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Preface to ”Advances in Lipidomics: Biomedicine,

Nutrients and Methodology”

Lipidomics, a primary branch of metabolomics, have rapidly developed into a novel research

discipline. This feature has arisen from robust evidence of lipid reprogramming in metabolic

disorders, cancer, or cardiovascular diseases. The importance of the lipid composition in a variety of

pathologies has been elucidated from alternative perspectives. This book contains studies regarding

lipidomics methodology, the involvement of lipids in metabolism and biomedicine, and advances

in nutrition.

Regarding advances in methodology, Panzenobeck et. al. automated the annotation of

glycosylinositolphosphoceramides in plants. Jenkins et al. presented a high-throughput method of

lipid extraction. Magny et al. combined the prediction of molecular behavior with mass spectrometric

data in order to annotate lipids. Regarding advances in lipid metabolism in biomedicine, Saito et al.

reported the lipid profile associated to liver injury induced by drugs. Franco et al. investigated

the sexual dimorphism in mouse epidermis of phospholipids, cholesteryl esters, acylcarnitines, and

sphingolipids. Azbukina et al. profiled oxylipins in plasma from patients with Wilson disease. Miehle

et al. studied the remodeling of lipids during adipogenesis. Korczyńska et al. profiled fatty acids in

serum from patients with chronic kidney disease. Balgoma et al. reviewed the involvement of lipids

in human positive ssRNA virus infection. Gil-de-Gómez et al. reviewed the potential of lipids to

modulate the immune response in cancer. Tomczyk et al. reviewed the lipidome profile in models

of cardiovascular disease. Finally, regarding nutrition and biomedicine, Ferreri et al. reviewed the

relationship between the lipidome, nutrition, and signaling metabolic pathways in cancer.

The reader interested in a broad perspective of lipidomics and the involvement of the lipidome

in different diseases will find this book interesting in order to obtain state-of-the-art applications

and discoveries.

Olimpio Montero, David Balgoma, Luis Gil-de-Gómez

Editors
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Abstract: Glycosyl inositol phospho ceramides (GIPCs) are the major sphingolipids on earth, as they
account for a considerable fraction of the total lipids in plants and fungi, which in turn represent
a large portion of the biomass on earth. Despite their obvious importance, GIPC analysis remains
challenging due to the lack of commercial standards and automated annotation software. In this
work, we introduce a novel GIPC glycolipidomics workflow based on reversed-phase ultra-high
pressure liquid chromatography coupled to high-resolution mass spectrometry. For the first time,
automated GIPC assignment was performed using the open-source software Lipid Data Analyzer
(LDA), based on platform-independent decision rules. Four different plant samples (salad, spinach,
raspberry, and strawberry) were analyzed and the results revealed 64 GIPCs based on accurate
mass, characteristic MS2 fragments and matching retention times. Relative quantification using
lactosyl ceramide for internal standardization revealed GIPC t18:1/h24:0 as the most abundant species
in all plants. Depending on the plant sample, GIPCs contained mainly amine, N-acetylamine or
hydroxyl residues. Most GIPCs revealed a Hex-HexA-IPC core and contained a ceramide part with a
trihydroxylated t18:0 or a t18:1 long chain base and hydroxylated fatty acid chains ranging from 16 to
26 carbon atoms in length (h16:0–h26:0). Interestingly, four GIPCs containing t18:2 were observed
in the raspberry sample, which was not reported so far. The presented workflow supports the
characterization of different plant samples by automatic GIPC assignment, potentially leading to the
identification of new GIPCs. For the first time, automated high-throughput profiling of these complex
glycolipids is possible by liquid chromatography-high-resolution tandem mass spectrometry and
subsequent automated glycolipid annotation based on decision rules.

Keywords: glycolipidomics; GIPC; glycosyl inositol phospho ceramides; Lipid Data Analyzer;
lipidomics; sphingolipids; ultra-high pressure liquid chromatography; high-resolution mass
spectrometry; LC-MS; automated annotation

1. Introduction

The sphingolipidome of plants contains glycosyl inositol phospho ceramides (GIPCs),
glycosylceramides and ceramides, whereas sphingomyelin, globosides, sulfatides or gangliosides are
absent. GIPCs were characterized as the major sphingolipid on earth due to their high abundance

Metabolites 2020, 10, 375; doi:10.3390/metabo10090375 www.mdpi.com/journal/metabolites1



Metabolites 2020, 10, 375

in plants and fungi, which comprise a large portion of the biomass of the biosphere [1]. GIPCs were
first described more than 60 years ago as “phytoglycolipids” [2]. The total plant lipid content can
consist of up to 40% GIPCs [3]. The structure of these plant sphingolipids has three major subunits: (1)
a polar inositol containing part, (2) the sphingoid backbone with a long-chain base (amino-alcohol)
linked by an amide bond to a (3) fatty acyl chain moiety [2,4]. The terms d, t and q refer to the
hydroxylation state of the whole ceramide or long-chain base (LCB) moiety, ranging from two (d) to
four (q) hydroxy groups. The term h denotes a hydroxylation of the fatty acyl group (i.e., the ceramide
moiety q40:1 can correspond to a t18:1 LCB connected to a h22:0 fatty acyl). Di- and trihydroxylation
of LCBs with t18:0, t18:1(8Z and 8E) (the main sphingoid base in some species), and d18:0, d18:1(8Z
and 8E), d18:2 (4E/8Z and 4E/8E) and fatty acid components varying in chain-length, saturation and
hydroxylation state (h16:0–h26:1, 20:0 to 28:0) have been reported in plant GIPCs [5,6]. Different GIPC
core structures were determined from higher plants ranging from simple high-abundant A-series
species with Hex-HexA-IPC and HexN(Ac)-HexA-IPC (Hex = hexose, HexA = hexuronic acid, IPC =
inositol phospho ceramide, HexN= hexosamine, and HexNAc=N-acetyl hexosamine) to low abundant
F-series species containing several arabinoses and hexoses [3,7]. Despite the fact that GIPCs are an
integral part of the plant plasma membrane, there is still little knowledge concerning its molecular
organization and the way this organization is involved in signaling processes necessary for cellular
adaptation [1]. To understand the interplay of GIPCs with different enzymes and their detailed function
in the plasma membrane in plants, comprehensive structural information provided by observation
tools such as NMR or MS are necessary.

Even though GIPCs were discovered 60 years ago, their analysis remains challenging due to the
lack of available standards, automated annotation software and reference databases. For example,
CHEBI [8] does not provide any GIPCs and the comprehensive LIPID MAPS Structure Database
(LMSD) contains only one GIPC (A-NH2-t18:1/h24:0) [9]. As GIPCs consist of a sugar head group
linked to a lipid subunit causing amphiphilic properties, they are neither well covered by common
glycomics nor lipidomics workflows. Consequently, specialized glycolipidomics analysis strategies
are required, e.g., applying a mixture of 2-propanol (IPA), hexane and water [10]. The combination
of liquid chromatography and mass spectrometry (LC-MS) has been used due to its unprecedented
potential to annotate GIPCs by m/z, retention time and fragmentation pattern [7,11]. Unambiguous
GIPC identification requires both retention time evaluation and detection of structural subunits
by tandem mass spectrometry (MS2), due to the absence of commercial standards. Most GIPC
LC-MS-based analysis workflows were performed almost a decade ago by electrospray ionization
followed by analysis with low resolution mass spectrometers (QQQ, QTRAP) [7,11]. Meanwhile,
high-resolution mass spectrometers (such as TOF, orbitrap, FTICR) have been established with up to
1,000,000 resolution enabling GIPC analysis by accurate mass [12]. Additionally, ultra-high pressure
liquid chromatography (up to 1500 bar) with sub 2-μm particles provides high chromatographic
resolution and excellent sensitivity. Up to now, GIPC analysis has been performed by tedious manual
annotation and curation [1,7,12,13] and expert knowledge was necessary to interpret glycosphingolipid
tandem mass spectrometry fragmentation patterns [14–16]. The instrumentation advancements of the
recent years paved the way for automated high-throughput GIPC analysis. In this work, a variety of
plants, i.e., iceberg lettuce (Lactuca sativa var. capitata nidus tenerimma), deep frozen spinach (Spinacia
oleracea), raspberries (Rubus idaeus), and strawberries (Fragaria) were analyzed by the combination of
reversed-phase (RP) ultra-high pressure liquid chromatography (UHPLC) and high-resolution mass
spectrometry (HRMS). For the first time, automated GIPC annotation will be performed using the
Lipid Data Analyzer (LDA) and platform-independent decision rules [17].

2. Results

Here we describe a novel workflow by RP-HRMS/MS using the open-source program LDA [17] for
automated GIPC assignment. Method development considerations and guidelines for the automated
structural analysis of GIPCs are provided. Finally, we test the developed glycolipidomics workflow
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for different plant samples, leading to a reference database of GIPCs, including fragmentation and
retention time information.

2.1. Method Development for Automated GIPC Assignment

GIPCs were extracted by a mixture of IPA, n-hexane and water [18]. So far, most LC-MS-based GIPC
chromatographic separations relied on the use of tetrahydrofuran (THF) containing solvents [7,11–13].
However, the usage of THF in the eluent system has some drawbacks: (1) it is aprotic and cannot
donate a proton; thus, for ionization, pairing with a protic solvent (usually water) is necessary; (2) it
can attack tubing (especially PEEK tubing); (3) it tends to polymerize (usually in APCI mode); and (4)
it is highly flammable. In order to avoid the use of THF, we developed a novel GIPC method based on
RP-HRMS/MS, facilitating a 30 min isopropanol gradient (detailed information can be found in the
Materials and Methods Section 4.3). GIPC detection was performed using both negative and positive
electrospray ionization and high-resolution Orbitrap MS (see Materials and Methods Section 4.4).
Importantly, GIPC analysis requires relatively high RF voltages (S-lens RF level of 45) to ensure
efficient transport of medium size glycolipids in the mass spectrometer. Figure 1 shows the extracted
ion chromatogram of GIPCs in salad samples analyzed by RP-HRMS, based on data-dependent
MS2 (ddMS2) in positive and negative ion modes. The GIPCs displayed in Figure 1 belong to the
A-series (Hex(R1)-HexA-IPC) with R1 being a hydroxyl group and the ceramide portion consisting of
a hydroxylated saturated fatty acyl chain attached to a t18:1 long chain base.

Figure 1. Extracted ion chromatogram of glycosyl inositol phospho ceramides (GIPCs) in salad samples
analyzed by RP-HRMS/MS analysis using ddMS2 in positive (red) and negative (blue) ion modes.
Assigned GIPCs belong to the Hex-HexA-IPC series with a t18:1 long-chain base (LCB) and varying
chain length of the hydroxylated saturated fatty acids. Retention times coincided in positive and
negative ion modes. Increasing carbon numbers result in belated elution.

3
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As no commercial standards are available, GIPC assignment has to be conducted with caution. In
such a situation, the use of the equivalent carbon number model (ECN) is required [19,20]. The ECN
model originates from state of the art lipidomics workflows and is based on elution orders observed in
RP columns: (1) longer fatty acid chains will increase the retention time (see Figure 1) and (2) more
double bonds will decrease the retention time [21] (see Table S1). To increase the level of confidence in
GIPC annotation, we accepted only GIPCs that: (1) were detectable by accurate mass (±5 ppm) in MS1
at the same retention time in both positive and negative ion modes (Figure 1); (2) showed MS2 spectra
with characteristic fragments for the ceramide and sugar part in at least one ion mode and; (3) fulfilled
the ECN model.

2.2. Structural Elucidation and GIPC Annotation Based on MS2 Information

In this work, we introduce the first automated GIPC annotation workflow based on structural
information provided by acquired MS2 spectra. Structural analysis and automated GIPC annotation
was performed based on a set of in-house developed decision rules for the freely available software
LDA [17,22]. As no standards were available, blank extractions (no GIPC annotations found) and
GIPC annotations in salad [13] and spinach [12] reported in the literature were used to validate GIPC
assignments (Figure 1, Table A1 and Table S2). Various LCBs (d18:0, d18:1, d18:2, t18:0, and t18:1) and
fatty acids (FAs) (16–26) with or without hydroxylation have been reported [5,13]. Moreover, R1 in
Figure 2A can either be a hydroxyl (OH), an amine (NH2) or an N-acetylamine (NAc) group, increasing
the number of putative GIPCs even within a single series.

 

 
Figure 2. Cont.
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Figure 2. Overview of the GIPC fragmentation for the example of GIPC A-OH-t18:1/h24:0 in salad: (A)
The fragment assignment of GIPC A-OH-t18:1/h24:0 (adapted from [23]). The W fragment is shown in
a light blue color. Please note that a full structural characterization is not possible by RP-HRMS/MS, (B)
The product ion spectrum in negative ion mode at m/z 1260.7237, showing characteristic fragments m/z
241 and 259, 355, 373 and 417. The sugar head group was confirmed by the [C3PO3]− fragment (m/z
597, R1 = OH). [Z0PO3]− and [Y1-H]− fragments prove the ceramide moiety. (C) The positive ion mode
ddMS2 spectrum of the [M + H]+ precursor, exhibiting the [W]+, [W-H2O]+ and [W-2H2O]+ fragments
at m/z 298, 280 and 262, which are characteristic for the t18:1 LCB.

The final decision rule set was based on well-defined fragments (fragment rules) and their intensity
relationships (intensity rules) (Folder S1). The characteristic fragments [IP]− (m/z 259) and [IP-H2O]−
(m/z 241) are mandatory in negative ion mode (e.g.: Figure 2B). However, these fragments are not
specific, since they are produced by other phosphoinositol-containing lipids too. Thus, for a confident
identification, negative or positive ion mode fragments indicating the sugar or ceramide part have to
be detected.

In the majority of cases (see level 2 annotations, Table A1 and Table S2), MS2 spectra with
GIPC fragmentation patterns were detected in both negative and positive mode. Depending on the
fragmentation pattern and the level of confidence [24] of the structural elucidation, GIPCs are assigned
as either: (1) series-R1-hydroxylation stage-carbon number (LCB + FA)-number of double bonds (LCB
+ FA) if the exact ceramide composition is not known or (2) series-R1-LCB/FA. Figure 2B displays an
exemplary ddMS2 spectrum of A-OH-q42:1 with m/z 1260.7237, in salad recorded in negative ion mode.
The positive ion mode fragmentation pattern of the [M + H]+ precursor (m/z 1262.7389, Figure 2C)
revealed further structural details, based on the identification of [W]+, [W-H2O]+ and [W-2H2O]+

fragments, indicating an A-OH-t18:1/h24:0 GIPC. Additional GIPC confirmation is possible by Z0

fragments ([Z0]+, [Z0-H2O]+) of the [M+H]+ precursor and by the sodium adduct [M+Na]+ (Figure A1),
where sugar fragments are readily observable. GIPCs were annotated based on single ionization
information only if (1) in negative ion mode in addition to the apparent [IP]−/[IP-H2O]−/[H2PO4]−
fragments at m/z 259, 241 and 97, other characteristic fragments were detectable e.g., [C3PO3]−
(m/z 596 − R1 = NH2, m/z 597 − R1 = OH, m/z 638 − R1 = NAc), [C3PO3-C1-CO2]− (m/z 373) or
[C3PO3-C1-CO2-H2O]− (m/z 355) or (2) in positive ion mode the [IP]+ (m/z 261)/[IP +Na]+ (m/z 283) and
fragments indicating the ceramide moiety (e.g., Z0) were identified by LDA. The detailed fragment
information used for GIPC annotation can be found in Table S2.

GIPC annotation can be hampered by the presence of isobaric masses for qX:Y NH2 and t(X −
2):(Y − 1) NAc (where X refers to the carbon number (LCB + FA) and Y refers to the number of double
bonds (LCB + FA), respectively). This may result in false positive GIPC identifications, because these

5
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classes share the same characteristic fragments m/z 241, 259, 355, 373 and 417. The correct structural
elucidation is possible if additional fragments such as [C3PO3]− (R1 = OH − m/z 597, R1 = NH2 −
m/z 596, R1 =NAc − m/z 638) in negative ion mode or if LCBs in positive ion mode can be identified
based on [W]+, [W-H2O]+ and [W-2H2O]+ fragments. In the ddMS2 spectra of the [M +H]+-precursor,
trihydroxylated LCBs are characterized by the presence of three W fragments ([W]+, [W-H2O]+ and
[W-2H2O]+), such as t18:0 (m/z 300, 282 and 264) and t18:1 (m/z 298, 280, 262), while dihydroxylated
species miss the [W-2H2O]+ fragment, e.g., d18:0 (m/z 284, 266), d18:1 (m/z 282, 264) and d18:2 (m/z 280,
262). As such, both LCB hydroxylation levels can be clearly distinguished.

2.3. Analysis of Different Plant GIPCs by UHPLC-HRMS Suggesting t18:2 LCB

The novel RP-HRMS/MS and GIPC annotation workflow was used to analyze different plant
samples, namely salad (Lactuca sativa var. capitata nidus tenerimma), deep frozen spinach (Spinacia
oleracea), raspberries (Rubus idaeus) and strawberries (Fragaria). As glycosphingolipid analysis is
not negatively impacted by alkaline hydrolysis [10], alkaline hydrolysis was performed to simplify
lipid profiles by removing the phospholipid background in the unknown plant samples (strawberry
and raspberry, detailed information can be found in the Materials and Methods Section 4.2.2).
Figure A2 shows the RP-HRMS/MS GIPC profile for the five most abundant GIPCs determined in
spinach, strawberry and raspberry samples. For the sake of clarity, the five most abundant GIPCs
in salad (A-NAc-t18:1/h24:0, A-NH2-t18:1/h24:0, A-OH-t18:1 h22:0 and h24:0, A-OH-t18:0/h24:0) are
not displayed in Figure A2. Irrespective of the plant sample, the species group A-R1-t18:1/h24:0
was always the most abundant one. While in spinach R1 was always N-acetylamine (A-NAc-t18:1
h22:0 to h26:0) for the five dominating GIPCs, in strawberries the major GIPCs contained a hydroxyl
group as R1 (A-OH-t18:1 h23:0 to h26:0 and A-OH-t18:0/h24:0). In contrast to that, raspberries had
an amine group as R1 for four out of five shown GIPCs (A-NH2-t18:0/h24:0, A-NH2-t18:1 h22:0 and
h24:0, A-NH2-t18:2/h24:0 and A-OH-t18:1/h24:0), emphasizing the structural diversity of GIPCs in
different plants.

By analyzing different GIPCs, the NAc, NH2 and OH-species from the A series could be detected
(Figure 3A–C) with high confidence by (1) accurate determination of mass, (2) matching retention
times of ion modes, (3) characteristic fragments and (4) the ECN model. We recommend checking
isotopic patterns to avoid false positive hits. For a comprehensive overview of the annotated GIPCs
see Table A1.

Due to the absence of commercially available GIPC standards, relative quantification of the
individual species was performed using C16 lactosyl(ß) ceramide (d18:1/16:0) as the internal standard.
This compound is similar in structure (sugar and ceramide moiety) and retention time (14 min).
Even though lactosyl ceramide (d18:1/16:0) may be present in plants, we could not detect it in our
samples, thus, making it suitable as the internal standard in our workflow. Normalization by the
internal standard (area ratio) and dry weight was performed for MS1-based relative quantification by
Skyline [25] (Figure 3A–C). Estimated concentrations in the nmol to μmol range per gram dry weight
were observed, which is consistent with the literature [12,18].

In summary, 64 GIPCs in salad (19), spinach (8), strawberry (10) and raspberry (27) were annotated
(Table A1). Ranking of the GIPC annotations was performed according to the guidelines of the
metabolomics society [24,26], leading to 48 level 2 (matching accurate masses and MS2 in negative and
positive mode) GIPCs, 13 level 3 (MS2 in one ion mode with matching accurate masses in both ion
modes) GIPCs and 3 level 3** (matching accurate masses in both ion modes, MS2 in one ion mode but
lacking information on IP fragments in positive ion mode or lacking sugar information in negative ion
mode) GIPCs. The annotations found in spinach and salad are in accordance with literature [12,13]. To
the best of our knowledge, this is the first report on GIPCs in strawberries and raspberries.

6



Metabolites 2020, 10, 375

 

 

 

Figure 3. The normalized ratio per gram dry weight for annotated GIPCs in salad (light-green), spinach
(green), strawberries (rose) and raspberries (dark-red), by using different substituents for the functional
group R1: (A) NAc, (B) NH2, and (C) OH (more detailed information can be found in Table A1).
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Within the annotated GIPCs with structural information on LCB and fatty acyl composition, t18:1
followed by t18:0 and t18:2 were the most prominent LCBs in the analyzed plants (Table A1). For GIPCs
containing N-acetylamine residues t18:1 was the most abundant LCB with regard to normalized ratios
per gram dry weight (Figure 3A). The same holds true for the amine or hydroxyl group containing
GIPCs, with additional high abundance of t18:0 LCBs (Figure 3B,C). While in spinach solely t18:1 LCBs
were detected, salad, strawberries and raspberries show more variation in terms of LCB composition
with presence of both t18:1 and t18:0 (Table A1).

Interestingly, besides the expected t18:0 and t18:1 LCBs (R1 =NAc, NH2, OH), we additionally
annotated four t18:2 (R1 = NAc, NH2, OH) species in raspberries (Figure 3A–C). These annotations are
verified by coinciding retention times in positive ion mode (Figure A3A), detection of characteristic
fragments in MS2 spectra (Figure A3B,C) and conformity with the ECN model (Table S1). However,
we could not find any report in the literature of t18:2 species, which can be explained as up to now no
automated GIPC annotation was possible and t18:2 GIPC species were only detected in raspberries. As
no standards are available, it is difficult to prove the presence of this species and further investigation
is needed. A confirmed t18:2 LCB would indicate a much higher diversity in sphingolipids than
anticipated in the past. Another hint for the complex nature of GIPCs in raspberries is the additional
annotation of GIPCs with di- and trihydroxylated variants compared to all other analyzed plants.

Concerning LCB and fatty acyl combinations, t18:1/h22:0 and t18:1/h24:0 showed equal annotation
numbers for N-acetylamine or amine containing GIPCs (Figure 3A,B). Independent of the NH2, OH
or NAc functional group, only two odd chain fatty acids (h23:0, h25:0) were detected and no fatty
acids with a length from 17 to 21 carbon atoms were found. For the hydroxyl group containing GIPC
variants, the combinations t18:1/h22:0, t18:1/h23:0, t18:0/h24:0, t18:1/h24:0 and t18:1/h25:0 were found in
equal annotation numbers. Overall, plant GIPCs with a combination of t18:1 LCB and a h24:0 fatty acyl
moiety were the most abundant ones in terms of normalized ratios per gram dry weight (Figure 3A–C,
Table A1).

3. Discussion

GIPCs are the major sphingolipids on earth [1]. Hence, it is important to understand their function
and distribution in plants and fungi. However, GIPC analysis remains extremely challenging, as
tailored extraction strategies for this glycolipid class are necessary. GIPC analysis is in its infancy due
to the lack of standards and databases. In this work, we present the first automated high-throughput
GIPC annotation workflow which is based on RP-HRMS/MS. By using a novel 30 min gradient based
on isopropanol with a reversed-phase column, packed with sub 2-μm particles, fast GIPC analysis
was possible at the same time avoiding standard eluent use of tetrahydrofuran. Four different plant
samples were analyzed. For salad and spinach, literature information has been available [12,13], while
for raspberry and strawberry, GIPC profiles were completely uncharacterized. Using strict filtering by
(1) accurate mass determination (±5 ppm) with matching retention times for both ion modes in MS1,
(2) MS2 spectra with characteristic fragments and (3) expected retention time series, we produced
a database of 64 GIPCs (Table A1). As no GIPC standards are available, only GIPC annotation hits
with level 2 and 3 confidence [24] were possible. The most prominent MS2 fragments for GIPCs
are [IP] fragments in both ion modes ([H]−: m/z 241, 259; [H]+: m/z 261; [Na]+: m/z 283). However,
additional sugar or ceramide fragments are essential for correct GIPC annotation. The high MS2 mass
range coverage (m/z 65 to 2500) provided by the Orbitrap was beneficial to determine GIPC low mass
fragments such as m/z 79 [PO3]− or 97 [H2PO4]−, besides high mass precursors such as 1261 [M − H]−
(Figure 2).

Relative quantification with the internal standard lactosyl ceramide revealed GIPC t18:1/h24:0 as
the most abundant species, independent of the plant sample. Depending on the plant sample, GIPCs
contained mainly amine, N-acetyl or hydroxyl residues. Most GIPCs showed a Hex-HexA-IPC core
with a trihydroxylated t18:0 or t18:1 long-chain base ceramide part a and hydroxylated fatty acid chains
ranging from h16:0 to h26:0. Interestingly, in raspberry, four GIPCs contained t18:2, which was not
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reported so far. This finding would suggest the existence of more complex sphingolipid species in
nature than previously anticipated. Further analysis by orthogonal methods such as NMR, GC-MS or
IMS and available GIPC standards would be necessary to confirm the presence of the t18:2 GIPC group.
Different analytical strategies could also resolve potential isomeric species and provide comprehensive
details on the sugar moiety present in GIPCs. Nevertheless, this example shows the power of this
workflow to detect promising novel GIPC candidates in an automated fashion. In order to support
LC-MS-based GIPC analysis in general, we provide the mass lists for GIPCs in positive and negative ion
modes (Tables S3 and S4), as well as the fragmentation rules (Folder S1) for setting up the automated
GIPC analysis by Lipid Data Analyzer. Even though we confirmed the GIPCs exclusively from the
A-series, the presented strategy is also suitable to determine less or more complex GIPC series, such as
0, B, C, D, E and F. However, extended analytical workflows (e.g., multi-stage fragmentation/MSn) and
additional software method development might be necessary. Precursor mass lists for positive ([M +
H]+) and negative ([M − H]−) ion modes comprising series 0–F, LCBs d18:0, d18:1, d18:2, t18:0 and
t18:1 and fatty acyls h15:0–h26:0, h15:1–h26:1 and n20:0–n28:0 (n = non-hydroxylated), as reported
in the literature [5,13], can be found in Tables S5 and S6. In general, we believe that LC-HRMS/MSn
combined with automated annotation based on decision rules will pave the way for more complex
glycolipidomics profiling.

4. Materials and Methods

4.1. Material

The plant material used was derived from salad (Lactuca sativa var. capitata nidus tenerimma),
deep frozen spinach (Spinacia oleracea), raspberries (Rubus idaeus) and strawberries (Fragaria). (A more
detailed description of plant samples can be found in Table A2.)

All chemicals were of LC-MS grade. Acetonitrile (ACN), methanol (MeOH), IPA and water were
bought from Honeywell (Offenbach, Germany) and n-hexane was bought from VWR (Vienna, Austria).
Butylated hydroxytoluene (BHT) was purchased from Sigma-Aldrich (Vienna, Austria), ammonium
formate (AF) from Sigma-Aldrich (Vienna, Austria) and formic acid from VWR (Vienna, Austria).
C16 Lactosyl(ß) Ceramide (d18:1/16:0) (D-lactosyl-ß-1,1’ N-palmitoyl-D-erythro-sphingosine) was
purchased from Avanti Polar Lipids, Inc. (Alabaster, Albama, USA), was used as internal standard (IS)
and dissolved in an appropriate amount of IPA to achieve a concentration of 100 μM.

4.2. Sample Preparation

Salad was manually cut into small pieces before being weighed into falcon tubes (50 mL, VWR,
Vienna, Austria) using a CPA225D balance (Sartorius, Vienna, Austria). Raspberries and strawberries
(whole fruits) were homogenized with a hand blender (Tefal/SEB, Ecully, France). Raspberries,
strawberries and deep-frozen homogenized spinach were directly weighed into 10 mL glass vials
(more details can be found in Table A2). In order to prevent potential oxidation of lipids, 3 mL of
an approximately 0.01% BHT solution in IPA were added and samples were mixed. Subsequently
30 μL IS were spiked into all samples except for one replicate (to test for potential IS presence in
plants). Salad samples were homogenized using an ultra-turax (miccra d-1, Heitersheim, Germany)
which was cleaned with 70% IPA and dried between the samples. In order to inhibit lipase activity, all
samples were incubated at 75 ◦C for 30 min under constant shaking [27]. The warm salad samples
were subsequently transferred into glass vials. The following sections provide a detailed overview of
the extraction strategies that were applied.

4.2.1. One-Phase Extraction

The extraction of GIPCs from salad and spinach was performed as previously reported [18] using
a mixture of IPA, n-hexane and water. Amounts of 3.47 mL IPA, 0.6 mL n-hexane and 1.93 mL water
were added to the salad and spinach samples. In order to ensure sufficient accessibility of the plant
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material, samples were vortexed and manually shaken prior to incubation at 60 ◦C for 15 min under
constant shaking.

4.2.2. One-Phase Extraction Combined with Alkaline Hydrolysis

To avoid the occurrence of glycerophospholipids, which might reduce GIPC ionization efficiency
and lead to potential false identifications, alkaline hydrolysis was applied for the raspberry and
strawberry samples, using an adapted workflow [28]. After incubating the plant material with the
BHT solution for 30 min at 75 ◦C under constant shaking, 3.47 mL IPA and 0.6 mL n-hexane were
added. Samples were vortexed and put on a shaker for 15 min at 60 ◦C. As soon as the samples had
reached room temperature 707 μL 1 M KOH in MeOH was added and the solution was vortexed. After
shaking the samples for 2 h at 37 ◦C, they were left at room temperature. Subsequently 100% formic
acid was added until a pH of ~6–7 was reached and 1.93 mL water was added before repeating the
incubation step.

4.2.3. Centrifugation, Drying and Reconstitution

Irrespective of the extraction strategy, the warm samples were centrifuged at 1000 rpm for 10 min
at 4 ◦C and the supernatant was transferred into a separate glass vial. The solvent was evaporated to
dryness overnight in a Genevac EZ-2 Series Personal Evaporator (SP Scientific, Ipswich, UK) and the
dried residue was reconstituted in 2 mL IPA:H2O (65:35) [13]. Samples were vortexed prior and after
ultrasonication at 30 ◦C for 15 min. Subsequently, 500 μL of this solution was filtered directly into
HPLC vials through a ClariStep filter (Sartorius, Vienna, Austria). Pools were prepared separately for
each plant by pipetting 50 μL of each biological replicate into a separate HPLC vial. A quality control
pool was prepared by combining 30 μL of the pooled samples.

4.3. Reversed-Phase Chromatography

Liquid chromatography was performed using a C18 Acquity UHPLC HSS T3 reversed phase
column (2.1 × 150 mm, 100 Å, 1.8 μm, Waters, Vienna, Austria) equipped with a VanGuard Pre-column
(2.1 × 5 mm, 100 Å, 1.8 μm, Waters, Vienna, Austria) at a column temperature of 40 ◦C. The flow rate
was 0.25 mL/min and the backpressure was 460 bar at the starting conditions. Gradient elution with
a total runtime of 30 min was performed using the solvent A: ACN:H2O (3:2, v/v) and the solvent B:
IPA:ACN (9:1, v/v), both of which contained 0.1% formic acid and 10 mM ammonium formate.

The gradient can be described as follows: 0–2 min 30% B, 2–3 min ramp to 55% B, 3–17 min ramp
to 67% B, 17–22 min ramp to 100% B, 22–26 min 100% B, followed by an equilibration step from 26 to
30 min using 30% B. A Vanquish Duo UHPLC system (Thermo Fisher Scientific, Germering, Germany)
was used and injections were performed with an autosampler. An injection volume of 10 μL was
chosen and the injector needle was flushed with 75% IPA and 1% formic acid in between the injections.

4.4. High-Resolution Mass Spectrometry

The LC system was coupled to a Q Exactive HF (Thermo Fisher Scientific, Bremen, Germany) high
resolution mass spectrometer, applying a HESI ion source with an S-lens RF level of 45. Measurements
were carried out in positive and negative modes using different parameters. The following settings
were applied in positive mode: spray voltage: 3.5 kV, capillary temperature 220 ◦C, sheath gas flow
rate: 30, and auxiliary flow rate: 5. In negative mode parameters were adapted as follows: spray
voltage: 2.8 kV, capillary temperature 250 ◦C, sheath gas flow rate: 35 (a.u.), and auxiliary flow rate:
10 (a.u.). The top 10 data-dependent MS2 spectra were obtained at a scan range of 500 to 3000 m/z
with HCD using normalized collision energies of 35 (+35 in positive ion mode, −35 in negative mode),
an MS1 resolution of 15,000 or 30,000 with an AGC target of 1e6 and MS2 resolution of 15,000 with
an AGC target of 1e5. MS2 spectra were acquired based on an inclusion list (“do not pick others”
option) containing the GIPC series 0–F (m/z values were calculated using enviPat Web 2.4 [29]). A more
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comprehensive picture of the GIPC composition of the analyzed plant material was obtained using
several rounds of automatically generated exclusions lists for the sample pools [30].

4.5. Data Analysis

The GIPC assignment was performed using LDA (version 2.8.0) [17]; corresponding settings
(Table A3), mass lists (Tables S3 and S4) and decision rule sets for series A (Folder S1) can be found in
the Appendix A and Supplementary Materials. The correct GIPC annotation was ensured by a manual
inspection of the results. MS1-based relative quantification of annotated GIPCs was performed with
Skyline [25]. Total areas were divided by the corresponding calculated dry weights and areas of the IS,
resulting in normalized ratios per g dry weight, of which the average was taken based on the number
of replicates (3 for salad and spinach, 4 for strawberries and raspberries). More information can be
found in Appendix B.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/9/375/s1,
Table S1. Application of the ECN model to ensure correct GIPC annotation, Table S2. List of annotated GIPCs
including all detected MS2 fragments, Table S3. LDA mass list used for automated annotation of the series A
GIPCs in positive mode, Table S4. LDA mass list used for automated annotation of the series A GIPCs in negative
mode, Table S5. List of [M +H]+ precursors comprising the GIPC series 0–F, Table S6. List of [M −H]− precursors
comprising the GIPC series 0–F, Folder S1. Fragmentation rules for GIPC analysis by LDA.
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Figure A1. The ddMS2 spectrum of the [M + Na]+ of GIPC A-OH-t18:1/h24:0 (m/z 1284.7193, Rt
17.30 min), measured in positive ion mode, showing the characteristic [IP + Na]+ and additional
sugar fragments.

Figure A2. Comparison of the RP-HRMS/MS GIPC profiles in spinach (green), strawberry (rose) and
raspberry (dark-red), showing the five most abundant GIPCs found in each plant sample measured in
positive ion mode (detailed information can be found in Table A1).
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Figure A3. Cont.

15



Metabolites 2020, 10, 375

Figure A3. (A) Extracted ion chromatograms of GIPCs in positive ion mode, having a t18:2 LCB
annotation on levels 2 and 3 in raspberries (A-NAc-t18:2/h24:0, A-NH2-t18:2 h22:0 and h24:0, as well as
A-OH-t18:2/h24:0). The ddMS2 spectra of GIPCs A-NH2-t18:2/h24:0 at the retenion time of 16.1 min
(B) A-OH-t18:2/h24:0 at the retention time of 15.2 min and (C) in negative and positive mode, showing
characteristic fragments.

Table A2. The description of the plant samples, including plant species, origin, number of biological
replicates, and the average fresh- and dry weights [g]. The extraction of GIPCs from strawberries and
raspberries was performed one day after the collection was performed (28 June 2020).

Plant Species Origin Replicates Fresh Weight [g] Dry Weight [g]

Salad Local supermarket 4 ~1 ~0.04
Spinach Local supermarket 4 ~1.2 ~0.08

Strawberries 47◦58′ N, 16◦6′ O 5 ~1.1 ~0.10
Raspberries 47◦58′ N, 16◦6′ O 5 ~1.1 ~0.16

16
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Table A3. The exemplary LDA parameters and settings used for automated GIPC annotation in
negative ion mode.

Parameter Setting

Time before tol. 1 min
Time after tol. 1 min

Rel. Base-peak cutoff 0.1‰
Rt-shift 0.0 min

Isotopic quantitation of _ isotopes where _ isotopic peak(s)
have to match 2, 1

Find molecules where retention time is unknown yes
LDA-version 2.8.0

machineName OrbiTrap_exactive
neutronMass 1.005

coarseChromMzTolerance 0.015
MS2 true

basePeakCutoff 0.1
massShift 0.0

threeDViewerDefaultTimeResolution 2
threeDViewerDefaultMZResolution 0.005

ms2PrecursorTolerance 0.013
ms2MzTolerance 0.02

ms2MinIntsForNoiseRemoval 100
ms2IsobarSCExclusionRatio 0.01

ms2IsobarSCFarExclusionRatio 0.1
ms2IsobaricOtherRtDifference 2.0

chainCutoffValue 0.01
ms2ChromMultiplicationFactorForInt 10

threeDViewerMs2DefaultTimeResolution 1
threeDViewerMs2DefaultMZResolution 1

maxFileSizeForChromTranslationAtOnce 500
chromMultiplicationFactorForInt 1000

chromLowestResolution 1
chromSmoothRange 8.0

chromSmoothRepeats 4
use3D true

isotopeCorrection false
removeFromOtherIsotopes true
respectIsotopicDistribution true

checkChainLabelCombinationFromSpeciesName false
useNoiseCutoff true

noiseCutoffDeviationValue 2.0
scanStep 2

profileMzRangeExtraction 0.05
profileTimeTolerance 5.0
profileIntThreshold 5.0

broaderProfileTimeTolerance 3.0
profileSmoothRange 0.0025

profileSmoothRepeats 1
profileMeanSmoothRepeats 2

profileMzMinRange 0.002
profileSteepnessChange1 1.5
profileSteepnessChange2 1.8

profileIntensityCutoff1 0.15
profileIntensityCutoff2 0.2
profileGeneralIntCutoff 0.03

profilePeakAcceptanceRange 0.012
profileSmoothingCorrection 0.0

profileMaxRange 0.03
smallChromMzRange 0.004

17
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Table A3. Cont.

