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Preface to ”Selected Papers from “Theory of
Hadronic Matter under Extreme Conditions””

We are happy to present this reprint book edited from the special issue of the journal
Particles with selected contributions to the second International Workshop on “Theory of
Hadronic Matter under Extreme Conditions" that took place at JINR Dubna in September
16-19, 2019, see https://indico.jinr.ru/event/834/overview_ with the group photo of the
participants shown in Figure 1.

Figure 1: Group photo of the participants at the workshop “Hadronic Matter under
Extreme Conditions”, Dubna, September 16-19, 2019. From left to right, front row: Andrei
Radzhabov, Vladimir Goy, Alina Czajka, Natalia Kolomoets, Nikita Astrakhantsev, Nikita
Lebedev, Alexandra Friesen, Vladimir Voronin, Konstantin Maslov, Pandiat Saumia,
Kalman Szabo, Francesca Cuteri, Paula Hillmann, Tom Reichert, Atsushi Nakamura, 2nd
row: Ming-Tai Yang, Artem Roenko, Andrey Kotov, Stanislaw Mrowczynski, Jan
Cleymans, Vyacheslav Toneev, Jan Pawlowski, Sergei Nedelko, Jorg Aichelin, Diana
Alvear Terrero, Kenji Fukushima, 34 row: Vitaly Bornyakov, Boris Kerbikov, Alexei
Larionov, V. Nguen, Yuri Ivanov, Yuri Sinyukov, Trambak Bhattacharyya, Elena
Bratkovskaya, Aleksandr Andrianov, Manfried Faber, Alexander Nikolaev, Lucia Oliva,
Vladislav Tainov, back row: Roman Zhokhov, Pawel Lukyanov, Michael Bordag,
Gennady Zinovyev, Aleksei Nikolskii, George Prokhorov, Evgeni Kolomeitsev, Dmitry
Voskresensky, Bernd-Jochen Schaefer, Christof Gattringer, Roman Rogaliov, Lorenz von
Smekal, Mikhail Nalimov, Kyrill Bugaev, Marina Komarova, Rudolf Golubich, Masayasu
Hasegawa, Vadim Voronyuk, David Blaschke.

In its nature, theoretical investigations in the field of relativistic heavy-ion collisions
have a multidisciplinary character involving physics at various energy scales. They ask not
only for the resolution of a number of fundamental problems but also phenomenological
studies directly connected with experiments. The progress in this field relies on a coherent
implementation of a wide range of methods of quantum chromodynamics, relativistic



nuclear physics, kinetic theory, hydrodynamics and physics of critical phenomena in finite
short-lived systems. The construction of the Nuclotron-based Ion Collider fAcility (NICA),
see Figure 2, based on superconducting rings for performing experiments with heavy-ion
beams (see Figure 3) in the collider as well as the fixed target mode sets up an auspicious
environment for enhancement of theoretical physics activities at the Joint Institute for
Nuclear Research (JINR) related to relativistic heavy ion physics.

Figure 2: Aerial view of the NICA accelerator complex as of December 2020. The oval ring
in front is the collider for protons and nuclei with two interaction points for the MPD and
SPD experiments to be hosted in the rectangular buildings. In the back to the left is the
synchrophasotron building which hosts the nuclotron superconducting accelerator serving
as the injector to the collider ring, together with the ion source, linear accelerator and
booster systems. The adjacent rectangular building is the fixed target hall where the
baryonic matter at nuclotron (BM @ N) experiment is located.



Figure 3: Booster ring system based on superconducting magnet technology developed at
JINR Dubna for the Nuclotron accelerator. The booster is commissioned inside the iron
yoke of the former synchrophasotron at the Veksler-Baldin Laboratory for High-Energy
Physics of the JINR Dubna.

As the Guest Editors, we would like to thank all participants of the meeting for their
active role in making this event as inspiring as it was for the future development of the
field of hadronic matter under extreme conditions and for the stimulating role it played
for fostering the theoretical physics community supporting both the theoretical and
experimental research in this field. These thanks concern in particular the authors of the
contributions in this reprint book. We would also like to acknowledge the support in
funding the meeting which came from the Directorate of JINR Dubna and various funding
organisations that gave in-kind support that allowed to bring 84 participants from 13
countries together at the JINR Dubna, see the group photo in Figure 1.

It has been our big pleasure to collaborate with the MDPI journal “Particles” and its
Editorial office which provided invaluable professional support throughout the realisation
of this project.

David Blaschke, Victor Braguta, Evgeni Kolomeitsev, Sergei N. Nedelko, Alexandra Friesen,

Vladimir E. Voronin

Editors
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Abstract: We discuss two new density of states approaches for finite density lattice QCD (Quantum
Chromo Dynamics). The paper extends a recent presentation of the new techniques based on Wilson
fermions, while here, we now discuss and test the case of finite density QCD with staggered fermions.
The first of our two approaches is based on the canonical formulation where observables at a fixed
net quark number N are obtained as Fourier moments of the vacuum expectation values at imaginary
chemical potential 8. We treat the latter as densities that can be computed with the recently developed
functional fit approach. The second method is based on a direct grand canonical evaluation after
rewriting the QCD partition sum in terms of a suitable pseudo-fermion representation. In this form,
the imaginary part of the pseudo-fermion action can be identified and the corresponding density may
again be computed with the functional fit approach. We develop the details of the two approaches
and discuss some exploratory first tests for the case of free fermions where reference results for
assessing the new techniques may be obtained from Fourier transformation.

Keywords: lattice QCD; finite density; density of states techniques

1. Introduction

One of the major open challenges for numerical lattice field theory is the treatment of QCD
(Quantum Chromo Dynamics) at finite density. The central problem is the fact that at finite density,
the fermion determinant is complex and cannot be used as a probability in Monte Carlo simulations.
Density of states (DoS) techniques have been among the possible strategies for overcoming the complex
action problem since the pioneering days of lattice QCD [1-6]. The key challenge for DoS techniques
is accuracy, since for computing observables, the density needs to be integrated over with a highly
oscillating factor. A simple sampling of the density with histogram techniques will allow one to access
only very low densities.

An important step for the further development of DoS techniques was presented in [7] where,
based on ideas from statistical mechanics [8], a suitable parameterization of the density combined
with restricted vacuum expectation values was used to improve the accuracy for the determination of
the density of states considerably. In a subsequent series of papers, this so-called LLR method was
developed further and assessed for several test cases [9-16]. A related DoS technique, the so-called
functional fit approach (FFA), was proposed in [17] and successfully tested in [18-21].

However, all these DoS techniques were formulated for bosonic systems, and no approach to finite
density lattice QCD with modern DoS techniques had been presented. Finally, in [22], two possible
formulations of DoS techniques for lattice field theories with fermions were suggested. One of the two
formulations is the canonical DoS approach (CanDoS) where the density is computed as a function of
the imaginary chemical potential = i// 8, where f is the inverse temperature. The canonical partition
sum and observables are then obtained as Fourier moments of the density, and the FFA can be used to

Particles 2020, 3, 87-98; doi:10.3390/ particles3010008 1 www.mdpi.com/journal/particles
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obtain sufficient accuracy also for the highly oscillating integrals for the higher Fourier modes at large
net particle numbers.

