which are separately generated and measured as the internal
energy change in the two processes. In the current simulation, the energy spacing of the
two-level system is tuned with the unchanged ground and excited states. The tuning of
the energy spacing is virtually performed via modulating the thermal transition rate in the
isochoric process.

In our proposal, the simulation with a universal quantum computer brings clear
advantages. First, the arbitrary change of the control parameters is archived by the virtual
tuning via the simulation of corresponding dynamics, avoiding the difficulty in tuning the
actual physical system. In turn, the parameters can be controlled to follow an arbitrary
designed function. Second, we can realize the immediate change of environmental parameters,
such as the temperature. The effect of the bath is reflected through the state of the auxiliary
qubits, which can be controlled flexibly with quantum gates.

2. Discrete-Step Method to Quantum Isothermal Process

In quantum thermodynamics, the concerned system generally evolves under the
changing Hamiltonian while in contact with a thermal bath. The interplay between quan-
tum work and heat challenges to characterize the quantum thermodynamic cycle on the
microscopic level, where the classical method to measure the work via force and distance,
is not applicable [31]. For the timescale of the tuning far smaller than the thermal bath
response time, the evolution is thermodynamic adiabatic, where the heat exchange with
the thermal bath can be neglected, and the internal energy changes due to the performed
work through the changing control field. The opposite extreme case with the unchanged
control parameters is known as the isochoric process, where the internal energy changes
are induced by the heat exchange with the thermal bath. Therefore, work and heat are
separated clearly in the adiabatic and isochoric processes, and are obtained directly by
measuring the internal energy change.

To simulate the general processes on a universal quantum computer, a piecewise
control scheme is necessary to express the continuous non-unitary evolution in terms of
quantum channels, where the evolution in each period is constructed by the simulations
of open quantum systems [21]. To separate work and heat, we adopt the discrete-step
method by dividing the whole process into series of piecewise adiabatic and isochoric
processes [33–38]. In Figure 1, the discrete-step method is illustrated with the minimal
quantum model, a two-level system with the energy spacing ω(t) between the ground state
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|g〉 and the excited state |e〉. Such a two-level system can be physically realized with a qubit,
as an elementary unit of the quantum computer. For the clarity of the later discussion,
we use the term “two-level system” to denote the simulated system and “qubit” as the
simulation system hereafter without specific mention.

system
qubit

ancillary
qubits ...{ Bath

two-level system

Figure 1. Simulation of the isothermal process on the superconducting quantum computer. The
finite-time isothermal process is divided into series of piecewise adiabatic and isochoric processes. In
the adiabatic process, the energy of the two-level system is tuned with the switched-off interaction
between the system and the thermal bath. In the isochoric process, the interaction is switched on
with the unchanged energy spacing ωj. One qubit represents the simulated two-level system, and
the ancillary qubits play the role of the thermal bath at the temperature T. After implementing the
quantum circuit, the system qubit is measured to obtain the internal energy.

The state of the two-level system is represented by the density matrix ρs(t) of the
system qubit, and the thermal bath is simulated by ancillary qubits. Initially, the system
qubit is prepared to the thermal state ρs(0) at the temperature T. The evolution of the
tuned open quantum system is implemented with single-qubit and two-qubit quantum
gates. The internal energy of the two-level system is E(t) = ω(t)pe(t), where the energy of
the ground state is assumed as zero, and the population in the ground (excited) state is
pg(t) = 〈g|ρs(t)|g〉 (pe(t) = 〈e|ρs(t)|e〉).

For the system to be simulated, we use the discrete-step method to approach the
finite-time isothermal process for the two-level system. The discrete isothermal process
contains N steps of elementary processes with the total operation time τ + τadi, where
τ (τadi) denotes the operation time in the isochoric (adiabatic) process. Each elementary
process is composed of an adiabatic and an isochoric processes. We set the equal operation
time for every elementary process δτ = (τ + τadi)/N, with the duration τ/N (τadi/N) for
each isochoric (adiabatic) process.