Parameter Setting

smallChromSmoothRepeats 3
smallChromMeanSmoothRepeats 0

smallChromSmoothRange 2.0
smallChromIntensityCutoff 0.03
broadChromSmoothRepeats 5

broadChromMeanSmoothRepeats 0
broadChromSmoothRange 2

broadChromIntensityCutoff 0.0
broadChromSteepnessChangeNoSmall 1.33

broadChromIntensityCutoffNoSmall 0.05
finalProbeTimeCompTolerance 0.1
finalProbeMzCompTolerance 5.0E-4

overlapDistanceDeviationFactor 1.5
overlapPossibleIntensityThreshold 0.15

overlapSureIntensityThreshold 0.7
overlapPeakDistanceDivisor 3.0
overlapFullDistanceDivisor 6.0
peakDiscardingAreaFactor 1000

isotopeInBetweenTime 30
isoInBetweenAreaFactor 3.0

isoNearNormalProbeTime 30
relativeAreaCutoff 0.05

relativeFarAreaCutoff 0.05
relativeFarAreaTimeSpace 30
relativeIsoInBetweenCutoff 0.5

isoInBetweenMaxTimeDistance 300
twinPeakMzTolerance 0.01

closePeakTimeTolerance 10
twinInBetweenCutoff 0.95

unionInBetweenCutoff 0.8
sparseData false

Appendix B

Automated GIPC annotation was performed using LDA (version 2.8.0) [17] with the settings
provided in Table A3. The mass-to-charge ratios included in the mass lists (see Tables S3 and S4) were
calculated separately for negative and positive ion modes, with enviPat Web 2.4 [29] and decision rules
(see Folder S1) were created based on fragments reported in the literature [12,13]. Please note that
the raw data acquired in negative ion mode has to be analyzed using the mass list of Table S4 and
the fragmentation rules ending with ‘-H.frag’, while for positive mode the mass list of Table S3 and
corresponding fragmentation rules (‘H.frag’ and ‘Na.frag’) should be used. Further information on
working with the LDA can be found in [31].
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Abstract: Drug-induced liver injury (DILI) is a major adverse event caused by drug treatment,
which can be categorized into three types: hepatocellular, mixed, and cholestatic. Although nearly
every class of drugs can cause DILI, an overall understanding of lipid profiles in DILI patients is
lacking. We used lipidomics to analyze the plasma lipid profiles of patients to understand their hepatic
pathophysiology and identify DILI biomarkers. We identified 463 lipids and compared their levels
between the acute and recovery phases of the three types of DILI patients. Mixed and cholestatic types
demonstrated specific plasma lipid alterations between the phases, but the hepatocellular type did
not. Moreover, as specific indicators of mixed-type DILI, levels of several ceramides increased in the
acute phase, while those of arachidonic acid-containing ether-linked phosphoglycerolipids decreased.
In contrast, as specific indicators of cholestatic-type DILI, levels of palmitic acid-containing saturated or
monounsaturated phosphatidylcholines increased in the acute phase, while those of arachidonic acid-
or docosahexaenoic acid-containing ether-linked phosphoglycerolipids and phosphatidylinositols
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decreased. We also identified lipids with a relatively high capacity to discriminate the acute phase
from the recovery phase and healthy subjects. These findings may help with understanding the
pathophysiology of different DILI types and identify candidate biomarkers.

Keywords: lipidomics; drug-induced liver injury; biomarker; plasma lipid profiles

1. Introduction

Drug-induced liver injury (DILI) is a major adverse event caused by drug treatment and is the
most frequent cause of acute liver failure in the U.S. [1,2]. Depending on the histological location of
the tissue damage, DILI is categorized as hepatocellular, cholestatic, or mixed type, which is usually
based on changes in blood levels of alanine transaminase (ALT) and alkaline phosphatase (ALP).
The causal relationship between DILI and suspected drugs has been digitized by the CIOMS/RUCAM
and DDW-J2004 scoring scales (in Japan), which are used in clinical practice [3–5]. The mechanisms of
DILI are diverse and include direct toxicity by the administered drug or its metabolites and immune
reactions against the drug or its metabolites [6,7]. The most studied drug causing DILI is acetaminophen,
which is metabolized to a toxic and electrophilic intermediate by cytochrome P450 isoenzymes (such as
CYP2E1 and CYP3A4); this intermediate interacts with intracellular proteins resulting in hepatocyte
damage [8]. Although specific mechanisms of drugs with relatively high incidence of DILI have also
been studied [6,7], nearly every class of drug can cause DILI. However, biomarkers and characteristics
of DILI that are important to understand its pathophysiology are limited.

Lipids, such as phosphoglycerolipids, sphingolipids, and neutral lipids, are components of
cellular membranes that also play important roles in multiple biological processes, including apoptosis,
inflammation, proliferation, and differentiation [9–12]. The liver is a central organ in regulating lipid
levels, and therefore, aberrations in lipid homeostasis are associated with hepatic injury and disease.
In addition, a recent study demonstrated that the composition of plasma lipids correlates well with
that of hepatic lipids [13]. Thus, plasma lipid profiles could be useful tools to understand the biological
processes in the liver. To analyze plasma lipid profiles, lipidomics based on mass spectrometry has been
established [14–17]. Plasma lipidomics has already been used to study hepatocellular carcinoma [18,19],
liver phospholipidosis [20], nonalcoholic fatty liver disease [21], and other hepatic diseases and
toxicities. For example, plasma lipidomics of hepatocellular carcinoma demonstrated decreased levels
of lysophosphatidylcholine (LPC) in plasma, suggesting the hepatic activation of autotoxin and its
involvement in hepatocarcinogenesis [22]. Moreover, plasma lipidomics of liver phospholipidosis
demonstrated increased levels of d18:1/24:0 glucosylceramide (GluCer), which was proposed as a
biomarker for the disease [20]. Therefore, the characterization of overall plasma lipid profiles could
lead to a better understanding of hepatic pathophysiology and identify new DILI biomarkers.

In this study, we aimed to analyze the differences in lipid profiles among three DILI types
(hepatocellular, mixed, and cholestatic) during acute and recovery phases in human patients. We present
novel lipidomic data for the three injury types, which could be used to screen for DILI biomarkers
and/or develop future novel therapies by understanding lipid homeostasis in DILI.

2. Results

2.1. DILI Patients Recruited in the Present Study

We recruited 54 DILI patients, comprising 33 hepatocellular, 13 mixed, and 8 cholestatic types
(Table 1). Of these patients, 11 males and 22 females were diagnosed with hepatocellular type, 9 males
and 4 females were diagnosed with mixed type, and 4 males and 4 females were diagnosed with
cholestatic type. Their median ages were 56, 60, and 69 for the hepatocellular, mixed, and cholestatic
types, respectively. The median CIOMS/RUCAM scores were eight, nine, and eight for the hepatocellular,
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mixed, and cholestatic types, respectively. In addition, the median DDW-J2004 scores were eight for
each of the respective DILI patient types. The causal relationship between suspected drug and liver
damage was definite in all patients using the CIOMS/RUCAM scale and all patients using the DDW-J
2004 score, except for one case.

Table 1. Clinical information of patients in this study.

DILI Type Hepatocellular Mixed Cholestatic

no. of subjects 33 13 8
CIOMS/RUCAM scale; median (quartile) 8 (7–9) 9 (7–9) 8 (7.5–9)
DDW-J 2004 score; median (quartile) 8 (7–9) 8 (7–8) 8 (7–8.5)
Sex; male/female 11/22 9/4 4/4
Age; median (quartile) 56 (46–68) 60 (57–76) 69 (64.5–72.5)
BMI; median (quartile) 22.7 (19.8–24.1) 22.1 (21.3–23.3) 25.3 (22.8–26.1)
acute phase AST(U/L); median (quartile) 239 (102–526) 130 (96–191) 81 (55.75–200.5)
acute phase ALT(U/L); median (quartile) 336 (204–963) 196 (161–423) 97 (84.75–131)
acute phase ALP(U/L); median (quartile) 360 (277–410) 555 (448–914) 1465 (1129.5–1721.5)
acute phase T. Bil(mg/dl); median (quartile) 1 (0.7–2.2) 0.6 (0.5–1.3) 1.5 (0.8–3.65)
recovered phase AST(U/L); median (quartile) 23 (19–29) 31 (20–34) 28.5 (19.5–30.25)
recovered phase ALT(U/L); median (quartile) 25 (17–35) 32 (23–48) 22 (15–30.25)
recovered phase ALP(U/L); median (quartile) 249 (185.75–324.75) 316 (244–373) 266.5 (190.25–332)
recovered phase T. Bil(mg/dl); median (quartile) 0.7 (0.525–0.975) 0.65 (0.5–0.925) 0.7 (0.6–0.9)
Cause
-Prescribed drugs 26 10 6
-Other 1 1 0
-Undefined 6 2 2
Suspected drugs; ad. in over 2 DILI patients
-Acetaminophen 2 1 0
-Cefditoren 2 0 0
-Cyclophosphamide 2 0 0
-Febuxostat 0 1 1
-Gemcitabine 2 0 0
-Loxoprofen 2 1 1
-Nifedipine 1 0 1
ATC level 2 of suspected drugs; ad. in over 3 DILI
patients (ATC code in parenthesis)
-calcium channel blockers (C08) 2 0 1
-antibacterials for systemic use (J01) 6 2 0
-antineoplastic agents (L01) 5 1 0
-anti-inflammatory and antirheumatic products (M01) 3 2 1
-psycholeptics (N05) 4 1 1

AST; aspartate transaminase, ALT; alanine transaminase, ALP; alkaline phosphatase, T. Bil; total bilirubin, ad.;
administrated. The reference ranges of the liver blood test were <30 for AST, <30 for ALT, 100–325 for ALP,
and 0.2–1.2 for T. Bil. The threshold numbers of patients in “Suspected drugs” and “ATC level 2 of suspected drugs”
were judged by the sum of all types of drug-induced liver injury (DILI).

The suspected drug with the highest frequency of culpability was loxoprofen, which was
responsible for four cases out of the 54 patients (two, one, and one case in the hepatocellular-, mixed-,
and cholestatic-type patients, respectively). In addition, when the prescribed drugs were categorized
according to the World Health Organization (WHO) Anatomical Therapeutic Chemical (ATC) codes,
the highest number of cases was found in antibacterial agents for systemic use (J01, eight cases),
followed by antineoplastic agents (L01, six cases), anti-inflammatory and antirheumatic products (M01,
six cases), and psycholeptics (N05, six cases). The causes of DILI were widely diverse among cases,
which hindered the analysis of drug-specific or drug category-specific effects.

2.2. Global Plasma Lipid Profiling in the Three DILI Types

Global plasma lipidomic profiling using our lipidomics platform detected 463 lipids spanning
31 lipid classes (Table S1 and summarized in Table 2). Note that in our assay platform, unconjugated
bile acids were detectable but not quantitative because their liquid chromatography (LC) retention
time is close to the void fraction where ionization is unstable due to the presence of unretained salts.
The exemplar LC/MS traces are shown in Figure S1. To distinguish stereoisomers, each quantified
lipid was assigned a specific metabolite ID. The fatty acid side chains in the lipids were confirmed
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using mass spectrometry (MS), the confirmed fatty acid fragments were indicated after a semicolon
in the name. The combination of fatty acid side chains was combined using a slash. If two different
sets of fragments were confirmed, we provided both of them, separated by a comma. The identified
lipids comprised 184 phospholipids, 80 sphingolipids, 180 neutral lipids, and 19 others, including
coenzyme Q10 (CoQ10), free fatty acids (FAs), and acylcarnitines (Cars). The major phospholipid
class, phosphatidylcholines (PCs), contained 56 lipids. In addition, the major sphingolipid class,
sphingomyelins (SMs), comprised 37 lipids, and the major neutral lipid class, triacylglycerols (TGs),
comprised 138 lipids. The identified lipid levels were compared between the acute and recovery phases
in each DILI type. Lipids with both high effect sizes (g > 0.8) and statistically significant differences
(p < 0.05) were defined as altered.

Table 2. Identified lipid classes and numbers of individual lipids.

Category Class (Abbreviation) Class Number of Lipids

Phosphoglycerolipid LPC Lysophosphatidylcholine 12
Phosphoglycerolipid LPCe Ether-type lysophosphatidylcholine 2
Phosphoglycerolipid LPE Lysophosphatidylethanolamine 5
Phosphoglycerolipid LPEe Ether-type lysophosphatidylethanolamine 1
Phosphoglycerolipid LPI Lysophosphaidylinositol 2
Phosphoglycerolipid PC Phosphatidylcholine 56
Phosphoglycerolipid PC+O Oxidized phosphatidylcholine 2
Phosphoglycerolipid ether-linked PC Ether-type phosphatidylcholine 40
Phosphoglycerolipid PE Phosphatidylethanolamine 15
Phosphoglycerolipid ether-linked PE Ether-type phosphatidylethanolamine 29
Phosphoglycerolipid PI Phosphatidylinositol 18
Phosphoglycerolipid PS Phosphatidylserine 2

Sphingolipid Cer Ceramide 14
Sphingolipid CerG1 Monoglycosylceramide 6
Sphingolipid CerG1+O Oxidized monoglycosylceramide 3
Sphingolipid CerG2 Diglycosylceramide 4
Sphingolipid CerG3 Triglycosylceramide 4
Sphingolipid Gb4 Ganglioside Gb4 1
Sphingolipid GM3 Ganglioside GM3 7
Sphingolipid GM3+O Oxidized ganglioside GM3 1
Sphingolipid SM Sphingomyelin 37
Sphingolipid SM+O Oxidized sphingomyelin 2
Sphingolipid Su1G1 Sulfatide 1
Neutral lipid ChE Cholesterolester 19
Neutral lipid DG Diacylglycerol 22
Neutral lipid TG Triacylglycerol 138
Other lipid Car Acylcarnitine 6
Other lipid CoQ CoenzymeQ 1
Other lipid FA Fatty acid 5
Other lipid FAA Fatty amide 5
Other lipid Other Other 3

Although 112 lipids were significantly different between the phases, no lipid was defined as
altered in the hepatocellular type (Figure 1a). In contrast, 9 and 20 lipids were defined as altered in the
mixed and cholestatic types, respectively (Figure 1b,c). Thus, we focused on the mixed and cholestatic
types for further analysis.

Figure 1. Volcano plot of lipid alterations in three types of DILI. Statistical probability (p value) and
effect size (g) were determined by a comparison of lipid levels between acute phase and recovery
phase of the DILI patients. Volcano plots show -log p value versus g value for (a) hepatocellular type,
(b) mixed type, and (c) cholestatic type. Each dot represents an individual lipid.
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2.3. Discrimination Ability for Mixed-Type DILI between Acute Phase and Recovery Phase or
Healthy Volunteers

In the mixed-type DILI patients, three lipids, ceramide (Cer)(d34:1; d18:1/16:0), Cer(d36:1;
d18:1/18:0), and oxidized ganglioside GM3 (GM3+O)(d34:1), were increased in the acute phase compared
with the recovery phase, while six lipids, LPC(18:2), ether-linked LPC LPC(16:1e), ether-linked PC
PC(38:6e; 18:2e/20:4, 16:1e/22:5), ether-linked phosphatidylethanolamine (PE) PE(36:4e; 16:0e/20:4),
PE(38:4e; 18:0e/20:4), and PE(38:6e; 18:2e/20:4), were decreased in plasma (Table 3). The increased
lipid of the highest effect size in the mixed-type patients was Cer(d34:1; d18:1/16:0), and the
corresponding decreased lipid was PE(38:4e; 18:0e/20:4). All PCes and PEes contained the same
FA (20:4: arachidonic acid).

Once we had characterized the specific lipids that were altered in mixed-type DILI, we next
evaluated their discrimination ability between the acute phase and recovery phase by receiver
operating characteristics (ROC) analysis. As shown in Table 3, four lipids, PE(38:4e; 18:0e/20:4),
Cer(d34:1; d18:1/16:0), Cer(d36:1; d18:1/18:0), and GM3(d34:1)+O, had area under the curve (AUC)
values over 0.8. The lipid with the highest AUC was Cer(d34:1; d18:1/16:0), with a value of 0.87.

We further compared the lipids levels of acute phase mixed-type DILI patients with the lipid levels
of healthy subjects. Although the median ages of the three DILI patient types were approximately
60 years, we recruited the healthy subjects in four groups according to sex and age (HM1; middle-age
male, HM2; old-age male, HF1; middle-age female, HF2; old-age female, where middle age was
approximately 45 years and old age was approximately 60 years) (Table S2). The different lipids
between mixed or cholestasis type DILI and all healthy subjects were listed in Table S3 (mixed) and
Table S4 (cholestasis). As shown in Table 3, 6 lipids, LPC(18:2), LPC(16:1e), PE(38:6e; 18:2e/20:4),
Cer(d34:1; d18:1/16:0), Cer(d36:1; d18:1/18:0), and GM3(d34:1)+O, were significantly different when
comparing the acute phase DILI patients with all groups of healthy subjects. Cer(d34:1; d18:1/16:0),
Cer(d36:1; d18:1/18:0), and GM3(d34:1)+O also had AUC values > 0.8 by ROC analysis versus all
groups of healthy subjects. The representative individual plots of lipid levels discriminating the
acute phase of mixed-type DILI from the recovery phase or the healthy volunteer groups are shown
in Figure 2. Furthermore, we also calculated the ratio of altered specific lipids and evaluated their
discriminating ability to acute phase mixed-type DILI patients from other groups, but no ratio of
altered specific lipids further improved the discriminating ability. In addition, the absolute correlation
coefficient of the altered specific lipids in mixed-type DILI with clinical parameters (AST, ALT, ALP,
and total bilirubin) were all less than 0.6 (Table S5).

Figure 2. Representative individual plots of lipids levels discriminating the acute phase of mixed-type
DILI from the recovery phase and the four healthy volunteer groups. Each dot represents an individual
sample. Statistical significance is indicated as follows: ** p < 0.01, *** p < 0.001. Acute; acute phase DILI
patients, Recovered; recovery phase DILI patients, HM1; healthy male subject group 1 (approximately
45 years old), HM2; healthy male subject group 2 (approximately 60 years old), HF1; healthy female
subject group 1 (approximately 45 years old), HF2; healthy female subject group 2 (approximately
60 years old).
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2.4. Discrimination Ability for Cholestatic-Type DILI between Acute Phase and Recovery Phase or
Healthy Volunteers

In the cholestatic-type DILI patients, 4 lipids, PC(30:0; 14:0/16:0), PC(31:0; 15:0/16:0), PC(32:1;
16:0/16:1), and PC (33:1; 15:0/18:1, 16:0/17:1), were increased in the acute phase then the recovery
phase, while 16 lipids, PC(36:5e; 16:1e/20:4), PC(38:6e; 18:2e/20:4, 16:1e/22:5), PE(36:4e; 16:0e/20:4),
PE(38:4e; 18:0e/20:4), PE(40:6e; 18:0e/22:6), PE(40:7e; 18:1e/22:6; M160), PE(40:7e; 18:1e/22:6; M161),
phosphatidylinositol (PI)(38:3), PI(38:4; 18:0/20:4), PI(40:4), triglycosylceramide (CerG3)(d40:1),
CerG3(d42:1), CerG3(d42:2), SM(d40:1; d18:1/22:0), TG(44:0; 14:0/14:0/16:0, 12:0/16:0/16:0), and CoQ10,
were decreased (Table 4). The increased lipid of highest effect size in the cholestatic-type patients
was PC(33:1; 15:0/18:1, 16:0/17:1) and the corresponding decreased lipid was PE(40:7e; 18:1e/22:6).
Three FA(20:4)-containing ether-linked phospholipids, PC(38:6e; 18:2e/20:4, 16:1e/22:5), PE(36:4e;
16:0e/20:4), and PE(38:4e; 18:0e/20:4), were common with the mixed-type cases, but FA(22:6),
corresponding to docosahexaenoic acid, was contained in three PEes, PE(40:6e; 18:0e/22:6), PE(40:7e;
18:1e/22:6; M160), and PE(40:7e; 18:1e/22:6; M161), which are specific for the cholestatic-type cases.
In addition, all increased PCs in the acute phase of cholestatic-type patients contained the same FA(16:0:
palmitic acid).

We also evaluated the discrimination ability of specific lipids that were altered in cholestatic-type
DILI between the acute and recovery phases by ROC analysis. As shown in Table 4, 12 lipids,
PC(31:0; 15:0/16:0), PC (33:1; 15:0/18:1, 16:0/17:1), PE(36:4e; 16:0e/20:4), PE(38:4e; 18:0e/20:4), PE(40:6e;
18:0e/22:6), PE(40:7e; 18:1e/22:6; M160), PI(38:3), PI(38:4; 18:0/20:4), PI(40:4), CerG3(d40:1), CerG3(d42:1),
and CoQ10, had AUC values over 0.8. The lipid with the highest AUC was PE(40:7e; 18:1e/22:6; M160),
with a value of 0.91.

We further compared the lipids levels of acute phase cholestatic-type DILI patients with the lipid
levels of healthy subjects (grouped as indicated in Section 2.3). As shown in Table 4, eight lipids, PC(30:0;
14:0/16:0), PC(31:0; 15:0/16:0), PC(32:1; 16:0/16:1), PC(33:1; 15:0/18:1, 16:0/17:1), PC(36:5e; 16:1e/20:4),
PI(38:3), PI(38:4; 18:0/20:4), and SM(d40:1; d18:1/22:0), were significantly different when comparing the
acute phase DILI patients with all the compared groups of healthy subjects. PC(30:0; 14:0/16:0), PC(31:0;
15:0/16:0), PC(32:1; 16:0/16:1), PC (33:1; 15:0/18:1, 16:0/17:1), PI(38:3), PI(38:4; 18:0/20:4), and SM(d40:1;
d18:1/22:0) also had AUC values >0.8 using ROC analysis versus all the groups of healthy subjects.
The representative individual plots of lipid levels discriminating cholestatic-type DILI in the acute
phase from the recovery phase or the healthy volunteer groups are shown in Figure 3. Furthermore,
we also calculated the ratio of altered specific lipids and evaluated their discriminating ability to acute
phase cholestatic-type DILI patients from other groups, but no ratio of altered specific lipids further
improved the discriminating ability. In addition, the correlation coefficient of the altered specific lipids
in mixed-type DILI with clinical parameters (AST, ALT, ALP, and total bilirubin) demonstrated over
0.6 (with p < 0.05) for three out of four palmitic acid-containing saturated or monounsaturated PCs,
PC(31:0; 15:0/16:0), PC(32:1; 16:0/16:1), and PC (33:1; 15:0/18:1, 16:0/17:1) (Table S5). The absolute
correlation coefficient of all other specific lipids was less than 0.6.
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Figure 3. Representative individual plots of lipids levels discriminating the acute phase of
cholestatic-type DILI from the recovery phase and the four healthy volunteer groups. Each dot
represents an individual sample. Statistical significance is indicated as follows: * p < 0.05, ** p < 0.01,
*** p < 0.001. Acute; acute phase DILI patients, Recovered; recovery phase DILI patients, HM1; healthy
male subject group 1 (approximately 45 years old), HM2; healthy male subject group 2 (approximately
60 years old), HF1; healthy female subject group 1 (approximately 45 years old), HF2; healthy female
subject group 2 (approximately 60 years old).

3. Discussion

In this study, we used plasma lipid profiling to characterize the pathophysiology of three
different types of DILI in human patients and made five broad observations. First, the mixed
and cholestatic types of DILI demonstrated specific plasma lipid alterations between acute and
recovered phases, but the hepatocellular type did not. Second, as specific features of mixed-type
DILI, when compared with levels in the recovery phase, several ceramides were increased in the
acute phase, while arachidonic acid-containing ether-linked phosphoglycerolipids were decreased.
Third, as specific features of cholestatic-type DILI, when compared with levels in the recovery phase,
palmitic acid-containing saturated or monounsaturated PCs increased in the acute phase, while
arachidonic acid- or docosahexaenoic acid-containing ether-linked phosphoglycerolipids and PIs
decreased. Fourth, of the specific lipids altered in mixed-type DILI, the levels of Cer(d34:1; d18:1/16:0),
Cer(d36:1; d18:1/18:0), and GM3(d34:1)+O demonstrated relatively high discrimination ability for the
acute phase over the recovery phase in all groups of healthy subjects. Finally, of the specific lipids
altered in cholestatic-type DILI, the levels of PC(31:0; 15:0/16:0), PC(33:1; 15:0/18:1, 16:0/17:1), PI(38:3),
and PI(38:4; 18:0/20:4) demonstrated relatively high discrimination ability for the acute phase over the
recovery phase in all groups of healthy subjects.
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Although the number of subjects in the cholestatic-type DILI group was limited, the number
of specific lipids altered was larger in this group than in the other two groups. This result suggests
that the alteration in hepatic lipid homeostasis in cholestatic-type DILI shares a common mechanism
among diverse suspected drugs. One representative plasma lipid that was increased in cholestatic-type
DILI was palmitic acid (16:0)-containing saturated or monounsaturated PCs. Palmitic acid has been
reported as the major fatty acid in biliary PCs [23]. In addition, the partner FAs of palmitic acid in the
specifically altered PCs in cholestatic-type DILI, FA(16:1), and FA(17:1) are preferentially secreted into
bile [24]. Thus, these increased levels of palmitic acid-containing saturated or monounsaturated PCs in
the plasma were probably due to the reduced bile secretion of palmitic acid-containing saturated or
monounsaturated PCs by cholestasis. This is also supported because the total bilirubin levels, which
were also elevated by biliary structure, were highly correlated with the lipid levels in the DILI patients
in this study.

Along with the palmitic acid-containing saturated or monounsaturated PCs, PIs, such as PI(38:3)
and PI(38:4; 18:0/20:4), were also specifically increased in the cholestatic-type DILI patients. To date,
the role of increased plasma PIs in cholestatic-type DILI remains unclear. However, supplementation
with PIs decreases mRNA levels of the inflammatory cytokines/chemokines, tumor necrosis factor-alpha
(TNF-α), and monocyte chemoattractant protein-1 (MCP-1), which are upregulated in steatosis [25].
In addition, blood and liver PIs were shown to increase with hepatic steatosis [26,27]. Therefore,
one plausible reason for the increased PIs in plasma is to counteract the hepatic inflammation that can
occur with lipid dysregulation.

Unlike other lipid classes, arachidonic acid-containing ether-linked phosphoglycerolipids were
commonly altered in mixed and cholestatic-type DILI. Decreased levels of serum ether-linked
phosphoglycerolipids have been reported in patients with nonalcoholic steatohepatitis and nonalcoholic
fatty liver disease when compared to the levels in healthy controls [21]. In addition, plasma
and liver ether-linked phosphoglycerolipid levels were decreased in a valproic acid-induced rat
model of hepatic steatosis [28]. Thus, the decreased levels of ether-linked phosphoglycerolipids
that we observed in the plasma of mixed and cholestatic-type DILI patients could be caused by
mechanisms that are like those in steatosis and steatohepatitis, and they could reflect reduced
levels in the liver. Arachidonic acid is well-known to be metabolized to inflammatory eicosanoids,
such as prostaglandin E2; thus, decreased levels of arachidonic acid-containing ether-linked
phosphoglycerolipids in the plasma and the liver in the reference would implicate the inflammatory
incidences in the liver of mixed and cholestatic-type DILI patients as well as patients with steatosis
and steatohepatitis. Alternatively, ether-linked phosphoglycerolipids have been characterized as
peroxisome-synthesized lipids and are a key component of peroxisome [29]. In fact, decreased levels
of hepatic glyceronephosphate O-acyltransferase, which is a key peroxisomal enzyme for the synthesis
of ether-linked phosphoglycerolipids, have been observed in a rat model of hepatic steatosis [28].
In addition, rescuing ether-linked phosphoglycerolipid levels by alkyl glycerol treatment could prevent
impaired peroxisomal metabolism and hepatic steatosis [30,31]. Taken together, the decreased levels of
plasma ether-linked phosphoglycerolipids that we observed may be caused by peroxisomal dysfunction
in mixed and cholestatic types of DILI, and the rescue of ether-linked phosphoglycerolipid levels could
be utilized for the therapeutic treatment of these DILI types.

Besides arachidonic acid-containing phosphoglycerolipids, increased plasma Cer was a
characteristic feature of mixed-type DILI. To date, whether the increase in Cers plays a pivotal
role in mixed-type DILI is unclear. However, Cers possess cell-signaling properties that are relevant to
inflammation and apoptosis [32,33], and they may be involved in cystic fibrosis in the lung [34,35].
Thus, it is reasonable to speculate that increased Cer levels in mixed-type DILI patients contribute to
hepatic inflammation and trigger subsequent pathological fibrosis.

In the present study, we also evaluated the differences in plasma lipids and their ability
to discriminate between acute state DILI and healthy subjects divided into four age/sex groups.
We identified 3 and 4 lipids in mixed and cholestatic types of DILI, respectively, as lipids with high
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discrimination ability. Although their scores did not exceed those of ALT and ALP (data not shown),
these lipids could be utilized as biomarkers for DILI patients with ALT and ALP levels that are not
diagnostic of liver disease. For example, ALT is elevated in patients with muscle injury and ALP is
elevated in bone diseases. These lipids may also be helpful to discriminate DILI types and determine
therapeutic approaches. Further analysis is needed to corroborate these speculations.

There are several limitations in the present study. First, it was performed with a few subjects of
mixed and cholestatic types. Although we collected samples in both the acute and recovery phases
from the same patients, the number of analyzed patients was limited, thus restricting the statistical
power of our analysis. Second, due to the sparse number of events and limited ability to follow up
patients, we recruited DILI patients from seven core hospitals. Although we used the same sampling
protocol, hospital-to-hospital variation in sample preparation may have produced slightly different
results in plasma lipid levels. Third, postprandial effect has been reported to have a global impact on
lipidomics, although the impact is less than that of inter-individual variations [36,37]. Thus, this impact
should be taken into consideration even though it is less than the impact caused by inter-individual
variations. However, it is difficult to control the food intake of DILI patients, especially during the
acute phase. Therefore, we believe that the state of fasting can be disregarded for this preliminary
study. Fourth, although we recruited self-reported healthy subjects who had taken no medication for
at least 1 week as controls, they may have been unaware of their disease status. Fifth, we did not
control the alcohol and food intake of the patients, and the time of blood draw was not standardized,
both of which might have affected plasma lipid levels. Sixth, since we used one internal standard
(PC[1 2:0/12:0]) for all the classes of lipids, ionization efficiency should be different among the classes.
Thus, the fold changes can effectively be calculated/estimated even using the same IS for all the lipids,
but the comparison between lipid classes is not valid then. Last, it is difficult to consider the effects of
other disease states and external factors, such as sexes and ages. In fact, several lipids, such as PEes
and CerG3s, have high discriminant ability between acute phase and recovered phase DILI, while
those lipids could not discriminate acute phase DILI and some groups of healthy subjects, which may
be attributed to differences in sexes and ages. In addition, as was reported in the literature, many
diseases, including liver-related diseases, which are possibly base diseases and complications, alter the
plasma lipid levels [18–22]. Multivariate analysis including these potentially affecting factors should be
performed using more patients’ samples. Therefore, to address these limitations, a future, large-scale
study with updated protocols should be performed.

In conclusion, we characterized the plasma lipid profiles of three types of DILI patients using a
lipidomics approach. By comparing samples in acute and recovery phases, we revealed that mixed and
cholestatic types of DILI produce specific alterations in plasma lipid profiles. In addition, by comparing
these data to those of healthy subjects, we found several candidate markers of mixed and cholestatic
DILI that discriminate the acute phase from the recovery phase and healthy state. Our study provides
insights into the alterations in plasma lipidomic profiles, which reflect alterations in lipid homeostasis
in the livers of DILI patients. These findings may help to understand the pathophysiology of different
types of DILI.

4. Materials and Methods

4.1. Subjects and Sample Collection

DILI patients were recruited at the Teikyo University Hospital, Tokai University Hospital,
Hiroshima Atomic-bomb Survivors Hospital, Kitasato University Hospital, Gunma University Hospital,
Fukuoka University Hospital, and Hokkaido University Hospital. The inclusion criteria for DILI in the
acute phase were ALT ≥150 U/L and/or ALP≥ 2× upper limit of normal, as described previously [38,39].
In addition, each DILI patient was scored using the CIOMS/RUCAM [3] and DDW-J2004 [4,5] scales,
and the highest probability cases in these scores were included in this study. The CIOMS/RUCAM
scale involves a scoring system that categorizes the cases into “definite or highly probable” (score > 8),

31



Metabolites 2020, 10, 355

“probable” (score 6–8), “possible” (score 3–5), “unlikely” (score 1–2), and “excluded” (score ≤ 0).
The DDW-J2004 scale involves a scoring system that categorizes the cases into “highly probable”
(score > 5), “possible” (score 3–4), and “unlikely” (score ≤ 2). The DILI type and entry into the recovery
phase were also diagnosed by DILI experts at each hospital. All healthy subjects were non-smoking,
self-reported healthy volunteers who had taken no medications for at least 1 week before the study.

Blood samples were collected by venipuncture into 7 mL EDTA-2Na-containing vacuum blood
collection tubes (VENOJECT II, TERUMO, Tokyo, Japan). The blood samples were immediately
centrifuged (2500× g, 10 min, 4 ◦C); the resulting plasma was dispensed into screw-capped
polypropylene tubes and stored in a deep freezer (−80 ◦C) before use. The plasma was typically frozen
within 2 h from blood draw, although this occasionally extended to 4 h.

This study was conducted in accordance with the Declaration of Helsinki and approved by
the Ethics Committee of the National Institute of Health Science (256, and 260 for Kihara Memorial
Foundation), Teikyo University Hospital (15-127-2), Tokai University Hospital (15R-117), Hiroshima
Atomic-bomb Survivors Hospital (H27-399-2), Kitasato University Hospital (B13-182), Gunma
University Hospital (1487), Fukuoka University Hospital (18-8-04), Hokkaido University Hospital
(016-0345), Daiichi Sankyo Co., Ltd. (15-0504-00), and Astellas Pharma Inc. (150028-01, 150047-01).
Written informed consent was obtained from all participants.

4.2. Lipidomics

Lipid extraction was performed using the Microlab NIMBUS workstation (Hamilton, Binaduz,
GR, Switzerland). The plasma samples were mixed with nine volumes of methanol/isopropanol
(1/1) containing an internal standard (PC[12:0/12:0]), which is not detectable endogenously, at 2 μM.
The mixed samples were filtered through a FastRemover Protein Removal Plate (GL Science, Tokyo,
Japan) using an MPE2 automated liquid handling unit (Hamilton). The resulting lipid-containing filtrate
was directly subjected to lipidomics. To obtain the lipidomics data, we performed reversed-phase LC
(RPLC; Ultimate 3000, Thermo Fisher Scientific, Waltham, MA, USA) and MS (Orbitrap Fusion, Thermo
Fisher Scientific), as described previously [40,41]. Compound Discoverer 2.1 (Thermo Fisher Scientific)
was used with the raw data for peak extraction, annotation, identification, and lipid quantification,
as described previously with a prior version of the software [40,41]. For isomers (same class, carbon
length, and number of double bonds) showing different retention times in RPLC, each lipid was
assigned a metabolite ID to distinguish it. Lipids with two different fatty acid combinations (e.g., 38:6e;
18:2e/20:4, 16:1e/22:5) indicate that the quantified lipid is a mixture of two different lipids that could not
be separated. The quantified raw data were normalized to the internal standard. Since the lipidomics
analysis was combined across two batches, the median value of each lipid in all samples was set to one
in each batch to consolidate data from two batches after normalization. The processed data for the
lipid levels are presented in Table S1.