The second DoS approach presented in [22] is a direct grand canonical DoS formulation (GCDoS)
based on rewriting the grand canonical partition sum of lattice QCD with a suitable pseudo-fermion
representation and identifying the imaginary part of the action in this representation. Subsequently,
FFA can be applied to evaluate the density as a function of the imaginary part, and again, suitable
integrals over the density give rise to vacuum expectation values of observables.

In [22], the two new DoS approaches were presented for the formulation of lattice QCD with
Wilson fermions, and the first tests were presented for free Wilson fermions at finite density. In this
paper, we now discuss the CanDos formulation and the direct GCDoS approach for the formulation of
lattice QCD with staggered fermions. For the CanDos approach, we also present some exploratory
tests in the free case, which allows one to assess the accuracy of the method with exact results and to
explore the parameters of the new techniques.

2. The Canonical Density of States Approach

In this section, we present the basic formulation of the canonical DoS approach (CanDos) for
finite density lattice QCD. We stress, however, that the CanDoS approach can easily be implemented
for other fermionic theories, e.g., theories with four Fermi interactions generated with auxiliary
Hubbard-Stratonovich fields.

2.1. Canonical Ensemble and Density of States

We study lattice QCD in d dimensions with two degenerate flavors of quarks. The canonical
partition sum at a fixed net quark number N is given by:

" do

7N =
N _n 271

/D[u]g*SG[U] det D[U, u]? . e TN, (1)
K=1g

where S [U] is the Wilson gauge action (we dropped the constant additive term),

Sclu] = _ P 3" Re Tr Uy (x) Up(x + ) Uy (x +p) T Uy (x)". 2)

xXV<p

Bg is the inverse gauge coupling, and the path integral measure D[U] in (1) is the product of Haar
measures for the link variables U, (x) € SU(3). We already integrated out the fermions and obtained
the fermion determinants for the two flavors. D[U, y] is the Dirac operator at finite chemical potential
. In this study of the canonical DoS approach, we use the staggered Dirac operator, but stress that it is
straightforward to implement the formalism also for different discretizations of the Dirac operator,
e.g., for Wilson fermions (compare [22]). The staggered Dirac operator D[U, ] is given by:

1< ; s X
D[U, V]x,y = mbyyls + 5 Z v (x) [e/lb‘/'duv(x) Sxtoy — € Vév’duv(x - V)+ 5x717,y] , (3)
v=1

where 77, (x) = (—1)"1" -1 are the staggered sign factors and 13 is the unit matrix in color space.
We work on a d-dimensional lattice of size Nsd ~1 X Nr, where the temporal (v = d) extent Nt gives the
inverse temperature in lattices units, i.e., § = Nt. All boundary conditions are periodic, except for the
anti-periodic temporal (v = d) boundary conditions for the fermions. m denotes the bare quark mass
and p the chemical potential.

In order to project the partition function Zy to fixed net quark number N, in (1), the chemical
potential y is set to u = i8/p = i/ Nt and subsequently integrated over the angle § with a Fourier
factor e ~N. This Fourier transformation with respect to the imaginary chemical potential sets the
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net quark number to N and thus generates Zy. The corresponding free energy density is defined as
fn=—-InZyn/V,where V = NgleT denotes the d-dimensional volume.

Bulk observables and their moments can be obtained as derivatives of fy with respect to couplings
of the theory. A simple example, which we also will consider in our numerical tests below, is the chiral

condensate (P (x)y(x) )y = dfn/0m,

)y = ~2 5 [ [opujesll derpiu 2 o | e @

2 p=i

"

The mass derivative leads to the insertion of Tr D~![U, y] in the path integral. Similarly, general
vacuum expectation values of some observable O at fixed net quark number N have the form:

O = 5 / /MM*W”@mwm2um]4g%N ©)
B

The partition sum (1) and the expressions for the vacuum expectation values (5) can be written
with suitable densities p(’)(B), which we define as:

/D e=Sell det DU, ]2 J[U, ] , )

e

p=i

where J[U, u] is set to J[U, 4] = 1 for the partition sum and to J[U, y] = O[U, p] for the vacuum
expectation values of observables. With the densities p‘”(e ), we may express (O)y and Zy as:

s
1 dg (o) i de ) _i
(O)y = 70 | 2t (0)e N, zy = /7p1(9)e N )
—T7T

Note that charge conjugation symmetry can be used to show that p(n)(G) is an even function such
that p(m(G) needs to be determined only in the range 6 € [0, 7t], which cuts the numerical cost in half
(see, e.g., [22]). A general observable O[U, j] can be decomposed into even and odd parts under
charge conjugation such that also here, the corresponding densities p(”(f)) need to be evaluated only
for 6 € [0, rt].

Having defined the densities p(’)(B) and expressed observables in the canonical ensemble as
integrals over the densities, we now have to address the problem of finding a suitable representation
of the density and how to determine the parameters used in the chosen representation.

2.2. Parametrization of the Density

We need to determine the densities p(”(G) for different operator insertions | as discussed
in the previous section. For notational convenience, in this section, where we now discuss the
parameterization of the densities, we denote all densities as p(8), but stress that we need to determine
the parameters of the different p(6) independently for every choice of J.

The densities p(0) are general functions of 6 in the interval [0, 7], which for a numerical
determination, we need to describe with only a finite number of parameters. To obtain a suitable
parameterization, we divide the interval [0, 7] into M subintervals as,

M-1
[0,7] = U I, with I, = [0,,0,41], ®)
n=0



Particles 2020, 3

where 0p = 0and 0y = 7. Introducing Ay = 0,41 — 0, for the length of the intervals I;;, we find
Z” 1 A; for n = 0,1, ... M. For the densities p(f), we now make the ansatz:

p(6) = e L), )

where the L(0) are continuous functions that are piecewise linear on the intervals I,. We use the
normalization L(0) = 0, which in turn implies p(0) = 1. Introducing a constant a,, and a slope k;, for
the linear function in every interval I,,, we may write L(6) in the form:

L(O) = ay + ko [0—04], for0€ Iy = [0, 6,11]. a0

Since the functions L(6) are normalized to L(0) = 0 and are required to be continuous, we can
uniquely determine the constants a, as functions of the slopes k, and write L(6) in the following
closed form:

L(0) = dy + 0ks, 0€ 1y, dy Z [kj —ka)Aj for n =0, . (11)

and express the densities p(6) as
p(0) = Age %, e, A, =e (12)

Obviously, the parameterized density p(6) depends only on the ky, i.e., the set of slopes of the
linear pieces in the intervals I,. We point out that our parametrization allows one to work with
intervals I, of different sizes A, such that in regions where the density p(0) varies quickly, one may
choose small A, while in regions of slow variation, one may save computer time by working with
larger A,,.