In the adiabatic process, the system is isolated from the thermal bath and evolves
under the time-dependent Hamiltonian. Such a process is described by a unitary evolution
with the time τadi/N. The performed work is determined by the change of the internal
energy at the initial and the final time. For a generic adiabatic process, the unitary evolution
of the system can be simulated with the single-qubit gate acted on the system qubit. In this
paper, we consider the adiabatic process as the quench with zero time τadi = 0, occurred
at time tj−1 = (j − 1)δτ, j = 1, 2, ..., N. As the result of the quench, the energy spacing is
shifted from ωj−1 to ωj, while the density matrix ρs(tj−1) remains unchanged after the
quench. At the initial time t0 = 0, the energy is quenched from ω0 to ω1 after the initial
preparation. The performed work for the quench at time tj−1 reads

Wj = (ωj − ωj−1)pe(tj−1). (1)

To obtain the performed work, we only need to measure the excited state population
pe(tj−1) of the system qubit at the beginning of each isochoric process.
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In the isochoric process of the j-th elementary process (tj−1 < t ≤ tj), the two-level
system is brought into contact with the thermal bath at the temperature T. The evolution is
given by the master equation

ρ̇s = −i[Hj, ρs] + γ0NjL (σ+)[ρs]

+ γ0(Nj + 1)L (σ−)[ρs], (2)

with
L (σ)[ρs] = σρsσ† − 1

2
σ†σρs − 1

2
ρsσ†σ. (3)

Here, Hj = ωj|e〉〈e| is the Hamiltonian of the system during the period tj−1 < t ≤ tj,
Nj = 1/[exp(βωj) − 1] is the average photon number with the inverse temperature
β = 1/(kBT), and σ+ = |e〉〈g| (σ− = |g〉〈e|) is the transition operator. In this process,
the change of the internal energy is induced by the heat exchange with the thermal bath,
and no work is performed. During the whole discrete isothermal process, the work is only
performed at the time tj.

We explicitly give the equations for each element of the density matrix according to
Equation (2). The populations in the ground and excited states satisfy

ṗg = γ0(Nj + 1)pe − γ0Nj pg, (4)

and pe = 1− pg. The off-diagonal elements ρeg(t) = 〈e|ρs(t)|g〉 and ρge(t) = 〈g|ρs(t)|e〉 satisfy

ρ̇eg = −iωjρeg − γ0(2Nj + 1)ρeg, (5)

and ρge(t) = ρ∗eg(t). With the unchanged energy eigenstates, the diagonal and the off-diagonal
elements of the density matrix evolve separately during the whole isothermal process.

3. Simulation with Quantum Circuits

In this section, we first show the simulation of one elementary process in the circuit.
The simulation is formulated for the adiabatic and the isochoric processes as follows.

Adiabatic process. In the superconducting quantum computer, e.g., IBM Q system,
the tuning of the physical energy levels of qubits is unavailable for the users. The physical
parameters are fixed at the optimal values to possibly reduce noises and errors induced by
decoherence and imperfect control.

We consider the Hamiltonian of the simulated two-level system as H(t) = ω(t)|e〉〈e|
with the piecewise tuned energy spacing

ω(t) = ωj, tj−1 < t ≤ tj with j = 1, 2..., N. (6)

We will show that the tuning of the energy spacing ω(t) only affects the thermal
transition rate. In the simulation, the thermal transition is simulated through the quantum
channel simulation, and can be flexibly modulated by single-qubit gates acted on the ancil-
lary qubits. Therefore, we do not have to physically tune any parameters of the quantum
computer, and just algorithmically modulate the simulated thermal transition instead. We
propose a virtual tuning of the energy spacing with details explained as follows.

In the virtual process, we need to simulate the unitary evolution of the adiabatic
process with single-qubit gates acted on the system qubit. For the adiabatic process, i.e.,
the quench, the state of the system does not evolve in a short period. We just pretend that
the energy of the simulated system is tuned from ωj−1 to ωj in the j-th adiabatic process.
This virtual tuning of the energy is reflected by the modulation of the transition rate in the
simulation of the isochoric process.
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Isochoric process. The dynamical evolution of the isochoric process can be simulated
with the generalized amplitude damping channel (GADC)

ρs(tj) = E
(j)

GAD[e
−iHjδτρs(tj−1)e

iHjδτ ], (7)

where E
(j)

GAD = p(j)
↓ E

(j)
↓ + p(j)

↑ E
(j)
↑ is divided into two sub-channels, the amplitude damp-

ing channel
E
(j)
↓ [ρs] = M(j)

0 ρs M(j)†
0 + M(j)

1 ρs M(j)†
1 , (8)

and the amplitude pumping channel

E
(j)
↑ [ρs] = M(j)

2 ρs M(j)†
2 + M(j)

3 ρs M(j)†
3 . (9)

The corresponding Kraus operators are M(j)
0 = cos θj|e〉〈e|+ |g〉〈g|, M(j)