4.3. Statistical Analysis

Significant differences in lipid levels were assessed by paired t-tests and Welch’s t-test, and the
effect size, which is calculated by Hedge’s g, was considered. In this study, due to the limitation of
sample size, a lipid level was considered specifically altered if its p value was <0.05 and its absolute
effect size was >0.8. The discrimination ability was assessed by AUC score in ROC analysis using
GraphPad Prism 6 (GraphPad Software, San Diego, CA, USA). The correlation coefficient was calculated
as Pearson’s correlation coefficient.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/9/355/s1,
Table S1: Lipidomics data set used in the present study. Table S2: Details of healthy subjects in the present study.
Table S3: Lipids different between mixed-type DILI and healthy subjects. Table S4: Lipids different between
cholestatic-type DILI and healthy subjects. Table S5: Correlation coefficient of altered specific lipids to clinical
parameters in DILI patients. Figure S1: The exemplar LC/MS traces of plasma lipid profiles. Text S1: The details
on the lipidomic analyses and associated data processing.
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Abstract: Atopic dermatitis (AD) is a multifactorial disease associated with alterations in lipid
composition and organization in the epidermis. Multiple variants of AD exist with different outcomes
in response to therapies. The evaluation of disease progression and response to treatment are
observational assessments with poor inter-observer agreement highlighting the need for molecular
markers. SHARPIN-deficient mice (Sharpincpdm) spontaneously develop chronic proliferative
dermatitis with features similar to AD in humans. To study the changes in the epidermal lipid-content
during disease progression, we tested 72 epidermis samples from three groups (5-, 7-, and 10-weeks
old) of cpdm mice and their WT littermates. An agnostic mass-spectrometry strategy for biomarker
discovery termed multiple-reaction monitoring (MRM)-profiling was used to detect and monitor
1,030 lipid ions present in the epidermis samples. In order to select the most relevant ions, we
utilized a two-tiered filter/wrapper feature-selection strategy. Lipid categories were compressed,
and an elastic-net classifier was used to rank and identify the most predictive lipid categories for
sex, phenotype, and disease stages of cpdm mice. The model accurately classified the samples based
on phospholipids, cholesteryl esters, acylcarnitines, and sphingolipids, demonstrating that disease
progression cannot be defined by one single lipid or lipid category.

Keywords: lipidomics; atopic dermatitis; SHARPIN-deficient mice; flow-injection mass-spectrometry;
predictive elastic net

1. Introduction

Atopic dermatitis (AD) is a multifactorial inflammatory skin disease that affects people and
domestic animals worldwide [1]. Multiple variants (endotypes) of AD occur based on differences in
the genetic background of patients, environment, immune activation pathways, and epidermal barrier
status [1–3]. The classical AD presentation includes increased IgE serum levels, increased concentration
of type 2 cytokines [4,5], and filaggrin (FLG) mutations that underlie skin barrier dysfunction [6–8].
However, variants of AD with normal levels of serum IgE and an increase of Th22 and Th17 cytokines
instead of type 2 cytokines also exist [7,9]. In addition, FLG mutations occur in only 10% to 30% of
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AD patients [10,11]. The less common variants of AD may require different therapeutic approaches as
standard forms of therapy could result in unsatisfactory outcomes. Currently, clinical assessment of
disease severity and diagnosis of AD relies on subjective observation of clinical signs, which change
with the chronicity of the disease phase [6,7]. Several assessment indices are used to diagnose and
score the disease, but these have poor inter-observer agreement highlighting the need for molecular
disease biomarkers [12–15].

Alterations in the skin lipid composition have been reported in AD patients regardless of the
genetic background, immune response, and clinical presentation [16,17]. Investigation of the lipid
composition of the stratum corneum of the skin across different analytical platforms revealed changes
in ceramide (CER) structure and presence of shorter and more unsaturated free fatty acids (FFA)
in AD patients compared to healthy subjects [18–21]. Others reported changes in the amounts of
phospholipids (PL), cholesteryl esters (CE), and triacylglycerides (TAG) in atopic skin, sweat, and sebum
compared with healthy controls [22–24]. Alterations in the lipid composition lead to a disorganized
stratum corneum lipid matrix and impaired barrier function of the skin [18], which permits increased
allergen penetration that induces or aggravates the inflammatory reaction [25,26]. The cause of these
lipid changes is not well understood, and it remains uncertain whether they result from a primary
defect or downregulation of lipid processing enzymes by type 2 cytokines released in the course of
dermatitis [27,28].

Sharpincpdm mice (hereafter referred to as cpdm mice), which have a mutation that causes absence
of the SHARPIN protein, develop a chronic proliferative dermatitis that is very similar to human AD.
The condition is characterized by pruritus, alopecia, and thickening of the skin, as well as accumulation
of eosinophils, mast cells, M2 macrophages, and increased expression of type 2 cytokines [29,30].
In a previous study, we identified specific changes in ceramides and fatty acids in the epidermis
of female SHARPIN-deficient mice with chronic proliferative dermatitis using a novel accelerated
mass spectrometry strategy, multiple reaction monitoring (MRM)-profiling [31]. As the severity of the
dermatitis rapidly increases with age, cpdm mice present a suitable model to identify lipid changes in
the skin before the onset of clinical signs of inflammation and during progression of the dermatitis.

Lipidomics allows the detection and identification of a large number of molecules in a
high-throughput manner aimed at the identification of new biomarkers for diagnosis and disease
progression as well as novel targets for treatment [32]. These systems biology approaches yield
complicated, high-dimensional data that should not be analyzed using naive univariate statistical
methods as they may produce a high false-positive rate when predicting and classifying phenotypes.
Consequently, this data requires multivariate approaches [33,34].

Although predicting phenotype from lipidomic data can be performed using various machine
learning approaches, the critical question asked by biologists searching for a mechanistic model is the
meaning of the statistical prediction. The black box predictors may be entirely accurate, but they do
not allow easy formation of post-classification hypotheses regarding the causal relationship between
the employed features, and the produced prediction. On the other hand, ante-hoc explainable models
such as regression-based approaches can be used not only for supervised classification but also for the
identification of critically important covariates, which can be further studied in pursuit of a mechanistic
model [35]. Therefore, feature selection and reduction employing methods such as elastic-net (ENET)
regularized regression are beneficial for finding key predictive features in the rich biological data and
for identifying potential biomarkers amid the vast number of responses produced by systems biology
methodologies [36–39]. Here we report the postulated biomarkers of AD, delivered via a multi-tiered
feature selection strategy that processed the data generated by MRM-profiling in order to characterize
lipid changes in the skin before the onset of clinical signs, both at the level of lipid categories and
individual lipids ions. The method was used to investigate the association of the identified features
with disease progression in male and female cpdm mice and their age and sex-matched wild type
(WT) littermates. The study identified alterations in lipid composition preceding the onset of clinical
dermatitis and a subset of lipid ions predictive of the disease stage of each sample. Additionally,
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the data demonstrated that the epidermis of female and male mice had distinct lipid profiles and
differed in the lipid changes associated with disease progression.

2. Results

2.1. Association of Sex and Genotype to the Lipid Composition of the Mice Skin

Epidermal samples (n = 72, 36 cpdm, and 36 WT) were monitored for the presence of 1030 lipid
ions belonging to multiple lipid categories. First, the collected data were pre-processed as described in
the Methods section by executing log-ratio transformations, followed by single decomposition value
(SVD)-driven principal component analysis. The result was visualized in the compositional principal
component (CPC) space.

The CPC projection clearly differentiated samples by sex with the first component explaining
30.2% of the data variance, whereas the second component accounting for 22.4% of the variance was
mostly associated with the genotype (Figure 1). The list of transitions driving the separation of samples
in the CPC score plot is provided in Table S1.

Figure 1. Monitored lipid ions in male and female cpdm and wild type (WT) epidermis by multiple
reaction monitoring (MRM) scans in positive ion mode. Discrimination of the sex, as well as the
genotypes of WT and cpdm mice (including non-lesional samples), was observed by compositional
principal components (CPC) projection. (A) score plot of CPC analysis. (B) violin plots representing
the separation of samples by sex and genotype. CPC 1 explained 30.2% of the variability of the
data separating the samples by sex. CPC 2 explained 22.4% of the variance and was aligned with
the genotype.

The visualization demonstrates that the information regarding the sex and genotype is encoded in
the lipidomic profile of the sample. However, the CPC projection does not provide an actionable input
from the perspective of feature selection or causal explanation. The 296 lipids in the top 25-percentile
of accounted variance in CPC 1 contribute only between 0.167 and 0.31 percent to the representation.
Similarly, for CPC 2, the individual contribution of each lipid in the top 25-percentile group ranges
from 0.137 to 0.37. Therefore, a feature selection strategy is necessary.

The feature selection involved a two-tier selection, including a univariate step followed by the
creation of a feature-ranking ENET regression model able to separate the samples into classes based on
sex and genotype. The analysis was performed assuming a binary case (for sex and genotype data).
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These tasks were approached using two different methods: Analysis of CPC-compressed compositional
features representing lipid categories, and analysis of individual ions regardless of the category.

2.1.1. Selection of Predictive Lipid Categories for Sex and Genotype

The compressed features identified glycerolipids CPC 1, phospholipids CPC 1, and sphingolipids
CPC 4 as most capable of separating samples by sex in the first selection step. For these features, the
effect size expressed as η2 ranged from 0.12 to 0.22 (Figure 2A). The η2 of 0.22 is equivalent to Cohen’s
f = 0.53, which in a univariate model with two groups is equal to Cohen’s d = 1.06, signifying a very
substantial effect size. The subsequent feature-ranking ENET selected the sphingolipids CPC 4 and 5,
phospholipids CPC 1, and glycerolipids CPC 1 as the most critical features to classify the samples by
sex (Figure 2B). The classifier built using the 20-top composite CPC features had an overall accuracy of
0.76, CI0.95 = (0.74, 0.77).

The univariate selection of compressed features for the binary genotype classification (WT vs.
cpdm) identified phospholipids CPC 3, glycerolipids CPC 5, cholesteryl esters CPC 2, acylcarnitine
CPC 2, and sphingolipids CPC 3 and 1, as the most predictive. The observed η2 ranged from 0.26 to
0.73 for the top features (Figure 2A). The subsequently trained ENET identified phospholipids CPC 3,
glycerolipids CPC 5, sphingolipids CPC 3 and 1, and cholesteryl esters CPC 2 as the top features in
terms of importance (Figure 2B) and the model approached 100% accuracy (CI0.95 from 1 to 0.95).

 

Figure 2. Importance of compressed categories for sex and genotype classification. (A) univariate
linear model—selected lipid categories compositional principal component (CPC) based on their effect
size (η2). (B) top 10 CPC of lipid categories ranked by the multivariate elastic net model for sex and
genotype, which generate a prediction accuracy of 76% for the sex and 100% for the genotype.
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These results demonstrate that the composition and abundance of the same lipid categories
carry information regarding the sex and genotype status of the tested animals. Similar to the CPC
visualization incorporating all the lipid ions simultaneously, we observed that the information regarding
sex and genotype is present in multiple compositional principal components.

2.1.2. Individual Lipid Ions Feature Selection for Genotype

Following the analysis of lipid categories, we performed a feature importance analysis for
individual lipid ions. The study was conducted for genotypes (cpdm vs. WT) in a binary setting,
filtering out the influence of sex. It is important to emphasize that even though this model used
the individual lipid ion features, the tentative chemical attribution of the measured ions was not
independently confirmed to eliminate the likelihood of isotopic interferences.

In the univariate step, we applied a linear model-based filter retaining only the features associated
with genotype class (adjusted p < 0.01) and not strongly associated with sex (adjusted p > 0.05).
The 100 lipid ions with the highest partial η2 (ranging from 0.26 to 0.76) were selected for further
analysis. In the top-100 group, acylcarnitines and phospholipids were by far the most prevalent.
However, among the top ten features, there were nine phospholipids and one ion associated with
sphingolipids. Table 1 shows the highest-scoring lipid ions as well as their weak effect size associated
with sex.

Table 1. List of top 10 lipid ions ranked by the effect size of the univariate models linking genotype
with the lipidomic profile.

Category Tentative Attributions MRM Genotype (η2) Sex (η2)

Phospholipid PC(37:2), PC(O-38:2), PC(P-38:1) 800.6→184.1 0.76 0.001
Phospholipid SM(d41:1) * 801.6→184.1 0.72 0.002
Sphingolipid Cer[AS](d18:1/24:0)2OH 666.4→264.3 0.63 0.025
Phospholipid PC(38:2), PC(P-39:1) 814.6→184.1 0.63 0.018
Phospholipid SM(d36:0) * 733.6→184.1 0.61 0.010
Phospholipid SM(d42:1) * 815.6→184.1 0.60 0.001
Phospholipid PC(38:1), PC(P-38:1), PC(O-38:2) * 816.6→184.1 0.60 0.022
Phospholipid PC (32:1), PC(O-33:1), PC(P-33:0) 732.1→184.1 0.59 0.008
Phospholipid PC(40:8), PCo(40:1) 830.1→184.1 0.57 0.014

* Subject of possible isotopic interferences.

As in the previous analysis task, the second filtering step included an ENET regression used to
filter and rank the lipids pre-selected by the univariate step. The trained ENET achieved an overall
accuracy of 0.99, CI95% = (0.924, 1). The most predictive lipid ions are summarized in Table 2. Among
the selected lipids, five were phospholipids, two glycerolipids, and one was identified as a sphingolipid.

Table 2. List of top lipid ions ranked by importance score for prediction of genotype using the elastic
net model.

Category Tentative Attributions MRM Importance Score

Phospholipid PC(37:2), PC(O-38:2), PC(P-38:1) 800.6→184.1 100.00
Glycerolipid Glycerolipid containing 22:5 residue 627.1→280 50.58
Sphingolipid Cer[AS](d18:1/24:0)2OH 666.4→264.3 48.40
Phospholipid PC(38:1), PC(P-38:1), PC(O-38:2) 816.6→184.1 32.26
Phospholipid SM(d41:1) * 801.6→184.1 29.57
Phospholipid PC(38:2), PC(P-39:1) 814.6→184.1 19.86
Glycerolipid Glycerolipid containing 18:2 residue 895.1→598 3.35
Phospholipid SM(d37:0) 745.6→184.1 0.61

* Subject of possible isotopic interferences.

41



Metabolites 2020, 10, 299

2.2. Selection of Features Associated with Disease Progression

2.2.1. Compositional Principal Component Analysis and Data Visualization

To study epidermal lipid changes associated with disease progression, a multiclass case was
considered instead of a binary case. The cpdm mice were further divided into subclasses defined by
the disease stage as non-lesional, established, and advanced. For general visualization of the data,
we first computed CPC values using as input only the lipid data pre-selected in the previous binary
step with the ENET filtering. The plot was prepared using the disease stage markings in a CPC space
demonstrated that such a simple model was able to partially delineate the controls (independently of
their age) and the levels of the cpdm genotype (Figure 3).

Figure 3. Lipid ions delineate disease stage groups. CPC analysis of all lipid ions plotted vs. disease
progression. The model was able to delineate the controls and the three experimental groups of cpdm
mice (η2 = 0.86, p-value < 0.001).

2.2.2. Compressed-Feature Selection for Disease Progression

The disease-progression analysis, performed in a univariate setting, pointed to phospholipids
CPC 3, glycerolipids CPC 5, and cholesteryl esters CPC 2 as the most informative compressed features
(Figure 4A). The top features associated with disease progression produced η2 ranging from 0.63 to 0.8.
It is important to note that the features predicting disease progression were the same as those that
separated WT from the broad cpdm group containing animals in all disease stages. The feature selection
and ranking task performed by the ENET again identified phospholipid CPC 3, cholesteryl esters CPC
2, and glycerolipids CPC 5, as the top features in terms of importance. Interestingly, the highly ranked
features were not equally important for all the disease stages (Figure 4B).

The disease progression prediction with an ENET classifier using a multinomial model achieved
an overall accuracy of over 0.81, CI95% = (0.71, 0.9). The substantial part of the observed inaccuracy
was caused by the high similarity between samples from the adjacent “established” and “advanced”
stages of the disease. This effect is also demonstrated by the difference between the unweighted and
weighted Cohen’s κ values (0.725 and 0.841, respectively).
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Figure 4. Importance of compressed categories for disease progression classification. (A) univariate
linear model—selected lipid categories CPC based on their effect size (n2). (B) contribution of the top
10 CPC to the classification of disease progression categories by the multivariate elastic net model with
an accuracy of 81%.

2.2.3. Individual Lipid Ions Feature Selection for Disease Progression

The univariate feature selection step for disease progression selected ions with η2 ranging from
0.22 to 0.73 and phospholipids dominated the very top of the list. The following multivariate analysis,
performed by training an ENET, found a more diverse set of ions, some of them distinctly associated
with a particular disease stage, but less useful for predicting others. It is an expected characteristic
of a multivariate model, which combines all the features and their predictions to form a functional
classifier. The ions contributing highly to the prediction of progression are listed in Table 3, and the
results are illustrated in Figure 5.
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Table 3. List of top 10 lipid ions ranked by importance score for prediction of disease progression in
the elastic net model.

Category Tentative Attributions MRM
Importance Scores

Control Non-Lesional Established Advanced Overall

Phospholipid PC(37:2), PC(O-38:2),
PC(P-38:1) 800.6→184.1 100.00 0.00 0.00 0.00 100.00

Acylcarnitine O-behenoylcarnitine 484.4→85.1 0.00 0.00 77.26 0.00 77.26

Sphingolipid Sphingosine 300.2→282.2 0.00 71.50 0.00 0.00 71.50

Phospholipid PC(31:0), PC(O-31:1),
PC(P-31:0) 720.4→184.1 0.00 0.00 0.00 66.55 66.55

Cholesteryl
Ester 22:1 Cholesteryl ester 725.4→369.1 0.00 0.00 0.00 60.59 60.59

Sphingolipid Cer(d27:2) 438.2→
266.2 0.00 0.00 44.09 0.00 44.09

Glycerolipid Glycerolipids
containing 30:0 residue 624.1→155.1 0.00 0.00 42.86 0.00 42.86

Phospholipid SM(d42:3) 811.6→184.1 0.00 30.66 0.00 7.66 38.32

Acylcarnitine Non attributed 837→85.1 0.00 36.96 0.00 0.00 36.96

Phospholipid PC (36:0), PCp(38:6) 790.4→184.1 0.00 26.66 0.00 0.00 26.66

Figure 5. Epidermal lipid ions predictive of disease progression in mice. Representation of six lipids
from the epidermis of WT and cpdm mice identified as predictive of disease stage in a sex-independent
manner. Lipid features emphasize differences between controls and the various stages of the disease.
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The ENET classifier trained on the disease progression data was able to classify the 36 cpdm and
36 WT samples into groups, including the control and the three disease stages with an overall accuracy
of 0.79, CI95% = (0.67, 0.87) when classified using weighted classes and 0.95, CI95% = (0.88, 1) if the
synthetic minority sampling technique (SMOTE) algorithm was used for correcting the class imbalance
(Figure 6). The training used the variations transformed features corresponding to the presence of
phosphatidylcholines, cholesteryl esters, acylcarnitines, and a glycerolipid-containing triacontanoic
acid fatty acyl residue.

Figure 6. Classification of samples into disease progression groups. Parallel plot illustrating the
classification of individual samples by elastic net regression. Each line represents a sample, and
the highest point in the line corresponds to the group where the sample would be classified with
higher probability.

3. Discussion

Lipids comprise a highly diverse group of molecules that play an essential role in the biology of
the skin, and the relative proportions of different lipids are associated with the normal physiological
functions of this organ [40–42]. In this study, we analyzed the relation between the lipids detected
by MRM-profiling (lipidomic profile) and the observed genotypes using two machine learning
feature-selection approaches. First, we computed a set of compressed features using compositional
principal components to represent each of the lipid categories analyzed. These features easily separated
male and female samples indicating a strong influence of sex on the epidermal lipid composition
in mice. The first CPC summarizing variance in all the lipids was associated with clustering by
sex, rather than by genotype. This result shows that the biochemical variability related to sex was
dispersed among many lipids creating an effect more substantial than the one associated with the
genotype. This result is in agreement with studies of skin-surface lipid clusters in humans where
samples from males and females were distinguishable, but no significant difference between atopic
or healthy subjects was observed [23,43]. However, it is necessary to note that the large variance
visualized by CPC 1 (Figure 1) does not unequivocally demonstrate the importance of the differences
between lipid composition in males and females, as it may also emerge from the fact that the sexual
dichotomy has a high signal-to-noise ratio in the lipidomics data.

The multivariate analysis performed by the ENET demonstrated that classification to the male and
female group was influenced mostly by sphingolipids (specifically, the compressed feature sets CPC 4
and CPC 5). The biological function of sphingolipids is determined by their composition, particularly
the type of sphingoid base and the number of carbons and hydroxyl groups on the acyl chains, and
their synthesis is affected by gonadal hormones in mice [44]. Several studies have shown alterations in
ceramides, a sphingolipid, in the epidermis of AD patients [17,45–47]. However, conflicting results
have been reported for changes in ceramides in non-lesional skin, probably because not all ceramide
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species are altered at the same stage of the disease and/or by the same mechanisms in males and
females [23,48]. Our results show that sexual dimorphism is related strongly to the relative amounts of
epidermal lipids in mice, and suggest that sex-related differences in the lipid biology of AD should
be further investigated as they may partially explain the contradictory results regarding changes in
ceramides in AD patients’ skin [47].

A comparison of lipid categories in the cpdm and WT phenotypes by either univariate method
or ENET showed differences driven by phospholipids and glycerolipids. The alteration in the lipid
composition of the epidermis is a hallmark of AD associated with impaired barrier function of
the skin [41,49], but whether these changes are primary or caused by the inflammatory process
remains elusive [50,51]. Lipidomic and transcriptomic analysis of atopic patients have shown a
global alteration of fatty acids caused by the interrelationship of type 2 cytokines and lipid elongase
enzymes [52]. Our analysis demonstrates that the presence of phospholipids and glycerolipids in the
epidermis was altered before any clinical signs of disease in the skin of the cpdm mice. Phospholipids
and glycerolipids are essential for cellular and subcellular membrane dynamics and share common
metabolic intermediates [53]. Phospholipids can also be secreted in the lamellar bodies of the epidermis
along with the enzymes that use them as a substrate for ceramide synthesis [54]. Alterations in their
concentrations may affect skin barrier function, cell metabolism, and inflammatory cell signaling,
as they can carry esterified fatty acids that generate lipid mediators of inflammation by undergoing
fatty acyl remodeling [55]. Likewise, lipids resulting from an aberrant lipid metabolism may be
incorporated into membranes as phospholipids are in constant flux [55,56]. In agreement with our
results, changes in phospholipids were reported to be present in the serum of atopic patients compared
with controls [57]. In another mouse model of AD, NC/Nga mice, phospholipids were decreased in
plasma, and oral supplementation of plasmalogens increased the phospholipid concentration in the
skin of the mice and improved the skin condition [58]. In human skin, one study reported an increase
of phospholipid content in AD patients compared to healthy subjects [24], while others showed a
global change in phospholipids with an increase in the presence of shorter acylated fatty acids [52].
In addition to species differences, the disparities in sample preparation approach (epidermis vs. total
skin), variations in analytical methods, and identification of the individual lipid species may account
for these inconsistent results.

Changes in different categories of lipids were associated with stages of the disease as the severity
of dermatitis increased. The control epidermis could be discriminated from the cpdm samples mostly
by phospholipids and glycerolipids. However, other lipid categories were required to separate the
disease stages of the cpdm mice samples. Classification of stages was influenced by acylcarnitines,
cholesteryl esters, and sphingolipids. Acylcarnitines are fundamental for β-oxidation by delivering
fatty acids to mitochondria and peroxisomes as an energy source; therefore, their dysregulation could
potentially redirect fatty acids towards increased biosynthesis of phospholipids and other lipids,
rather than being used as a source of energy [59,60]. Acylcarnitines were found dysregulated along
with the phospholipid content in the serum of atopic patients [57]. Acylcarnitines also play a role
in inflammatory processes, and their accumulation has been linked to lipotoxicity that results in
apoptosis [61]. Cholesteryl esters, like acylcarnitines, are carriers of fatty acids and serve to store
cholesterol in lipid droplets for its transport [62,63]. Free cholesterol is an essential constituent of the
epidermis [19]; however, cholesteryl esters are less polar than free cholesterol conferring the skin with
enhanced hydrophobicity for the barrier function [64]. Increased levels of free cholesterol in the skin
of atopic patients [51], along with reduced levels of cholesteryl esters associated with high-density
lipoproteins [65] suggest alterations in systemic cholesterol homeostasis, as reported in cardiovascular
diseases [66]. The data showing an influence of sphingolipids on the classification model reproduces
our previous results in which ceramides were identified as necessary for the classification of samples
from cpdm mice with advanced dermatitis [31]. Changes in ceramide content are correlated with
impaired barrier function and increased transepidermal water loss [51,67]. They are also associated
with the disease severity, resulting in considerable changes in lesional compared to non-lesional
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skin [68]. Interestingly, sphingosine was an exception as its concentration was increased more in
non-lesional than in lesional skin.

This study demonstrated an association between the presence of particular lipids in the epidermis
and the occurrence of chronic proliferative dermatitis in mice. The link was displayed by a data-driven
selection of MRM-extracted lipid features, training of a classifier, and identifying the key features
contributing to the high classification accuracy. Although the presented procedure relies entirely on a
statistical model, we hypothesize that the selected features will contribute to mechanistic insights if
studied further. This argument is built upon the notion that the lipids providing high classification
accuracy must be involved in the processes causing the phenotypic changes. Given that the lipid
composition fingerprint differed not only between visibly lesional cpdm skin specimens and controls
but was also altered in asymptomatic samples, the identified lipids could be considered candidates
for predictive disease biomarkers. The current study involved an exploratory screening design that
compares the lipid profiles of the groups using similar amounts of samples. The data analysis was
performed employing compositional (relative) representation. Our study’s scope did not include the
validation of informative lipids by LC-MS/MS with the addition of internal standards; therefore, the
isotopic and isobaric overlap may have occurred, and other lipids than the ones labeled with tentative
attributions may have contributed to the reported predictive features. However, our previous work
utilizing the relative amounts of ceramides demonstrated a concurrence between the relative values
and the results obtained using quantitative LC-MS/MS [31]. Our analysis showed that not a single
lipid (or lipid category) is modified sufficiently to be the sole differentiating factor. The accurate
separation between healthy and diseased animals required an entire vector of lipid features, including
phospholipids, acylcarnitines, cholesteryl esters, and sphingolipids. This result points to a multifaceted
and multivariate nature of AD-associated lipid alterations in the skin.

The reliance on a classification tool to extract the most predictive lipids also defines the limitation
of the presented approach. The task becomes particularly challenging when facing a severe class
imbalance, as in the case of disease progression [69]. It is evident that sample availability determines the
training performance, which in turn affects the robustness of the feature selection. We are aware of this
limitation and hope that continuing research will allow for larger sample sizes, and correspondingly
more confident analysis.

4. Materials and Methods

4.1. Animals

72 male and female C57BL/KaLawRij-Sharpincpdm/Sharpincpdm RijSunJ (cpdm) mice and WT
littermates were obtained from the Jackson Laboratory and housed at 2 to 4 animals per box with
food (Envigo) and water ad libitum. Room temperature was maintained at 20 ± 2 ◦C and relative
humidity at 50 ± 15% with a 12/12-h light/dark cycle. Then, 18 WT males and 18 WT females and their
cpdm littermates were divided into three groups of six males and six females with different ages and
disease stages. The disease progression corresponded to non-lesional (5 weeks of age), established
(7 weeks), and advanced (10 weeks) stages. Mice from the non-lesional group had no clinical signs of
dermatitis on the dorsal or abdominal skin. The mice in the established group displayed erythema,
moderate scaling, and mild alopecia of the dorsal and ventral skin. At 10 weeks, dermatitis covered
most of the body with significant hair loss, erythema, thickening, and scaling. Mice were euthanized at
5, 7, or 10 weeks of age by CO2 asphyxiation and cervical dislocation. The animal experiments and
procedures were conducted in accordance with the Guide for the Care and Use of Laboratory Animals
of the National Institutes of Health. The protocol was approved by the Purdue University Animal
Care and Use Committee (PACUC protocol 111001019).
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4.2. Epidermis Isolation and Lipid Extraction

Sample collection and lipid extraction were performed as previously described [31]. Briefly,
a 1 by 2 cm slice of dorsal skin was collected, and after incubation with Thermolysin (from Geobacillus
stearothermophilus, Sigma-Aldrich, St. Louis, MO, USA) dissolved in HEPES buffer, the epidermis was
peeled off and stored at −80 ◦C until extraction. Tissue was weighed and homogenized in 250 μL of
ultra-pure water using Precellys24 tissue homogenizer (Bertin Technologies, Rockville, MD, USA).
The homogenate was submitted to a Bligh and Dyer [70] liquid–liquid extraction, and the organic phase
was collected and dried in a concentrator. Samples were resuspended in 40 μL of 3:1 (v/v) acetonitrile
(ACN)/chloroform, then diluted 50×with ACN/methanol/ammonium acetate 300 mM at 3:6.65:0.35
volume ratio for mass spectrometry analysis.

4.3. MRM-Profiling Method Development and Sample Screening

A composite sample of each group from the testing set was created by pooling aliquots of 5 μL
from each specimen in the group. The composite samples were analyzed using a previously described
methodology of MRM-profiling discovery experiments [31]. Briefly, neutral loss (NL) and precursor
ion (Prec) scans were used to profile phospholipids, acylcarnitines (AC), sulfatides, cholesteryl esters,
ceramides, glycerolipids with diverse fatty acid acyl residues, triacylglycerides, and free fatty acids in
positive and negative ion modes [31,71–75]. Using a micro-autosampler (G1367A), 8 μL of the sample
was directly delivered into a QQQ6410 triple quadrupole mass spectrometer (Agilent Technologies,
San Jose, CA, USA) equipped with an ESI ion source. A cap pump (G1376A) was used to flow
acetonitrile plus 0.1% formic acid at a rate of 5 μL/min. The source capillary and multiplier voltages
were 3500 V and 300 V, respectively. The collision energy voltage was 2 V for the negative ion
mode methods. In positive ion mode, the collision energies varied according to the lipid classes.
For ceramides, phosphatidylethanolamines (PE), and lipids with arachidonate acyl residue and oleate
acyl residue, the collision energy was set at 22 V, for phosphatidylcholines and sphingomyelins
(SM) at 20 V, for phosphatidylserines (PS) and phosphatidylinositols (PI) at 16 V, for CE at 17 V
and for acylcarnitines the collision energy was set at 30 V. The fragmentation voltage of all the
methods was 100 V. In total, 80 different discovery scans were performed, producing 1030 informative
lipid ions. The parent and the fragment were collected and organized as transitions in 6 different
methods of 2 min each (Table S2). The individual samples were flow-injected 6 times to cover all the
monitored lipid ions. The raw data files are deposited in the public proteomics repository MassIVE
(http://massive.ucsd.edu) using the identifier: MSV000083884. The tentative identification of lipid
ions was performed through MS/MS experiments and by using reference databases, such as the Lipid
Maps database (http://www.lipidmaps.org/) and METLIN (https://metlin.scripps.edu). Validation of
the method by liquid chromatography-mass spectrometry has been previously reported along with the
linearity and dynamic range of over four orders of magnitude from 1 to 10,000 ppm [31].

4.4. Data Analysis

Using MSConvert (http://proteowizard.sourceforge.net), the files were converted into the mzML
open-source format, and an in-house script was used to obtain the ion intensities of each m/z monitored.
The relative amounts of each m/z were used for data analysis.

The visualization and subsequent selection of lipid categories /groups and individual lipid ions
associated with the cpdm genotype were performed following normalization of the signals to 1 using
the total ion count and subsequent transformation using the isometric log-ratio function or centered
log-ratio function. For visualization of all the overall characteristics of the data, the pre-processed
input was compressed using singular value decomposition. The resultant first two compositional
principal components were employed to illustrate the tendency of the samples to separate themselves
in the reduced dimensionality space into clusters according to the sex, the genotype, and the disease
severity [76].
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4.4.1. Selection of Predictive Lipid Categories

To identify the categories of lipids associated with the sex or genotype, the pre-processing and
compression were followed by a two-tier selection including a univariate step, and a multivariate step
driven by ENET regression.

In the beginning, the measured lipid ions were annotated and assigned to one of the following
categories: (1) acylcarnitine, (2) acylcarnitine or glycerolipids, (3) cholesteryl esters, (4) DAG,
(5) glycerolipids, (6) phospholipids, (7) phospholipids or cholesteryl esters, (8) phospholipids or
glycerolipids, (9) sphingolipids, and (10) sphingolipids or glycerolipids. The overlap in categories
reflects the uncertainty of the attribution due to the use of only one MRM related to a lipid candidate.
Each of the sub-dataset was compressed using SVD to create compressed features sets. The number
of retained columns (and by extension, the number of principal components used to represent the
categories) was selected to retain 95% of the variance in each category. Therefore, the number of
reduced composite features per class varied from 4 to 21. The resultant composite features for every
lipid class were named “CPC”, followed by the component number. For instance, “sphingolipids CPC
4” denotes the fourth principal component of the log-ratio transformed sphingolipids-class data.

It is important to emphasize that the SVD of the compositional data was not utilized here to enable
a PCA-driven feature selection, but rather to produce a highly compressed input for the separate
feature selection step. In other words, we are not claiming a direct association between the lipids
that happen to display the most variation and the lipids (or lipid classes) that are most likely to be
predictive and biologically significant.

The described data reduction process resulted in the creation of 57 compressed lipid-class features
describing each of the samples. Subsequently, 57 linear models linking the computed features with sex,
and another 57 models linking the features with the genotype (cpdm vs. control) were created. Finally,
the third set of 57 linear models was computed to relate the features with the disease progression of cpdm
mice (using the class assignment of control < non-lesional < established < advanced disease status).
Benjamini–Hochberg p-value adjustment [77] was used to correct for false discovery. The features
associated with genotype models having p-value < 0.05 (and η2 effect sizes ranging from 0.73 to 0.1)
were picked for the further feature selection step. For the sex-dependent changes in lipids, we also
picked features with p-value < 0.05 (and η2 effect sizes from 0.22 to 0.12).

4.4.2. Feature Selection of Predictive Individual Lipid Ions

In a similar procedure, in order to recover the most predictive individual lipid ions (rather than
lipid categories), we first created 1,030 linear models linking the log-ratio transformed relative amounts
of every transition to genotype and sex. We pre-selected the features that might be associated with
disease progression (either in sex-dependent or sex-independent manner) by selecting p-value < 0.01 for
the criteria that were included and p-value > 0.05 for the factors that were ruled out. The lipids present
in linear models connecting significantly with disease progression after Benjamini–Hochberg p-value
adjustment (p < 0.01), but not being significant for sex (p > 0.05) were selected as sex-independent
predictive lipids. About 50 ions were selected as possibly predictive and represented η2 effect sizes
ranging from 0.724 to 0.29.

4.4.3. Predictive Elastic Net Regression

The final but critical step of these feature selection procedures involved the use of ENET
regression [78]. ENET was employed either as a binary (for sex and cpdm vs. WT separation) or a
multiclass classifier. This regression approach includes LASSO L1 and ridge L2 penalty terms leading to
a predictive model operating in a reduced dimensionality of the data produced by the MRM-profiling:

β̂ = argmin
β

(
‖y−Xβ‖2 + λ((1−α)‖β‖2/2 + α‖β‖1)

)
(1)
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In the ENET formula above, the input matrix X consists of all the pre-selected measured lipid ions
(or pre-selected composite lipid categories), the output vector y describes the stages of the disease,
and α, λ ≥ 0 are tuning parameters. The penalties included in the mathematical model are in the ‖β‖1
term which generates a sparse model by shrinking some regression coefficients to zero and, in the
‖β‖2 term which removes the limitation on the number of selected variables but encourages grouping
effect, allowing similar features to be selected together. The individual lipid ions or the composite
lipid categories with the larger absolute value of β are considered to be more predictive. The ENET
simplifies to ridge regression when α = 1 and to the LASSO regression when α = 0.

The ENET regression was trained using the leave-one-out approach. Due to significant data
imbalance, we used class weights (imposing a lesser penalty for errors in the majority class) or
the SMOTE approach during training [79]. The resultant classifier allowed us to rank the lipid
ions in terms of importance (ability to influence ENET prediction) using the absolute value of the
non-zero coefficients.

To visualize the changes in the selected features, a central log-ratio transformation followed
by standardization to the female WT subgroup was performed. Therefore, the y-axis in the figures
shows the difference in relative lipid abundance as the number of standard deviations away from the
WT-female group. The multiclass ENET prediction was illustrated using a parallel plot.

The statistical analyses were performed using R-language for statistical computing.