2.3. Evaluation of the Parameters of the Density

To compute the slopes k;, that determine the densities, we introduce so-called restricted
expectation values (6 ), (A) that are defined as:

n+1

(0)0(1) / 40 fDluje~5cllloe® deelur | (13)
=5
where again either J[U,u| = 1 or J{U,u] = O[U, u] is chosen, depending on whether the slopes

of the density for the partition sum Zy or the vacuum expectation (O)y are being computed.
The corresponding restricted partition sums Z, (1) we use in (13) are given by:

en+1
Zu(A) = /de /D[u] e =Sl 01 det D[U, ]2 (U H]| - (14)
oo n=ig

In the restricted expectation values (6 ),(A) and the partition sum Z,(A), the phase angle 0 is
integrated only over the interval I,;. We have also introduced a free real parameter A, which couples to
6 and enters in exponential form. Varying this parameter allows one to explore the f-dependence of the
density in the whole interval I, fully. Since for imaginary chemical potential 4 = i6/p, the fermion
determinant is real and after squaring also positive, the expectation values (6 ),(A) can be evaluated
without complex action problem in a Monte Carlo simulation as long as the insertions ] are real and
positive (for general insertions, | needs to be decomposed into pieces that obey positivity). This is
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a technical issue that may be solved also in other ways, e.g., for a bounded observable, the addition of
a positive constant is a simple option.

The important observation now is that for the parameterization (12) we have chosen for the
densities, (6),(A) and Z,(A) can be computed also in closed form. Writing the partition sum with the
density and then inserting the form (12), one obtains:

0 0, Oy [A—ks]
Zn(N) = / +1d9p(9)€9/\ — efd,,/ ge—knpth — ,—dy €

— Rn

(eA"lHn] - 1). (15)

From a comparison of (13) and (14), one finds that the restricted vacuum expectation value
(0)n (M) can be computed as the derivative (6 ),(A) = d InZ,(A)/dA, such that also (6 ),(A) can be
found in closed form:

_ dInZ,(A) Ay 1
(00N = — = = Ot Ak Ak

(16)

Using a multiplicative and an additive normalization, we bring (6 ), (A) into a standard form
Vi1 (A) where the result is expressed in terms of a simple function h(s),

<9>n(/\)_9n 1 1

V(M) A —5 = h(Ap[A —kn]) with h(s) = g

1
N (17)

The function h(s) obeys h(0) = 0, ' (0) = 1/12, and lims_ +o0 hi(s) = £1/2.

The determination of the slope k, for the interval I, now consists of the following steps:
For several values of A, one computes the corresponding restricted vacuum expectation values (0 ), (A)
defined in (14) and brings them into the normalized form V,(A) defined in Equation (17). Fitting
the corresponding data with h(An A - kn]) allows one to determine the k; from a simple stable
one-parameter fit. From the sets of the slopes k;,, we can determine the densities p(#) using (11) and
(12) and finally compute the observables via the integrals (7).

3. An Exploratory Test of the Canonical DoS Approach in the Free Case

As a first assessment of the new canonical density of states approach, we tested the new method
for the case of free fermions at finite density in two dimensions. This served to verify the method
and the program and allowed for exploring the parameters of the method, such as the number of
intervals I, and suitable choices for the values of A. In addition, for the free case, all steps of the
CanDoS approach could be cross-checked with exact results obtained from Fourier transformation.

3.1. Setting and Reference Results from Fourier Transformation

For this first test, we used the chiral condensate at fixed particle number (¢ (x)y(x) )y = dfn/0Om
as our main observable. For the free case, the corresponding expression (4) reduces to:

(Pp(x)p(x) )N = *%ZlfN :—z det D[p]% Tr D~ [y]

e p=

e 71'9N’ (18)

1

R0

where all links in the Dirac operator (3) were set to U, (x) = 1. For implementing the CanDoS approach
for the condensate, we need the two densities,

TrD~1)

pm(G) = detD[u]? and p(

) = detD[y]zTrD’l[y]’ . (19)
u=i

=l
RES

H=t

For determining the slopes k; of these two densities, we thus have to compute the restricted
expectation values (13) for ] = 1 and | = Tr D1, Normalizing the corresponding Monte Carlo data
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according to (17) and fitting them with & (A,, A— kn]) gives rise to the slopes k;,. From the respective

-1
sets of slopes, we find the densities (9 and (e 0) using (11) and (12), and finally, the vacuum
P ne P P g Y,
expectation value (9 (x)yp(x) ) is obtained as:

T T
— 21 dé (o1 _ioN de _ioN
= ——— [ — f)e™" N = — 0)e N, 2

FEPEIn = = [ a0 @™,z = [ %) 20)

s —7T

In the free case, the reference results can be obtained with the help of Fourier transformation.

Furthermore, for the case of two flavors in two dimensions, which we are using for our test, we can
explore the relation det D[u]? = det D, [t] between the determinant of the staggered Dirac operator
D[] and the determinant of the naive Dirac operator D,y 1], which in two dimensions is given by:
Dyai = mbeylax 1 Ly 13 [eF%2 4, M2 s, 21
nmve[ﬂ]x,y =Mmoyy Iy X 13 + 2 2101/ XAz e Oxqpy — € “Ox—,y| s (21)
v=

where 07 and ¢, are the first two Pauli matrices acting on the Dirac indices of the two-component
spinors used in the naive discretization and 1 is the corresponding unit matrix. All link variables
were set to their trivial values, i.e., they were replaced by the 3 x 3 unit matrix 13. The determinant of
the naive Dirac operator can be computed by first diagonalizing D,y ] in space-time with the help
of Fourier transformation and then taking the product of the corresponding momentum space Dirac
operator determinants over all momenta.

The density pm(G) then was simply obtained via numerically evaluating det D, [3¢] for u = i6/pB.

rp—1
For the density p<T v >(9), one may use Jakobi’s formula (d det M/dx = det M Tr[M~' dM/dx]) for
the derivative of a determinant and the fact that dD/dm = 1 to obtain:

(Trp~1)

d 1d
_ 2 -1 _1 2 _1 ,
() = detD[u]” TrD~ " [u] LT det D[u] Lo det D00 [1] L (22)

}l:iﬁ ;tziﬁ p=ig

The vacuum expectation value {9 (x)i(x) ) 5y can be obtained from (20) by numerically integrating
over 6. For the reference data in the plots below, we implemented this integration with Mathematica.

3.2. Numerical Results for CanDos in the Free Case

Having discussed the observables and the corresponding densities for the free case, as well as
the evaluation of reference data with the help of Fourier transformation, we now come to a brief
exploratory numerical test for the free case in d = 2 dimensions. The results in the plots below were
computed on 16 x 16 lattices at a mass parameter of m = 0.1. We used 50 intervals I, of equal size to
parameterize the density in the range [0, 7. For each interval, we computed the restricted expectation
values (16) for 20 different values of A using Monte Carlo simulations based on 10° measurements,
where in the simulation, the fermion determinant was evaluated exactly with Fourier transformation.
The restricted expectation values were then normalized to the form (17) and the slopes k, determined
from the corresponding fits with 1(A,[A — k,]). From the slopes, the densities were computed using
(11) and (12).