1 = σ− sin θj,

M(j)
2 = |e〉〈e|+ cos θj|g〉〈g| and M(j)

3 = σ+ sin θj. The coefficient p(j)
↑ = 1/[exp(βωj) + 1]

(p(j)
↓ = 1 − p(j)

↑ ) shows the probability of excitation (de-excitation) of the two-level system
induced by the thermal bath. The evolution time of the j-th elementary process is encoded
in the control parameter θj via

cos θj = exp[−γ0δτ

2
coth(

βωj

2
)]. (10)

With infinite operation time, the ideal discrete isothermal process is realized by setting
θj = π/2, where the system reaches thermal equilibrium at the end of each isochoric process.

For the initial thermal state ρs(0) = exp(−βH(0))/Tr[exp(−βH(0))], the off-diagonal
element remains zero throughout the whole process in the current control scheme. In this
situation, the evolution by Equation (7) is simplified as

ρs(tj) = E
(j)

GAD[ρs(tj−1)]. (11)

For an initial state with non-zero off-diagonal elements, the off-diagonal elements does
not affect the evolution of the populations. This comes from the fact that the diagonal and
the off-diagonal elements satisfy separate differential equations by Equations (4) and (5).

Figure 2 shows the quantum circuit to simulate the isochoric process. The two sub-
channels E

(j)
↓ and E

(j)
↑ are realized with an ancillary qubit initially prepared in the ground

state. The circuits for these two sub-channels are illustrated in Figure 2a. The meaning of
each gate is explained at the bottom of Figure 2. Such simulation circuits are extensively
studied in the field of quantum computing and quantum information that we will not
explain the setup in detail [40].

To achieve the random selection of the two sub-channels, we design two simulation
methods, the hybrid simulation, and the fully quantum simulation, as shown in Figure 2b,c,
respectively. The former uses one ancillary qubit for each elementary process under the
assist of a classical random number generator (CRNG). The latter utilizes fully quantum
circuits with two ancillary qubits for each elementary process. In Table 1, we summarize
the simulation procedure for the adiabatic and the isochoric processes.
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Rx

Rx
cZ Rx

(a)

Rx
cZ

X

Rx cZ Rx
X

cZ Rx
X

Rx

CRNG

Amplitude damping channel Amplitude pumping channel

(b) (c)

(d)

Hybrid simulation Fully quantum simulation

Gate instruction

Figure 2. The quantum circuits in one elementary process. (a) The amplitude damping (pumping)

channel E
(j)
↓ (E (j)

↑ ) in the hybrid simulation. (b) One elementary process in the hybrid simulation.
The selection of the two sub-channels is realized by the classical random number generator. (c) One
elementary process in the fully quantum simulation. The selection of the two sub-channels is assisted
by another ancillary qubit. (d) Instruction of gates in the current simulation.

Table 1. The discrete isothermal process to be simulated and the two simulation methods, the hybrid simulation and the
fully quantum simulation

To be Simulated: Simulation

Discrete Isothermal Process Hybrid Simulation with CRNG Fully Quantum Simulation

Adiabatic process U[R(t)], t ∈ [tj−1, tj] The unitary evolution is realized with the virtual tuning on the system Hamiltonian.

Isochoric process System relaxation in
Equation (2)

Generalized amplitude damping

channel E
(j)

GAD with the classical random
number generation

Generalized amplitude damping channel

E
(j)

GAD with an additional qubit at the state
cos(αj/2)|0〉+ i sin(αj/2)|1〉

Parameters Duration: δτ = tj − tj−1
Temperature: T cos θj = exp[− γ0δτ

2 coth(
βωj

2 )]
cos θj = exp[− γ0δτ

2 coth(
βωj

2 )]

cos(αj/2) = [p(j)
↓ ]1/2

3.1. Hybrid Simulation of Isochoric Process with Classical Random Number Generator (CRNG)

With the limited number of qubits, it is desirable to reduce the unnecessary usage
of qubits. For the quantum channel of the system qubit, one ancillary qubit is inevitably
needed to simulate the non-unitary evolution of the open quantum system [42]. In this
method, one qubit represents the two-level system, and each elementary process adds
one more ancillary qubit. Therefore, it requires N + 1 qubits to simulate the N-step
isothermal process.