5. Conclusions

In this study, we paired an exploratory high-throughput lipidomics technique with rigorous
machine learning analysis to rapidly screen for potential biomarkers in a mouse model of dermatitis.
The measurements were performed using flow injection to the ion source of a triple quadrupole mass
spectrometer, providing highly sensitive, but low-resolution mass data. The exploratory approach
relied on product ions and neutral losses expected to be specific to the lipid classes, but not individual
lipids; therefore, the detected lipids are assigned only tentative attributions. The approach revealed
sexual dimorphism in the epidermal lipid profile, which was distributed throughout the lipid categories
and identified sphingolipids as the best predictors for sex classification. Furthermore, epidermal lipid
analysis allowed accurate classification of samples, not only by the genotype of the mice, cpdm vs. WT,
but by the stages of disease progression. A panel of lipids comprised of phospholipids, acylcarnitines,
sphingolipids, and cholesteryl esters was necessary to achieve successful classification into the different
disease stages, showing that a single lipid or lipid category was not altered sufficiently to be the sole
classifier. These results highlight the need to consider sex-related differences in the pathobiology of
AD and the importance of building lipid panels that include lipids from different categories when
investigating predictive biomarkers for AD.
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Abstract: Typical lipidomics methods incorporate a liquid–liquid extraction with LC–MS quantitation;
however, the classic sample extraction methods are not high-throughput and do not perform well
at extracting the full range of lipids especially, the relatively polar species (e.g., acyl-carnitines and
glycosphingolipids). In this manuscript, we present a novel sample extraction protocol, which produces
a single phase supernatant suitable for high-throughput applications that offers greater performance
in extracting lipids across the full spectrum of species. We applied this lipidomics pipeline to a
ruminant fat dose–response study to initially compare and validate the different extraction protocols
but also to investigate complex lipid biomarkers of ruminant fat intake (adjoining onto simple odd
chain fatty acid correlations). We have found 100 lipids species with a strong correlation with
ruminant fat intake. This novel sample extraction along with the LC–MS pipeline have shown to
be sensitive, robust and hugely informative (>450 lipids species semi-quantified): with a sample
preparation throughput of over 100 tissue samples per day and an estimated ~1000 biological fluid
samples per day. Thus, this work facilitating both the epidemiological involvement of ruminant
fat, research into odd chain lipids and also streamlining the field of lipidomics (both by sample
preparation methods and data presentation).

Keywords: odd chain lipids; lipid profiling; Folch; protein precipitation; sample preparation; relative
lipid composition (Mol%)

1. Introduction

Lipids are generally understood as a class of molecules that have a high solubility in organic
solvents and typically contain or originate from fatty acids. Although, lipids may be commonly
derived, research has shown that there is a huge variety both structurally and functionally (potentially
>40,000 [1]); where they play a vital role in energy production and storage [2,3], regulation and
signalling [4,5], provide structure and support and membrane formation [6]. Lipids are now emerging
as biomarkers of dietary/nutritional intakes [7] as well as indicators of pathophysiological status [8–11].
As a reaction of lipid-pathophysiological involvements, the field of lipidomics has emerged as a
discipline that examines and quantifies a large proportion of the lipids present in a given sample set.

Lipidomics requires an effective isolation protocol that comprehensively extracts lipids from the
sample as well as an analytical method that allows their identification and quantitation. The typical
analyte isolation protocols (with/without minor adaptations) that are often used in the literature include
three different liquid–liquid extractions: Folch and colleagues [12] (cited >65,000 times), Bligh and
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Dyer [13] (cited >52,000 times) or Matyash and colleagues [14] (cited >1000 times). Although these
extraction protocols are heavily cited and do result in adequate results, there are several caveats with
their use. Firstly, there is the need to perform duplicate extraction in non-fluid samples to ensure
optimal recovery of the lipid analytes. This is extremely time consuming, especially for the Folch
and the Bligh and Dyer methods. Secondly, there are reasonable concerns that using a biphasic
extraction (producing immiscible aqueous and organic phases) may result in a loss of relatively polar
lipids (e.g., acyl-carnitines and gangliosides) into the disposed aqueous fractions (consisting of mostly
methanol and water in these extraction protocols: Folch and the Bligh and Dyer). There are publications
that use a single phase extraction protocol but they do not appear to solve the problem of extracting
the relatively more polar lipids since a mixture of methanol, chloroform and tert-butyl methyl ether
were used [15,16].

The technique overwhelmingly used tor analysing the lipidome is mass spectrometry hyphenated
with chromatography (LC–MS) due to its sensitivity and selectivity; furthermore by using a
high-resolution accurate mass instrument (e.g., Orbitrap or Time-of-Flight instruments), a huge number
of analytes can be analysed simultaneously. Reversed phase chromatography is the predominant
chromatographic technique employed to separate the analytes before entering the mass spectrometer
to determine their structure and concentration. Variants of a liquid chromatography method utilising a
C18-column with a water and acetonitrile mix for the weak eluting mobile phase and acetonitrile and
propan-2-ol for the strong eluting mobile phase are the most commonly used [17–22]. These reversed
phase C18-column methods both separate lipid based on their lipid class assignment (i.e., either
phosphatidylcholines or phosphatidyethanolamines head group) and their fatty-acyl composition
(i.e., chain length and degree of unsaturation) with some degree of isomeric separation.

In this study, we present a lipidomics pipeline that including a novel analyte isolation protocol
utilising a single phase, which results in a comprehensive lipid extraction suitable for a full range of
lipid polarities (from polar to non-polar lipids species). This lipidomics method was tested, validated
and then applied in a rat model investigating ruminant fat biomarkers via a beef tallow dose response
dietary investigation.

2. Results

This lipidomics LC–MS method incorporating both of the described sample preparation
protocols: protein precipitation (chloroform: methanol: acetone, ~7:3:4) and Folch liquid–liquid
(chloroform: methanol: water, ~7:3:4), were utilised for the quantitation of lipids in liver samples
from Sprague–Dawley rats who received one of four experimental diets overfed at 17% above
matched growth.

A comparison of the two sample preparation methods on the extraction of the stable
isotope-labelled internal standards are shown in the figure below (see Figure 1). A comparison
on the samples’ endogenous individual lipid classes are shown in the Supplementary Materials (see
Supplementary Figure S1 and Table S1).
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Figure 1. This figure shows the comparison between the two lipid extraction techniques regarding
their extraction efficiency of the stable isotope internal standards from the rat liver samples (Folch

liquid–liquid extraction: chloroform: methanol: water, ~7:3:4 , and Protein precipitation liquid

extraction: chloroform: methanol: acetone, ~7:3:4 ). n = 34 rat liver samples per extraction method.
The intensity of the internal standards were measured by liquid chromatography with mass spectrometry.
The significance of the difference between the two extraction protocols are shown by the p-value star
system; where p ≤ 0.05 was considered statistically significant (* p < 0.05, ** p < 0.01, *** p < 0.001).
Error bars represent ± standard deviation. Lipid internal standard include: Butyryl-d7-L-carnitine
(abbreviated to IS_Car_4:0-d7), N-tetradecylphosphocholine-d42 (abbreviated to IS_LPC_14:0-d42),
hexadecanoyl-L-carnitine-d3 (abbreviated to IS_Car_16:0-d3), heptadecanoic-d33 acid
(abbreviated to IS_FA_17:0-d33), 1,2-dimyristoyl-d54-sn-glycero-3-[phospho-L-serine]
(abbreviated to IS_PS_28:0-d54), 1-palmitoyl-d31-2-oleoyl-sn-glycero-3-phosphoinositol
(abbreviated to IS_PI_34:1-d31), N-palmitoyl-d31-D-erythro-sphingosylphosphorylcholine
(abbreviated to IS_SM_34:1-d31), 1-palmitoyl-d31-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)]
(abbreviated to IS_PG_34:1-d31), 1-palmitoyl-d31-2-oleoyl-sn-glycero-3-phosphate (abbreviated
to IS_PA_34:1-d31), N-palmitoyl-d31-D-erythro-sphingosine (abbreviated to IS_Cer_16:0-d31),
1-palmitoyl-d31-2-oleoyl-sn-glycero-3-phosphocholine (abbreviated to IS_PC_34:1-d31),
1-palmitoyl-d31-2-oleoyl-sn-glycero-3-phosphoethanolamine (abbreviated to IS_PE_34:1-d31),
glyceryl tri(pentadecanoate-d29) (abbreviated to IS_TG_45:0-d87).

As shown the intensity of seven of the internal standards are statistically significantly higher
in the protein precipitation protocol when compared to the Folch liquid–liquid protocol (between
~30% to ~2500% higher), whereas, only two of the internal standards were higher in the Folch
liquid–liquid protocol (between ~20% and ~37% higher). Additionally, there is far less variation in
the protein precipitation liquid extraction protocol: 10 out of 13 internal standards had ~2% to ~72%
less variation in their coefficient of variation (CV). The protein precipitation liquid extraction protocol
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has also been shown to produce a significantly higher detection of the samples’ endogenous lipids,
both producing a higher total number of lipid detected (Folch-LLE: 455 lipid species, PPLE: 472 lipid
species) and a statistically significantly higher total intensity for twelve of the sixteen lipid classes
detected (see Supplementary Figure S1 and Table S1). Taken as a whole, the protein precipitation
protocol (chloroform: methanol: acetone, ~7:3:4) showed a greater extraction capability across the
full lipid hydro-philicity/phobicity range and across the internal standards. Additionally, the high
throughput of the protein precipitation protocol allows for over 100 tissue samples to be extracted
per day (including dissection, weighing and tissue extraction ready for LC–MS analysis), whereas,
the Folch liquid–liquid protocol could take up to three- to four-times longer due to the necessity of
duplicate extractions and the delicacy of liquid–liquid phase separation. The throughput of the protein
precipitation protocol (chloroform: methanol: acetone, ~7:3:4) on fluid samples allows an estimated
~1000 biological fluid sample extractions per day (including aliquoting, sample extraction ready for
LC–MS analysis) when utilising basic laboratory fluid handling equipment/robots (throughput data
not shown here).

The liver lipid concentration (nM/mg) for each experimental diet group of rats are shown in the table
below (see Table 1), along with the correlation (trendline equation, slope significance, R2 and successive
change across the groups) of the measured lipid concentration with the percentage composition of
ruminant fat (beef tallow) in each experimental diet. An R2 threshold of 0.75, slope significance
p-value < 0.05 and successive increase/decrease were set to establish if there was a strong correlation
between the lipid concentration and the ruminant fat composition.
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3. Discussion

Out of 472 lipids detected and semi-quantified, 100 showed a strong relationship with the dietary
intake of ruminant fat with 35 species increasing and 65 species decreasing as the percentage of ruminant
fat in the diet increased (NB. ruminant fat as a percentage composition with corn-oil and medium chain
triacylglyceride oil). Interestingly, ceramides generally increased, whilst cardiolipins, sphingomyelins
and triacylglycerides generally decreased as the dietary composition of ruminant fat rose. According
to the literature, a rise in liver ceramides is typically associated with aggravated non-alcoholic fatty
liver disease (NAFLD) and insulin resistance [23], this in conjunction with a decrease in cardiolipins
(which are indicative of mitochondrial remodelling and dysfunction [24]) may suggest that the changes
in the experimental diets here are detrimental for these pathologies. However, there was a clear
decrease in the triacylglycerides (particularly evident in the unsaturated odd chain triacylglycerides),
which is explicitly representative of an ameliorated pathology [25]. As previously published [26],
many NAFLD and insulin resistance factors were mitigated as the ruminant fat increased in these diets,
including: a reduction in the total body weight (g), total fat mass (%), serum ALT (U/mL) and degree
of steatosis determined by Oil Red O staining, notably, the inflammatory marker TNFα did not change
significantly (trend: p-value = 0.52). A key characteristic of NAFLD development is the accumulation
of hepatic triacylglycerides [27]; therefore, the data here suggests that these dietary changes may be
beneficial for NAFLD and insulin resistance by aiding in a reduced hepatic triacylglyceride load:
possible mechanisms here include a lower saturated fatty acid composition resulting in a lower fatty
acid incorporation into hepatic triacylglycerides and/or a higher pass-through of the medium chain
triglyceride oil directly into the mitochondria stimulation fatty acid metabolism [26]. Work presented
by Gonzalez-Cantero and colleagues [28] showed that hepatic triacylglyceride content were correlated
with insulin resistance and these relationships were independently to the inflammatory marker TNFα.
Therefore, it appears that the hepatic triacylglyceride load may be paramount in the development of
NAFLD and insulin resistance, which is supported in the literature [29].

According to the literature, odd chain fatty acids are considered biomarkers of their dietary intake
and particularly accredited as a biomarkers of ruminant fat intake (e.g., milk, butter and beef tallow,
etc.); however, there is a vast amount of conflicting data [2]. Some studies have shown both positive
correlations (either individual odd chain lipids or total odd chain lipids) and some studies have shown
there were no significant correlations. Although these studies may conflict in their findings they all
present their data as relative compositions (Mol%), which is the typical way lipid data appear in the
literature [30]. By expressing the lipid data as relative compositions (Mol%), it normalises the data to
the total fat in that sample; however, presenting the lipid data in this way confounds the results by
interconnecting the individual data points. This interconnection can cause false positive and/or false
negative conclusions (type 1 and 2 errors), i.e., if a single lipid increases it will artificially decrease the
other(s) due to the Mol% calculation. As shown in the figure below (see Figure 2), the concentration of
the total lipids containing either even chain or odd chain fatty acids and a combination are shown.
Although lipids containing odd chain fatty acids did increase, albeit not statistically significantly;
p-value: 0.197, it was also not proportionate to the increase in dietary ruminant fat. As shown, the
lipids containing even chain fatty acids did significantly inversely decrease (slope p-value: 0.0189) as
the dietary ruminant fat increased. Interestingly, due to both the decrease in the even chain lipids and
the consistency of the odd chain lipids, if the relative composition (Mol%) of the lipids were calculated,
there appears to be a statistically significant increase in the odd chain lipids (see Figure 3); however,
this is an artefact of changes in the even chain lipids and a consequence of interconnecting the data.
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Figure 2. This figure shows the change in the liver lipid concentrations across the four high-fat diets
fed to Sprague–Dawley rats (n = 8–9 per group): total odd chain lipids (symbol: X, trendline: ,
gradient: 0.183 ± 0.0962, R2 = 0.64, slope significance p-value: 0.197); total even chain lipids (symbol:

, trendline: , gradient: −41.0 ± 5.71, R2 = 0.963, slope significance p-value: 0.0189); total lipids
containing both even and of odd chain (symbol: O, trendline: , gradient: −40.8 ± 5.79, R2 = 0.961,
slope significance p-value: 0.0195. Lipid concentrations (μM/mg) are shown as means ± standard
deviation and were extracted via the protein precipitation liquid extraction protocol (chloroform:
methanol: acetone, ~7:3:4).

Figure 3. This figure shows the relative compositional (Mol%) change in the total odd chain lipids
(symbol: X, trendline: , gradient: 0.0604 ± 0.00203, R2 = 0.998, slope significance p-value: 0.0011)

and the total even chain lipids (symbol: , trendline: , gradient: −0.0604 ± 0.00203, R2 = 0.998,
slope significance p-value: 0.0011) across the four high-fat diets in Sprague–Dawley rats (n = 8–9 per
group). Lipid compositions (Mol%) are shown as means ± standard deviation and were extracted via
the protein precipitation liquid extraction protocol (chloroform: methanol: acetone, ~7:3:4). Diet one:
3.6% beef tallow; diet two: 6.3% beef tallow; diet three: 9.0% beef tallow; diet four: 11.7% beef tallow.

4. Materials and Methods

4.1. Chemicals and Standards

Stable isotope-labelled internal standards purchased from Sigma Aldrich (Haverhill, Suffolk, UK)
include: N-palmitoyl-d31-D-erythro-sphingosine (abbreviated to IS_Cer_16:0-d31); order number:
868516P, 1-palmitoyl-d31-2-oleoyl-sn-glycero-3-phosphate (abbreviated to IS_PA_34:1-d31);
order number: 860453P, 1-palmitoyl-d31-2-oleoyl-sn-glycero-3-phosphocholine (abbreviated to
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IS_PC_34:1-d31); order number: 860399P, 1-palmitoyl-d31-2-oleoyl-sn-glycero-3-phosphoethanolamine
(abbreviated to IS_PE_34:1-d31); order number: 860374P, 1-palmitoyl-d31-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)]
(abbreviated to IS_PG_34:1-d31); order number: 860384P, 1-palmitoyl-d31-2-oleoyl-sn-glycero-3-phosphoinositol
(abbreviated to IS_PI_34:1-d31); order number: 860042P, 1,2-dimyristoyl-d54-sn-glycero-3-[phospho-L-serine]
(abbreviated to IS_PS_28:0-d54); order number: 860401P, N-palmitoyl-d31-D-erythro-sphingosylphosphorylcholine
(abbreviated to IS_SM_34:1-d31); order number: 868584P. Stable isotope-labelled internal
standards purchased from QMX Laboratories Ltd. (QMX Laboratories Ltd., Thaxted, Essex,
UK) include: Heptadecanoic-d33 acid (abbreviated to IS_FA_17:0-d33); order number: D-5261,
N-tetradecylphosphocholine-d42 (abbreviated to IS_LPC_14:0-d42); order number: D-5885, Glyceryl
tri(pentadecanoate-d29) (abbreviated to IS_TG_45:0-d87); order number: D-5265, Butyryl-d7-L-carnitine
(abbreviated to IS_Car_4:0-d7); order number: D-7761, Hexadecanoyl-L-carnitine-d3 (abbreviated to
IS_Car_16:0-d3); order number: D-6646.

Quality control standards (LIPID-QC) purchased from Cayman Chemical Company (Cambridge
Bioscience, Cambridge, UK) include: Lysophosphatidylcholines (egg); order number: 24331,
Phosphotidylcholines (egg); order number: 24343, Lysophosphatidylethanolamines (egg); order
number: 25844, Phosphatidylethanolamines (bovine); order number: 16878, Phosphotidlethanolamine
(soy); order number: 25845, Lysophosphatidyinositols (porcine liver); order number: 26016,
Phosphatidylserines (soy); order number: 25847, Ceramides mixture; order number: 22853, Ceramides
(non-hydroxy); order number: 24833, Ceramides (hydroxy); order number: 24834, Sphingomyelins
(from bovine spinal cord); order number: 22674, Sphingomylins (egg); order number: 24345,
Phosphatidylglycerols (egg); order number: 25846, Phosphatidic acid (egg); order number: 24344,
Sulfatides (bovine); order number: 24323, Purified mixed gangliosides (bovine); order number: 24856,
TLC Neutral Glycosphingolipid Mixture (bovine and porcine); order number: 1505, 2-Palmitoyl
Glycerol; order number: CAY17882, 1,2-Dipalmitoyl-sn-glycerol; order number: CAY10008648. Quality
control standards purchased from Sigma Aldrich include: Soy PC (95%); order number: 441601G,
C18(Plasm)-18:1-PC; order number: 852467C, Brain CPE; order number: 860066P, Liver PI; order
number: 840042P, Brain lyso PS; order number: 850092P, Milk SM Sphingomyelin (Milk, Bovine); order
number: 860063P, Galactocerebrosides from bovine brain; order number: C4905, Glucosylceramide
(Soy); order number: 131304P, Triglyceride mix, C2–C10; order number: 17810-1amp-s, Fish oil from
menhaden; order number: F8020, Anhydrous butter fat, Cardiolipin solution from bovine heart; order
number: C1649, Brain PI(4)P; order number: 840045P.

Commercially available blank human serum was purchased from BioIVT (Royston, Hertfordshire,
UK; order number: HUMANSRMPNN. All solvents and additives were of HPLC grade or higher and
purchased from Sigma Aldrich unless otherwise stated.

LIPID-IS: the lipid stable isotope-labelled internal standard was prepared by dissolving each of the
individual lipid standards into chloroform: methanol (1:1) solution to produce a 1 mM primary stock
solution. From each of these stock solutions, 1 mL was transferred into a volumetric flask and diluted
with methanol to reach a final working solution concentration of 5 μM in methanol of IS_Cer_16:0-d31,
IS_FA_17:0-d33, IS_LPC_14:0-d42, IS_PA_34:1-d31, IS_PC_34:1-d31, IS_PE_34:1-d31, IS_PG_34:1-d31,
IS_PI_34:1-d31, IS_PS_28:0-d54, IS_SM_34:1-d31, IS_TG_45:0-d87.

ACYL-CARNITINE-IS: the acyl-carnitine stable isotope-labelled internal standard was prepared
by dissolving each powdered stock into methanol to achieve a 5 mM stock solution. Taking 1 mL of
the IS_Car_4:0-d7 and IS_Car_16:0-d3 stock solutions and diluting these into methanol until a final
working solution of 5 μM was achieved for IS_Car_4:0-d7 and IS_Car_16:0-d3.

LIPID-QC: the lipid quality control standards were prepared by diluting each lipid mix to achieve
a 50 μg/mL working stock solution in propan-2-ol: acetonitrile: water (2:1:1, respectively).

4.2. Extraction

Lipids were isolated comparing two methods; firstly, a novel protein-precipitation liquid extraction
and secondly the liquid–liquid extraction previously described by Folch and colleagues [12] in an
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adapted version as we described previously [31]. Tissue quantities ranged from ~2–50 mg and fluid
samples from 10–50 μL (e.g., plasma/serum) were tested (data not shown here).

4.2.1. Protein Precipitation Liquid Extraction Protocol (PPLE)

The protein-precipitation liquid extraction protocol was as follows: the tissue samples were
weighed (NB. fluid samples were pipetted) and transferred into a 2 mL screw cap Eppendorf plastic
tube (Eppendorf, Stevenage, UK) along with a single 5 mm stainless steel ball bearing. Immediately,
400 μL of chloroform: methanol (2:1, respectively) solution was added to each sample, followed by
thorough mixing. The samples were then homogenised in the chloroform: methanol (2:1, respectively)
using a Bioprep 24-1004 homogenizer (Allsheng, Hangzhou, China) run at speed; 4.5 m/s, time; 30 s
for 2 cycles. Then, 400 μL of chloroform, 100 μL of the LIPID-IS (5 μM in methanol) and 100 μL of
the CARNITINE-IS (5 μM in methanol) was added to each sample. The samples were homogenised
again using a Bioprep 24-1004 homogenizer run at speed; 4.5 m/s, time; 30 s for 2 cycles. To ensure
fibrous material was diminished, the samples were sonicated for 30 min in a water bath sonicator
(Advantage-Lab, Menen, Belgium). Then, 400 μL of acetone was added to each sample. The samples
were thoroughly vortexed and centrifuged for 10 min at ~20,000× g to pellet any insoluble material
at the bottom of the vial. The single layer supernatant was pipetted into separate 2 mL screw cap
amber-glass auto-sampler vials (Agilent Technologies, Cheadle, UK); being careful not to break up the
solid pellet at the bottom of the tube. The organic extracts (chloroform, methanol, acetone composition,
~1.4 mL) were dried down to dryness using a Concentrator Plus system (Eppendorf, Stevenage, UK)
run for 60 min at 60 ◦C. The samples were reconstituted in 100 μL of 2:1:1 (propan-2-ol, acetonitrile and
water, respectively) then thoroughly vortex. The reconstituted sample was transferred into a 250 μL
low-volume vial insert inside a 2 mL amber glass auto-sample vial ready for liquid chromatography
with mass spectrometry detection (LC–MS) analysis.

4.2.2. Folch Liquid–Liquid Extraction Protocol (Folch LLE)

The Folch liquid–liquid extraction protocol is as follows: the tissue samples were weighed
(NB. fluid samples were pipetted) and transferred into a 2 mL screw cap Eppendorf plastic tube
(Eppendorf, Stevenage, UK) along with a single 5 mm stainless steel ball bearing. Immediately, 400 μL
of chloroform: methanol (2:1, respectively) solution was added to each sample, followed by thorough
mixing. The samples were then homogenised in the chloroform: methanol (2:1, respectively) using
a Bioprep 24-1004 homogenizer (Allsheng, Hangzhou, China) run at speed; 4.5 m/s, time; 30 s for
2 cycles. Then, 400 μL of chloroform, 100 μL of the LIPID-IS (5 μM in methanol) and 100 μL of the
ACYL-CARNITINE-IS (5 μM in methanol) was added to each sample. The samples were homogenised
again using a Bioprep 24-1004 homogenizer run at speed; 4.5 m/s, time; 30 s for 2 cycles. To ensure
fibrous material was diminished, the samples were sonicated for 30 min in a water bath sonicator.
Then, 400 μL of HPLC water was added to each samples. The samples were thoroughly vortexed and
centrifuged for 10 min at ~20,000 g to separate the two immiscible fractions. The organic fractions
(the lower layer, mostly chloroform; ~700 μL) and aqueous fractions (the upper layer, methanol
and water; ~700 μL) were pipetted into separate 2 mL screw cap amber-glass auto-sampler vials
(Agilent Technologies, Cheadle, UK); being careful not to break up the solid pellet between the layers.
To ensure complete lipid isolation a double extraction protocol was followed; 1 mL of chloroform:
methanol (2:1, respectively) solution was added to each sample, along with 400 μL of HPLC water. The
samples were thoroughly vortexed and centrifuged for 10 min at ~20,000× g. The organic fractions and
aqueous fractions were pipetted into the corresponding 2 mL screw cap amber-glass auto-sampler vials
containing the initial extracts (again being careful not to break up the solid pellet between the layers).
The combined organic extracts (~1.4 mL) were dried down to dryness using a Concentrator Plus system
(Eppendorf, Stevenage, UK) run for 60 min at 60 ◦C. The samples were reconstituted in 100 μL of 2:1:1
(propan-2-ol, acetonitrile and water, respectively) then thoroughly vortex. The reconstituted sample
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was transferred into a 250 μL low-volume vial insert inside a 2 mL amber glass auto-sample vial ready
for liquid chromatography with mass spectrometry detection (LC–MS) lipidomics analysis.

4.3. LC–MS Method

Full chromatographic separation of intact lipids was achieved using a Shimadzu HPLC System
(Shimadzu UK Limited, Milton Keynes, UK) with the injection of 10 μL onto a Waters Acquity UPLC®

CSH C18 column (Waters, Hertfordshire, UK); 1.7 μm, I.D. 2.1 mm × 50 mm, maintained at 55 ◦C.
Mobile phase A was 6:4, acetonitrile and water with 10 mM ammonium formate. Mobile phase B
was 9:1, propan-2-ol and acetonitrile with 10 mM ammonium formate. The flow was maintained
at 500 μL per minute through the following gradient: 0.00 min_40% mobile phase B; 0.40 min_43%
mobile phase B; 0.45 min_50% mobile phase B; 2.40 min_54% mobile phase B; 2.45 min_70% mobile
phase B; 7.00 min_99% mobile phase B; 8.00 min_99% mobile phase B; 8.3 min_40% mobile phase
B; 10 min_40% mobile phase B. The sample injection needle was washed using 9:1, 2-propan-2-ol
and acetonitrile. The mass spectrometer used was the Thermo Scientific Exactive Orbitrap with a
heated electrospray ionisation source (Thermo Fisher Scientific, Hemel Hempstead, UK). The mass
spectrometer was calibrated immediately before sample analysis using positive and negative ionisation
calibration solution (recommended by Thermo Scientific). Additionally, the heated electrospray
ionisation source was optimised at 50:50 mobile phase A to mobile phase B for spray stability (capillary
temperature; 300 ◦C, source heater temperature; 420 ◦C, sheath gas flow; 40 (arbitrary), auxiliary gas
flow; 15 (arbitrary), spare gas; 3 (arbitrary), source voltage; 4 kV. The mass spectrometer scan rate set at
4 Hz, giving a resolution of 25,000 (at 200 m/z) with a full-scan range of m/z 100 to 1800 with continuous
switching between positive and negative mode.

4.4. Data Processing

Thermo Xcalibur Quan Browser (Thermo Fisher Scientific, Hemel Hempstead, UK) data processing
involved the integration of the internal standard extracted ion chromatogram (EIC) peaks at the expected
retention times (see Table 2). The EIC were selected from the ionisation mode for each analyte class; the
ionisation mode is dependent on the molecular chemistry of the analytes, i.e., basic chemical groups
ordinarily result in positive ionisation (e.g., [M+H]+, M+H-H2O]+, [M+Na]+, [M+NH4]+, [M+K]+)
whereas acidic chemical groups typically result in negative ionisation (e.g., [M-H]−).

Table 2. This table shows the stable isotope-labelled internal standards with their ionisation
products (i.e., [M+H]+, M+H-H2O]+, [M+Na]+, [M+NH4]+, [M+K]+, [M-H]−) and primary
ionisation mode (positive; +ve or negative; −ve), along with their retention time (minutes).
Butyryl-d7-L-carnitine (abbreviated to IS_Car_4:0-d7), N-tetradecylphosphocholine-d42 (abbreviated
to IS_LPC_14:0-d42), hexadecanoyl-L-carnitine-d3 (abbreviated to IS_Car_16:0-d3), heptadecanoic-d33
acid (abbreviated to IS_FA_17:0-d33), 1,2-dimyristoyl-d54-sn-glycero-3-[phospho-L-serine]
(abbreviated to IS_PS_28:0-d54), 1-palmitoyl-d31-2-oleoyl-sn-glycero-3-phosphoinositol
(abbreviated to IS_PI_34:1-d31), N-palmitoyl-d31-D-erythro-sphingosylphosphorylcholine
(abbreviated to IS_SM_34:1-d31), 1-palmitoyl-d31-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)]
(abbreviated to IS_PG_34:1-d31), 1-palmitoyl-d31-2-oleoyl-sn-glycero-3-phosphate (abbreviated
to IS_PA_34:1-d31), N-palmitoyl-d31-D-erythro-sphingosine (abbreviated to IS_Cer_16:0-d31),
1-palmitoyl-d31-2-oleoyl-sn-glycero-3-phosphocholine (abbreviated to IS_PC_34:1-d31),
1-palmitoyl-d31-2-oleoyl-sn-glycero-3-phosphoethanolamine (abbreviated to IS_PE_34:1-d31),
glyceryl tri(pentadecanoate-d29) (abbreviated to IS_TG_45:0-d87).

Internal Standard Ionisation Product (m/z)
Ionisation

Mode
Expected Retention

Time (mins)

IS_Car_4:0-d7 239.1983 +ve 0.3
IS_LPC_14:0-d42 422.5560, 421.5498, 420.5435 +ve 0.4
IS_Car_16:0-d3 403.3610 +ve 0.5
IS_FA_17:0-d33 302.4557, 301.4495, 300.4432 −ve 1.1
IS_PS_28:0-d54 732.7741, 731.7678, 730.7615, 729.7553, 728.7490 −ve 1.4
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Table 2. Cont.

Internal Standard Ionisation Product (m/z)
Ionisation

Mode
Expected Retention

Time (mins)

IS_PI_34:1-d31 864.7162, 865.7225, 866.7288 −ve 2.9
IS_SM_34:1-d31 733.7632, 734.7670, 755.7451, 756.7514, 771.7190, 772.7253 +ve 3.0
IS_PG_34:1-d31 775.6939, 776.7002, 777.7065, 778.7127 −ve 3.0
IS_PA_34:1-d31 700.6509, 701.6571, 702.6634, 703.6697, 704.6760 −ve 3.4

IS_Cer_16:0-d31 548.6851, 549.6914, 550.6977, 551.7039, 566.6951, 567.7014,
568.7076, 569.7139, 590.6896, 591.6959, 606.6636, 607.6698 +ve 3.9

IS_PC_34:1-d31 790.7700, 791.7750, 812.7553, 813.7616, 828.7292, 829.7355 +ve 3.9

IS_PE_34:1-d31 747.7181, 748.7254, 749.7327, 769.7021, 770.7084, 771.7146,
785.6760, 786.6823, 787.6886 +ve 4.0

IS_TG_45:0-d87
850.2239, 851.2301, 852.2364, 853.2427, 867.2504, 868.2567,
869.2630, 870.2693, 872.2059, 873.2121, 874.2184, 875.2247,

888.1798, 889.1861, 890.1923, 891.1986
+ve 5.8

As shown in the table above (see Table 2), the internal standards have multiple ionisation products,
these are the result of numerous ionisation mechanism (for example IS_TG_45:0-d87 having different
adducts: [M+H]+, [M+Na]+, [M+K]+ and [M+NH4]+, present) as well as an isotopic distribution
(e.g., IS_TG_45:0-d87 having either the expected eighty-seven or fewer deuterium atoms present) all
reasonably expected ions were included into the EIC for each internal standard (see Figure 4).
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Figure 4. This figure shows a spiked (5 μM in methanol) commercial human plasma
extracted ion chromatogram (EIC) for the stable isotope-labelled internal standards (lipids and
acyl-carnitines): butyryl-d7-L-carnitine (abbreviated to IS_Car_4:0-d7); area ~5.9 × 106 counts,
N-tetradecylphosphocholine-d42 (abbreviated to IS_LPC_14:0-d42); are ~2.1 × 108 counts,
hexadecanoyl-L-carnitine-d3 (abbreviated to IS_Car_16:0-d3); area ~5.8 × 108 counts,
heptadecanoic-d33 acid (abbreviated to IS_FA_17:0-d33); area ~1.1 × 104 counts, 1,2-dimyristoyl-d54-
sn-glycero-3-[phospho-L-serine] (abbreviated to IS_PS_28:0-d54); area ~2.2 × 107 counts,
1-palmitoyl-d31-2-oleoyl-sn-glycero-3-phosphoinositol (abbreviated to IS_PI_34:1-d31): area ~1.1 × 107

counts, N-palmitoyl-d31-D-erythro-sphingosylphosphorylcholine (abbreviated to IS_SM_34:1-d31);
1.4 × 108 counts, 1-palmitoyl-d31-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (abbreviated
to IS_PG_34:1-d31); area ~6.1 × 107 counts, 1-palmitoyl-d31-2-oleoyl-sn-glycero-3-phosphate
(abbreviated to IS_PA_34:1-d31); area ~1.3 × 107 counts, N-palmitoyl-d31-D-erythro-sphingosine
(abbreviated to IS_Cer_16:0-d31); area ~2.2 × 108 counts, 1-palmitoyl-d31-2-oleoyl-sn-glycero-3-
phosphocholine (abbreviated to IS_PC_34:1-d31); area ~2.5 × 108 counts, 1-palmitoyl-d31-2-oleoyl-
sn-glycero-3-phosphoethanolamine (abbreviated to IS_PE_34:1-d31); area ~6.3 × 107 counts, glyceryl
tri(pentadecanoate-d29) (abbreviated to IS_TG_45:0-d87); area ~3.2 × 107 counts.
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The adduct composition of the total EIC produced from each of the ionisation mechanisms are
shown in the figure below (see Figure 5).

Figure 5. This figure shows the intensity of the extracted ion chromatogram for each
stable isotope-labelled internal standard along with the ionisation adduct composition:
[M+H]+, [M+H-H2O]+, [M+NH4]+, [M+Na]+, [M+K]+ and [M-H]−. Butyryl-d7-L-carnitine
(abbreviated to IS_Car_4:0-d7), N-tetradecylphosphocholine-d42 (abbreviated to IS_LPC_14:0-d42),
hexadecanoyl-L-carnitine-d3 (abbreviated to IS_Car_16:0-d3), heptadecanoic-d33 acid (abbreviated
to IS_FA_17:0-d33), 1,2-dimyristoyl-d54-sn-glycero-3-[phospho-L-serine] (abbreviated to
IS_PS_28:0-d54), 1-palmitoyl-d31-2-oleoyl-sn-glycero-3-phosphoinositol (abbreviated to
IS_PI_34:1-d31), N-palmitoyl-d31-D-erythro-sphingosylphosphorylcholine (abbreviated to
IS_SM_34:1-d31), 1-palmitoyl-d31-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (abbreviated
to IS_PG_34:1-d31), 1-palmitoyl-d31-2-oleoyl-sn-glycero-3-phosphate (abbreviated to
IS_PA_34:1-d31), N-palmitoyl-d31-D-erythro-sphingosine (abbreviated to IS_Cer_16:0-d31),
1-palmitoyl-d31-2-oleoyl-sn-glycero-3-phosphocholine (abbreviated to IS_PC_34:1-d31),
1-palmitoyl-d31-2-oleoyl-sn-glycero-3-phosphoethanolamine (abbreviated to IS_PE_34:1-d31),
glyceryl tri(pentadecanoate-d29) (abbreviated to IS_TG_45:0-d87).

The data processing also involved the integration of the individual lipid (and derivatives) species
at their expected retention time (see Supplementary Table S2) allowing for a maximum of ±0.1 min
of retention time drift: any retention time drift greater than ±0.1 min resulted in the exclusion of the
analyte leading to a ‘Not Found’ result (i.e., zero concentration). A list of the analyte classes along
with the number of species detected within each class are shown in the table below (see Table 3).
The expected adducts for each analyte class and the internal standard used for semi-quantitation are
also shown.

The lipid quality control (QC) standards were analysed with each batch of samples, these QC
standards were used to check the retention times for the analytes ensuring that isobaric analytes were
separated and expected analyte retention times remained robust.

Through the Thermo Xcalibur Quan Browser software, the responses of the analytes were
normalised to the relevant internal standard response (producing area ratios) (see Supplementary
Table S2), these area ratios corrected the intensity for any extraction and instrument variations. The area
ratios were then blank corrected where intensities less than three times the blank samples were set to
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a ‘Not Found’ result (i.e., zero concentration). The accepted area ratios were then multiplied by the
concentration of the internal standard to give the analyte concentrations. The results for fluid samples
were expressed in molar concentrations (typically μM or nM). For tissue samples, the calculated
concentrations of the analytes were then divided by the amount of tissue (in mg) used in the extraction
protocol to give the final results in μM per mg of tissue extracted (μM/mg).