In Figure 1, we show the results for the densities p(*)(8) (lhs plot) and p(™P ™ (0) (ths). The thin
blue curves are the results from the CanDos determination and the thick magenta curves the reference
data computed with Fourier transformation as discussed in the previous subsection. Obviously,
the CanDos densities matched the reference data very well.
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Figure 1. The densities p(")(8) (lhs) and p(™P"")(8) (rhs figure; denoted as p(©") (9) in the plot).
We compare the data from the canonical DoS (CanDoS) determination (thin blue curves) to the analytic
results obtained with Fourier transformation (thick dashed magenta curves). The data are for 16 x 16
lattices with m = 0.1 and densities are normalized to p(0) = 1.

Having determined the densities, we can compute the canonical partitions sums Zy and vacuum
expectation values at fixed net fermion number using (7). In the lhs plot of Figure 2, we show our
results for the canonical partition sums Zy normalized by Z as a function of N. The results from
the CanDos determination are shown as red dots, the reference data from Fourier transformation as
black diamonds. Here as well, we observed essentially perfect agreement for all values of the net
fermion number N we considered. A more physical quantity is the corresponding free energy density
fn = —InZy/V (here normalized to fy = 0), which in the rhs plot of Figure 2, we show as a function
of N. Again, we compared the CanDos results (red dots) to the corresponding reference data (black
diamonds) and found very good agreement, and only for the largest net particle number N = 10
shown in the plot, we observed a slight deviation, indicating that for net quark numbers N > 10,
the accuracy of the determination of the density would have to be improved, e.g., by using more and
finer intervals I;.
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Figure 2. The canonical partition sums Zy/Zg (lhs) and the corresponding free energy densities
fN = —In(ZN/Zy)/V (ths) as a function of the net fermion number N. The parameters are V = 16 x 16
with m = 0.1, and we compare the results from the CanDoS determination (red dots) to the analytic
results obtained with Fourier transformation (black diamonds).
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We conclude our exploratory study with discussing the vacuum expectation value of
an observable, i.e., a case where the ratio of two integrals over two different densities needs to
be computed. The quantity we considered was the chiral condensate, and the two corresponding
densities o) () and p( ™D R (0) were the ones already shown in Figure 1. For both of them, we found
very good agreement with the reference data, and the crucial question now was if this translated also
into the corresponding physical observable matching the reference data well. In Figure 3, we show the
CanDos results (red dots) for the condensate ((x)§(x) )y as a function of the net quark number N.
Indeed, we found a very satisfactory agreement with the results from Fourier transformation (black
diamonds) up to N = 7 where the first deviations became visible. Again, for higher values of N,
a more precise determination of the involved densities will be necessary.

— : : : — e

1.0~ L4 O analytical ]

[ L4 L4 « DoS ]

09l & @ ]

e or ]

4 [ ]

s I ® ® 1
[$]

Vo oosp N

X [ @ @ ]
e}

2 [ ]

8 07 —

v L L4 @ ]

= S & n

[ & ¢ 1

S O B B R R B

40 8 6 4 2 0 2 4 6 8 10

Figure 3. The chiral condensate ((x)(x)) (in the plot denoted as (cond)y and normalized by the
N = 0 value) as a function of the net fermion number N. The parameters are V = 16 x 16 with m = 0.1,
and we compare the results from the CanDoS determination (red dots) to the analytic results obtained
with Fourier transformation (black diamonds).

We close the discussion of our numerical test by stressing once more that the results presented
here could only be considered a very preliminary assessment of the new CanDos approach. The tests
were done in two dimensions, and only the free case was considered (although this already
constituted a non-trivial test of the method). Currently, we are extending the assessment of CanDos
by implementing a study in 2-dQCD, but also started to explore lattice field theories with four
Fermi interactions.

4. Direct Grand Canonical DoS Approach

In this section, we now briefly discuss our second DoS approach, which is based on a suitable
pseudo-fermion representation of the grand canonical QCD partition sum (GCDoS approach). We will
determine the imaginary part of the pseudo-fermion action and set up the FFA to compute the density
as a function of the imaginary part.

4.1. Pseudo-Fermion Representation and Introduction of Densities

The starting point was the grand canonical partition sum of QCD. We again considered two
flavors of staggered fermions such that the grand canonical partition sum at chemical potential y is
given by:

Z, = /D[u} e=SclUl det D[U, )2, 3)

where Sg[U] is again the Wilson gauge action (2), and the staggered Dirac operator D[U, y] is specified
in (3).
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We first identically rewrite the fermion determinant and subsequently express the part with the
complex action problem in terms of pseudo-fermions,

det D[U, ] = det(D[U, ¢ DIU, ") = Cdet(D[U, DIU, ") [Dlgle#"PU#"Y, 4)

1

det D[U, p]t
where C is an irrelevant numerical constant and ¢(x) are complex-valued pseudo-fermion fields
that have three color components. The measure [ D[] simply is a product measure where at
every site of the lattice, each component is integrated over the complex plane. The overall factor
det(D[U, u]D[U, u]*) is obviously real and positive and can be treated with standard techniques [23,24].
The exponent of the pseudo-fermion integral on the other hand has a non-vanishing imaginary part
and thus requires a strategy for dealing with the corresponding complex action problem.

To set up the direct DoS approach in the grand canonical formulation, we divided the exponent of
the pseudo-fermion path integral into real and imaginary parts,

¢" DU, pu]*p = Srlgp, U, u] — iX[, U, ], Srlep, U, 1) = 9" A[U, )¢, X[, U, ] = ¢'B[U, u]ep,  (25)

where we defined two matrices for the kernels of the real and imaginary parts of the
pseudo-fermion action,

DU, ] + DU, " DIU, ) — DU, ]

Al = 5 BlU ] = % (26)
It is straightforward to evaluate A[U, p] and B[U, p] explicitly,
1¢ +
AU plvy = mdyyl+ 5 Y u(x) sinh(ud, 4) [uv(x) Sxroy + Uj(x—1) 5,{,W},
v=1
i '
B[U, V]x,y = 3 Z v (x) COSh(P‘év,d) {Uv(x) 5x+0,y - Uy(x—7) ‘5:(—0,4 . (27)
v=1
The fermion determinant thus assumes the form:
detD[U, 3] = C det(D[U, u]D[U, u]") /D[zp} ¢~ SrloU] +iX[p.U] 28)

We already remarked that the real and positive overall factor det(D[U, u]D[U, u]*) could be
treated with conventional simulation techniques [23,24], which we will not address in detail here
(see [22] for a discussion of this term in the Wilson fermion formulation). Together with the Boltzmann
factor for the gauge field action, we combined this term into a new effective action Boltzmann factor
defined as:

e SerflUbl — o =Sl det(D[U, ] DU, u]"). (29)

The grand-canonical partition sum thus can be written as:
Z, = /D[u] /D[qy} e ~SerflUm] o =SR] i X[pUp] (30)
The next step is to introduce suitable densities for the imaginary part:
o - —
p"x) = [Dlu] [Dlg)e=Solhl e=Sxiolial jip,u1, ) o(x ~ Xlp,U,p]), 31

where we again allow for the insertion of functionals J[¢$, U, j] in order to take into account different
observables. As for the CanDos approach, one may use charge conjugation symmetry to show that the
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densities are either even or odd functions of x, depending on the insertion [[¢, U, u] (see [22]). Thus,
it is sufficient to compute the densities only for positive x.