In the hybrid simulation, the CRNG is used to select the sub-channel O[l]
j = E

(j)
↑ or

E
(j)
↓ for the isochoric process in the j-th elementary process, as shown in Figure 2b. l denotes

the l-th simulation of the discrete isothermal process. For each isochoric process, the CRNG
generates a random number r[l]j ∈ [0, 1] with uniform distribution. The sub-channel O[l]

j is

selected as E
(j)
↓ (E (j)

↑ ) when the random number satisfies r[l]j ≤ p(j)
↓ (r[l]j > p(j)

↓ ).
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3.2. Fully Quantum Simulation of Isochoric Process

For the system with adequate available qubits, the selection of the two sub-channels
can be realized on fully quantum circuit by adding two ancillary qubits for each ele-
mentary process, as shown in Figure 2c. In each step, one more ancillary qubit is used,
prepared to the super-position state cos(αj/2)|0〉+ i sin(αj/2)|1〉 through the Rx(αj) gate

with cos(αj/2) =
√

p(j)
↓ . This method requires 2N + 1 qubits to simulate the N-step

isothermal process.
Currently, we have solved the problem of separating work and heat. The unitary

evolution of the adiabatic process requires isolation from the environment, while the
isochoric process needs contact with the environment. Switching on and off the interaction
with the thermal bath is complicated and requires enormous efforts, especially in the
quantum region for a microscopic system. Fortunately, the design of the quantum computer
with a long coherent time ensures the isolation from the environment. The simulation of
the quantum channel is designed to simulate the effect of the environment. The advantage
of quantum channel simulation over the real coupling to the environment is the flexibility
to tune the control parameters, e.g., the temperature, the coupling strength, et al.

The whole evolution of the isothermal process is realized by merging the circuit of
each elementary process. In Figure 3, the circuit for the two-step isothermal process is
shown as an example. Figure 3a shows the excited state population pe(t) with the tuned
energy spacing ω(t) in a two-step isothermal process. The energy spacing is increased
from ω0 to ω2 in two steps, while the excited state population decreases from p0 to p2.

Rx

Rx

Rx
cZ Rx

Rx
cZ

q[0]

q[1]

q[2]

q[3]

q[4]

Rx Rx

Isothermal Adiabatic Isochoric

Rx

Rx cZ Rx
q[0]

q[1]

q[2]

cZ
RxRx

X X X

(a)

(b)

(c)

Discrete isothermal process to be simulated

Hybrid simulation with CRNG

Fully quantum simulation

X X X

Figure 3. The circuit of the two-step isothermal process on ibmqx2. (a) Excited state population-
energy (pe − E) diagram. (b) The circuit for the hybrid simulation. In each elementary process, the
X gate is (or not) implemented for the sub-channel selected as the amplitude pumping (damping)
channel according to the classical random number. Each elementary process requires another ancillary
qubit. (c) The circuit for the fully quantum simulation. Each elementary requires two ancillary qubits.

Figure 3b shows the quantum circuit for the hybrid simulation on ibmqx2. With the
five qubits, it is feasible to simulate a four-step isothermal process on ibmqx2. Due to the
limited qubit number, the initial state is prepared as a pure state to mimic the thermal
state in the current simulation. The populations in the energy eigenstates of the pure state

165



Entropy 2021, 23, 353

is equal to those of the thermal state, while the non-zero off-diagonal elements lead to
the coherence as the superposition of the excited and the ground states. As stated in the
description of the isochoric process, such coherence does not affect the evolution of the
populations. With another ancillary qubit, a thermal state of the two-level system can be
initially prepared through the entanglement between the system and the ancillary qubit.

In the hybrid simulation, the sub-channel O[l]
j of each elementary process is selected

as either the amplitude damping E
(j)
↓ or the pumping one E

(j)
↑ . For an N-step isothermal

process, there are 2N selections of the sub-channels {O[l]
1 ,O[l]

2 , ...,O[l]
j , ...O[l]

N }. The circuit
of each selection with N = 2, 3 and 4 is implemented on ibmqx2. For each selection, the
excited state population p[l]e (tj) at each step is obtained by repeated implementations of
the corresponding circuit. The work in each selection, namely the microscopic work, is
given by

W [l] =
N

∑
j=1

(ωj − ωj−1)p[l]e (tj−1). (12)

The performed work W of the whole process is the average of the microscopic
work W [l].