Table 3. This table shows the lipid classes detected with this LC–MS lipidomics method. The number
of species per lipid class and the measured adducts (protonated: [M+H]+, deprotonated: [M-H]−,
protonated with water loss: [M+H-H2O]+, sodiated: [M+Na]+, potasiated: [M+K]+, ammoniated:
[M+NH4]+) are also shown. The internal standard used for semi-quantification are also shown:
butyryl-d7-L-carnitine (abbreviated to IS_Car_4:0-d7), N-tetradecylphosphocholine-d42 (abbreviated
to IS_LPC_14:0-d42), hexadecanoyl-L-carnitine-d3 (abbreviated to IS_Car_16:0-d3), heptadecanoic-d33
acid (abbreviated to IS_FA_17:0-d33), 1,2-dimyristoyl-d54-sn-glycero-3-[phospho-L-serine]
(abbreviated to IS_PS_28:0-d54), 1-palmitoyl-d31-2-oleoyl-sn-glycero-3-phosphoinositol
(abbreviated to IS_PI_34:1-d31), N-palmitoyl-d31-D-erythro-sphingosylphosphorylcholine
(abbreviated to IS_SM_34:1-d31), 1-palmitoyl-d31-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)]
(abbreviated to IS_PG_34:1-d31), 1-palmitoyl-d31-2-oleoyl-sn-glycero-3-phosphate (abbreviated
to IS_PA_34:1-d31), N-palmitoyl-d31-D-erythro-sphingosine (abbreviated to IS_Cer_16:0-d31),
1-palmitoyl-d31-2-oleoyl-sn-glycero-3-phosphocholine (abbreviated to IS_PC_34:1-d31),
1-palmitoyl-d31-2-oleoyl-sn-glycero-3-phosphoethanolamine (abbreviated to IS_PE_34:1-d31),
glyceryl tri(pentadecanoate-d29) (abbreviated to IS_TG_45:0-d87).

Analyte Class No. of Species Adducts Internal Standard

Acyl-carnitines 48 [M+H]+ IS_Car_4:0-d7,
IS_Car_16:0-d3

Ceramides 85 [M+H]+, [M+H-H2O]+ IS_Cer_16:0-d31
Cardiolipins 56 [M-H]− IS_TG_45:0-d87

Diacylglycerols 6 [M+H-H2O]+, [M+Na]+, [M+K]+ IS_TG_45:0-d87
Gangliosides (GM1) 24 [M-H]− IS_PG_34:1-d31
Hexosylceramides 56 [M+H]+, [M+H-H2O]+ IS_Cer_16:0-d31

Lyso-phosphatidylcholines 23 [M+H]+ IS_LPC_14:0-d42
Lyso-phosphatidyethanolamines 19 [M+H]+ IS_LPC_14:0-d42

Lyso-phosphatidylinositols 19 [M-H]− IS_PI_34:1-d31
Lyso-phosphoserines 20 [M-H]− IS_PS_28:0-d54

Lyso-cardiolipins 23 [M-H]− IS_TG_45:0-d87
Monoacylglycerols 1 [M+H-H2O]+, [M+Na]+, [M+K]+ IS_TG_45:0-d87
Phosphatidic acids 26 [M-H]− IS_PA_34:1-d31

Phosphatidylcholines 43 [M+H]+ IS_PC_34:1-d31
Phosphatidylethanolamines 19 [M+H]+ IS_PE_34:1-d31

Phosphatidylglycerol 34 [M-H]− IS_PG_34:1-d31
Phosphatidylinositols 21 [M-H]− IS_PI_34:1-d31
Phosphatidylserines 36 [M-H]− IS_PS_28:0-d54

Sulfatides 72 [M-H]− IS_PG_34:1-d31
Sphingomyelins 54 [M+H]+, [M+Na]+, [M+K]+ IS_SM_34:1-d31
Triacylglycerides 89 [M+H]+, [M+NH4]+, [M+Na]+, [M+K]+ IS_TG_45:0-d87

4.5. Animal Intervention

Sprague–Dawley rats (Harlan, IN, USA) were overfed using one of four experimental diets
(n = 6–9 per group) at 17% above matched growth via an intragastric cannula surgically inserted
as previously described [26]. Animals had ad libitum access to water throughout the experiments.
The four experimental diets were 70% fat (% energy) including different amounts of medium chain
triacylglycerides oil (MCT), beef tallow and corn oil; the fat composition of each diet are shown in the
table below (see Table 4).

Protein (19% whey protein), vitamin and mineral contents were the same in all diets. Diets were
formulated to meet the caloric and nutritional recommendations established by the National Research
Council (NRC), but were fed at a level that exceeded the recommended caloric intake by 17% to increase
weight gain and adiposity and produce steatohepatitis.
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Liver tissue was collected after 21 days. All experimental procedures were ethically approved by
the Institutional Animal Care and Use Committee at the University of Arkansas for Medical Science.

Table 4. This table shows the dietary fat composition of each of the four experimental diets fed to
Sprague–Dawley rats (n = 8–9 per group). MCT: medium chain triglyceride oil.

Diet Corn Oil MCT Oil Beef Tallow

1 50% 16.4% 3.6%
2 35% 28.7% 6.3%
3 20% 41.0% 9.0%
4 5% 53.3% 11.7%

5. Conclusions

This lipidomics protocol has been developed to quantify lipids across a broad range of
hydrophobicities, from acyl-carnitines through to long chain glycerolipids. The extraction method
produces a single liquid supernatant phase ideal for high-throughput workflows with an increased
extraction capability over the frequently published liquid–liquid extraction previously published by
Folch and colleagues [12].

Following the establishment and validation of this method, we applied it to a ruminant fat dose
response dietary intervention in Sprague–Dawley rats, where we found 100 lipid species correlated
strongly with the composition of ruminant fat within the diet.

It has been previously suggested that dietary ruminant fat is beneficial/protective in type 2
diabetes [32], the results presented in this manuscript suggest possible target mechanisms that need to
be examined could include ceramide fatty acid compositions, cardiolipin remodeling, sphingomyelins
and/or triacylglycerides concentration (particularly unsaturated odd chain species) and their associated
fatty acid compositions, as well as the liver total lipid content.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/7/296/s1,
Figure S1: This figure shows the comparison between the two lipid extraction techniques regarding their extraction
efficiency on each lipid class detected in the rat liver samples (Folch liquid–liquid extraction with a compositions of
chloroform: methanol: water, ~7:3:4, and Protein precipitation liquid extraction with a composition of chloroform:
methanol: acetone, ~7:3:4). n= 34 rat liver samples per extraction method. The intensity of the lipids were measured
by liquid chromatography with mass spectrometry. The significance of the difference between the two extraction
protocols are shown by the p-value star system; where p ≤ 0.05 was considered statistically significant (* p < 0.05,
** p < 0.01, *** p < 0.001). Error bars represent ± standard deviation. Table S1: This table shows the comparison
between the two lipid extraction techniques regarding their extraction efficiency on the total intensity of each lipid
class detected in the rat liver samples by each sample extraction method (Folch-LLE: Folch liquid–liquid extraction
with a compositions of chloroform: methanol: water, ~7:3:4, and PPLE: protein precipitation liquid extraction
with a composition of chloroform: methanol: acetone, ~7:3:4). n = 34 rat liver samples per extraction method.
The percentage increase the PPLE method is over the Folch-LLE method is shown (% diff.) along with the p-value
resulting from a t-test (p < 0.05 designates statistical significance are in bold & shaded). The total number of lipid
species detected and pass the quality control process are also shown. Table S2: This table shows the lipids quantified
in this LC–MS method, along with the ionisation mode (either positive; +ve, or negative;−ve), the detected ion (m/z),
the expected retention time (minutes) and the internal standard used for normalisation and quantification. Lipid
are shown in their shorthand notations with the number of carbons and unsaturated bonds in the fatty acid moiety
separated by a colon; acyl-carnitines (Carn), ceramides (Cer), cardiolipins (CL), diacylglycerols (DG), gangliosides
(GM1), hexosylceramides (Hex-Cer), lyso-phosphatidylcholines (LPC), lyso-phosphatidyethanolamines (LPE),
lyso-phosphatidylinositols (LPI), lyso-cardiolipins (Lyso_CL), phosphatidic acids (PA), phosphatidylcholines (PC),
phosphatidylethanolamines (PE), phosphatidylglycerol (PG), phosphatidylinositols (PI), phosphatidylserines (PS),
sulfatides (S), sphingomyelins (SM), triacylglycerides (TG).
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Abstract: Annotation of lipids in untargeted lipidomic analysis remains challenging and a systematic
approach needs to be developed to organize important datasets with the help of bioinformatic
tools. For this purpose, we combined tandem mass spectrometry-based molecular networking with
retention time (tR) prediction to annotate phospholipid and sphingolipid species. Sixty-five standard
compounds were used to establish the fragmentation rules of each lipid class studied and to define the
parameters governing their chromatographic behavior. Molecular networks (MNs) were generated
through the GNPS platform using a lipid standards mixture and applied to lipidomic study of an
in vitro model of dry eye disease, i.e., human corneal epithelial (HCE) cells exposed to hyperosmolarity
(HO). These MNs led to the annotation of more than 150 unique phospholipid and sphingolipid
species in the HCE cells. This annotation was reinforced by comparing theoretical to experimental
tR values. This lipidomic study highlighted changes in 54 lipids following HO exposure of corneal
cells, some of them being involved in inflammatory responses. The MN approach coupled to tR

prediction thus appears as a suitable and robust tool for the discovery of lipids involved in relevant
biological processes.

Keywords: lipidomic; liquid chromatography; tandem mass spectrometry; molecular network; dry
eye disease; hyperosmolarity

1. Introduction

Over the last decade, lipids have become a major research topic and are now recognized as key
biological compounds displaying various roles in cell functions. They include the coordination of
bio-membrane structures, intra- and extra-cellular communication, metabolic efficiency, and signaling
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cascades, all of which are critical for cell functionality [1]. Disruption of lipid homeostasis is now
recognized to be involved in numerous pathologies such as cancer, diabetes, neurodegenerative
disorders or chronic inflammatory diseases [2,3]. Lipids, especially phospholipid and sphingolipid
classes, are central in both inflammatory and cell death processes [4,5]. Arachidonic acid,
mainly originating from the cleavage of phospholipids, is, for example, widely recognized as a
pro-inflammatory fatty acid [6]. Besides, ceramides, a sphingolipid subclass, mediate apoptosis
through a caspase-3 dependent mechanism and inflammation through the release of cytokines such as
IL-1ß or IL-6 [7].

Nevertheless, lipids encompass a tremendous number of molecular species exhibiting a wide
variety of structures. Indeed, the cellular lipidome includes numerous subclasses of sphingolipids,
phospholipids, glycerolipids, sterol lipids, and lipid metabolites. Lipidomics, the comprehensive
analysis of lipids in biological systems, remains challenging and must involve not only efficient analytical
techniques but also appropriate sample processing and integrative computational approaches [8].
Electrospray ionization (ESI) mass spectrometry (MS), either through a shotgun approach or hyphenated
to liquid chromatography (LC), has become the gold standard of lipidome study [8,9]. Indeed, lipidomic
analysis using an infusion approach represents a useful strategy to easily access a large part of the
lipidome [10,11]. Nevertheless, despite fruitful applications, this approach still suffers from ion
suppression which limits the analysis of low abundant lipid species [10,12]. In contrast, lipidomic
analysis using liquid chromatography hyphenated to mass spectrometry includes a separation
step reducing ion suppression and, therefore, improves detection of low abundant lipid species
through an increase in sensitivity [9,11,13]. Recent advances highlight that ion mobility, combined to
chromatography and mass spectrometry, represents an additional source of information in the case of
lipid identification [14,15]. Nevertheless, whatever the benefit of these techniques, the fact is that, in
the context of a lipidomic analysis, the large amount of data to be processed requires the development
of new data processing approaches, in particular, to simplify the annotation of lipid species while
maintaining a high degree of reliability.

In the course of a lipidomics study, the reliable identification of the numerous lipid species
detected represents a rigorous and demanding task. Lipids identification is performed taking into
account four analytical features: retention time (tR), accurate precursor ion m/z value, isotopic ratio,
and MS/MS data through comparison to reference compounds [16]. In the case of phospholipids,
identification deals with the determination of the polar head group and the length of the acyl chains
and of their sn1/sn2 location on the glycerol moiety. It must be emphasized that such identification
is biologically strongly relevant inasmuch as the nature and position of acyl chains depend on the
homeostatic balance between biosynthesis rates, remodeling, and degradation and also reflect the
extent of the pool of fatty acids available.

To elucidate the structure of unknown compounds, bioinformatics tools are strongly valuable.
Among them, molecular networks (MNs) have recently been proposed, historically in the field of plant
secondary metabolites, to identify compounds of biotechnological interest or exhibiting promising
pharmacological activity [17–20]. Molecular networks are a computational strategy aimed at organizing
and visualizing hundreds of molecules using their MS/MS spectra in accordance to their similarities
through the assumption that structurally related molecules display similar product ion spectra [21].
The structural similarity of a set of compounds is visualized in a network which may be generated
through online platforms such as GNPS or MetGem [21,22].

Taking into account the LC retention time represents an important benefit for the identification
of compounds, as it makes it possible to discriminate isobaric compounds [23]. For this purpose, a
pre-processing step of the LC-MS/MS data is required; it may be performed using software such as
MzMine 2 [24]. Furthermore, based on structural properties, retention time can easily be predicted with
good reliability, and tR values have previously been used to support the identification of numerous
metabolite classes, especially lipids [25,26].
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The aim of our study was to propose a new approach for the rapid and reliable structural
annotation of phospholipids and sphingolipids species using molecular networking and tR prediction.
Using 65 commercial lipid standards, we first determined the collision energy conditions required to
achieve the fragmentation patterns appropriate to the structural annotation of lipids. To support lipids
annotation, commercial standards were further used to define the relationship between lipid structure
and tR. Unknown lipids were then identified based on their exact mass measurements and MS/MS
fragmentation through molecular networking and tR values.

This approach was used to perform a lipidomic analysis of human corneal epithelial cells exposed
to hyperosmolarity (HO)—an in vitro model of dry eye disease (DED) [27,28]. Dry eye disease, a chronic
multifactorial inflammatory pathology, is characterized by alteration of tear film, cell damage, and
inflammation of the ocular surface [29,30]. This very common ocular pathology is also characterized by
HO, one of the core mechanisms of DED [31]. Disruption of lipid homeostasis, known to be involved in
inflammation and the cell death process, may also be a key feature in the pathophysiology of DED [32].
Thanks to MNs and tR prediction, our lipidomic approach allowed annotation of 150 unique lipid
species and highlights homeostasis disruption of 54 lipid species. Several of them are involved in
inflammation and cell death.

2. Results and Discussion

Reliable annotation of unknown compounds using MN highly depends on the quality of the
acquired MS/MS spectra [33]. For this purpose, we performed a set of MS/MS experiments for which
collision energy was increased step by step in order to optimize the diagnostic fragment ion intensities.
Phospholipid annotation needs the presence on the MS/MS spectra of product ions corresponding to
the polar head group, the fatty acyl side chains and of the precursor ion. For sphingolipid annotation,
fragments corresponding to the sphinganine base moiety and fatty acyl side chain must be detected on
MS/MS spectra. Figures 1 and 2 exhibit the main MS characteristics related to PC (16:0/18:1) and Cer
(d18:1/16:0), respectively.

2.1. Fragmentation Patterns of Phospholipids

In the negative ion mode, phosphatidylcholine (PC) are mainly detected as [M−CH3]− ions
corresponding to an in-source loss of a methenium and, to a less extent, as formiate ([M+HCOO]−)
and acetate ([M+CH3COO]−) adducts (Figure 1A). In our study, annotation of a PC was based on the
detection of six diagnostic product ion peaks in the MS/MS spectrum of [M−CH3]−.

In the example shown in Figure 1 related to PC (16:0/18:1), the precursor ion was observed at
m/z 744.5540. At low mass, a peak at m/z 168.0423 corresponded to the deprotonated demethylated
phosphocholine ion formed at a 25 eV collision energy (Figure 1B). At higher mass, the peaks at m/z
255.2334 and m/z 281.2479 were assigned to oleate and palmitate and exhibited an increased intensity
from 20 to 50 eV collision energy (Figure 1C). Two other key product ions at m/z 480.3098 and m/z
506.3256 corresponded to demethylated lysophosphatidylcholine LPC (16:0) and LPC (18:1) ions,
respectively. They were detected from 20 to 40 eV collision energy with a maximum intensity at 30 eV
(Figure 1D). A collision energy ramp between 20 and 40 eV thus appeared to be suitable to obtain the
six diagnostic ions with sufficient sensitivity and mass accuracy (� < 10 ppm) (Figure 1E). The ions
used to identify 10 standard PC species are compiled in Table S3.

Interestingly, while in the positive ion mode, the phosphocholine product ion at m/z 184.0733 allows
for the highly sensitive detection of PC, and the negative ion mode is essential to perform fatty acyl
chains identification [34]. This ionization mode was also successfully applied to identify the fatty acyl
chains of other phospholipid subclasses, namely, phosphatidylethanolamine (PE), phosphatidylinositol
(PI), phosphatidylserine (PS), phosphatidylglycerol (PG), and phosphatidic acid (PA). It also proved
useful to locate the fatty acyl chains on the sn1 and sn2 positions of the glycerol core. Indeed, for PC,
PE, and PG species, the intensity of the carboxylate ion peak corresponding to the fatty acid at the
sn2 position was always significantly higher than that at sn1. This is in agreement with previously
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published data [35]. For example, Figure 1C shows an oleate peak at sn2 more intense than the sn1

palmitate in the whole collision energy range. Similarly, the fragment corresponding to demethylated
LPC (16:0) formed by the loss of the sn2 oleate from the precursor ion was more intense than the
demethylated LPC (18:1) arising from the loss of the sn1 palmitate (Figure 1D). For the lipids belonging
to the PS, PI, and PA subclasses, the acyl group at sn1 always led to the more intense product ion peak
(Figures S2 and S3) [35]. However, it is noteworthy that the relative intensity of carboxylate product
ions displayed in the MS/MS spectra only provided information on fatty acids sn1 and sn2 locations
regarding the major regio-isomer. Indeed, the presence in the mixture of a minor amount of the other
regio-isomer cannot be excluded. Ensuring it, would need to build a calibration curve using the two
pure regio-isomers [36]. In this study, we thus report what is likely to be the major regio-isomer.

Figure 1. MS characteristics of PC (16:0/18:1). (A) Relative intensities of [M−CH3]−, [M+OAc]−, and
[M+HCOO]− ions. (B–D) Fragmentation patterns of the [M−CH3]− ion formed from PC (16:0/18:1)
under negative ionization conditions: relative intensities versus collision energy of (B) polar head
group, (C) fatty acyl side chains, and (D) demethylated lysophosphatidylcholine ions. (E) Tandem
mass spectrum of PC (16:0/18:1) [M−CH3]− ion obtained by collision energy ramping from 20 to 40 eV.
Blue and red colors relate to the sn1 and sn2 positions, respectively.

The polar head groups were identified owing to the presence of specific fragment ions such as m/z
168.0428 and m/z 224.0694 for PC, m/z 140.0113 and m/z 196.0380 for PE, m/z 227.0326 for PG, and m/z
241.0119 for PI. For PS, an abundant and specific serine loss (87.0326 Da) was observed in the MS/MS
spectra of the deprotonated molecules [M−H]− together with a glycerophosphate ion at m/z 152.9958,
whereas PA only led to a glycerophosphate ion. Table S3 in the Supplementary Materials lists the
diagnostic ions for the 65 phospholipid standard species included in our study.
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2.2. Fragmentation Patterns of Sphingolipids

Ceramides (Cer) are based on a sphinganine backbone amidated by a fatty acyl side chain.
Ceramides are also building blocks of more complex sphingolipids such as hexosyl ceramide (HexCer)
or sphingomyelins (SM). Under negative ionization conditions, Cer were mainly detected as [M−H]−
and, to a lesser extent, as acetate ([M+CH3COO]−) and formate ([M+HCOO]−) adducts (Figure 2A).
As for phospholipids, annotation of individual ceramides was based on the detection of six diagnostic
ions which made it possible to determine the double bound number of the sphinganine backbone as
well as the FA side chain length. Fatty acyl chain identification was performed thanks to the MS/MS
spectra of the [M−H]− ion at collision energies of 20 eV and more (Figure 2B,C).

In the example shown at Figure 2, product ions labelled T (m/z 280.2646), U (m/z 254.2486) and S
(m/z 296.259) are indicative of the fatty acyl chain (Figure 2B,C). The sphingosine moiety is characterized
by the product ions Q at m/z 263.2379 and P at m/z 237.2225 formed at collision energies higher than 20
eV (Figure 2D). The [M−H]− precursor ion and its product ions [M−H−H2O]− and [M−H−2H2O]− are
detected in the high mass region (Figure 2E). As exemplified by Cer (d18:1/16:0), a collision energy
ramping from 20 to 40 eV proved suitable to detect the six diagnostic ions with good sensitivity
and mass accuracy (� < 2 ppm), allowing an easy annotation of Cer species. MS/MS spectra of Cer
displayed more intense product ion peaks than PC therefore resulting in a better accuracy of m/z values.

Figure 2. MS characteristics of Cer (d18:1/16:0). (A) Relative intensities of [M−H]−, [M+OAc]−, and
[M+HCOO]− ions. (B–D) Fragmentation patterns of the [M−H]− ion formed from Cer (d18:1/16:0)
under negative ionization conditions: relative intensities versus collision energy of (B) precursor ion,
(C) fatty acyl side chains, and (D) sphinganine ions. (E) Tandem mass spectrum of Cer (d18:1/16:0)
[M−H]− ion obtained by collision energy ramping from 20 to 40 eV. Product ions: T (m/z 280.2646), U
(m/z 254.2486), and S (m/z 296.259) are indicative of the fatty acyl chains; Q (m/z 263.2379) and P (m/z
237.2225) are indicative of the sphingosine moiety. Product ions are labelled according to Reference [37].
Green and red colors relate to sphingosine and fatty acyl position, respectively.
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2.3. Retention Time Prediction

A typical UHPLC-ESI-MS negative ion mode chromatogram of a mixture of 65 lipid standards
representative of the nine studied subclasses is displayed in Figure 3A. In reversed-phase liquid
chromatography, an elution of lipids is closely related to the fatty acyl chain lengths, and this property
has been widely used in the frame of lipidomic analyses [38,39]. Under our conditions, the FA and
lysophospholipids were firstly eluted for 6 min followed by Cer and phospholipids (i.e., PE, PI, PG, and
PS) between 6 and 9 min (Figure 3A). Furthermore, in the case of phospholipids, the chromatographic
behavior was also dependent on the polar head group, the elution order being for a given fatty acyl
chain pattern as follows: PI, PG, PS, PC, and PE (Figure S1). Retention time may thus be considered
as a valuable analytical feature helpful in confirming annotation or in highlighting misannotation.
However, this requires a robust chromatographic system able to deliver stable and reliable retention
times. In our hands, RP-UHPLC operating with a reduced particle size (1.7 μm), associated to a column
temperature of 50 ◦C, and optimized elution conditions provided chromatograms with peak widths
lower than 20 s and highly reproducible retention times (Table S2).

Figure 3. Retention time prediction model based on equivalent carbon number (ECN) of nine subclasses
of phospholipids and sphingolipids. (A) UHPLC-HRMS chromatogram of a commercial standard lipid
mixture in the negative ion mode. (B) Theoretical tR plotted against experimental tR for standard lipid
mixture before and (C) after k value fitting. A linear (phospholipids) and polynomial (sphingolipids)
regression model was used. Dotted lines represent the 95% confidence interval displaying a relative error
which reached 15% on the linear regression graph (B) (k= 2) and did not exceed 5% on the linear regression
graph (C). Table: Parameters of relationship between ECN and experimental tR determined using a
standard lipid mixture. The general expression of ECN is ECN = NC - k × DB where NC and DB are
the total number of carbons and the number of double bonds, respectively. PC: phosphatidylcholine, PE:
phosphatidylethanolamine, PG: phosphatidylglycerol, PS: phosphatidylserine, PI: phosphatidylinositol,
PA: phosphatidic acid, Cer: ceramide, SM: sphingomyelin, HexCer: hexosyl ceramide.

In order to reinforce lipid annotation using tR, we first used the commercial lipid standard to
build a tR predictive model based on the equivalent carbon numbers (ECNs). The general expression
of ECNs is ECN = NC – k × DB, where NC and DB are the total number of carbons and the number of
double bonds, respectively. For lipid species, k = 2 is usually applied [40].
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In the case of phospholipids, especially when containing polyunsaturated fatty acid (PUFA), the linear
tR prediction model using k = 2 was fairly poor (Figure 3B). To improve the tR prediction model, we plotted
ECN values with experimental tR allowing, next to an appropriate fitting step, to determine more accurate k
values. New k values calculated for the different investigated phospholipid subclasses thus improved the
linear correlation between ECN and tR (Figure 3C). For example, the difference between the theoretical and
experimental tR values for PE (17:0/20:4) was 13% for k = 2 and decreased to 0% using k = 1.25.

In the case of sphingolipids, the linear tR prediction model with k = 2 was suitable for species
whose fatty acyl chains did not exceed 22 carbon atoms. However, regarding this lipid class, a
polynomial curve led to a better tR prediction model than a linear one. The selection of the polynomial
degree was based on the value of the correlation coefficient using a tolerance of 1/100 (R2 > 0.99).
For the three investigated sphingolipid subclasses, a quadratic function was finally retained.

Based on this improved fitting step, we predicted more accurately the theoretical tR for all the
commercial standards lipids including six phospholipid subclasses and three sphingolipid subclasses
(Figure 3C,D). Indeed, the difference between the experimental and theoretical tR values did not exceed
5%, whatever the commercial standard lipid. Consequently, an uncertainty of 5% was retained when
tR was used in the purpose to support the annotation of unknown lipids from HCE cell extract and
also to discriminate two isobaric lipid species as exemplified later in the text (see Section 2.6).

2.4. Instrument Stability

The stability of the UHPLC-ESI-MS/MS system was assessed for both MS and chromatography. For
this purpose, exact mass measurements were performed on the standard lipid species. High-resolution
mass measurements led to a mass accuracy better than 5 ppm for whichever standard lipid species
under consideration (Table S2) and the chromatographic system delivered tR values with a deviation
within a 3-day period not exceeding 3% (Table S2).

2.5. Lipidic Networking of Human Corneal Epithelial Cells

Although untargeted analysis by MS constitutes a relevant and powerful tool to characterize a cell
lipidome, the annotation of the lipids of interest remains a real challenge. Fortunately, phospholipids
and sphingolipids display structural characteristics which make their identification suitable through
molecular networking.

In our case, MNs were used as part of a study aimed at assessing the impact on the HCE cell
lipidome exposed to HO and were implemented as described hereafter. Tandem mass spectrometry in
the DDA mode (see Section 3.3) was used to acquired MS and MS/MS data for 65 commercial standard
lipids and for the whole lipids contained in HCE cell extracts. Next to a preprocessing step performed
with MzMine 2 (see Section 3.4), preprocessed data were subsequently used to build MNs through
the GNPS platform. The MNs thus included three types of nodes corresponding first, to commercial
standard lipids, second, to lipids available both as commercial references and identified in HCE cell
extracts, and, finally, to lipids only detected in HCE cell extracts (Figures 4 and 5, Table S3).

In such a MN, commercial lipid standards of known structure were thus used to anchor the molecular
network within which lipids from HCE cell extracts were clustered according to the similarities of
structures that they shared with reference lipids. Thanks to the standard lipids, the key parameters were
optimized to provide a reliable and relevant MN. The nodes of the network, corresponding to the MS/MS
spectra, were only linked to others if they displayed a common fragmentation pattern, i.e., a minimum
number of six identical product ions and/or neutral losses. Moreover, the similarity score between a pair
of MS/MS spectra, also called “cosine score” (cos) had to be greater than 0.6. Values selected for the
aforementioned parameters were widely used for molecular networking [21].

Figure 4 corresponds to the network of phospholipids; it includes PC, PE, PA, and PG. It was mainly
built from the fatty acyl chains located at the sn1 and sn2 positions, and, to a less extent, to the polar head
group. For instance, various phospholipid species (i.e., PC, PE, PC-P, PE-P, PG, PA) containing palmitate in
the sn1 and sn2 positions were clustered (cluster MN-C1 in Figure 4). The PC (16:0/18:1) and PC (18:0/18:1)
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were also clustered, as they both contained oleate in the sn2 position and a phosphocholine polar head
group (Figure 4). Similarly, PC (18:0/18:1) and PC (18:0/18:2) were clustered, as they contained stearate in
the sn1 position (Figure 4). In some cases, depending on the precursor ion intensity, the MN could also
include several adducts corresponding to only one PC. This is especially the case for the lipid standard
PC (17:0/17:0) observed as [M−CH3]−, [M+HCOO]− and [M+CH3COO]− ion species (cluster MN–C2 in
Figure 4). Phospholipids containing ether (PC–O and PE–O) or vinyl ether (PC–P and PE–P) bonds in the
sn1 position are displayed on the same MN as the diacylphospholipids. For instance, PE–P (16:0/16:1)
included in MN–C1 was connected to PE–P (16:0/16:0), as they both contained a phosphoethanolamine
head group and a sn1 palmitoyl moiety. The PE–P (16:0/16:0) was also connected to PC–O (16:0/16:0) and
PE (16:0/16:0), as they all contained the same two palmitoyl moieties. In contrast, PE–P (16:0/16:1) was
not connected to PE (16:0/16:1), indeed, their MS/MS spectra displayed only four common product ions,
this being insufficient to connect them in the MN. To improve data visualization, the MN was organized
under two orthogonal axes; the abscissa and the ordinate corresponding, respectively, to the sn1 and sn2

fatty acyl chains of glycerophospholipids. For instance, lipids containing an arachidonate side chain in
the sn2 position were displayed on the same line (cluster MN–C3 in Figure 4).

Figure 4. Lipidic molecular network of phospholipids including commercial standards and epithelial
corneal cell lipids. The MN between (A) PC, PE, PA, and PG; (B) PS; (C) PI; and (D) LP. Networking
was based on both fatty acyl side chains and polar head groups. The MN was organized along two
orthogonal axes: abscissa and ordinate correspond to the sn1 and sn2 fatty acids, respectively. See the
text for the explanation of the MN–C1, MN–C2, and MN–C2.
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Figure 5. Lipidic molecular network of sphingolipids including commercial standards and epithelial
corneal cell lipids. MN of (A) ceramide, (B) sphingomyelin, and (C) hexosylceramide. The MN was
organized along two orthogonal axes: abscissa and ordinate corresponding to insaturation of the
sphinganine base and fatty acid side chain length, respectively.

It must be emphasized that, in contrast to other phospholipids, PS and PI clustering was mainly
based on their polar head group because of abundant characteristic fragment ions (Figure 4B,C).
The [M−H]− precursor ions of PS were dissociated by the loss of the serine moiety leading to an intense
[M−H−87.0326]− product ion [35] (Figure S2). The MS/MS spectra of the deprotonated PI displayed an
inositol phosphate fragment at m/z 259.0225 and two product ions corresponding to the consecutive
loss of one (m/z 241.0119) and two (m/z 223.0013) water molecules (Figure S3).

The networks connecting sphingolipids were all organized by subclasses (Figure 5). Ceramides
(Figure 5A) were thus clustered separately from sphingomyelins (Figure 5B) and hexosylceramides
(Figure 5C). Furthermore, networks of each sphingolipid subclasses displayed clusters depending on
sphinganine (d18:0), sphingosine (sphing-4-enine, d18:1) or a sphingadienine (sphing-4,14-dienine, d18:2)
moiety. In the ceramide subclass, Cer (d18:1/26:0) was connected to Cer (d18:1/26:1), as they both contained
a sphingosine (d18:1) moiety. Clustering also depended on the nature of fatty acyl chain as exemplified by
Cer (d18:0/16:0) which was connected to Cer (d18:1/16:0), as they both contained a palmitoyl moiety but
displayed no connection with Cer (d18:1/18:0). To simplify the data visualization in Figure 6, the MN was
organized on two orthogonal axes: the abscissa and the ordinate correspond to the number of insaturation
of the sphinganine base moiety and to the fatty acyl chain length, respectively.

2.6. Use of Retention Time Prediction for Lipid Annotation

Applied to HCE cell lipidome, the MN approach was helpful to annotate more than 150 phospholipid
and sphingolipid species (Table S3). Annotation was based on tandem mass spectrometry and confirmed
by retention time with a maximum tolerance of 5% between theoretical and experimental tR values. In
some cases, a co-elution and a co-selection of precursor ions in MS/MS was encountered leading to difficult
mass spectra interpretation which did not readily permit to decide between two different lipid structures.
In such a case, the tR prediction made it possible to annotate unequivocal lipid species.

For instance, the MS/MS spectrum of the ion at m/z 800.619 displayed the characteristic fragment
ions at m/z 140.0123 and 196.0369 of a phosphoethanolamine headgroup suggesting a PE (40:1) structure.
The spectrum also exhibited intense peaks corresponding to oleate (m/z 281.2480) and behenate
(m/z 339.3254) but also two small peaks at m/z 253.2175 and 367.3488 indicative of palmitoleate and
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lignocerate, respectively (Figure 6A,B). The selected precursor ion thus corresponded to a mixture of
an abundant PE (22:0/18:1) and a less abundant PE (24:0/16:1). However, the presence of an ion at m/z
168.0444 could correspond to the headgroup of an isobaric [M−CH3]− precursor ion from PC (16:1/22:0).
Thanks to the tR prediction, PC (16:1/22:0) was excluded as the difference between experimental and
theoretical tR was 7% (Figure 6C). The origin of the phosphocholine ion at m/z 168.0444 was explained
by the co-elution and co-selection by the Q1 quadrupole of the demethylated SM (d42:1) at m/z 799.668,
a very scarce species in the precursor ion beam. This annotation was confirmed by a tiny difference of
experimental and theoretical tR (0.3%).

Figure 6. Retention time prediction use to discriminate two isobaric PE and PC species. (A) MS/MS
spectrum of PE (40:1) [M−H]− ion (m/z 800,619). (B) Low, middle, and high mass region of the spectrum
A. (C) Theoretical tR plotted against experimental tR for standard PC and PE species (circles) and for
PE (22:0/18:1) and PC (16:1/22:0) (squares).

2.7. Use of Existing Lipid Library Database

Although the proposed annotation procedure is performed through an individual inspection of
each MS/MS spectrum, an automatization of the annotation may, at least in part, be considered using
currently available lipid library especially LipidBlast or Lipidex [41–43].

For example, using LipidBlast, we performed annotation of the commercial standard lipids
available in this study. Among the 65 lipids species studied, 50 were successfully annotated using
LipidBlast and one misannotation was reported (Figure S4). None of the six SM species were annotated
as SM subclass is not supported by the LipidBlast library using negative ion mode LC-ESI-MS/MS data.
Moreover, among the 13 PC species included in the commercial standard lipid mixture, three PC failed
to be annotated using LipidBlast.

In the frame of a lipidomic analysis, MN in combination with lipid databases may be regarded
as a valuable and saving time approach giving a strong insight in the structural elucidation of lipid.
Nevertheless, we believe that it remains important to use at least several known standard lipids to
perform annotation of unknown lipid species with a high degree of confidence.
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2.8. Effect of HO on HCE Cells

The lipid annotation through molecular networking and the retention time prediction approach
proposed in this study was applied to assess lipid perturbations in human corneal epithelial cells exposed
to hyperosmolarity (HO)—an in vitro model of dry eye disease [27,28]. Dry eye disease is a chronic
inflammatory pathology of the ocular surface. It is characterized by alteration of tear film, HO, cell damage,
and inflammation of the ocular surface, all contributing to a vicious circle [30,31,44,45]. Therapeutic
strategies targeting inflammatory processes, such as cyclosporine or other anti-inflammatory agents, have
been proposed to break this deleterious cycle [30,46]. To better understand the mechanism underlying
DED and to find new marker of this pathology, especially to improve patient monitoring and to develop
new targeted treatments, further investigations are still needed.

Hyperosmolarity is a key feature of DED [31]. Indeed, it induces significant stress targeting the
corneal cell membrane [28,47,48]. Studying the modification of lipid homeostasis related to HO is
relevant as this stressor induces the disruption of processes closely associated to cell membranes. Indeed,
HO activates pro-inflammatory and pro-apoptotic processes, initiated at the cell membrane level.
Hyperosmolarity stimulates downstream signaling pathways mediated by multiple membrane-bound
proteins and enzymes [27,49–51]. The interest to study cell lipid disruption is also reinforced as HO
favors ROS production which, in turn, targets lipids through peroxidation [52–54].

Lipidomic analysis associated to molecular networking and tR calculation led to the annotation of
150 lipid species and revealed that among them, 54 phospholipids and sphingolipids were significantly
up- or downregulated in human corneal epithelial cells exposed to HO (Figure 7).