With the help of the densities vacuum, the expectation values of observables in the grand canonical
picture at chemical potential y can be written as:

1 00 X 00 X
(O)y = Z/o dx p(o)(x)e”‘, zZ, = /0 dx p(ﬂ)(x)e’x. (32)

4.2. Evaluation of the Densities with FFA

Having defined the densities and expressed grand canonical vacuum expectation values as
suitable integrals over the densities, we now can set up the FFA approach for evaluating the densities.

First, we remark that the densities p(])(x) are expected to be fast decreasing functions of x,
and in [22], this was indeed verified in test cases. Thus, we may cut off the integration range in (32)
to a finite interval [0, x,4x] and determine the density only for this range. As for the canonical case,
we divided the interval [0, xyuqx] into M intervals I, = [x,,x,41], n = 0,1, .. M —1, with xg = 0
and Xp; = Xyay. As for the CanDos formulation, the densities were parameterized by the negative
exponential of a function L(x) that was continuous and piecewise linear on the intervals I,,. Again,
we assumed the normalization L(0) = 0, and the density thus was entirely determined by the slopes k;,.

In the FFA approach, the slope k;, in each interval I, is determined from suitable restricted vacuum
values, which we here define as:

(X)n(A) = %m [ DI [ DigleSrlirleSelottal A Xotigig, u, ) ©,(Xig, Ui ), (33)

where we have defined the support function ®, (x):

O,(x) = { Horx © (34)

As in the canonical case, also the generalized expectation values (33) can be expressed in
terms of the parameterized density and computed in closed form, along the lines discussed above.
After normalizing them to the form (17), the generalized expectation values are again described
by the functions & (An A — kn]) such that the slopes k;, can be determined from one parameter fits.
Subsequently, the densities are constructed from the slopes using (11) and (12), with 6 replaced by x.
Finally we can compute observables from the densities using (32).

The direct, grand canonical density of states approach discussed in this section for staggered
fermions was discussed for Wilson fermions in [22]. There, also first exploratory numerical results
were presented, and for free fermions it was shown that the density obtained with the FFA approach
matched exact reference data from Fourier transformation very well.

5. Summary and Outlook

In this paper, we extended our previous work [22], where we presented two new DoS techniques
for finite density lattice QCD with Wilson fermions, to the formulation of QCD with staggered fermions.
The first formulation was based on the canonical formulation where the canonical partition sum and
vacuum expectation values of observables at fixed net quark number were obtained as Fourier moments
with respect to imaginary chemical potential. The functional fit approach (FFA) could then be used
to compute the density with sufficient accuracy for reliably determining observables for reasonable
net quark numbers. We presented exploratory tests of the canonical DoS approach for the case of free
fermions in 2-dand found that observables such as the chiral condensate at finite net quark numbers
reliably matched reference data obtained from a direct calculation with Fourier transformation that
was possible in the free case.

10
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Our second approach was set up directly in the grand canonical ensemble. The QCD partition
sum was rewritten in terms of a suitable pseudo-fermion representation, and the imaginary part of
the pseudo-fermion action was identified. Using FFA, the density was then computed as a function
of the imaginary part, and grand canonical vacuum expectation values were again obtained as the
corresponding oscillating integrals. The tests of the new approaches presented here were done for the
staggered fermion formulation, but we would like to point out again that also the Wilson formulation
could be used and refer to our paper [22] for the discussion of the corresponding results.

Two comments are in order here: Although the first tests were encouraging, the numerical results
presented here clearly constituted only a very preliminary and exploratory assessment of the new
techniques. We are currently extending these tests towards QCD in two dimensions as the next test
case before approaching the full 4-dtheory. We furthermore stress that the techniques we presented
here were not restricted to QCD or other gauge theories with fermions. Furthermore, theories with four
Fermi interactions could be accessed after the introduction of suitable Hubbard-Stratonovich fields,
and also for this direction of possible further development we have started exploratory calculations.
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Abstract: The center vortex model of quantum chromodynamic states that vortices, a closed
color-magnetic flux, percolate the vacuum. Vortices are seen as the relevant excitations of the
vacuum, causing confinement and dynamical chiral symmetry breaking. In an appropriate gauge,
as direct maximal center gauge, vortices are detected by projecting onto the center degrees of freedom.
Such gauges suffer from Gribov copy problems: different local maxima of the corresponding
gauge functional can result in different predictions of the string tension. By using nontrivial center
regions—that is, regions whose boundary evaluates to a nontrivial center element—a resolution of this
issue seems possible. We use such nontrivial center regions to guide simulated annealing procedures,
preventing an underestimation of the string tension in order to resolve the Gribov copy problem.

Keywords: quantum chromodynamics; confinement; center vortex model; string tension; Gribov
copy problem

PACS: 11.15.Ha; 12.38.Gc

1. Introduction

First proposed by Hooft [1] and Cornwall [2] the center vortex model gives an explanation of
confinement in non-Abelian gauge theories. It states that the vacuum is a condensate of quantized
magnetic flux tubes, the so-called vortices. The vortex model is able to explain the following:

Behavior of Wilson loops, see [3];

Finite temperature phase transition — Polyakov loops
Orders of phase transitions in SU(2) and SU(3);

Casimir scaling of heavy-quark potential, see [4];
Spontaneous breaking of scale invariance, see [5];

e Chiral symmetry breaking, see [6,7] — quark condensate;

but suffers from Gribov copy problems: predictions concerning the string tension depend on the
specific implementation of the gauge fixing procedure, see [8,9].

In this work, an explanation of the problem is given before an improvement of the vortex detection
is presented.

Center vortices are located by P-vortices, which are identified in direct maximal center gauge,
the gauge which maximizes the functional

R =YY | Te[U,(x)] . 1)
xop
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The projection onto the center degrees of freedom
Zy(x) = sign Tr[U, (x)] )
leads to plaquettes with nontrivial center values, P-plaquettes which form P-vortices, and closed

surfaces in dual space. This procedure can be seen as a best fit procedure of a thin vortex configuration
to a given field configuration [3,10], see Figure 1.

‘ P-vortice‘ .
‘thick vortices

Figure 1. Vortex detection as a best fit procedure of P-Vortices to thick vortices shown in a

two-dimensional slice through a four dimensional lattice.

The way P-vortices locate thick vortices is called vortex finding property.
Center vortices can be directly related to the string tension: the flux building up the vortex
contributes a nontrivial center element to surrounding Wilson loops, see Figure 2.

[
>

Non-trivial link

-1—P-plaquette

' '
N =

Al
4 [
w <

Figure 2. Each P-plaquette contributes a nontrivial center element to surrounding Wilson loops.