Figure 3c shows the fully quantum simulation realized on ibmqx2. With the five qubits,
it is possible to realize at most two-step isothermal process, since the qubit resetting
process is not permitted on ibmqx2. In the fully quantum simulation, the same circuit is
implemented repetitively, and the excited state population pe(tj) is obtained by measuring
the state of the system qubit. The performed work for the simulated system is given by

W =
N

∑
j=1

(ωj − ωj−1)pe(tj−1). (13)

Since ibmqx2 does not allow the user to reset the state of the qubit, each elementary
process requires new ancillary qubit(s). With the ability to reset the ancillary qubit, two
(three) qubits are enough to complete the simulation with the hybrid simulation (fully
quantum simulation) by resetting the ancillary qubit(s) at the end of each isochoric process.
This control scheme is realized in Ref. [25] to simulate repetitive quantum channels on
a single qubit.

4. Testing 1/τ Scaling of Extra Work

One possible application of the thermodynamic simulation is to test the 1/τ scaling of
the extra work, where τ indicates the operation time of the finite-time isothermal process.
In equilibrium thermodynamics, the performed work for a quasi-static isothermal process
is equal to the change of the free energy ΔF [43]. The quasi-static isothermal process
requires infinite time to ensure equilibrium at every moment. For a real isothermal process,
irreversibility arises accompanied with the extra work. For a fixed control scheme, it is
proved that the extra work decreases inverse proportional to the operation time at the
long-time limit [44–47]. Such 1/τ scaling has been verified for the compression of dry air
in the experiment [48].

The superconducting quantum circuit provides an experimental platform to study
quantum thermodynamics. We demonstrate the scaling behavior of the extra work in
finite-time isothermal process can be observed with the current experimental proposal.
Here, the parameters of the simulated two-level system are chosen as γ0 = 1 and β = 1
for convenience. The energy spacing is tuned from ω0 = 1 to ωN = 2 in N steps of
elementary processes.

In Figure 4, the 1/N scaling of the extra work is shown with the ibmqx2 simulation
results (Supplementary Materials) for different operation time δτ = 0.5 (blue dashed curve)
and 10 (red solid curve). For large step number N, it is observed that the extra work is
inverse proportional to the step number as W − ΔF ∝ 1/N [33,37,38]. The free energy
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difference of the final and the initial state, namely the performed work in the quasi-static
isothermal process is

ΔF = ωN − ω0 − kBT ln
1 + eβωN

1 + eβω0
. (14)

With the chosen values of the parameters, the explicit value of the free energy dif-
ference is ΔF = 0.186. Since the total operation time is τ = Nδτ, the 1/N scaling is
consistent with the 1/τ scaling of the extra work in finite-time isothermal processes. The
discrete isothermal processes are simulated on ibmqx2 for N = 2, 3 and 4 with the hybrid
simulation (empty squares) and N = 2 with the fully quantum simulation (pentagrams).

1/N scaling

0 2 4 6 8 10

0.02

0.04

0.06

0.08

Figure 4. 1/N scaling of the extra work for the discrete isothermal process. The operation time of
each isochoric process is set as δτ = 0.5 (blue dashed curve) or 10 (red solid curve). The ibmqx2
simulation results for N = 2, 3 and 4 are plotted. The empty squares present the results by the hybrid
simulations, and the pentagrams for the fully quantum simulation. The 1/N scaling is shown by the
solid black curve.

Figure 5 compares the simulation results on ibmqx2 and the numerical results. In (a)
and (b), the work distribution of the hybrid simulation results (blue solid line) is compared
to the exact numerical results (gray dashed line), with the operation time δτ = 0.5 in (a)
and δτ = 10 in (b). For the hybrid simulation on ibmqx2, the maximum step number is
N = 4 with the five qubits. To mimic the random selection of the sub-channel, we simulate
every possible selection of the sub-channels in the isochoric processes and measure the
state populations of the system qubit. For each selection, the corresponding circuit is
implemented on ibmqx2 for 8192 shots. The average work is obtained by summing the
work in each selection with the corresponding probability p{Kj} = ∏j p(j)

Kj
(Kj =↑ or ↓). If

the random selections of the sub-channels are possible, p{Kj} should be determined by the
CRNG. Yet, here the probability of the selection p{Kj} is not implemented in the experiment

but calculated with p(j)
Kj

since the random selection of the two sub-channels cannot be
implemented on ibmqx2.