Regarding phospholipids, an increase of the cell concentration was observed for 4 PC, 10 PE, 3 PS, and
3 PI species under HO exposure. These phospholipids mainly contained oleate (18:1) located in the sn2

position. On the contrary, abundances of six ether-phospholipid species were strikingly decreased. Thanks
to MN, they were identified as 2 PC-P, 2 PI-O, and 2 PE-P species containing polyunsaturated fatty acids at
position sn2, especially arachidonic (20:4) and docosahexaenoic (22:6) acids (Figure 7). Ether phospholipids
are known to be pools of FA (22:6) and FA (20:4) [55]. The FA (20:4) is the preferential substrate of
cyclooxygenase (COX) and lipoxygenase (LOX), enzymes leading to pro-inflammatory eicosanoids.
Therefore, our results suggest that HO, a key feature in DED, may favor the release of arachidonic acid
from ether phospholipids to promote inflammatory process. Ether phospholipid, especially PE-P and PC-P
species, are also known to be targets of oxidative stress through vinyl ether bonds. Beside inflammation,
oxidative stress is also a key feature of DED pathophysiology [44,56]. Therefore, the significant decrease
in PC-P and PE-P species observed in HCE cells under HO exposure may proceed through oxidation of
these lipids which is known to generate toxic malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE).
Of note, MDA and 4-HNE release have previously been described in DED in vitro models as well as in
conjunctival imprints of DED suffering patients [53,57].

Regarding sphingolipids, an increase of ceramide abundance was observed in HCE cells submitted
to HO (Figure 7). Ceramides are bioactive lipid species known to promote inflammation through
IL-1β release and to induce apoptosis through caspase 3 activation [7,58]. Dysregulation of ceramide
metabolism is involved in many inflammatory diseases such as atherosclerosis, inflammatory bowel
disease or multiple sclerosis [2,3]. In the frame of DED, apoptosis and inflammatory processes
induced by ceramides may thus be considered as important mediators of the deleterious effects of
HO in accordance with previous published data [47,59]. Thanks to MN, Cer (d18:0/16:0) and Cer
(d18:1/16:0) were successfully identified. Under HO exposure, these two lipids species are increased in
HCE cells. Because Cer (d18:0/16:0) and Cer (d18:1/16:0) are respectively substrate and a product of
dehydroceramide desaturase—a key enzyme in de novo synthesis of ceramide—this result suggests that
HO promotes de novo synthesis of ceramides making this ceramide biosynthetic pathway a putative
therapeutic target in the frame of DED.

95



Metabolites 2020, 10, 225

Figure 7. MN of lipids up- or downregulated in human corneal epithelial cells exposed to HO. MN
displays (A) phospholipids and (B) sphingolipids species up- or downregulated in human corneal
epithelial cells exposed to HO. The pie chart represents mean ion intensity of a lipid molecule from
the control cell (yellow) and HO exposed cell (red) lipidomes. Of note, networking, based on the
structural characteristics of lipid species, does not provide information regarding biosynthesis and
modeling/remodeling pathways of the lipids found within HCE cells, especially under the effect
of hyperosmolarity.

96



Metabolites 2020, 10, 225

3. Materials and Methods

3.1. Chemicals and Reagents

Chloroform (Carlo Erba Reactifs SDS, Val-de-Reuil, France), acetonitrile, methanol, isopropanol,
water of LC-MS grade (J.T. Baker, Phillipsburg, NJ, USA) and 3,5-di-tert-4-butylhydroxytoluene
(Sigma–Aldrich, Saint-Quentin Fallavier, France) were used to perform cell lipid extraction and to
prepare mobile phase for liquid chromatography. All commercial lipid standards were purchased from
Avanti Polar Lipids, Inc. (Alabaster, AL, USA) and are listed in Table S1 of the Supplementary Materials.

3.2. Sample Preparation

The HCE cells were exposed to HO (500 mOsM) for 24 h and then were washed with Dulbecco’s
Phosphate-Buffered Saline (DPBS). Cells were harvested using trypsin-EDTA 0.05%, washed with
DPBS, centrifuged at 2000 rpm for 10 min. Dry cell pellets were adjusted to 3 million cells and stored
at −80 ◦C until analysis. After thawing, the cell pellets were resuspended in ultra-pure water (1 mL)
and were sonicated for 5 min. Lipids were extracted using a chloroform/methanol/water (5:5:2, v/v/v)
mixture containing 3,5-di-tert-4-butylhydroxytoluene 0.01% (w/v) as an antioxidant agent. Samples
were subsequently centrifuged at 3000 rpm for 10 min, organic phases were collected, and solvents
were evaporated under reduced pressure at 45 ◦C. Dry residues were dissolved in a 100 μL mixture
containing acetonitrile/isopropanol/chloroform/water (35:35:20:10, v/v/v/v) before injection into the
UHPLC-MS system.

3.3. Data-Dependent LC-ESI-HRMS/MS Analysis

Liquid chromatography-negative electrospray ionization mass spectrometry analysis of lipid
extracts was performed on a UHPLC system (Waters®, Manchester, UK) combined with a Synapt®G2
High Definition MS™ (Manchester, UK) (Q-TOF) mass spectrometer (Waters®). Chromatographic
separation was achieved on an Acquity® (Manchester, UK) CSH C18 column (100 × 2.1 mm;
1.7 μm). Lipids were eluted using a binary gradient system consisting in 10 mM ammonium
acetate in acetonitrile/water mixture (40:60, v/v) as solvent A and 10 mM ammonium acetate in
acetonitrile/isopropanol mixture (10:90, v/v) as solvent B. The eluent increased from 40% B to 100% B in
10 min, was held at 100% B for 2 min before returning to 40% B. The flow rate was kept at 0.4 mL.min−1.
The column oven was set at 50 ◦C and the injection volume was 5 μL. The source parameters were as
follows: capillary voltage 2400 V, cone voltage 45 V, source temperature 120 ◦C, desolvation temperature
550 ◦C, cone gas flow 20 L h−1, and desolvation gas flow 1000 L h−1. Leucine enkephalin (2 ng mL−1)
was used as an external reference compound (Lock-Spray™, Manchester, UK) for mass correction. In a
data-dependent acquisition mode (DDA), MS full scans were followed by MS/MS scans performed
on the five most intense ions above an absolute threshold of 1000 counts. Selected parent ions were
fragmented at collision energy ramp 20–40 eV and a selection window size of 1.0 Th. Scan durations
for both MS and MS/MS were 0.2 s. In the full scan mode, the data were acquired between m/z 50
and 1200 using a resolution of 20,000 FWHM at m/z 500. Data acquisition was managed using Waters
MassLynx™ software (version 4.1; Waters MS Technologies, Manchester, UK). A mixture of 65 standard
lipids belonging to 9 of the main lipid classes (i.e., phosphatidic acid (PA), phosphatidylethanolamine
(PE), phosphatidylserine (PS), phosphatidylcholine (PC), phosphatidylglycerol (PG), ceramide (Cer),
sphingomyelin (SM), HexosylCeramide (HexCer)) at a final individual concentration of 1 μM was also
periodically injected throughout the analytical batch.

3.4. Data-Preprocessing Parameters

Raw data files were converted into universal open source mzXML file with MSConvert 3.0 and
were then processed using MZmine 2.51 software. The MS and MS/MS spectra were extracted using
MZmine 2.51 with a mass detection noise level set at 2E2 and 0E0, respectively. Chromatograms
were then built with the ADAP algorithms [60] using a minimum group size of 5 scans, a group
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intensity threshold of 5000, and an m/z tolerance of 0.005 Da (about 10 ppm). The ADAP wavelets
chromatogram deconvolution algorithm was used with the following settings: signal-to-noise ratio
= 10, coefficient/area ratio = 50, peak duration range = 0.05−0.4 min, retention time wavelet range =
0.02–0.1, m/z range for MS/MS scan pairing of 0.01, and tR range for MS/MS scan pairing of 0.15 min.
Chromatograms were de-isotoped using the isotopic peaks grouper algorithm with a m/z tolerance set at
0.005 (m/z < 500) and 10 ppm (m/z > 500), and a tR tolerance of 0.1 min. Peak alignment was performed
using the join aligner method using the following parameters: m/z tolerance at 0.005 (m/z < 500) and
10 ppm (m/z > 500) and an absolute tR tolerance 0.15 min. Each MS/MS scans were associated with the
corresponding MS scans using a tR tolerance of 0.1 min and a m/z tolerance of 0.005 (m/z < 500) and
10 ppm (m/z > 500). The peak list was finally gap-filled using the so-called module “same RT and m/z
range gap filler” with m/z tolerance 0.005 (m/z < 500) and 5 ppm (m/z > 500).

3.5. Molecular Network Analysis

The MNs were created using the feature based molecular networking workflow of the Global
Natural Products Social (GNPS) platform [61]. The following settings were used to build the network:
minimum pairs Cos > 0.60, parent ion mass tolerance = 0.02 Da, fragment ion mass tolerance = 0.02,
network topK < 100, minimum matched peaks = 6, and minimum cluster size = 2. The library spectra
inquiries were performed using the same parameter values as those define for the network building.
The MNs were finally visualized and annotated using Cytoscape 3.4.0 software (San Diego, California,
USA) [62].

3.6. Lipid Structure Assignment

The structural annotation of unknown lipid species was based on the MNs generated on the
GNPS platform using MS and MS/MS data as follow: (i) nodes associated to lipid standards were
indexed using MzMine 2 thanks to MS, MS/MS data, and tR value, (ii) nodes associated to unknown
lipids were subsequently indexed based on MS data, using online data base LIPIDMAPS and METLIN,
and MS/MS data, through manual inspection on MzMine 2, (iii) annotation was finally supported by
tR values by comparison of experimental tR values to the calculated one using tR prediction models.
Based on these three criteria, lipids already annotated were used to create a database valuable for
later annotation.

In order to demonstrate the relevance of the MNs in lipid species annotation, MS/MS spectra
were individually inspected to select diagnostic product ions essential for annotation and the
differences between theoretical and experimental m/z values were calculated using Excel software
(see Supplementary Materials, compilation of experimental and theoretical m/z values of diagnostic
product ions for PL and SL).

In accordance with the guidelines provided by the minimum reporting standards of the
Metabolomics Standards Initiative [16], Table S3 includes the level of identification for all annotated
lipids. Indeed, thanks to accurate m/z measurement, the MS/MS data inspection and retention time
analysis, lipids annotated in HCE cells were assigned to group 1 or 2. Lipids for which we had the
corresponding commercial standards were assigned to group 1. In addition, lipids for which we did
not have the corresponding standards, the annotation was performed on the adequacy of m/z value,
MS/MS data and retention time analysis and were thus assigned to group 2.

3.7. Statistical Analysis

A false discovery rate ((FDR)-adjusted p < 0.01) controlling procedure was performed to assess
the statistical significance of the concentration differences of the identified lipids from cell extracts of
HO-treated cells versus control cells. Each experiment was performed independently at least five times.
The ANOVA, Dunnett test, and Student t-test were performed using GraphPad Prism 8 software (version
8; GraphPad Software, La Jolla, CA, USA) with a risk set at 0.05 (* p < 0.05, ** p < 0.01, *** p < 0.001).
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4. Conclusions

For the first time, the present study showed that the use of molecular networks makes it possible
to facilitate and increase the reliability of lipid annotation in the course of lipidomic analysis. This
approach, based on the use of the tandem mass spectrometry DDA mode in negative ionization
conditions, allowed characterizing the fatty acyl chains of phospholipids and sphingolipids. In
addition, if an ambiguity in the annotation of a lipid persists, the prediction of the retention time makes
it possible to remove the latter. This new strategy makes it possible to cover the entire lipidome despite
the limited number of standard lipids to which it is possible to have access commercially. The present
study was limited to lipid subclasses which had structural characteristics which were clearly depicted
by the MN under negative ionization conditions. Nevertheless, through this approach, we were able,
in the context of a differential lipidomic analysis of an in vitro model of DED (i.e., HCE cells exposed to
HO) to annotate many lipids potentially involved in cell death and inflammation. Regarding others
lipid subclasses such as glycerolipids, the positive ionization mode appears suitable to highlight their
structural characteristics using molecular networks. It is currently in progress and will be the subject
of a separate study.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/6/225/s1,
Figure S1: Extracted ion chromatograms of m/z values corresponding to precursor ions of standard phospholipids
containing two palmitoyl moieties, Figure S2: MN of PS subclass, Figure S3: MN in PI subclass, Figure S4:
Annotation of MS/MS spectra of commercial standard lipids using LipidBlast library, Table S1: Lipid composition
of standard mix, Table S2: Repeatability and method precision (within-day, between-day, and intermediate
precision), Table S3: Annotation of lipid species by MS/MS experiment. Supplementary Materials include the
Excel table used for tR prediction and for diagnostic ion checking.

Author Contributions: Conceptualization, N.A., F.B.B., C.B., O.L., G.G.J., R.M., K.K., A.R., S.M.P.; methodology,
R.M., N.A., G.G.J., F.B.B., K.K., A.R.; validation, N.A., G.G.J., F.B.B., K.K., A.R., S.M.P., O.L., C.B., R.M.; formal
analysis, N.A., G.G.J., F.B.B., R.M., K.K., A.R.; writing—original draft preparation, R.M., N.A., F.B.B., K.K., A.R.;
supervision, O.L., C.B., S.M.P., N.A.; All authors have read and agreed to the published version of the manuscript.

Funding: This study was funded by Sorbonne Université, the Institut National de la Santé et de la Recherche
Médicale and Centre National de la Recherche Scientifique.

Acknowledgments: This work was completed with the support of the Programme Investissements d’Avenir IHU
FOReSIGHT (ANR-18-IAHU-01). The authors thank the core facilities of the Institut de la vision, the Centre
Hospitalier National d’Ophtalmologie des Quinze-Vingts, Région Ile-de-France and Ville de Paris.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhang, C.; Wang, K.; Yang, L.; Liu, R.; Chu, Y.; Qin, X.; Yang, P.; Yu, H. Lipid metabolism in
inflammation-related diseases. Analyst 2018, 143, 4526–4536. [CrossRef] [PubMed]

2. Stith, J.L.; Velazquez, F.N.; Obeid, L.M. Advances in determining signaling mechanisms of ceramide and role
in disease. J. Lipid Res. 2019, 60, 913–918. [CrossRef] [PubMed]

3. Meikle, P.J.; Summers, S.A. Sphingolipids and phospholipids in insulin resistance and related metabolic
disorders. Nat. Rev. Endocrinol. 2017, 13, 79–91. [CrossRef] [PubMed]

4. Magtanong, L.; Ko, P.J.; Dixon, S.J. Emerging roles for lipids in non-apoptotic cell death. Cell Death Differ.
2016, 23, 1099–1109. [CrossRef]

5. Agmon, E.; Stockwell, B.R. Lipid homeostasis and regulated cell death. Curr. Opin. Chem. Biol. 2017, 39,
83–89. [CrossRef]

6. Serhan, C.N.; Savill, J. Resolution of inflammation: The beginning programs the end. Nat. Immunol. 2005, 6,
1191–1197. [CrossRef]

7. Maceyka, M.; Spiegel, S. Sphingolipid metabolites in inflammatory disease. Nature 2014, 510, 58–67.
[CrossRef]
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Abstract: Wilson’s disease (WD) is a rare autosomal recessive metabolic disorder resulting from
mutations in the copper-transporting, P-type ATPase gene ATP7B gene, but influences of epigenetics,
environment, age, and sex-related factors on the WD phenotype complicate diagnosis and clinical
manifestations. Oxylipins, derivatives of omega-3, and omega-6 polyunsaturated fatty acids (PUFAs)
are signaling mediators that are deeply involved in innate immunity responses; the regulation of
inflammatory responses, including acute and chronic inflammation; and other disturbances related
to any system diseases. Therefore, oxylipin profile tests are attractive for the diagnosis of WD.
With UPLC-MS/MS lipidomics analysis, we detected 43 oxylipins in the plasma profiles of 39 patients
with various clinical manifestations of WD compared with 16 healthy controls (HCs). Analyzing
the similarity matrix of oxylipin profiles allowed us to cluster patients into three groups. Analysis
of the data by VolcanoPlot and partial least square discriminant analysis (PLS-DA) showed that
eight oxylipins and lipids stand for the variance between WD and HCs: eicosapentaenoic acid EPA,
oleoylethanolamide OEA, octadecadienoic acids 9-HODE, 9-KODE, 12-hydroxyheptadecatrenoic
acid 12-HHT, prostaglandins PGD2, PGE2, and 14,15-dihydroxyeicosatrienoic acids 14,15-DHET.
The compounds indicate the involvement of oxidative stress damage, inflammatory processes,
and peroxisome proliferator-activated receptor (PPAR) signaling pathways in this disease. The data
reveal novel possible therapeutic targets and intervention strategies for treating WD.

Keywords: COX; CYP450; LOX; oxylipins; PUFAs; lipidomics; UPLC-MS/MS; copper;
Wilson’s disease

1. Introduction

Wilson’s disease (WD) is a rare autosomal recessive metabolic disorder resulting from mutations
in the copper-transporting, P-type ATPase gene, ATP7B gene, which encodes a copper-transporting
P-type ATPase [1]. The enzyme is responsible for the transport of copper into bile from hepatocytes,
facilitating its incorporation into apoceruloplasmin to form ceruloplasmin, a major copper-transporting
protein in the blood. The mutations lead to copper accumulation in the affected tissues [1–3], which
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causes biochemical deviations, followed by the fluctuating occurrence of hepatic and extrapyramidal
symptoms (EPSs), accompanied by the impairment of other organs (for more detail, see recent
reviews [4–6]). The worldwide prevalence of WD is 1 in 30,000; it is even higher in populations with
a high frequency of consanguinity [5]. The manifestations of WD are variable, and, in addition to
liver diseases, may include neurological and/or psychiatric symptoms, as well as abnormalities in
the blood or kidneys. It is therefore hypothesized that other genetic and/or environmental factors
could influence the phenotypes of WD [5,7]. Besides different ATP7B mutations [8], other genetic
variations may influence the variability in WD manifestation, such as apolipoprotein E (APOE),
human prion protein (PRNP), 5,10-methylenetetrahydrofolate reductase (MTHFR), the interleukin-1
receptor antagonist (IL1RN), peroxisomal catalase, and other genes [7,9]. The influence of epigenetics,
environment, age, and sex-related factors on the WD phenotype further complicates diagnosis [3,7,10].
The clear–phenotype correlations for WD are still unclear, although recent epigenetic whole genome
screening data may shed light on in-depth pathogenic mechanisms [11]. Obtained from liver and blood
samples from patients with WD, the data have shown specific sets of modified genes, enriched for
functions in lipid metabolism and inflammatory responses [11]. Such changes can manifest themselves
on the level of the organism as a whole in a variety of ways and be the cause of the observed differences
in manifestations of the disease. This attracted attention to studying the disease on the level of
the metabolome. Understanding the variations in the metabolome may help in identifying variations
in the biochemical pathways leading to different manifestations of the disease. High-throughput
techniques, such as metabolomic profiling, can deepen our understanding of the disease’s pathogenesis
and biology of WD manifestation [12,13], and therefore lead to new therapeutic approaches.

A promising type of metabolomic profiling is oxylipin measurement in the blood or other tissues.
Oxylipins, derivatives of omega-3, and omega-6 polyunsaturated fatty acids (PUFAs) are signaling
mediators that are deeply involved in innate immunity responses; the regulation of inflammatory
responses, including acute and chronic inflammation; and other disturbances related to any system
disease [14–17]. The conversion of PUFAs into oxylipins occurs via three major pathways, named
according to their respective key pathway enzymes, such as the cyclooxygenase (COX), lipoxygenase
(LOX), and cytochrome P450 monooxygenase (CYP450) branches of metabolism. Besides this, there
are non-enzymatic conversions of PUFAs [15]. Due to the diversity of the individual oxylipin
functions, it is difficult to predict the general direction of their action. For example, eicosapentaenoic
(EPA) and docosahexaenoic (DHA) omega-3 PUFAs, as well as their derivative oxylipins,
hydroxyeicosapentaenoic acids (HEPEs) and hydroxydocosahexaenoic acids (HDoHEs), are regarded
as anti-inflammatory mediators [14,15]. Arachidonic acid (AA), an omega-6 PUFA, is mainly the source
of prostaglandins (PGs), thromboxane (TX), leukotrienes (LTs), and hydroxyeicosatetraenoic acids
(HETEs), attributed to groups of proinflammatory oxylipins. Meanwhile, cyclopentenone PGs,
non-enzymatic metabolites of PGE2 and PGD2, possess anti-inflammatory features [18]. Oxidative
derivatives of α-linolenic acid (ALA) can be transformed into hydroxyoctadecatrienoic (HOTrEs) acids
or others [15]. Linoleic acid (LA)-derived oxylipins, such as hydroxyoctadecadienoic (HODEs) acids,
agonists of PPARγ [19], or dihydroxyoctadecamonoenoic (DiHOMEs) acids, which are cytotoxic [20],
exhibit both pro- and anti-inflammatory features [15]. Taken together, these data show that oxylipin
synthesis should not be studied in groups of separate substances, but in terms of oxylipin profiles,
which can characterize the different states of the studied organisms.

Indirect data indicate the possibility of oxylipin profile changes in WD. The roles of oxidative stress
in the pathogenesis of WD, and dietary omega-3 PUFAs’ usefulness in an animal model of WD suggest
that oxylipins may be involved in the clinical manifestation of WD. Moreover, the number of some
lipid-related nuclear receptors, such as retinoid X receptor (RXR), peroxisome proliferator-activated
receptor α (PPARα), and hepatocyte nuclear factor 4 alpha (HNF4A), is generally decreased in
WD animal models and humans [9,21–25]. It is important to note that although oxylipins exhibit
multiple effects, they somehow change the state of the innate immunity system [13–15]. Oxylipins are
important markers of activation of the system, including the regulation of inflammatory resolution
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processes [13,16]. Despite these facts, the role of the innate immunity system, and oxylipins as parts of
the system, is still underestimated in many diseases.

The development of mass spectrometric methods for oxylipin detection made it possible to
obtain oxylipin profiles from the plasma of patients with diseases, such as Alzheimer’s disease [24],
alcohol-related liver disease [25], or cancer [26]. However, no such studies have been conducted to
characterize WD. Therefore, in the present study, UPLC-MS/MS lipidomics analyses were performed
to characterize the plasma profiles of patients with various clinical manifestations of WD, compared to
healthy subjects in order to identify the oxylipin characteristics of this disease.

2. Results

2.1. Clinical Characteristics

The study involved 39 WD patients and 16 healthy controls. The anthropometric, demographic,
and blood biochemical parameters of the enrolled individuals are presented in Table 1. In total,
25 patients had the akinetic-rigid form, 10 had the trembling form, and 4 had other forms. Biochemical
profiling of the blood of WS patients was conducted; data for ceruloplasmin and serum Cu
concentrations are shown in Table 1.

Table 1. Demographic parameters of the patients, disease characteristics, and medications.

Wilson Disease Patients

Sex F (n = 22) M (n = 17)
mean sd n mean sd n

Age 35.68 13.17 32.18 12.36
Serum Cu, mkM 8.5 4.3 9.62 4.36
Shvab scale, % 80.95 18.41 67.5 22.36
Leipzig score 7.32 2.19 6.42 2.57

Ceruloplasmin, mg/dL 9.61 7.2 12.78 8.02
Height, cm 169.95 5.55 180.8 7.44

Longevity illness, years 13.86 11.34 9.81 9.32
Longevity treatment, years 12.86 11.25 8.21 8.75

Weight, kg 61.2 13.27 75.67 12.21
Form (akinetic-rigid/trembling/others) 2014/6/2 2011/4/2

Nephropathy 5 8
Portal hypertension 5 11

Psycoproductive somatic 8 6

Healthy Donors

F (11) M (5)
mean sd n mean sd n

Age 37.88 15.96 49.2 12.19

2.2. Metabolomic Profiling

Using UPLC-MS/MS, we detected a total of 43 metabolites in human plasma (Table S1). Metabolites
were from different lipid classes: 3 PUFA (AA, DHA and EPA), 19 AA derivatives, one DGLA derivate,
7 DHA derivatives, 3 EPA derivatives, 7 LA derivatives, and 3 non-PUFA-derived compounds (OEA,
AEA, Lyso-PAF).

2.3. Volcano Plot Analysis

To evaluate the separate metabolites that differ among WD and HC groups, we performed
pairwise comparisons of age and gender-adjusted metabolite concentrations. The results were then
illustrated using a volcano plot with Holm–Bonferroni correction (Figure 1). The four metabolites
whose concentrations were changed significantly are indicated in red (12-HHT, EPA, PGE2, and PGD2).
Barplots of the indicated compounds’ relative concentrations are presented in Figure 1B.
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Figure 1. (A) Volcano plot indicating significantly changed compounds. The X-axis indicates a log2
fold change of wilson disease WD to HC (healthy control) patients. Y-axis indicates −log10 p-values
(adjusted). The cut-off for p-values is indicated based on Bonferroni correction. Compounds that
changed insignificantly are indicated in gray, compounds whose means changed in WD (relative to HCs)
more than twofold or less than twofold but insignificantly are indicated in green. Red dots stand for
compounds, which changed more than twofold and had a p-value (adjusted < 0.05). (B) Relative
concentrations of separate metabolites that changed significantly in WD patients in comparison with
HCs. Pairwise comparison of adjusted means was conducted taking into account the age and sex of
patients. * p < 0.05 (adjusted for multiple testing).

2.4. PLS-DA Model

For data analysis, we used normalized concentrations of metabolites (see Section 2.6). The presence
of outliers was identified by performing principal component analysis (PCA) to prevent their effects on
the model. Hotelling’s T2 test indicated three outliers in the healthy control group. A total of 52 samples,
which were placed inside a 95% confidence interval ellipse red bounds (Figure 2A), were used for
further analyses. For testing whether WD (Wilson disease) and HC (healthy control) patients could be
distinguished based on oxylipin concentrations, the partial least square discriminant analysis (PLS-DA)
was performed. The model was evaluated via cross-validation based on the overall error, balanced
error rate (BER), and area under curve (AUC) values (Figure S1, Table S2). The optimal number of
components was three. Projections on the first two components are presented in Figure 2B, and on
the first three components in Figure 2C. Studied groups were separated with a small overlap. For each
metabolite, the VIP score was estimated (as described in Section 2.6). The value of this parameter
addresses the explained variation between classes in each projection. A total of seven metabolites,
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including 12-HHT, EPA, 14,15-DHET, 9-HODE, OEA, PGE2, and 9-KODE, with VIP score values > 1.5
are shown in Table 2.

Figure 2. (A) The principal component analysis (PCA) performed to verify outliers. The 95% Hotelling
T2 confidence interval is indicated as an ellipse. (B) The partial least square discriminant analysis
(PLS-DA) model discriminating healthy control (HC) and Wilson disease patients (WD). The explained
variance of each component is indicated in brackets on the corresponding axis. (C) PLS2-DA model
represented in 3-D showing separation among the HC and WD patients.

Table 2. Variable importance in projection (VIP) scores are shown for 7 metabolites. A cutoff value of
1.5 is established for VIP selection.

Name 12-HHT * EPA * 14,15-DHET 9-HODE OEA PGE2 * 9-KODE

VIP-scores 1.899456 1.741633 1.739218 1.624940 1.617023 1.594828 1.837164

* volcano plot indicating significantly changed compounds, p < 0.05 (adjusted for multiple testing).

2.5. Similarity Matrix

Since oxylipins represent different branches of metabolic pathways [14], we decided to estimate
possible interconnections among compounds by calculating the pairwise association matrix, using
data obtained using PLS-DA. A clustered image map (CIM), based on a hierarchical clustering
of both the rows and the columns, was built using the Euclidean distance and complete linkage
clustering algorithm (Figure 3). In the figure, each entry of the matrix is colored according to
the association between metabolite concentrations and illness status (X and Y-variables in the model).
The red color indicates positive correlation, whereas yellow/green indicates a weaker correlation.
Dendrograms are shown on the left side (for metabolites) and on top (for patients). Color bar A
indicates whether the patient belongs to WD (black) or HC (red). Based on the dendrogram and illness
status, we subdivided the subjects into four groups (bar on the top of heatmap). WD patients can
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be subdivided into three groups: Not distinguished from healthy donors (mix), with enrichment of
HdOHE and HETE compounds, and with DiHETE, DiHOME enrichment (Figure 3).

Figure 3. A clustered image map was generated using the Euclidean distance and the complete linkage
clustering algorithm. On the figure, each entry of the matrix is colored according to its value; rows
represent metabolites, columns represent subjects. Dendrograms are shown on the left side (for patients)
and on top (for metabolites). Color bars on the bottom of the picture indicate: (A) whether the subjects
belongs to the Wilson disease (WD) group or healthy control (HC) group; (B) sex distribution: male (M)
or female (F); (C) nephropathy status: no, yes, HC or data not available (N.A.); (D) psychosomatic status:
no, yes, HC or N.A.; (E) form of the disease: trembling, akinetic-rigid, extrapyramidal, beforeneurology,
or HC.

We further annotated the enrichment of modules using patients’ clinical characteristics. The color
bars on the bottom of Figure 3 indicate the clinical and anthropometric annotation of the patients.
In total, five bars are presented on the CIM, indicating:

(A) HC/WD patients;
(B) Sex;
(C) Nephropathy status;
(D) Psychosomatic status; and
(E) Form of the disease.

However, all WD patients clustered in a group on the left side turned out to be females (Figure 3).
We tested associations with the Cu serum concentration, the severity of motor system dysfunction
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according to the Shvab scale, age, and the debut age of subjects. There was no clear clustering according
to the mentioned parameters (Figure S5A–D).

To test whether there were any differences in separate metabolites between selected groups,
we conducted analysis of covariance (ANCOVA) to compare the adjusted means between groups
taking into account the variability of the age and sex of patients. To identify which groups were
different, pairwise comparisons of the adjusted means with the following Bonferroni multiple testing
correction were applied. In the WD1 module patients, 10-HDoHE, 11-HETE, 12-HEPE, 12-HETE,
13-HDoHE, 15-HETE, 16-HDoHE, 5-HETE, and OEA were significantly different from HC (Figure S4).
In the WD2 module patients, 10-HDoHE, 9-HODE, and AA were significantly different from HC.
The mix module was not different from HCs (Figure S4).

2.6. Pathway Enrichment Analysis

Differences in separate metabolism branches are often a specific trait of biological processes [14–16].
This is why after independent analysis of the compounds, we took a step forward and investigated
oxylipins as groups. Concentrations of compounds were summed according to their acid precursors
(AA, DHA, EPA, ALA, DGLA, EA, EPA) (Figure 4A) or via the metabolic pathways they were
derived from (cyclooxygenase (COX), cytochrome P450 monooxygenase (CYP), lipoxygenase (LOX),
or non-enzymatic reactive oxygen species (ROS) (Figure 4B). It should be mentioned that in both cases,
only the derivatives were summed up; free acids were grouped into the “others” unit. The classification
used was in accordance with [15]. Then, a similarity matrix was calculated, and a complete linkage
algorithm was performed for the acid precursor matrix (Figure 4A). To simplify the analysis between
acid precursor and enzyme pathways, the second CIM was plotted using the order of the corresponding
row as in Figure 4A, and clustering was performed only in columns (Figure 4B).

 

Figure 4. A clustered image map was performed using the Euclidean distance and complete linkage
clustering algorithm. All polyunsaturated fatty acids (PUFA) derivatives were summed up according
to their (A) initial substrate of biochemical pathways or (B) pathways’ enzyme origin. In the figure,
each entry of the matrix is colored according to its value, rows represent subjects, columns represent
metabolites. Dendrograms are shown on the top (for metabolites). The color bar on the left side of
the picture indicates whether a subject is WD (black) or a HC (red). Abbreviations: AA: arachidonic
acid; DHA: docosahexaenoic acid, EPA: eicosapentaenoic acid; EA: AEA and OEA; LA: linoleic acid;
DGLA: dihomo-γ-linolenic acid; ALA: α-linolenic acid; CYP: cytochrome P450 monooxygenase; LOX:
lipoxygenase; ROS: reactive oxygen species; COX: cyclooxygenase.
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The size of the cluster described in Section 2.5 increased. It was enriched with AA, DHA, EPA,
LA, and DGLA metabolites, which indicates respective changes of their concentrations. It should
be noted that the correlation between changes in the amount of metabolites of the CYP and LOX
pathways was greater than that between their changes and changes in COX metabolites. However,
this clustering was not explained by the clinical and demographic parameters mentioned in Section 2.4
and the reason for this standing apart is still unclear. Patients could be subdivided into two clusters
independently of the grouping strategy (acids or enzymes), which is similar to the results presented
in Figure 3. The bottom cluster of patients was associated with an overall upregulated content of
oxylipins. On the other hand, the second cluster of patients did not show such an association.

After analysis of the grouped CIM, we determined a subgroup of patients as group 1. Patients from
that group had significantly different concentrations of LOX metabolites (speaking about enzymatic
pathways) and significant changes in the concentrations of AA, DGLA, and DHA derivatives and free
fatty acids (Figure S5).

3. Discussion

Although WD is an autosomal recessive metabolic disorder, it possesses uncertain
phenotype–genotype correlations and variability in its clinical manifestations. Understanding
the biology of WD pathogenesis and improving diagnostic methods is an urgent problem posed before
the science community [27]. Recently developed methods make possible quantitative measurement
and analysis of a large number of markers, which, taken together, make up profiles. Oxylipin profiles
are unique in that they reflect the activity level of a variety of biochemical processes in the organism
and participate in the regulation of various signaling cascades. They possess a characteristic “fingerprint”
when certain changes occur, and reflect dynamic characteristics of the organism, which is why interest
in oxylipin profiles continues to grow.

Oxylipin profiles were investigated for the study of mechanisms, and as diagnostic markers for
diseases, such as Alzheimer’s disease [24], female breast cancer [26], alcohol-related liver disease [25],
atherosclerotic diseases [28], and coronary artery disease [29]. Importantly, every disease was
characterized by a special set of oxylipins: 9-HODE [26], 20-HETE [25], 8-HETE, LTB4, 9-HODE
and 13-HODE [28], 9-HETE, and F(2)-isoprostanes [29]. Although t-test statistics of the oxylipin
profiles of 39 (22 female and 17 male) WD patients and 16 (11 female and 5 male) donors allowed four
substances (12-HHT, EPA, PGE2, and PGD2) to be revealed, which differ in WD vs HD, it is still not
possible to suggest these substances as diagnostic markers, and further investigations are required.
However, importantly, our data add new information concerning the biology of WD pathogenesis.

Indeed, analysis of data by VolcanoPlot showed that the patient vs. healthy groups differed
significantly across three lipids. PLS-DA analysis revealed five more lipids that explained the difference
in oxylipin profiles among WD and HC. Among them, two acids (EPA, OEA); two metabolites of LA,
9-HODE and 9-KODE, which can be attributed to LOX or non-enzymatic branches of metabolism;
three metabolites of AA (12-HHT, PGD2, PGE2), attributed to the COX branch; and one AA metabolite
from CYP branches of metabolism (14,15-DHET) were included. Although oxylipins possess multiple
effects, and the same compound can be traced through various processes [14,15], the following
processes can be characterized by the respective compounds: Oxidative stress (9-HODE, 9-KODE,
ОЕA, ЕРA), inflammatory markers (9-HODE, 9-KODE, PGE2, 12-ННТ, PGD2), and peroxisome
proliferator-activated receptor (PPAR) agonists (9-HODE, 9-KODE, OEA, EPA, 14,15-DHET). The data
allow us to make assumptions about the possible signaling pathways involved in this pathology.

The ability of free Cu ions to participate in the formation of reactive oxygen species (ROS)
and induce cellular toxicity is known [30]. In the presence of reducing agents (e.g., the superoxide
anion radical), Cu2+ can be reduced to Cu+, which catalyzes the formation of hydroxyl radicals from
hydrogen peroxide via the Haber–Weiss and Fenton reaction [31]. Therefore, the role of oxidative
stress in the pathogenesis of WD is currently under investigation, and peroxisome impairment is
suggested to be involved in WD pathophysiology [9,30,31]. Oxidized LA metabolites (HODE/KODE)
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are traditionally classified as oxidative stress markers [32]. Note that 9-HODE was also marketed
as the most upregulated oxylipin species in the plasma of breast cancer patients, which indicates
the possibility of oxidative stress involvement in this disease [26]. An interesting finding of our work
is an increase of OEA and EPA, substances that are known preventers of oxidative stress [33,34].
Although oxidative stress can be viewed as a common disruption in various pathologies, which may
suggest similarities in the oxidized forms of lipids, the variations in the oxylipin profiles obtained
in various diseases do not support this point of view [24–26,28,29]. Our data sheds light onto some
appropriate compensatory mechanisms that may be involved in WD.