The behavior of Wilson loops can be explained and a nonvanishing string tension extracted by
using the density py, of uncorrelated P-plaquettes per unit volume

(%WWWRT»ZPme+lemHMT=?m4“M”¥$J:fmﬂfZW) )

The string tension can also be calculated by Creutz ratios

(WR+1,T+1)) (W(R,T))
(W(R, T+1)) (WR+1,T))"

X(RT)=-In @)
From (W(R, T)) ~ e~ RT=2# (R+T)+C it follows for sufficiently large R and T that x (R, T) = ¢.
Creutz ratios for center-projected Wilson loops are expected to give correct values for ¢ if the vortex
finding property is given.
The problem with the direct maximal center gauge is that different local maxima of the gauge
functional R can lead to different predictions concerning the string tension in center-projected

14
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configurations [8,9]. Animprovement in the value of the gauge functional results in an underestimation
of the string tension, as can be seen in Figure 3.

500 SA sweeps 750 SA sweeps 5000 SA sweeps
R = 0.8636 + 0.0008 R =0.866 + 0.0007 R =0.8706 + 0.0005

ag a a

. L] (]
0.30 0.30 0.30
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¥ ;| i

0.20 0.20 I 0.20 1

L, { I
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0.10 0.10 0.10* 5 . 3
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1 2 3 4 1 2 3 4 1 2 3 4

String tension calculated via: ® X(R)suz) 9 X(R)zz — Vortexdensity -- Literature

Figure 3. The string tension, calculated via Creutz ratios of the full theory x(R)sy(z),
the center-projected theory x(R)z», and the vortex density. By increasing the number of simulated
annealing sweeps, a better value of gauge functional is reached, but the string tension is underestimated
by x(R)z. The data was calculated in lattices of size 12* (left),12* (middle), and 14* (right) in Wilson
action. The vortex density was not corrected for correlated P-plaquettes, hence, it is overestimated.

In fact, preliminary analyses show that the string tension decreases linearly with an improvement
in the value of the gauge functional.

We believe that this is caused by a failing gauge-fixing procedure during which the vortex finding
property is lost. If the P-vortices fail to locate thick vortices, the string tension will be underestimated
by x(R)zz, see Figure 4.

thick vortic — ; thick vortict

identified by t— loosing the —notidenti
Prvortices- | vortex finding

property
|
| |

Figure 4. When P-vortices no longer locate thick vortices, we speak of a loss of the vortex finding
property. The figure shows a two-dimensional slice through a four-dimensional lattice.

A failing vortex detection can result in vortex clusters disintegrating into small vortices consisting
only of correlated P-plaquettes. This causes a misleadingly high vortex density.

The loss of the vortex finding property can be avoided by using the information about center
regions, that is, regions enclosed by a Wilson loop that evaluate to center elements.

15
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Center regions can be related to a non-Abelian generalization of the Abelian stokes theorem:

Pexp <i }gs Ap(x) dx") =Pexp (% /S Fuv(x) dxt dx”) ,
(5)
Fuo(x) = U™ (x,0) Fu(x) U(x,0),  U(x,0) = Pexp (i /I‘A”(y) dy”) ,

with P denoting path ordering, P "surface ordering", and I being a path from the base O of 9S to x,
see [11]. The left hand side of (5) can be identified as the evaluation of a Wilson loop spanning the
surface S. The right-hand side can be expressed using plaquettes: Uy, (x) = exp (ia*Fy, + O(a®)),
with lattice spacing a, see [12]. With these ingredients, the non-Abelian stokes theorem reads in the
lattice, as shown in Figure 5:

= s (e Bl
Figure 5. Factoring a Wilson into factors of plaquettes using the non-Abelian stokes theorem.

By finding center regions, that is, plaquettes within S that combine to bigger regions which
evaluate to center elements, the Wilson loop spanning S can be factorized into a commuting factor, a
center element, and an non-Abelian part, see Figure 6.

Regions whose boundaries evaluate to
center elements can be used to factorize a
Wilson loop into two parts:

® An area factor, collecting the fully
enclosed nontrivial regions, leading
to a linear rising potential;

® aperimeter factor, from noncenter
contributions due to partially
enclosed center regions.

center regions Area law Perimeter law

Figure 6. Center regions explain the coulombic behavior and the linear rise of the quark-antiquark
potential as they lead to an area law and a perimeter law for Wilson loops.

The center regions capture the center degrees of freedom and can be directly related to the
behavior of Wilson loops. It seems reasonable to demand that their evaluation should not be changed
by center gauge or projection on the center degrees of freedom. We show that by preserving nontrivial
center regions, the loss of the vortex finding property is prevented and the full string tension can
be recovered.

2. Materials and Methods

The predictions of the center vortex model concerning the string tension in SU(2) gluonic quantum
chromodynamic are analyzed by calculating the Creutz ratios after center projection in maximal center
gauge. The gauge fixing procedure is based upon simulated annealing, maximizing the functional (1),
that is, bringing each link as close to a center element as possible. The simulated annealing algorithms
are modified so that the evaluation of center regions is preserved during the procedure: transformations
resulting in nontrivial center regions projecting onto the nontrivial center element are enforced,
and transformations resulting in nontrivial center regions projecting onto the trivial center element
are prevented.
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The detection of the nontrivial center regions of one lattice configuration is done by enlarging
regions until their evaluation becomes the nearest possible to a nontrivial center element, see Figure 7.

1)

P

o

Steps 1-3: Starting with a plaquette that neither belongs to an already identified center region nor has already been

taken as origin for growing a region, it is tested, whereby enlargement around a neighboring plaquette brings the
region’s evaluation nearer to a center element. Enlargement in the best direction is done.

4

=

=

Steps 4-6: If no enlargement leads to further improvement, a new enlargement procedure is started with another
plaquette. With this enlargement, it is possible that it would grow into an existing region. The collision-handling
described in the following is used to prevent this:

Step 7a: The evaluation of the growing region
is nearer to a nontrivial centre element than the
evaluation of the old region: delete the old region,
only keeping the mark on its starting plaquette, and

allow growing.

7b)

Step 7b: The growing region evaluates further away
from a nontrivial centre element than the existing
one: prevent growing in this direction and, if possible,
enlarge in second best direction instead. Multiple
collisions after growing are possible.

Figure 7. The algorithm for detecting center regions repeats these procedures until every plaquette

either belongs to an identified region or has been taken once as starting plaquette for growing a region.

The arrow marks the direction of enlargement. Plaquettes belonging to a region are colored, plaquettes

already used as origin are shaded.

The algorithm starts with sorting the plaquettes of a given configuration by a rising trace of their
evaluation. This stack is worked down plaquette by plaquette, enlarging each as far as possible by
adding neighboring plaquettes. During this procedure, collisions of growing regions are prevented.

The regions identified this way comprise of many, whose evaluation deviates far from the center
of the group. A set of nontrivial center regions has to be selected from the set of identified regions, only
regions with traces smaller than Trmax are taken into account. This parameter Trmax has to be adjusted
under consideration of the behavior of Creutz ratios, as shown in Figure 8, which are calculated after
gauge-fixing and center projection.