Figure 5c,d show the excited state population of the system qubit for the fully quantum
simulation of two-step isothermal process on ibmqx2. The operation time of each isochoric
process is δτ = 0.5 in (c) and δτ = 10 in (d). The excited state populations pe(tj) at
tj = 0, δτ and 2δτ are obtained by implementing 40960 shots of the corresponding circuits.
Compared to those of the numerical result (gray bar), the ibmqx2 simulation results (blue
bar) are larger, since the noises in the quantum computer generally lead to a more mixed
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state. At the end t = 2δτ of the process, the most quantum gates are used, and the absolute
error reaches about 0.05. The fidelity between the simulation and the numerical results

F(t) =
√

p(num)
g (t)p(sim)

g (t) +
√

p(num)
e (t)p(sim)

e (t) is explicitly F(2δτ) = 0.998 and 0.999
for the second step t = 2δτ in (c) and (d), respectively.
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Figure 5. Comparison of the ibmqx2 simulation and the numerical results. (a,b) show the microscopic
work in the hybrid simulation with the step number N = 2, 3 and 4. The ibmqx2 simulation result
(blue solid line) is compared with the numerical result (gray dashed line). (c,d) show the excited state
population pe(t) at each step in the fully quantum simulation of the two-step isothermal process. The
ibmqx2 simulation results (blue bar) are compared to the numerical results (gray bar).

The performed work in both the hybrid simulation and the fully quantum simulation
is obtained according to Equations (12) and (13), as listed in Table 2. In Figure 4, the extra
work in the ibmqx2 simulation results exceeds that of the numerical result due to the
accumulated error in long circuits. The error mainly comes from the two-qubit gates, since
the error probability in two-qubit gates (from 1.344 × 10−2 to 1.720 × 10−2) greatly exceeds
that of single-qubit gates (from 3.246 × 10−4 to 2.164 × 10−3) [32]. The computing accuracy
might be improved by using either quantum error correction or quantum mitigation [49].
Limited to the precision of operation on ibmqx2, the results deviate from the theoretical
expectations.
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Table 2. The performed work obtained by the ibmqx2 simulation and the numerical results.

N
δτ = 0.5 δτ = 10

W ibmqx2 Wexact W ibmqx2 Wexact

Hybrid simulation

2 0.251 0.245 0.232 0.226

3 0.246 0.233 0.221 0.212

4 0.243 0.224 0.217 0.206

Fully quantum simulation 2 0.251 0.245 0.238 0.226

The current simulation scheme have only considered the commutative Hamiltonian
at different steps [H(tj), H(tj′)] = 0 and the adiabatic process as the quench with zero time
δτadi = 0. It can also be generalized to the discrete isothermal process with finite-time
adiabatic processes, where the effect of the non-commutative Hamiltonian will increase
the extra work [50]. For a generic adiabatic process, the unitary evolution of the two-
level system should be simulated with the single-qubit gates on the system qubit. The
off-diagonal elements of the initial density matrix cannot be neglected, since the changing
ground and excited states lead to the interplay between the off-diagonal elements and
the populations. Besides, the current simulation can be simplified for the ideal discrete
isothermal process, where the perfect thermalization of the isochoric processes allows
simulating each elementary process separately by preparing the equilibrium states at the
beginning of the adiabatic processes [38].

With the limited number of qubits, we only show a few data points in Figure 4.
It requires either more usable qubits or the ability of resetting to simulate the discrete
isothermal process with a larger step number N in experiment. Another topic is to test
the optimal control scheme [36]. For the given operation time τ, the control scheme is
optimized to reach the minimum extra work. The lower bound of the extra work is related
to the thermodynamic length [44,46,51,52], which endows a Riemann metric on the control
parameter space. The current experimental proposal might also be utilized to measure the
thermodynamic length of the isothermal process for the two-level system.

5. Conclusions

We show an experimental proposal to simulate the finite-time isothermal process of
the two-level system with the superconducting quantum circuits. Two methods, the hybrid
simulation, and the fully quantum simulation, are proposed to realize the generalized
amplitude damping channel. Assisted by the classical random number generator or the
quantum superposition, the hybrid or the fully quantum simulation can simulate an N-step
isothermal process with N + 1 or 2N + 1 qubits, respectively.

We have used the quantum computer of IBM (ibmqx2) to demonstrate the simulation
of the discrete isothermal processes, which have been realized for four steps with the hybrid
simulation and two steps with the fully quantum simulation. If more steps of elementary
processes can be realized experimentally, the 1/τ scaling of the extra work can be tested by
the thermodynamic simulation on the universal quantum computer.

Supplementary Materials: The following are available online at https://www.mdpi.com/1099-430
0/23/3/353/s1 for the experimental data on ibmqx2.
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