An increase in 12-HHT, PGE2, and PGD2 points to the involvement of inflammatory processes
in the pathogenesis of WD. This is in accordance with the data obtained in the animal model of WD
(the Long-Evans Cinnamon rats), which is characterized by an increase in COX expression, the main
enzyme in the synthesis of these substances [35]. Interestingly, dietary omega-3 PUFAs suppress acute
hepatitis, prolong the survival of rats, and seem to lead to a decrease in COX expression [35]. Our data,
showing an increase in 12-HHT, PGE2, and PGD2, are in accordance with this observation, because
it is known that these omega-6 derivatives are inflammatory markers, which may be decreased by
supplementation with dietary omega-3 PUFAs [36].

Importantly, the elevation of some oxylipins may lead to the activation of PPARs [37].
Three subtypes of PPAR (PPARα, PPARβ, PPARγ) are active regulators at the lipid metabolism
and inflammation crossroad [38]. Recent studies have shown that PPARα and PPARγ are associated
with steatosis and impairment of the antioxidant system in the liver of WD patients [39]. Inconsistent
with this finding, a transcriptome analysis of the liver in the mouse model of Wilson’s disease under
copper-transporting, P-type ATPase gene Atp7b knockout identified the PPAR signaling pathway as a
high-copper-responsive target pathway [40].

It is noteworthy that while PPARγ increased, PPARα mRNA expression is decreased with
increased severity of WD [41]. This may reveal the “PPAR triad” mechanism that was conjectured
for other cells, which respond to an excess of various types of PPAR ligands [42]. There are few data
concerning the mechanisms of different PPAR-type changes in the presence of their ligands’ excess at
the organism level. Our data suggest that the increased number of PPAR ligands in the blood of WD
patients may be associated with some kind of regulatory compensatory mechanism associated with
the PPARs system. Our data also single out this signaling pathway for further consideration as being
involved in the clinical manifestations of WD. Indeed, among the investigated substances, PPARα
agonists were determined by OEA [41], EPA [37], and 14,15-DHET [43]. 9-HODE is an endogenous
activator and ligand of PPARγ [19]. In this context, the question remains regarding the role of
PGD2 and PGE2. Besides action via specific G-protein-coupled receptors, these prostaglandins are
converted in the course of inflammatory reactions into prostaglandins 15d-PGJ2 and PGA2, respectively.
Compounds with anti-inflammatory properties are formed, which activate PPARα and PPARγ [18].
At present, the question remains open whether an increase in PPAR agonists in the blood plasma
of patients with WD is a protective mechanism that weakens the severity of the clinical course of
the disease or, conversely, aggravates the symptoms. We were not able to find data on the use of
synthetic agonists of PPAR in WD models. It is likely that fibrates and thiazolidinediones may be
used as potential therapeutic agents for WD. Further research is required to elucidate the molecular
mechanisms by which PPAR agonists may exert their effects in WD pathogenesis.

Beside PPARs, we cannot exclude oxylipins’ involvement in the regulation of the activity of
other nuclear receptors, because it is known that lipid-related nuclear receptors change in WD
patients or animal models [22,23]. Decreased binding of the nuclear receptors FXR, RXR, HNF4α,
and LRH-1 to promoter response elements and decreased mRNA expression of nuclear receptor target
genes [22] and dysregulation of LXR/RXR heterodimers [23] may also be compensated by increased
lipid agonist concentrations. Our data are consistent with these results, but further research is required
to understand the mechanisms.
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An important finding of our work is the subdivision of the patients into groups relative to
the oxylipin profiles. Patients from the group had significantly different concentrations of LOX
metabolites and had significant changes in the concentration of AA, DGLA, and DHA derivatives
and free fatty acids. It is not yet clear which parameter underlies this division, since we did not find
any correlation with gender or age. The subdivision into groups can reflect the various states of
the innate immunity system. Along with various cytokines, oxylipins are part of the innate immunity
system, being proinflammatory substances, as well as mediators of resolution [13]. Innate immune
traits are more affected by the environment [44]. Environmental factors, including diet, exercise, stress,
and toxins, profoundly impact the phenotypes of diseases, and WD is among them [7]. It is worthwhile
to assume that the observed separation of patients by the oxylipin profile reflects a phenotypic response
to environmental factors and therefore the current state of the innate immune system. This aspect
requires further investigation of the metabolites that we found to be characteristic of WD.

4. Materials and Methods

4.1. Reagents

The oxylipins standards were as follows: 6-keto PGF1α-d4 (cat.no. 315210), TXB2-d4 (cat.no.
319030), PGF2α-d4 (cat.no. 316010), PGE2-d4 (cat.no. 314010), PGD2-d4 (cat.no. 312010), leukotriene
(LT) C4-d5 (cat.no. 10006198), LTB4-d4 (cat.no. 320110), 5(S)-HETE-d8 (cat.no. 334230), 12(S)-HETE-d8
(cat.no. 334570), 15(S)-HETE-d8 (cat.no. 334720), oleoyl ethanolamide-d4 (cat.no. 9000552), EPA-d5
(cat.no, 10005056), DHA-d5 (cat.no. 10005057), and AA-d8 (cat. No. 390010) (Cayman Chemical,
Ann Arbor, MI, USA). An Oasis®PRIME HLB solid-phase lipid extraction cartridge (60 mg, 3 cc,
cat.no. 186008056) was obtained from Waters, Eschborn, Germany.

4.2. Population and Study Design

This was an observational study with 55 recruited people: 39 patients with WD and 16 healthy
controls. In total, 39 individuals with Wilson’s disease admitted to the regular inpatient treatment in
the Research Center of Neurology (Moscow, Russia) were recruited for the study. Inclusion criteria
for the WD patients included the following clinical and laboratory signs of the disease: Debut of
the illness in childhood, adolescence, or adulthood (most often up to 35 years old); combined brain
and internal organ damage (liver cirrhosis, hepatolienal syndrome, portal hypertension, tubular
nephritis, etc.); damage to the central nervous system in the form of extrapyramidal syndrome;
and systemic discuprinosis with impaired copper-ligand metabolism.

WD exclusion criteria included the following: Disease manifestation after 35 years; autosomal
dominant type of inheritance; the presence of anamnestic, clinical, or paraclinical signs of another
disease that can cause similar symptoms; hallucinations not related to medication; the presence
of dementia or signs of impaired cortical function (aphasia, apraxia, etc.); the slowing down of
vertical saccades or vertical gaze paralysis; a positive history of inflammatory diseases; chronic
diseases and metabolic disorders; treatment with nonsteroidal anti-inflammatory drugs (NSAIDs) or
corticosteroids during the last month; and pregnancy or breast-feeding during the study visit.

In total, 16 healthy individuals not affected by neurodegenerative disorders as verified by clinical
examination were included in the study. They were recruited among people undergoing periodic
health examinations at the same center. The exclusion criteria for healthy controls were the same as for
patients with WD.

The Ethics Committee of the Research Center of Neurology approved this study (protocol№4-4/19
15.05.19), and informed written consent was obtained from each patient and control according to
the guidelines approved under this protocol (Article 20, Federal Law “Protection of Health Right of
Citizens of Russian Federation” N323- FZ, 11.21.2011).
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4.3. Clinical Evaluation

The criteria for inclusion in the group of patients with WD consisted of clinical and laboratory signs
of the disease: Debut in childhood, adolescence, and adulthood (most often up to 35 years old); combined
damage to the brain and internal organs (cirrhosis, hepatolienal syndrome, portal hypertension,
tubular nephritis, etc.); central nervous system (CNS) damage in the form of extrapyramidal
syndrome, including tremor, stiffness, dysarthria, dysphagia, cognitive impairment, and dysphoria;
and extra-neural symptoms, including hepatosplenomegaly, hemorrhages, failure of levodopa
treatment (prescribed in connection with Parkinson’s syndrome). Criteria for laboratory diagnosis
of WD: Kaiser–Fleischer corneal ring (when using a slit lamp); a decrease in the concentration of
ceruloplasmin copper ligand protein in the blood serum; hypersecretion of copper with urine; increase
in the concentration of free copper in blood serum; a decrease in the concentration of total copper in
serum; decreased serum zinc concentration; increased copper concentration in liver biopsy specimens;
DNA diagnostics (detection of mutations in the ATP7B gene); and high therapeutic effect when using
copper eliminating chelates (D penicillamine, trientin) and zinc preparations. An additional diagnostic
criterion for WD was the result of neuroimaging (computed tomography and magnetic resonance
imaging (CT, MRI)), showing an atrophic process in the cerebral hemispheres, cerebellum, subcortical
structures with a corresponding expansion of subarachnoid spaces, and the ventricular system, as well
as foci in the area of lenticular nuclei, globus pallidus, and visual hillock [26,27].

4.4. Blood Sample Collection

Taking into account the reported serum oxylipin variety during daytime [45], all blood sample
collection was conducted in the morning in the fasted state. The plasma was obtained immediately
after blood sampling, aliquoted, and stored at −80 ◦C for further analysis.

4.5. UPLC-MS/MS Conditions and Sample Preparation

Samples were prepared for MS analysis by the solid-phase extraction (SPE) method using
an Oasis®PRIME HLB cartridge (60 mg, 3 cc). For eicosanoid extraction, plasma (900 μL) was
deproteinized with 1 mL of methanol, vortexed, and centrifuged at 12,000 rpm for 5 min at ambient
temperature. The supernatant was diluted 1:6 with mQ water containing 0.1% formic acid for
the next steps of SPE. Then, the sample was loaded, and the cartridge was washed with 2 mL of 15%
methanol containing 0.1% formic acid, after which the lipids were sequentially eluted with 500 μL
of anhydrous methanol and 500 μL of acetonitrile. The resulting samples were concentrated by
evaporation of the solvent under a gentle stream of nitrogen and stored at −80 ◦C. For the identification
of lipid mediators, the respective lipid extracts were analyzed using an 8040 series UPLC-MS/MS mass
spectrometer (Shimadzu, Japan) in multiple-reaction monitoring mode at a unit mass resolution for both
the precursor and product ions [46]. The selected molecular ions were fragmentized in the gas phase
by collision-induced dissociation and analyzed by tandem (MS/MS) mass spectrometry. The studied
metabolites were identified and quantified according to the comparison of their multiple reaction
monitoring parameters, retention times, and peak areas with the parameters obtained for deuterated
internal standard compounds of the same classes (6-keto PGF1α-d4, TXB2-d4, PGF2α-d4, PGE2-d4,
PGD2-d4, leukotriene (LT) C4-d5, LTB4-d4, 5(S)-HETE-d8, 12(S)-HETE-d8, 15(S)-HETE-d8, oleoyl
ethanolamide-d4, EPA-d5, DHA-d5, AA-d8) (Table S1) using a commercial software method package
Lipid Mediator Version 2 (Shimadzu, Tokyo, Japan) according to the manufacturer’s instructions.

Prior to analysis, the plasma oxylipin detection method was validated according to food and drug
administration (FDA) recommendations [47]. The stock ethanol solution containing 2 ng of each of
the 15 deuterated oxylipin standards was prepared. Calibration samples (1.4, 1, 0.4, 0.2, and 0 ng/probe)
were obtained by further dilution of the stock solution containing the same total volume of plasma.
For each standard intraday, the interday reproducibility and relative standard deviation (RSD, %)
were determined. The accuracy was measured with spiked standards for 3 concentration ranges:
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0.2–0.8 ng/probe, 0.9–1.3 ng/probe, and 1.4–2 ng/probe. The limit of detection (LOD) was determined
as the signal to noise ratio = 3, and the limit of quantification (LOQ) as the signal to noise ratio = 3.
Signal to noise ratio was calculated as the standard error of the regression/slope. Results are presented
in Table S2.

4.6. Experimental Data Analysis and Statistics

Comparison of the relative concentrations was performed using the two-sample two-sided t-test,
followed by Bonferroni–Holm correction for multiple comparisons. p < 0.05 was considered as
statistically significant.

Metabolomics data was analyzed using the mixOmics R package version 6.1.1 [48]. After data
normalization on internal standards, peak area mean centering and unit variance scaling was
applied. Class separation was analyzed by partial least square discriminant analysis (PLS-DA).
The quality of the built model was estimated using leave-one-out cross validation. Each round of
cross-validation included training on the bigger data subset and validation on the randomly selected
sample. The model’s predictive performance was estimated based on the validation results combined
over rounds. This procedure was repeated for different numbers of components in the PLS-DA
model. The overall error, balanced error rate, and AUC were obtained for each number of components
(Figures S1 and S2, Table S5).

After building the PLS-DA model with 3 components, VIP scores for each investigated metabolite
were calculated. A VIP score is a weighted sum of squares of the PLS loadings regarding the explained
variation in each projection. A cutoff for VIP-scores was accepted as 1.5 according to the metabolomics
standard initiative (level MSI = 1).

Analysis of covariance (ANCOVA) was used to compare the means of single metabolites between
studied groups, taking into account sex and age. ANCOVA was performed using rstatix package
for R. Pairwise comparisons of relative metabolites’ concentrations was performed using function
emmeans_test (rstatix package), also taking into consideration age and sex as covariates. Analysis
was followed by Bonferroni–Holm correction for multiple comparisons. p < 0.05 was considered as
statistically significant.

5. Conclusions

In conclusion, our findings reveal alterations of the plasma oxylipin profiles in Wilson’s disease
patients, and heterogeneity in patients relative to the oxylipin profiles. Eight lipids were found to vary
between HC and WD: EPA, OEA, 9-HODE, 9-KODE, 12-HHT, PGD2, PGE2, and 14,15-DHET; among
them, PGE2, PGD2, 12-HHT, and EPA changed significantly (based on the pairwise comparison of
means adjusted for sex and age).

The biological significance of these compounds indicates the involvement of oxidative stress
damage, inflammatory processes, and PPAR signaling pathways in this disease. The data reveal novel
possible therapeutic targets and intervention strategies for treating WD.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/6/222/s1,
Figure S1: The Balanced Error Rate (BER) and overall error rate estimated via cross-validation for different
component numbers, Figure S2: ROC (receiver operating characteristic) curve for chosen number of components,
Figure S3: A clustered image map was generated using euclidean distance and complete linkage clustering
algorithm, Figure S4: Relative concentrations of separate metabolites which changed significantly in WD1
and/or WD2 in comparison with HC, Figure S5: Relative concentrations of summed metabolites which changed
significantly between group1 and group2, Table S1: UPLC-MS/MS parameters of the identified lipids, Table S2:
Intraday reproducibility, Table S3: Interday reproducibility, Table S4: Accuracy, LOD, LOQ, Table S5: AUC (Area
Under Curve) values and p-value estimated for different number of components, Table S6: Mean +/− standard
deviation of relative concentrations for healthy controls (HC) and Wilson disease patients (WD), Table S7: Source
acid and metabolic enzyme for the analyzed oxylipins.
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Abbreviations

AA Arachidonic acid
COX Cyclooxygenase
CYP450 Cytochrome P450 monooxygenase
DHA Docosahexaenoic acid
DiHOME Dihydroxyoctadecamonoenoic acid
HC Healthy control
HDoHE Hydroxydocosahexaenoic acid
HETE Hydroxyeicosatetraenoic acid
HODE Hydroxyoctadecadienoic acid
LA Linoleic acid
LOX Lipoxygenase
PG Prostaglandin
PUFAs Polyunsaturated fatty acids
WD Wilson disease
UPLC-MS/MS Ultra-performance liquid chromatography-tandem mass spectrometry
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Abstract: Differentiation of preadipocytes into mature adipocytes is a highly complex cellular process.
At lipidome level, the adipogenesis remains poorly characterized. To investigate the lipidomic changes
during human adipogenesis, we used the LipidyzerTM assay, which quantified 743 lipid species
from 11 classes. The undifferentiated human SGBS cell strain showed a heterogeneous lipid class
composition with the most abundant classes, phosphatidylethanolamines (PE), phosphatidylcholines
(PC), and sphingomyelins (SM). The differentiation process was accompanied by increased ceramide
concentrations. After completion of differentiation around day 4, massive lipid remodeling
occurred during maturation, characterized by substantial synthesis of diacylglycerols (DAG),
lysophosphatidylethanolamines (LPE), PC, PE, SM, and triacylglycerols (TAG). Lipid species
composition became more homogeneous during differentiation to highly concentrated saturated
and monounsaturated long-chain fatty acids (LCFA), with the four most abundant being C16:0,
C16:1, C18:0, and C18:1. Simultaneously, the amount of polyunsaturated and very long-chain
fatty acids (VLCFA) markedly decreased. High negative correlation coefficients between PE and
PC species containing VLCFA and TAG species as well as between ceramides and SM imply
that PE, PC, and ceramides might have served as additional sources for TAG and SM synthesis,
respectively. These results highlight the enormous remodeling at the lipid level over several lipid
classes during adipogenesis.

Keywords: adipocytes; adipogenesis; differential mobility spectrometry (DMS); lipidomics; lipidyzer;
mass spectrometry; metabolomics; phenotyping; Simpson-Golabi-Behmel syndrome (SGBS)

1. Introduction

Overweight and obesity have increased dramatically in recent decades and now affect hundreds
of millions of people worldwide, reaching pandemic levels [1]. Obesity has an adverse impact on
a range of physiological processes, thereby increasing the risk of developing diseases like type 2
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diabetes [2], cardiovascular diseases [2,3], and some types of cancer [4]. Overweight and obesity are
mostly characterized by an excess of white adipose tissue (WAT). Adipocytes, the main constituent
of this tissue, control the energy balance by storing triacylglycerols in periods of energy excess and
breaking down these lipids during energy deprivation. However, the physiological role of adipocytes
is much more complex than simply acting in energy storage. These cells secrete numerous diverse
lipids and proteins controlling and regulating various bodily functions like appetite, immunological
and inflammatory responses, and blood pressure and thereby act as an endocrine organ [5,6].

The development of adipocytes from precursor cells is known as adipogenesis. Within this
differentiation process, fibroblast-like preadipocytes differentiate into lipid-laden and insulin-responsive
adipocytes. This highly complex process involves the concerted interaction of a cascade of transcription
factors like peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding
proteins (C/EBPs) as well as different metabolic pathways including the TCA cycle, fatty acid synthesis,
glycolysis, and polyamine biosynthesis [7–9]. The differentiation process has been characterized
predominantly in murine cells, using different omics approaches like transcriptomics [10,11],
metabolomics [9,12], proteomics [13–15], as well as the combination of transcriptomics and
metabolomics [16]. However, lipids and their precise composition changes were so far sparsely
characterized due to a lack of appropriate “high-resolution” mass spectrometry (MS) methods and
internal standards. Several years ago, Roberts and coworkers characterized the levels of free fatty
acids as well as the total levels of fatty acids of triacylglycerols (TAG) and glycerophospholipids
in differentiating murine 3T3-L1 cells [9]. Two other studies analyzed the levels of some
phosphatidylcholines (PC) using the same cell model, but without resolving the lipid isobars in
experimental setups that were focused on the analysis of polar analytes [16,17]. Liaw and coworkers
compared differentiated 3T3-L1 cells with primary mouse ear-derived mesenchymal stem cells and
brown BAT-C1 adipocytes with a global lipid profiling method [18]. Additionally, they investigated
the differentiation of murine adipocytes. However, they did not longitudinally analyze the whole
adipogenesis process but compared only undifferentiated with fully differentiated 3T3-L1 cells.
Even less knowledge on lipids has been compiled in the past for human adipocytes. Collins and
coworkers analyzed the levels of fatty acid compositions of TAG and phospholipids without further
class separation in primary adipocytes of subcutaneous origin [19]. To the best of our knowledge,
the adipogenic process in a human cell model was so far not characterized with high-resolution
lipidomics approaches. Therefore, we studied the development of human preadipocytes into mature
adipocytes on a lipidomics scale with the recently developed LipidyzerTM (SCIEX, Darmstadt, Germany)
method. We were able to simultaneously quantify 743 lipid species from 11 lipid classes. In combination
with multivariate statistics, we could uncover correlations that suggest that extensive lipid remodeling
occurs between several lipid classes during adipogenesis. These findings might contribute to the
elucidation of new therapy strategies in obesity and other lipid metabolism affected disorders.

2. Results

2.1. Analytical Method Validation

In order to study the process of adipogenesis of human SGBS cells we decided to use the novel
targeted Lipidyzer™ technology. Although originally developed and validated for the fast and
automated analysis of human plasma samples [20], recently published studies also showed good
performance of the Lipidyzer™ assay with other matrices than plasma [21–25]. With the aim to obtain
a meaningful “fit for purpose method”, we investigated the analytical performance regarding linearity
and repeatability for the SGBS cells.
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For linearity evaluation, we used nine different volumes of cell homogenates (10, 20, 40, 50, 60,
80, 100, 200, and 300 μL) of undifferentiated and differentiated (day 15) SGBS cells and determined
mean concentrations for the single lipid classes. For most classes, the coefficients of determination
(R2) of the linear regressions were higher than 0.9 for both sample types, the differentiated and the
undifferentiated cells, meaning we had good linearity of the method (Figure S1, Table S1). However,
two classes, the dihydroceramides (DCER) and free fatty acids (FFA), revealed insufficient linearity
for both sample types. The measurements of lactosylceramides (LCER) showed high linearity in the
undifferentiated (R2 = 0.9734) but low linearity in the differentiated cells (R2 = 0.0479).

For repeatability evaluation, we calculated the relative standard deviations (CV) of the QC pooled
samples. With the exception of DCER, all other lipid classes revealed CV values < 15% (Table S2).
We also analyzed the background signals of the lipid classes by defining a lower cut-off value for the
Lipidyzer™method at a value of 1.5× the value measured in the blank. In total, 12 lipid classes were
present in QC samples in quantities higher than 1.5× the blank values (Table S2). Only FFA showed up
in lower apparent amounts because their measured concentrations were already high in blank samples.
In conclusion, the Lipidyzer™ assay showed good linearity and repeatability for most of investigated
lipids in SGBS cells.

Finally, we decided to exclude the FFA and DCER data from the data set due to their insufficient
reliability in the validation testing. However, we left the LCER in the data set as we think that the drop
of concentration between undifferentiated and differentiated cells is a noticeable result of our study.

2.2. Cellular Lipid Composition Undergoes Remodeling During Adipogenesis to Mainly TAG

Alterations in the lipid content of some lipid classes (e.g., TAG, phospholipids) in murine cells
undergoing the process of adipogenesis have long been known [9,16,18,19]. However, concentration
changes of many lipid species from multiple lipid classes at the different stages of human adipogenesis
have not been investigated so far. We used the LipidyzerTM technology to follow the differentiation
process of the human SGBS cell strain by quantifying the lipids of samples at days 0, 4, 8, 12, 16, and 20
of adipogenesis.

To track the successful cell differentiation of preadipocytes into lipid-laden adipocytes,
we monitored the cellular process by microscopy (Figure S2) and analyzed relative mRNA levels of the
main adipogenic transcription factors PPARG and CEBPA (Figure S3). Microscopic analysis showed
enormous lipid storage in droplets starting between day 4 and 8. The analyses of the relative mRNA
expression levels showed strong upregulation of PPARG (40.7 ± 9.5 fold change at day 12 compared
to day 0) and CEBPA (52.0 ± 8.8 fold change at day 12 compared to day 0). These data demonstrate
successful differentiation of SGBS cells into adipocytes.

We were able to simultaneously quantify 743 lipid species of 11 different lipid classes with
the accurate identification of lipid isobars. To investigate putative differences between the lipid
concentration levels at different time points, we conducted partial least squares-discriminant analysis
(PLS-DA, Figure 1) and principal component analysis (PCA, Figure S4). PLS-DA shows a clear
separation of the different time points of adipogenesis using the first two principal components with
68.5% and 12.7% of explained variance (Figure 1). While component 1 was sufficient to separate
the early phase of SGBS differentiation (days 0, 4, and 8), the second component was necessary
for separation of the later stages of differentiation (days 12, 16, and 20). Component 1 was mostly
influenced by TAG species, whereas their influence on component 2 was lower (Table S3).

Next, we were interested in the lipid class compositions at the six time points of differentiation
(Figure 2A). In preadipocytes, that is, at the start of differentiation (day 0), a very heterogeneous lipid
composition was observed with the most dominant classes being the phosphatidylethanolamines
(PE; 32.1% ± 0.9%), phosphatidylcholines (PC; 26.3% ± 0.4%), sphingomyelins (SM; 19.7% ± 0.6%),
and TAG (10.3% ± 0.5%). While the relative proportions of PE, PC, and SM declined tremendously
during the ongoing cell differentiation, the fraction of TAG increased from initially 10.3 ± 0.5% to finally
96.9 ± 0.4% at day 20. The relative fractions of all other lipid classes decreased strongly during the
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differentiation process to fraction sizes of finally 1.2% and lower. To conclude, the different stages of
cell differentiation could be clearly distinguished based on the relative lipid compositions (Figure 2A)
as well as by PLS-DA (Figure 1). Interestingly, the relative lipid class compositions did not reveal
strong changes after day 8 of differentiation.

Figure 1. Partial least squares-discriminant analysis (PLS-DA) score plot showing very clear clustering
of lipid species regarding the different time points of adipogenesis. While component 1 (68.5% variance)
was sufficient to separate the early phase of differentiation (days 0, 4, and 8), the second component
was necessary for separation of the later stages of differentiation (days 12, 16, and 20, 12.7% variance).
The color code for the data points of the different days of adipogenesis is shown in the box inside
the figure. Illustrated are also the 95% confidence intervals for each group. Cross-validation and
permutation results confirmed the model to be predictive and not overfitted (R2: 0.97, Q2: 0.97;
p < 5 × 10−4 (0/2000 permutation numbers), test statistics selected by separation distance (B/W)). Each
group consisted of six samples.

122



Metabolites 2020, 10, 217

 

Figure 2. Changes in lipid class compositions and concentrations in specific lipid classes in the
course of adipogenesis showed enormous lipid remodeling during the ongoing differentiation process.
(A): Relative lipid class compositions at different days of adipogenesis in molarity %. Prior to
differentiation at day 0, a very heterogeneous class distribution could be observed. This composition
became more uniform during adipogenesis due to the predominance of triacylglycerols (TAG).
The relative fraction for TAG increased from 10.3± 0.5 molarity % at day 0 to 96.9 ± 0.4 molarity % at day
20. (B): The concentration profiles of different analyzed lipid classes showed individual time courses
during ongoing adipogenesis. Cholesteryl esters (CE), HCER, and LCER concentrations decreased
strongly during adipogenesis, whereas LPE, PC, PE, and TAG concentrations strongly increased.
Ceramide (CER) concentrations increased from day 0, peaking at day 4, and then decreased below
the starting concentration levels. DAG species had their concentration maximum from days 8 to 12.
LPC fluctuated during the whole differentiation process.
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The time courses of the lipid species concentrations revealed an interesting alternative perspective
on adipogenesis (Figure 2 B). Overall, we observed significant changes over time in the concentrations
of 725 out of 743 lipids, that is, for 97.7% of all quantified lipid species. When looking at the lipid
classes, only three of them, namely, CE (p = 4.52 × 10−4, Table S4), HCER (p = 5.23 × 10−3), and LCER
(p = 2.80 × 10−5), showed continuous and significant decreases in concentration levels from day 0 to
day 20 (Figure 2B). CER concentrations increased significantly from day 0 to day 4 of differentiation
(p= 1.51× 10−5) and subsequently decreased significantly below the limit of detection (LOD). In contrast,
the TAG concentration levels increased continuously (p = 4.01 × 10−6). The TAG concentration levels
were the highest among all classes and levels started from 19.2 ± 2.0 μM on day 0 to 8874.3 ± 1072.1 μM
on day 20. LPE, PC, and PE concentrations also increased strongly during adipogenesis, whereas
SM concentrations showed only a mild increase during differentiation (p = 5.04 × 10−5). In contrast,
DAG concentrations increased from day 4 to day 8 and remained at a high level (p = 3.40 × 10−5).
LPC concentrations fluctuated around the starting value during differentiation (p = 1.50 × 10−4).

2.3. The Most Abundant Fatty Acids in Differentiated Human SGBS Cells Are C16:0, C16:1, C18:0, and C18:1

As we were interested in the concentration changes of the single fatty acid (FA) species during
SGBS adipogenesis, we subsequently focused on a detailed analysis of the fatty acids bound to the
lipid backbone. Figure 3 illustrates the time courses of the concentrations for the single FA side chains
summarized over all lipid classes. With the exception of C20:4, all LCFA as well as the medium-chain FA
(MCFA) lauric acid (C12:0) showed strong increases in concentration during adipogenesis. Among this
group of FA, C18:1, C16:0 (palmitic acid), C16:1, and C18:0 (stearic acid)—in descending order—were
the most abundant. In contrast to the MCFA and nearly all LCFA, most of the VLCFA decreased during
adipogenesis. FA C22:0, C22:1, and C22:2 showed fluctuating concentration profiles.

A detailed analysis of the time courses of the concentrations for the single FA side chains separately
for each lipid class allowed an even more detailed glimpse into adipogenesis (Figure 4). Illustrations on
an enlarged scale can be found in Figure S5A–F. We were able to identify individual FA concentration
changes over time of differentiation, which were strongly dependent on the lipid class.

The FA species of the three classes of ceramides, namely CER, HCER, and LCER, showed
similar behavior in that the concentrations of the LCFA and VLCFA side chains decreased during
adipogenesis. In contrast, the LCFA in DAG, LPE, PC, PE, and TAG substantially increased. In particular,
the concentrations of C18:1 and C16:0 increased strongly during adipogenesis; for example, TAG-C16:0
increased from 2.5 μM at day 0 to 1515.1 μM at day 20. In contrast, VLCFA were present at only very
low levels in the classes of DAG, LPE, PC, PE, and TAG.

The FA composition of the SM differed strongly from the compositions of the other classes in
that the SM comprised the highest absolute amounts of VLCFA. Especially C22:0 (behenic acid) and
C24:0 (lignoceric acid) were present in SM at considerable concentrations. Their concentrations were
increased up to a factor of 320 at day 20 compared with the other classes. The fatty acid concentrations
of the LPC did not change markedly during adipogenesis. In contrast, the LCFA of the CE decreased
to half the maximal concentrations and the VLCFA even more during the differentiation process.
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Figure 3. Time courses for the concentrations of the single FA side chains bound in the lipids summarized
over all classes. Analysis of summarized lipids’ side chain concentrations over all classes revealed four
dominant fatty acids, namely FA 18:1, FA 16:0, FA 16:1, and FA 18:0. Their concentrations increased
strongly during adipogenesis together with the other LCFA (with the exception of FA 20:4) and the
MCFA 12:0. In contrast, the very VLCFA mostly decreased during adipogenesis.
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Figure 4. Fatty acid concentrations and compositions changed markedly during adipogenesis in
all 11 lipid classes. At the start of differentiation, the lipids had a very heterogeneous side chain
distribution with high concentration levels of LCFA and VLCFA. The concentrations of the VLCFA
decreased during adipogenesis in all classes, with the exception of the class SM. The concentration
courses of the LCFA were more complex because their levels increased markedly during adipogenesis
within the classes DAG, LPE, PC, PE, and TAG, but decreased in the class CE. The FA concentration
course of the SM differed strongly from the other classes because the VLCFA remained at high levels
during adipogenesis.
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2.4. Correlations between Concentration Profiles of Lipid Species from Different Lipid Classes Reveal Extensive
Lipid Remodeling during Adipogenesis

The opposing trends in concentrations of some lipid classes raised the questionwhether they
might be the result of an underlying regulatory network. To reveal possible associations between
the lipid species, we computed pairwise Spearman’s rank correlations of lipid species concentration
trajectories (Figure 5). The lipids could be assigned to six clusters (Figure 5A) and for each of the
clusters the average concentration changes over time are displayed in Figure 5B. Species of different
lipid classes were found to be distributed between the different clusters (Figure 6A and Figure S6).

 

Figure 5. Spearman’s rank correlation analysis of lipid concentration trajectories during adipogenesis
showed strong clustering and correlation of the lipid species. Panel (A) illustrates the matrix of the
analysis where each square indicates the Spearman’s rank correlation coefficient. Positive correlations
between the variables are shown in red, while negative correlations are shown in blue. Correlation
matrix enables the assignment of six lipid clusters. Species were clustered using Ward’s clustering
algorithm. Panel (B) shows the changes of the average lipid concentration in the different clusters
with time.
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Cluster 1 (n= 97 lipid species) consisted of lipid species with continuously decreasing concentration
profiles (Figure 5B). In cluster 1, lipid species with the highest average FA side chain lengths (expressed
as average total number of C-atoms) as well as number of double bonds (DB) were found, independent
of the lipid class (Figure 6B–D). The cluster was dominated by PE (37.6%) and PC (20.8%) species.
However, with the exception of SM, lipids from all other lipid classes were also clustered here
(Figure 6A). Interestingly, 80% of all LCER species of the dataset could be found in this cluster
(Figure S6A). In addition, more than 74.3% of the lipid species within this cluster had at least one FA
side chain with at least 20 C-atoms and a high degree of desaturation (Table S5). Therefore, this cluster
can be considered as the “PUFA cluster”.

Cluster 2 (n = 61) comprised species that exhibited decreasing concentrations starting at day 8.
This cluster contained lipids of all classes except those of LPE. The species had approximately the third
highest total number of C-atoms and DB (Figure 6B–D). Remarkably, cluster 2 contained a relatively
high number of sphingolipids: 56.6% of all CER, 40.0% of all HCER, and 41.7% of all SM species
of the dataset (Figure S6B) could be found in this cluster. Therefore, it can be characterized as the
“sphingolipid and PUFA cluster”.

Cluster 3 species (n = 19) showed a fluctuating concentration course with a decrease in
concentrations until day 8, followed by an increase to above the starting values. Four lipid classes
were part of this cluster: TAG (42.1%), DAG (10.5%), PC (15.8%), and PE (31.6%). Remarkably, 15 out
of 19 lipids (79%) contained at least one FA with 18 carbon atoms.

Lipids of clusters 4 and 5 (n = 198 and 312, respectively) were generally characterized by a strong
concentration increase during adipogenesis. However, cluster 4 species increased substantially only
until days 12–16 and decreased thereafter to half their maximum concentrations, while cluster 5 species
reached a plateau at day 16. In cluster 4, TAG was the most abundant lipid class (75.8%), followed
by PE (13.1%), and DAG (6.1%), while CE and all ceramide classes (CER, HCER, and LCER) were
completely absent. The species of this cluster had the lowest number of C-atoms and DB within the
dataset (Figure 6B–C). In cluster 5, the relative amount of TAG was even higher (88%) than in cluster 4
(Figure 6A). Owing to the high number of TAG species, clusters 4 and 5 also showed the highest lipid
concentration values among all clusters (Figure 2B). Therefore, clusters 4 and 5 can be considered as
“TAG clusters.”

The lipids in cluster 6 (n = 56) exhibited a fluctuating averaged concentration profile throughout
the investigated time period. Lipid species of all classes except LCER were represented in this cluster,
which was in general rather heterogeneous in terms of composition (Figure 6A).

The correlations between the clusters might reveal new insights into lipid remodeling. In general,
we observed positive correlations between clusters 1 and 2 as well as between clusters 4 and 5.
Remarkably, lipids from clusters 1 and 2 were strongly negatively correlated with lipids in clusters 4
and 5, which might be an indicator of lipid remodeling. Specifically, many TAG species from cluster 5
had strong negative correlations with more than a dozen PE species of cluster 1 (between −0.7 and
−0.96). These PE species mostly contained polyunsaturated and VLCFA, whereas the TAG species
were carrying at least one LCFA (Table S5).

Moreover, some sphingomyelins, especially SM 20:0 (cluster 4), SM 22:0 (cluster 5), and SM 24:0
(cluster 5), had high negative Spearman’s correlation coefficients (down to −0.84) with species from
classes CER, HCER, and LCER (all in clusters 1 and 2, Table S5). These results point to regulatory
interactions between the lipid species over several lipid classes.

In addition, we also found high positive correlation coefficients (mostly between 0.85 and 0.98)
between DAG and TAG species. Those DAG and TAG with very high co-correlations mostly contained
one or two of the most abundant fatty acids (C16:0, 16:1, 18:0, and 18:1) as side chains. Additionally,
these TAG were characterized by total C-atom numbers between 42 and 54, which further implies that
LCFA were the main constituents.
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Figure 6. Clusters differed widely in their lipid class and lipid species composition. Panel (A) highlights
the cluster compositions by showing the relative numerical proportions of the lipid class members.
Panels (B–D) show the analysis of the FA side chain lengths and the number of DB based on the
number of side chains of the lipid classes. Panel (B) shows the analysis of the class with three bound
FA side chains, panel C that of lipid classes with two bound FA side chains, and panel D that of classes
with only one FA side chain. Lipid species with patterns of decreasing concentration throughout
adipogenesis had in general the highest numbers of DB and chain lengths, independent of their number
of side chains.

3. Discussion

In the present study we characterized the different stages of human adipogenesis by using
the Lipidyzer™ method [26] which enabled the simultaneous quantification of 743 lipid species of
11 different lipid classes in differentiating human SGBS cells. This global lipid analysis enabled us to
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identify correlations between lipid species over several classes and opened the possibility to generate
hypotheses on lipid remodeling during adipogenesis.