No center regions

ag

underestimating the
string tension

Trace <Tr,

max 1

a

Creutz ratios compatible
with literature value

Trace <Tr,

ax 2

ag

Creutz ratios approaching
from above

N

Trace < Tr,

max 3

ag

chaotic Creutz ratios

N~

good value for Tryay

R

Trmax 1 < Trmax 2 < Trmax 3

Figure 8. Trmax can be fine-tuned by looking at the dependency of the Creutz ratios on the loop size R.

At low values of Trmax, the Creutz ratios are expected to be nearly constant with respect to the

loop size. With raising Trmax they start to approach their asymptotic value from above and become
chaotic with Trmax chosen inappropriately high.
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As the center degrees of freedom are expected to capture the long-range behavior, the Creutz
ratios calculated in center-projected configurations are near to the correct value of the string tension
already for small loop sizes. Hence, we chose Trmax as high as possible without causing the behavior
of the Creutz ratios to approach the string tension from above.

The regions determined by this procedure are then used to guide the gauge-fixing procedure.
The influence on the predicted string tension is analyzed by calculating the Creutz ratios in
center-projected configurations.

3. Results

Here, we present the calculations of the center vortex string tension for different values of Trmax
at B = 2.3. Similar results were obtained for f = 2.4 and = 2.5. In the following, only the Creutz
ratios of the center-projected configurations x(R)z» are of relevance. The Creutz ratios of the full SU(2)
theory x(R) su(2) and the calculations of the string tension based on the vortex density are calculated
for comparison. They are only shown for the sake of completeness. All data was calculated with SU(2)
Wilson action.

The Creutz ratios tend towards the literature value of the string tension with increasing number
of simulated annealing steps with a Trmax = —0.985, whereas they clearly underestimate the string
tension when center regions are ignored, see Figure 9.

String tension in dependency of simulated annealing steps
<X(R)>Re{2,3,4}
0.25

020f §

0.15
1 §

0.10 LI A N

0.05

Stepcount
1000 2000 3000 4000 5000

e No center regions « center regions - Literature o

Figure 9. By preserving center regions, the Creutz ratios tend towards the literature value of string
tension during the simulated annealing procedure. The data was calculated at = 2.3 in a 12* lattice
with 100 configurations taken into account per datapoint. Displayed is the mean of x(2), x(3), and
X(4). The increased error bars when center regions are preserved might be because the algorithm does
not reach the exact local maxima, but fluctuates around it.

The full string tension can be easily recovered, although the value of the gauge functional is
reduced, see Figure 10.

The upper three graphs show the calculations done for optimizing the value of Trmax. The final
results, shown in the left graph in the lower row, are calculated with a value of Tr;;;x = —0.985, that is,
a value between the respective values of the left and middle graph in the upper line. The final results
are compared with raw simulated annealing, that is, without preserving center regions shown in the
right graph of the lower row. The large errors using center regions might result from fluctuations
of the gauge functional around the maxima, which can not be reached due to the constraint of the
preservation of center regions: further approaches to the local maxima of the gauge functional are
therefore prevented.
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Trmax = -0.99 Trmax = -0.98 Trmax = -0.975
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Figure 10. Optimization of Trmax in the upper line and final results for the guided simulated annealing
in the lower row at f = 2.3. The Creutz ratios were calculated with 300 Wilson configurations at
B = 2.3 in lattices of sizes 12* in the upper-left graph and 14* for the other graphs. The error bars
are calculated with the one-deletion-Jackknife method. The optimal value of Trmax was identified by
taking into account the behavior of the Creutz ratios and found to be around Trmax ~ —0.985, reducing
the value of gauge functional from R = 0.871 to 0.862.

4. Discussion

By preserving nontrivial center regions, the full string tension can be recovered and extracted from
the center degrees of freedom in SU(2) quantum chromodynamics. The choice of the free parameter
Trmax based on the behavior of Creutz ratios does not give an unambiguous value, but merely
an interval of good values of Trmax. This arbitrariness has to be investigated in further work.
Preliminary data already hints at a way to eliminate it. The concept of identifying gauge-independent
observables evaluating to the relevant degrees of freedom and using them to guide the gauge-fixing
procedure reduces the number of free parameters of the gauge transformation. It forces all differing
local maxima of the gauge functional to incorporate specific, gauge-invariant properties that are related
to the relevant degrees of freedom. This might be a solution to the Gribov copy problem wherever
the gauge-fixing procedure is based upon a specific gauge functional. The algorithms presented can
be easily extended into higher symmetry groups or modified to capture different degrees of freedom.
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The procedures for identifying nontrivial center regions can also be used to reconstruct the thick
vortices from P-plaquettes. This will allow further investigations of the color structure of vortices.
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Abstract: We study the transverse and longitudinal gluon propagators in the Landau-gauge lattice
QCD with gauge group SU(2) at nonzero quark chemical potential and zero temperature. We show
that both propagators demonstrate substantial dependence on the quark chemical potential. This
observation does not agree with earlier findings by other groups.

Keywords: lattice QCD; baryon density; gluon propagator; screening mass

1. Introduction

The properties of nuclear matter at low temperature and high density and the location of the
phase transition to deconfined quark matter are subjects of both experimental and theoretical studies.
It is known that the non-perturbative first principles approach as lattice QCD is inapplicable at large
baryon densities and small temperatures due to the so-called sign problem. This makes important to
study the QCD-like models [1], in particular lattice SU(2) QCD (also called QC;,D). The properties
of this theory were studied with the help of various approaches—chiral perturbation theory [1-3],
Nambu-Jona-Lasinio model [4-6], quark-meson-diquark model [7,8], random matrix theory [9,10].
Supported by agreement with high precision lattice results obtained in SU(2) QCD these methods
can be applied to real QCD with higher confidence. Lattice studies were made with staggered
fermions [11-18] for N 'y = 4 or, more recently, N =2 and Wilson fermions [19-24] for N =2 mostly.

The phase structure of Ny = 2 QC,D at large baryon density and T = 0 was studied recently in
Reference [16]. The simulations were carried out at small lattice spacing and the range of large quark
chemical potential was reached without large lattice artifacts. The main result of Reference [16] is the
observation that the string tension ¢ is compatible with zero for y; above 850 MeV. It was also found
that the so called spatial string tension o; started to decrease at approximately same value of j; and
went to zero at y; > 2000 MeV.

The gluon propagators are among important quantities, for example, they play crucial role in the
Dyson-Schwinger equations approach and other approaches [25-28].

In this paper we present results of our study of dependence of the gluon propagators and
respective screening masses on ji;, including large y; values range. We also look for signals of the
confinement-deconfinement transition in the propagator behavior.

Landau gauge gluon propagators were extensively studied in the infrared range of momenta by
various methods. We shall note lattice gauge theory, Dyson-Schwinger equations, Gribov-Zwanziger
approach. At the same time the studies in the particular case of nonzero quark chemical potential
are restricted to a few papers only. For the lattice QCD this is explained by the sign problem
mentioned above.
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The gluon propagators in lattice QC,D at zero and nonzero y; were studied for the first time
in [20]. This study was continued in [24,29,30].

The main conclusion of Reference [24] was that the gluon propagators practically do not change
for the range of p; values studied: p; < 1.1 GeV. The main conclusion of this paper is opposite:
we found substantial influence of the quark chemical potential on the gluon propagators starting
from rather low values (p; ~ 300 MeV) and increasing with increasing j;. Thus results presented in
Reference [24] differ from our results presented in this paper in many respects. The reason for these
rather drastic differences might be that the lattice action and lattice spacing differ from those used in
our study.

2. Lattice Setup

For numerical simulations we used the tree level improved Symanzik gauge action [31] and the
staggered fermion action of the form

_ A L
Sp= ZIIJXM(% m)x/yl/)y + E Z <¢Ilepx + lprZVJI) ’ 1)
X,y X
with .
1 _
M(p,m)ry = madyy + 5 Z (%) [ux,v(sawrhv,yfwus"’4 - u;7]1v’1/5x,hv/y€ W‘S‘”] , 2
v=1

where 1, 1 are staggered fermion fields, a is the lattice spacing, m is the bare quark mass, and 7, (x)
are the standard staggered phase factors. The quark chemical potential i is introduced into the Dirac
operator (2) through the multiplication of the lattice gauge field components U(x,4) and U (x,4) by
factors e*#, respectively.

We have to add to the standard staggered fermion action a diquark source term [11]. This term
explicitly violates Uy (1) symmetry and allows to observe diquark condensation on finite lattices,
because this term effectively chooses one vacuum from the family of Uy (1)-symmetric vacua. Typically
one carries out numerical simulations at a few nonzero values of the parameter A and then extrapolates
to A = 0. The lattice configurations we are using were generated at one small value A = 0.00075 which
is much smaller than the quark mass in lattice units.

Integrating out the fermion fields, the partition function for the theory with the action S = Si + Sr
can be written in the form

1
Z= /Duﬁc - Pf ( Aj\} ff) = /DUe’SG - (det(MTM +2%))?, ®)
. - 2 E

which corresponds to Ny = 4 dynamical fermions in the continuum limit. Note that the pfaffian Pf is
strictly positive, thus one can use Hybrid Monte-Carlo methods to compute the integral. First lattice
studies of the theory with partition function (3) have been carried out in References [12-14]. We study
a theory with the partition function

7= / DUe %6 - (det(M'M + A?)) }I, 4)

corresponding to Ny = 2 dynamical fermions in the continuum limit.

We carry out our study using 32* lattices for a set of the chemical potentials in the range
apg € (0,0.3). These are the same configurations as were used in Reference [16].

At zero density scale was set using the QCD Sommer scale value ryp = 0.468(4) fm [32]. We
found [16] ro/a = 10.6(2). Thus lattice spacing is a = 0.044(1) fm while the string tension at y; = 0 is
/0o = 476(5) MeV. The pion is rather heavy with its mass n, = 740(40) MeV. Similar values for
the pion mass were used in Reference [24] as well as in earlier studies. The dependence of the gluon
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propagators on the pion mass in QC,D was not investigated so far. This important issue will be a
subject of our future studies.
We employ the standard definition of the lattice gauge vector potential Ay, [33]:

_Z
" 2iag

(uw - UIV) = A;H%, ®)

X u

where Z is the renormalization factor. The lattice Landau gauge fixing condition is
B 1y
(V A)x = E Z (Ax,y - Ax—aﬁ,y) =0, (6)

which is equivalent to finding an extremum of the gauge functional

Fulw) = % 2 %Tr us,, %)
with respect to gauge transformations w, . To fix the Landau gauge we use the simulated annealing (SA)
algorithm with subsequent overrelaxation [34]. To estimate the Gribov copy effect, we employed five
gauge copies of each configuration; however, the difference between the "best-copy" and "worst-copy"
values of each quantity under consideration lies within statistical errors.

The gluon propagator D‘:,?/(p) is defined as follows:

1~ ~ ~ . fla
DD = @A), where  Ai(q) =at DAL exp (g + D). ®)
q; € (—Ns/2,N5/2], 94 € (—N;/2,N;/2] and the physical momenta p,, are defined by the relations
ap; = 2sin (71q;/ Ns), aps = 2sin (7144 / Ny).
At nonzero y,; the O(4) symmetry is broken and there are two tensor structures for the gluon
propagator [35] :
D3k (p) = 8 (PR (1) Dr(p) + Pl (P)DL(p)) - )

In what follows we consider the softest mode ps = 0 and use the notation p = |pf| and Dy, 7(p) =
Dy, 1(0,|7]). In this case, (symmetric) orthogonal projectors PMTJL( p) are defined as follows:

pipj
P) = (0 P8), Pl =0 Ph(r) =15 Phtp) =o0. (10)

Therefore, two scalar propagators - longitudinal Dy (p) and transverse Dy (p) - are given by

1y3 v3 D%(p) if p#0
D — 6Za7121_1 i \P ) p ,
r(p) {32;’:_12?1%“(?) if p=0

Dr(p) is associated with the magnetic sector, D, (p) — with the electric sector.

1 3
Di(p) =3 ;Dfifi(p),

3. Gluon Propagators and Screening Masses

We begin with the analysis of the propagators in the infrared domain where their behavior is
conventionally described in terms of the so called screening masses.

3.1. Definition of the Screening Mass

In the studies of the gluon propagators at finite temperatures/densities two definitions of the
gluon screening mass are widely used. The first definition is as follows: chromoelectric(magnetic)
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screening mass is the parameter 77 that appears in the Taylor expansion of the respective (longitudinal
or transverse) propagator at zero momentum (see References [36,37])

D 1(p) = L(} p + p* +0(p?)) - 1)

The second one was proposed by A.Linde [38] for high orders of finite-temperature perturbation
theory to make sense, it has the form

1
2
my = —————- . 12
T Drp=0) 0
Analogous quantity in the chromoelectric sector
1
2
me = 13
T D=0 o

is often referred to as the chromoelectric screening mass [39]. These masses can be related by the
factor ¢,

m%/M = gm%,M . (14)

If ¢ is independent of the thermodynamic parameters, two definitions can be considered as
equivalent (they differ by a constant factor and thermodynamic information is contained only in the
dependence on the parameters). However, this is not always the case. To discriminate between them,
we will label the former mass 7,y as the proper screening mass and the latter mp )s as the Linde
screening mass.

We consider both masses in our study. Similar approach was used in Reference [37].

3.2. Screening Masses in QCoD

We make fits over the extended range of momenta p < pcyt = 2.3 GeV, comparatively high
momenta are allowed for because our minimal momentum is as big as p,,;;, = 0.88 GeV.
We use the fit function
D' (p) = Ce (it + p* + e pY) (15)

for the chromoelectric sector and

D7 (p) = Cm(ityy + p* +rm p* +sm p°) (16)

for the chromomagnetic sector. These fit functions and the cutoff momentum p¢; = 2.3 GeV are
chosen for the following reasons: (i) fit function of the type (15) does not work for the transverse
propagator