Prior to the adipogenesis characterization, we analyzed the method performance in terms of
linearity, repeatability, and background signals to be able to apply this novel methodology for accurate
lipid analysis to SGBS cell culture samples. We used representative samples for undifferentiated and
differentiated SGBS cells and validated the Lipidyzer™method according to recently published studies
that already showed good performance of the Lipidyzer™method [21–25].

The lipid classes CE, CER, DAG, HCER, LCER, LPC, LPE, PC, PE, SM, and TAG could be analyzed
with good linearities as indicated by coefficients of determination above 0.9 in at least one SGBS sample
type. Furthermore, these lipid classes could be measured with high precision (CVs < 12%) which was
determined by repeated analyses of QC samples from pooled SGBS homogenates. However, DCER
and FFA had to be discarded from the data set, because the observed concentration levels were mostly
in the range of the blank samples and therefore led to poor linearity and low precision. The detected
high background signals of FFA in blank samples indicate high contaminations of these species that can
be often found in glassware, pipette tips, and even in high-grade organic solvents [27]. We conclude
that the Lipidyzer™ method was suited to reliably quantify 743 lipids from 11 lipid classes for the
analysis of SGBS cell samples.

We are the first to use this novel method for the determination of lipid levels in differentiating
human adipocytes. Additionally, we are also the first who characterized the human adipogenesis with
this broad coverage of different lipid classes using only one method. Liaw and coworkers investigated
the endpoints of adipogenesis (i.e., pre-adipocytes vs. fully differentiated adipocytes, day 12) in murine
adipocytes of a large amount of lipids using an LC-MS/MSALL shotgun lipidomics approach [18]. They
identified a shift from highly unsaturated VLCFA bound to the backbones of TAG, SM, cardiolipins,
and ether-linked monoalkyldiacylglycerols in preadipocytes to more saturated LCFA in differentiated
3T3-L1 adipocytes. We could confirm these findings for VLCFA-carrying SM since we identified a
decrease in their concentration levels until day 16. However, we measured an increase from day 16 to
20 almost reaching the concentration levels of day 0. The authors investigated adipogenesis at day
12, possibly missing the increase in the late phase of differentiation we observed. On the other hand,
and different to the study of Liaw et al., we observed members of further lipid classes, namely CE,
CER, DAG, HCER, LCER, LPC, PC, and PE species, having strongly decreased amounts of highly
unsaturated VLCFA in fully differentiated adipocytes when compared to preadipocytes.

We followed the adipogenesis process over 20 days by analyzing samples from six time points
(days 0, 4, 8, 12, 16, and 20). Successful cell differentiation of preadipocytes into lipid-laden adipocytes
was confirmed on two different levels. First, we could observe the expected morphological changes
during cell differentiation by microscopy. Second, the upregulation of PPARG and CEBPA expression
showed strong transcriptional activation of cell differentiation. The very tight clustering of the data for
samples from the same time point in the PCA and PLS-DA plots demonstrated generally high quality
of the data obtained by the targeted lipidomics technique. Furthermore, the shift from differentiating
(days 0–4) to maturating (days 4–12) SGBS cells became clearly visible by the change from PC1 to PC2
as the main contributor for cluster separation in the score plots. The observed shift coincides with
findings from Halama and coworkers, who characterized murine adipogenesis of 3T3-L1 cells using a
combined metabolomics and transcriptomics approach [16]. This shift during adipogenesis can be
explained by the change from differentiation to maturation medium at day 4.

During ongoing adipogenesis we observed on the one hand strongly decreasing levels of CE, CER,
HCER, and LCER, and on the other hand, substantially increasing levels of nearly all investigated
glycerophospholipid classes, namely LPE, PC, PE, SM, as well as TAG. However, the temporal
concentration courses of the individual lipid classes followed a particular pattern that was dependent
on the developmental phases of the cells.

During the differentiation phase, we observed increasing concentrations of CER until day 4.
The ceramides are known to be involved in signaling activity in cell cycle arrest and the inhibition of
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cell proliferation during early adipogenesis [28]. Both processes are required for the induction of cell
differentiation of preadipocytes into adipocytes [29]. Thus, the time courses of CER concentrations give
rise to the hypothesis that at least some of these compounds were involved during cell differentiation
signaling. After day 4, when cell differentiation was completed and maturation started, we observed
decreasing levels of CER together with HCER and LCER accompanied by a simultaneous increase of
SM. This could be explained by the remodeling of all ceramides into SM. This is further supported
by the fact that we observed high negative Spearman’s correlation coefficients between several SM
species and CER, HCER, and LCER from the sphingolipid and PUFA cluster (cluster 2).

The differentiation phase was also characterized by decreasing concentration levels of CE. The CE
operate as transport intermediates of cholesterol, which is an important component of the cell
membrane [30,31]. Decreasing CE concentration levels indicate the release of cholesterol and its
insertion into the cell membranes [32]. Incorporation of cholesterol decreases the flexibility of plasma
membranes and thereby enables the morphological changes of the membranes that are important for
differentiation and maturation. Furthermore, the cholesterol might also have been incorporated into
triglyceride lipid droplet surfaces, serving as an intracellular free cholesterol reservoir [31]. These
hypotheses are supported by negative correlations down to −0.78 between CE in the PUFA clusters 1
and 2 and TAG in the TAG clusters 4 and 5.

The second phase of adipogenesis, the maturation phase, was characterized by a strong increase
of TAG from micromolar to millimolar levels. It is not surprising that TAG became the dominant
lipid constituent of the adipocytes, as this reflects the function of adipocytes as sites for the storage
and supply of fatty acids. The biosynthesis of TAG from DAG is corroborated by high positive
correlations between these two lipid classes [33,34]. We observed a biphasic pattern of DAG and TAG
concentration courses during adipogenesis. After a lag phase until day 4, considerable production
of TAG via DAG reached a maximum at day 16 and then slowly declined. We conclude that the
massive synthesis of TAG and their precursors started only after full differentiation from preadipocytes
to adipocytes. As Collins and coworkers have shown by using 13C-labeled substrates, the massive
generation of TAG is presumably based on de novo lipogenesis from glucose provided in the cell
culture medium [19]. However, our correlation analysis revealed strong negative correlations between
several PE species containing VLCFA and TAG. This might be an indicator of a possible contribution of
PE containing VLCFA as an additional source for TAG synthesis during adipogenesis. The PE species
might have been catabolized by phospholipase C to DAG, re-esterified to TAG, and incorporated into
lipid droplets [35,36]. The increase of intracellular lipid depots is accompanied by expansion of the cell
surface and volume, which requires larger amounts of the major membrane lipid classes like PC, PE,
SM, and cholesterol [37–39]. Indeed, we observed simultaneous increases of PC, PE, and SM after day
4. Furthermore, LPC and LPE, which can be regarded as metabolic intermediates of PC and PE, also
increased during adipogenesis [40].

Surprisingly, we observed the odd chain fatty acids C15:0 and C17:0 in CE, DAG, LPC, PC, PE,
and TAG at non-negligible concentrations. Both fatty acids showed strongly increasing concentration
time courses during adipogenesis. Roberts et al. also quantified increased odd chain fatty acid levels
during cell differentiation of murine 3T3-L1 adipocytes [9]. We speculate that the increasing levels
during adipogenesis might be explained by sequential peroxisomal fatty acid α-oxidation, which has
been shown to occur in differentiating adipocytes [41].

Furthermore, some of the time courses of certain lipids might be explained by influences of the
composition of the culture medium. To investigate a possible contribution of FA from the culture
medium, we measured the FBS-containing medium for the cultivation of preadipocytes as well as
the differentiation medium with the Lipidyzer™method. Lipids with very long-chain PUFAs were
highly concentrated in the FBS-supplemented medium compared with the levels in the differentiation
medium lacking FBS (Figure S7). Therefore, we hypothesize that the measured concentration profiles
of these lipid species during adipogenesis could have been artificially influenced by the cultivation
with FBS-containing medium before the start of differentiation. As a result of this, the decreasing
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concentration levels of the VLCFA might also be explained by a lack of supply of these FA in the
FBS-free differentiation and maturation media during adipogenesis.

It is important to keep in mind that cell culture experiments reflect artificial conditions. First,
in vitro experiments often require high concentrations of growth factors, hormones, or several
stimulation factors, which do not reflect physiological in vivo conditions. For instance, the
differentiation of SGBS and other pre-adipocyte cells requires the corticosteroid dexamethasone
and the insulin sensitizer rosiglitazone, which might strongly influence the lipidome. Indeed, Jeucken
and Breuwens recently showed that rosiglitazone has an effect on the lipidome of HeLa cells [42].
In addition, the PPARγ agonist rosiglitazone as well as the endogenous myokine irisin can induce
browning of white adipocytes [43]. Some recently published manuscripts showed this propensity
of the SGBS cells towards a beige phenotype [43–46]. The used protocol for the SGBS cells requires
an initial four-day stimulation with rosiglitazone for the induction of differentiation. This short time
period might have an influence on the lipidome. However, undifferentiated SGBS cells behave very
similar to human primary preadipocytes and the fully differentiated cells cannot be morphological
distinguished from human primary adipocytes [47]. Moreover, one study compared SGBS cells, derived
from subcutaneous adipose tissue of a male infant, with primary subcutaneous adipocytes from obese
female patients [44]. The different confounders, obesity and sex, might also have a significant influence
on the differentiation capacity and therefore also on the comparison of the two cell models. In addition,
SGBS cells carry an FTO risk allele and the cells do not have a Simpson-Golabi-Behmel syndrome
typical mutation in the glypican-3-gene (GPC3) what the name of the cell strain would suggest [47].
Nevertheless, future efforts will be necessary to confirm our findings in human primary subcutaneous
adipocytes. Second, the lipid synthesis in adipose tissue in vivo is based not only on de novo synthesis
from mostly glucose but also on circulating fatty acids in the bloodstream [48]. To sum up, cell culture
experiments are indeed helpful to shed light on several cellular processes separately. However, owing
to their simplicity and artificial nutrition, they cannot represent physiological in vivo conditions.

It also has to be mentioned that the Lipidyzer™ technology has some limitations. First, it was
developed for the analysis of human plasma, which of course has a different lipid composition from
(pre)adipocytes. The internal standard concentrations were therefore optimized for human plasma
and may not match the actual situation in cell culture samples. Another issue concerns quantification.
Although the Lipidyzer™ uses up to 10 internal standards (IS) per lipid class, there is no IS for each
individual analyte. In addition, the method does not use a calibration curve for absolute quantification.
Therefore, the measured absolute concentrations should be interpreted carefully. Furthermore, the
Lipidyzer™method is capable to determine the lipid species at the fatty acyl/alkyl level, except for the
class of TAG. In case of TAG, the method cannot distinguish the sn-1, sn-2, and sn-3 positions of the
glycerol backbone and can as well not determine the exact positions of double bonds in the side chains.
Besides, as the Lipidyzer™method is a commercial assay with specialized and standardized software
it is not possible to include other lipids into the method. This unfortunately limits the availability of
further interesting lipid species such as for example signaling phospholipids.

Despite these limitations, we think that targeted analytical methods using multiple internal
standards per lipid class—like the Lipidyzer™ technology—should be the methods of choice for the
quantitative analysis of longitudinal samples with strongly different analyte concentrations and matrix
conditions between sampling points. It has recently been shown by Chamberlain et al. that “due to the
presence of matrix effects in untargeted, non-quantitative metabolomics, the signal intensity of any
single analyte cannot be directly compared to the signal intensity of that same analyte (or any other
analyte) between any two different matrices” [49]. This is of particular importance for ESI-MS-based
lipid analytics, because matrix effects can vary considerably between lipid classes and even lipid
species of the same class can respond differently to matrix effects depending on acyl chain length
and degree of unsaturation [50,51]. Chamberlain et al. further concluded that “due to differences in
ionization efficiency, the signal intensity of any single analyte cannot be directly compared to the signal
intensity of any other analyte, even in the same matrix.” Thus, any kind of correlation or network

132



Metabolites 2020, 10, 217

analysis would be hampered with non-targeted or shotgun approaches. The application of IS can avoid
or at least reduce the negative impact of matrix effects on the results. Non-targeted metabolomics or
shotgun lipidomics approaches not including IS are more susceptible to matrix influences and should
be therefore interpreted very carefully.

4. Materials and Methods

4.1. Cell Culture, Cell Harvesting and Homogenization

The Simpson Golabi Behmel syndrome (SGBS) preadipocyte cell strain was provided by Martin
Wabitsch. The cells were cultivated and differentiated for 20 days, as described previously [52]. In brief,
50,000 preadipocytes per well were seeded in six-well plates in DMEM/F-12 medium (Thermo Fisher
Scientific, Waltham, MA, USA), supplemented with 10% FBS (Biochrom, Berlin, Germany), 3.3 mM
biotin (Merck, Darmstadt, Germany), and 1.7 mM pantothenate (Merck, Darmstadt, Germany) and
grown at 37 ◦C and 5% CO2 in a humidified atmosphere. Cell differentiation was initiated when cells
reached about 90% confluence. At that point, the medium was exchanged for serum-free medium
supplemented with 10 μg/mL transferrin (Merck, Darmstadt, Germany), 0.2 nM triiodothyronine
(T3; Merck, Darmstadt, Germany), 250 nM hydrocortisone (Merck, Darmstadt, Germany), 20 nM
human insulin (Merck, Darmstadt, Germany), 25 nM dexamethasone (Merck, Darmstadt, Germany),
250 μM 3-isobutyl-1-methylxanthine (IBMX; Merck, Darmstadt, Germany), and 2 μM rosiglitazone
(Biomol, Hamburg, Germany). After 4 days and then every fourth day, thereafter, the medium was
replaced with serum-free medium containing 10 μg/mL transferrin, 0.2 nM T3, 250 nM hydrocortisone,
and 20 nM human insulin (maturation medium). Cell morphology was monitored by microscopy.

Cell samples for quantitative real-time PCR (qRT-PCR) analyses were taken in quadruplicates
(biological replicates) at each of 5 time points beginning with the start of differentiation (representing
day 0), then on day 2, 4, 8, and 12 of adipogenesis. Cell samples were processed as described
below. Cell samples for Lipidyzer™ analyses were taken at six time points beginning with the start
of differentiation (representing day 0) and then on every fourth day of differentiation until day 20.
At each time point, six samples (biological replicates) were collected. Harvesting, homogenization of
cells, and normalization of measured metabolite concentrations to the cell number were performed as
recently reported [53], with minor modifications. In brief, after one washing step with 6 mL of warm
PBS per well of a six-well plate, the cells were scraped off the wells in 500 μL of extraction solvent of
ice-cold 80% methanol per well using rubber-tipped cell scrapers (Sarstedt, Nümbrecht, Germany).
Harvested cell-solvent suspensions of four wells were pooled into pre-cooled 2 mL microtubes (Sarstedt,
Nümbrecht, Germany) containing 400 mg of glass beads (Bertin, Frankfurt, Germany). The samples
were stored at −80 ◦C until further use. Homogenization of cells was performed immediately before
analyses at 4–10 ◦C twice for 25 s at 5500 rpm using a Precellys24 (PeqLab, Erlangen, Germany).
The resulting homogenates were used for lipidomics measurement by FIA-(DMS)-MS/MS as well
as for DNA quantification (DNA content indirectly reflects the cell number of the sample and was
determined for normalization purposes) [53].

4.2. RNA Isolation and Quantitative Real-Time PCR (qRT-PCR)

Total RNA of four independent biological replicates per group was extracted from cells using
miRNeasy mini kit (Qiagen, Hilden, Germany) according to the manufacturer’s protocol. Synthesis of
cDNA was performed by using the RevertAid First Strand cDNA Synthesis Kit (ThermoFisher Scientific,
Dreieich, Germany) according to the manufacturer’s instructions. Total RNA was reverse transcribed
using an anchored oligo(dT)18 primer (5’-TTTTTTTTTTTTTTTTTTVN-3’) in a final concentration
of 0.5 μM for priming cDNA synthesis. For qRT-PCR, primers were designed using Primer3
to span at least one exon-intron boundary to avoid falsified amplification results [54]. Primers
were synthesized by Metabion (Planegg, Germany) and sequences were as follows: PPARG_for
(5’-GACCACTCCCACTCCTTTGA-3’), PPARG_rev (5’-GAGATGCAGGCTCCACTTTG-3’), CEBPA_for
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(5’-AACAGCTGAGCCGCGAACTG-3’), CEBPA_rev (5’-CGGAATCTCCTAGTCCTGGCT-3’), TBP_for
(5’-CAGCCGTTCAGCAGTCAA-3’), TBP_rev (5’-CTGCGGTACAATCCCAGAAC-3’). The amplification
was performed on a QuantStudio Flex 7 Real-time PCR system (ThermoFisher Scientific, Dreieich,
Germany) in triplicates using Power SYBR Green PCR Mastermix with ROX as passive reference
(ThermoFisher Scientific, Dreieich, Germany) as follows: Denaturation at 95 ◦C for 10 min,
39 amplification and quantification cycles with 95 ◦C for 15 s and 60 ◦C for 1 min, and finally a
melting curve program (95 ◦C for 15 s, followed by 60–95 ◦C with a heating rate of 0.1 ◦C/s) and
continuous fluorescence measurement. The cycle threshold (CT) values were determined using the
QuantStudio Flex 7 Real-time PCR system software. Relative gene expression was calculated using the
comparative 2−ΔΔCT method [55]. Amplification efficiencies were determined based on the slope of the
calibration curve consisting of five different cDNA concentrations each measured in triplicates and
efficiencies were as follows: PPARG (106.3%), CEBPA (96.3%), and TBP (88.7%). The fold-change values
for gene expression were normalized by the respective efficiencies using a published procedure [55].
Relative gene expression data for PPARG and CEBPA were subsequently normalized to the reference
gene of tata-box binding protein (TBP; in pre-experiments tested to be suited) and the gene expression
of samples at day 0 of adipogenesis.

4.3. Hoechst Assay for DNA Quantification

For DNA quantification, the fluorochrome Hoechst 33342 (ThermoFisher Scientific, Waltham,
MA, USA) was diluted in PBS to a final concentration of 20 μg/mL. A total of 80 μL of this solution
was pipetted into each of the wells of a black 96-well plate (F96; Nunc, Thermo Fisher, Schwerte,
Germany). Then, 20 μL of vortexed cell homogenates or plain solvent (80% MeOH; blanks) was
added to the Hoechst solution and mixed by pipetting. The plate was incubated in the dark for
30 min at room temperature. Fluorescence signals were read using a GloMax Multi Detection System
(Promega, Mannheim, Germany), equipped with a UV filter (λex. = 365 nm; λem. = 410–460 nm,
Promega, Mannheim, Germany) [53].

4.4. Lipid Extraction and Targeted Lipidomics Analysis

The Lipidyzer™method (SCIEX, Darmstadt, Germany) was used to analyze the cellular lipidome.
It detects lipids with fatty acid side chains of medium-chain (MCFA; C12), long-chain (LCFA;
C13–C21), and very long-chain (VLCFA; C22–C26) lengths from 13 classes of lipids including
cholesterol esters (CE), ceramides (CER), dihydroceramides (DCER), diacylglycerols (DAG), free
fatty acids (FFA), hexosylceramides (HCER), lactosylceramides (LCER), lysophosphatidylcholines
(LPC), lysophosphatidylethanolamines (LPE), phosphatidylcholines (PC), phosphatidylethanolamines
(PE), sphingomyelins (SM), and triacylglycerols (TAG). The method allows the identification of lipid
species at the fatty acyl/alkyl level (exception: TAG) [56]. The Lipidyzer™ method determines
the sum of the numbers of C-atoms and double bonds (DB) for one fatty acid side chain as well
as the sum of the C-atoms and DB of all three side chains. The notation rules from Liebisch and
coworkers only know the case that either no fatty acid is known (e.g., TAG 52:2) or all three (e.g., TAG
16:0_18:1_18:1) [56]. Therefore, the nomenclature for TAG species in our study was adopted to these
recommendations. The internal standard (IS) mixture (Avanti Polar Lipids, Inc., AL, USA) was prepared
in accordance to the Lipidyzer™manual. For QC samples, 250 μL of pooled cell homogenates were
used, consisting in equal parts of undifferentiated, differentiating (day 8 of differentiation), and maturely
differentiated cells (day 16). Three reference plasma samples (SCIEX, Darmstadt, Germany) of 100 μL
in volume were spiked each with 50 μL of the QC spike mixture (SCIEX, Darmstadt, Germany) to
investigate inter-run and inter-project effects. Lipids were extracted by two-phase separation using
methyl tert-butyl ether (MTBE), methanol, and water [57]. Briefly, 250 μL of cell homogenates for
the main experiments or 10–300 μL for method evaluation experiments, QC samples, or QC spiked
plasma samples were transferred to 1.5 mL safe-lock reaction tubes (Eppendorf, Hamburg, Germany).
For each time point, we took in total six biological independent cell samples. Next, 160 μL of MeOH
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and 900 μL of MTBE were added to each tube and incubated for 30 min at 900 rpm and room
temperature in a shaker. For phase separation, 500 μL of H2O was added to each tube, the mixtures
were vortexed, and the tubes were centrifuged at 15,000× g for 4 min at RT. The upper organic
phases were transferred into glass vials. The extraction step was repeated once and organic phases
were combined. Organic solvents were evaporated to complete dryness under a stream of gaseous
nitrogen and residuals were reconstituted with 250 μL of sample running buffer (10 mM ammonium
acetate in dichloromethane:methanol (50:50 v/v)). Samples were then analyzed with the Lipidyzer™
method, consisting of a Sciex 5500 MS/MS QTRAP system (SCIEX, Darmstadt, Germany) equipped
with a SelexION ion source for differential mobility spectrometry (DMS), in accordance with the
manufacturer’s instructions [24]. A sample volume of 50 μL was injected with a Shimadzu Nexera X2
liquid chromatography system (SCIEX, Darmstadt, Germany) at an isocratic flow rate of 7 μL/min.
Data were acquired automatically with the Lipidyzer™ Workflow Manager software (version 1.0,
SCIEX, Darmstadt, Germany). The obtained concentration values in nmol/g supplied by the software
were converted to μmol/L with the assumption that 1 mL of cell culture sample was equal to 1 mL
of plasma which is equal to 1 g [58]. Converted concentration values were normalized by Hoechst
assay results.

4.5. Data Analysis

To trace the process of adipogenesis, the concentrations of the single lipid species, summed
concentrations of lipid classes, concentrations of fatty acids, and percentage compositions were
analyzed. Lipid species were completely excluded from the data set if concentration values were
missing (NA) in more than 33.3% of the samples within a time point. Missing values were replaced
by the respective minimal lipid species concentration measured, divided by

√
2 and multiplied by a

randomly chosen factor between 0.75 and 1.25.
Statistical analyses and graphical illustrations of the lipidomic data were performed using the

software MetaboAnalyst 4.0 [59], GraphPad Prism 8.1.1, and R 3.5.1 [60].
Univariate statistical analyses were performed using the Mann–Whitney U test and Kruskal–Wallis

test with Dunn’s post-hoc test. Spearman’s rank correlation analysis was used to test correlations
between lipid species. Prior to PCA and other multivariate statistical analyses, lipid concentrations
were log-normalized and auto-scaled (mean-centered and divided by the standard deviation of each
variable) to achieve a normal distribution of the data set. Averaged concentrations are shown with
standard deviations.

5. Conclusions

We used the Lipidyzer™ technology to study the cellular lipidome during the development of
preadipocytes into maturating and finally mature adipocytes in a human cell culture model. The switch
from differentiating preadipocytes to maturating adipocytes became clearly visible at the lipidome
level. The differentiation process was accompanied by increased concentrations of ceramides that are
known to be involved in cell differentiation signaling. While these ceramide species decreased after
completion of differentiation around day 4, massive lipid remodeling occurred during maturation of
the adipocytes. This maturating phase was characterized by the substantial synthesis of DAG and TAG
species. We furthermore observed increases of membrane lipids like PC, PE, and SM as well as their
biosynthetic precursors. Moreover, we could also show that the compositions of the lipid species itself
became more homogeneous during differentiation to highly concentrated saturated/monounsaturated
LCFA with the four most abundant fatty acids being C16:0, C16:1, C18:0, and C18:1. Interestingly,
VLCFA constantly decreased in almost all investigated lipid classes during the maturation process.
High negative correlation coefficients between membrane lipids containing VLCFA and TAG species
imply that these lipids might have served as additional sources for TAG synthesis. However, further
studies are necessary to shed light on other lipid classes, lipid synthesis, degradation, and remodeling
pathways during adipogenesis. For instance, fluxome-based approaches could be helpful to follow
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especially polyunsaturated and VLCFA within the preadipocytes. Moreover, a multi-omics approach
might be helpful to detect connections between different pathways within the lipidome as well as
the connection with pathways of more polar metabolites. In addition, it would also be interesting to
compare the lipidomes of SGBS cells and freshly isolated human adipocytes since the metabolism in
these cells might better reflect the original situation in humans. We could also show that the cultivation
of cells with FBS-containing medium might influence the metabolism of the cells from several days up
to weeks later. We recommend analyzing the medium used for cell culture lipidomics/metabolomics
studies to prevent misinterpretation of the data.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/6/217/s1,
Figure S1: Analytical evaluation of the Lipidyzer™method for undifferentiated and differentiated cells revealed
strong linearity for most of the analyzed lipid classes; Figure S2: Representative microscopic images of SGBS cells
showed successful differentiation based on morphological changes and a strong increase in number and size of
lipid droplets; Figure S3: Transcripts of the main adipogenic transcription factors PPARγ (PPARG) and C/EBPα
(CEBPA) were highly upregulated during adipogenesis; Figure S4: Principal component analysis (PCA) score plot
showing very clear clustering of lipid species regarding the different time points of adipogenesis; Figure S5: Fatty
acid concentrations and compositions changed markedly during adipogenesis in all 11 lipid classes; Figure S6:
Clusters from the spearman’s rank correlation analysis consisted of distinct lipid class compositions; Figure S7:
Polyunsaturated and very long-chain fatty acids were highly concentrated in FBS-containing medium used
for cultivation before differentiation start; Table S1: Linearity testing of method; Table S2: Repeatability and
background signal testing; Table S3: Top 30 variable importance in projection (VIP) of PLS-DA for component 1 and
2, respectively; Table S4: Significances of Kruskal Wallis test; Table S5: Spearman’s rank correlation coefficients.
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Abstract: Chronic kidney disease (CKD) is associated with an increased level of leptin and an
abnormal fatty acid (FA) profile in the serum. However, there are no data on the associations
between them, and the reason for increased serum levels in patients with CKD is not well elucidated.
Recently, we found that a CKD-related abnormal FA profile caused significant changes in the
expression of genes involved in lipid metabolism in hepatocytes. The aim of this study was to examine
whether leptin gene expression in subcutaneous adipose tissue (SAT) of patients with CKD may
contribute to increased serum levels of this adipokine and whether the abnormal serum FA profile
observed in CKD patients has an impact on leptin gene expression in adipocytes. The FA profile was
measured in serum samples from patients with CKD and controls by GC–MS. The relative mRNA
levels of leptin were measured in SAT by Real-Time PCR. Moreover, the effect of the CKD-related
abnormal FA profile on leptin gene expression was studied in in vitro cultured 3T3-L1 adipocytes.
Patients with CKD had higher concentrations of serum leptin than controls and higher expression
level of the leptin gene in SAT. They also had increased serum monounsaturated FAs and decreased
polyunsaturated FAs. The incubation of adipocytes with FAs isolated from CKD patients resulted in
an increase of the levels of leptin mRNA. Increased leptin gene expression in SAT may contribute to
elevated concentrations of these adipokine in patients with CKD. CKD-related alterations of the FA
profile may contribute to elevated serum leptin concentrations in patients with CKD by increasing
the gene expression of this adipokine in SAT.
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1. Introduction

Chronic kidney disease (CKD), with its prevalence exceeding 5% of the general population,
constitutes an important clinical issue [1]. Irrespective of the underlying disease, CKD increases
the cardiovascular burden of the patients several times compared to people with preserved kidney
function [2]. Potential mechanisms for increased cardiovascular risk in CKD include alterations in the
lipid profile and serum adipokine levels [3–5]. Changes in adipokine levels have been discussed in
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the context of CKD progression and the risk of comorbidities [6–9]. Leptin is one of the hormones
secreted by adipose tissue and has been recognized as a signaling molecule that regulates energy
homeostasis [10,11]. This protein also plays an important role in immune regulation and inflammation,
both closely associated with oxidative stress and endothelial dysfunction, which may affect the risk of
cardiovascular disorders [12–14]. Previous studies showed increased concentrations of leptin in the
serum of patients with CKD [7,15]; however, the mechanism of this change is not well elucidated.

CKD is also associated with significant lipid disorders. The most frequently described changes
focus on cholesterol and triacylglycerols. Many studies, including our previous research, have also
shown abnormal serum fatty acid (FA) profiles in patients with CKD [16–18]. Dyslipidemia observed
in patients with CKD is one of the well-known risk factors of cardiovascular disease (CVD) or diabetes
mellitus [19–21]. This is especially important because cardiovascular disease is the leading cause
of death in this group of patients [19]. Changes in the lipid profile in patients with CKD may also
actively participate in the deterioration of renal function, thus contributing to the worsening of the
disease [20,22]. However, all of the consequences of these alterations are still not fully understood.

Leptin and FAs are critical factors for the crosstalk between adipose tissue and other metabolically
important organs, including the kidneys. Although elevated leptin levels and alterations in the fatty
acid profile are factors that can be involved in the pathogenesis and complications of CKD, no previous
study has investigated the relationship between them. It is still unclear whether changes in leptin levels
in CKD are caused by a reduced glomerular filtration rate, increased production in adipose tissue,
or both. Our previous study showed that an altered FA profile in patients with CKD significantly
changed hepatocyte metabolism [16]. Thus, in the present study, we aimed to examine the associations
of leptin serum levels and its gene expression in adipose tissue. Moreover, we studied the effect of an
abnormal serum FA profile in patients with CKD on the expression of the leptin gene in adipocytes.

2. Results

2.1. Leptin Levels in Serum and mRNA Levels in Subcutaneous Adipose Tissue of Study Subjects

The mean serum leptin concentrations among patients with CKD (29.24 ± 16,5 ng/mL) were
significantly elevated, at almost three times higher than the mean value for healthy controls
(11.96 ± 5.3 ng/mL) (Figure 1a). When we analyzed serum concentrations of leptin separately in
women and men, we found that both male and female CKD patients had almost three times higher
serum leptin concentrations than controls; however, the leptin concentrations in women (both in
CKD patients and controls) were about two times higher than in men (in CKD women 37.7 ± 15 vs.
15.8 ± 9.9 in healthy women, p < 0.01; in CKD men 19.6 ± 10 vs. 7.54 ± 5.2 in healthy man p < 0.05).
The sex-related differences in serum leptin concentrations are in agreement with results of other
researchers [23]. The relative mRNA level of the leptin gene in subcutaneous adipose tissue of patients
with CKD was approximately three times higher than that in controls (Figure 1b).

2.2. Serum Fatty Acid Profile of Study Subjects

The profile of FA in the serum of control subjects and patients with CKD is shown in Table 1.
We observed several alterations in the FA profile, including various individual FAs and main groups of
FAs (Table 1). The total saturated FA (SFA) and monounsaturated FA (MUFA) contents in the serum
were significantly higher in the CKD group than those in the control group. At the same time, patients
with CKD had lower levels of total n-3 polyunsaturated FAs (n-3 PUFAs) and n-6 polyunsaturated
FAs (n-6 PUFAs) in the serum. This section may be divided by subheadings. It should provide a
concise and precise description of the experimental results, their interpretation, and the experimental
conclusions that can be drawn.
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Figure 1. The serum concentrations of leptin (a) and leptin mRNA levels (b) in subcutaneous fat
tissue of patients with chronic kidney disease (CKD) and control subjects. Data are shown as the
mean ± SD, * p < 0.05. Serum leptin concentrations were assayed in 46 CKD patients and 57 healthy
subjects. Leptin mRNA levels were assayed in adipose tissue obtained from 22 patients with CKD and
11 healthy subjects.

Table 1. The percent content of the main classes of fatty acids in the serum of patients with chronic
kidney disease (CKD) and the control group. The data are presented as fatty acid proportions (%).
Values are the mean ± SD.

FA CONTROL CKD

14:0 1.16 ± 0.31 1.11 ± 0.50
16:0 22.9 ± 1.62 24.1 ± 2.10 *
18:0 6.96 ± 0.72 6.80 ± 0.98

OTHER SFAs 1.22 ± 0.09 1.36 ± 0.09
TOTAL SFAs 32.3 ± 1.83 33.4 ± 3.02 *

14:1 0.07 ± 0.02 0.05 ± 0.03
16:1 2.81 ± 0.85 2.95 ± 0.79
18:1 25.7 ± 3.15 28.9 ± 3.63 *

OTHER MUFAs 0.49 ± 0.08 0.65 ± 0.11 *
TOTAL MUFAs 29.1 ± 1.08 32.6 ± 1.22 *

18:3 n-3 0.31 ± 0.11 0.20 ± 0.09 *
20:5 n-3 0.94 ± 0.60 0.61 ± 0.26 *
22:6 n-3 1.03 ± 0.43 0.83 ± 0.38 *

OTHER N-3 PUFAs 0.37 ± 0.1 0.34 ± 0.13
TOTAL N-3 PUFAs 2.66 ± 1.04 1.98 ± 0.71 *

18:2 n-6 26.1 ± 3.59 22.9 ± 4.79 *
20:4 n-6 5.31 ± 1.14 4.53 ± 1.31 *

OTHER N-6 PUFAs 1.42 ± 0.34 1.10 ± 0.32
TOTAL N-6 PUFAs 32.8 ± 3.82 28.6 ± 5.39 *

* Statistically significant compared to controls at p < 0.05. SFAs—saturated fatty acids; MUFAs— monounsaturated
fatty acids; PUFAs—polyunsaturated fatty acids.

2.3. The Effect of the CKD-Related Abnormal Fatty Acid Profile on the Expression of Leptin in In Vitro Cultured Adipocytes

To examine whether reported alterations in the proportion of particular serum FA groups in CKD had
an impact on adipose leptin gene expression, we treated 3T3-L1 adipocytes with a selected representative
SFA (palmitic acid 16:0, PA), MUFA (oleic acid 18:1, OA), n-3 PUFA (docosahexaenoic acid 22:6 n-3, DHA),
and n-6 PUFA (arachidonic acid 20:4 n-6, AA). All FAs were used at three different concentrations (25, 50,
and 100 μM). After 48 h of incubation, PA and OA, FAs that are elevated in the serum of patients with
CKD, increased the expression of the leptin gene, whereas DHA and AA–FAs, which are decreased in
the serum of patients with CKD, decreased the expression of the leptin gene (Figure 2). Almost all these
changes were statistically significant. All observed effects were dose-dependent.
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Figure 2. The relative mRNA level of leptin in 3T3-L1 adipocytes cultured for 48 h with various
concentrations of palmitic acid 16:0 (PA), oleic acid 18:0 (OA), arachidonic acid 20:4 n-6 (AA), and
docosahexaenoic acid 22:6 n-3 (DHA) or without FA supplementation (control). * Significantly different
compared to the control (p < 0.05). Data are presented as the mean ± SD. All experiments were run in
three independent attempts.

We are aware that, in patients with CKD, alterations in the proportion of all particular serum FA
groups occur at the same time. To examine the combined effect of all FA disorders, we decided to use
a complete set of FAs isolated from CKD patients and healthy controls serum samples. Incubation
of adipocytes with a set of FAs from patients with CKD resulted in a significantly increased mRNA
level of the leptin gene in comparison to the mRNA level from adipocytes incubated with FA-mix from
healthy subjects (Figure 3). We did not find any structural changes in the cells after treatment with a
set of FAs isolated from patients with CKD or from healthy subjects (Figure 4).

Figure 3. The relative mRNA level of leptin in 3T3-L1 adipocytes cultured for 48 h with a set of FAs extracted
from the serum of control subjects (control) or patients with stage 5 CKD (CKD). * p < 0.05 compared to the
control. Data are presented as the means ± SD. All experiments were run in three independent attempts.

 
(a) (b) 

Figure 4. Representative sample of 3t3 adipocytes before (a) and after (b) treatment by FA isolated
from serum of CKD patients.
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3. Discussion

Our results demonstrated that, compared to healthy volunteers, patients with CKD had higher
serum leptin levels. Concerning leptin, this result is in line with most clinical studies of leptin
alteration in kidney diseases in adults and children [15,24–27]. Interestingly, a few studies have
shown contradictory results [28–30]. However, in these cases, patients with CKD have experienced
significant weight loss during dialysis. In our study, there was no difference in BMI between the
CKD and control groups. In patients with CKD, an increased level of leptin may predict poor
prognosis. A number of studies have indicated that leptin is involved in CKD progression and CKD
complications [14,31]. Leptin plays a role in various types of kidney cells (e.g., glomerular mesangial
cells, glomerular endothelial cells, and podocytes), and high leptin levels can lead to renal injury
symptoms. Leptin inhibits the expression of nephrin, podocin, podoplanin, and podocalyxin (the
podocyte-associated molecules necessary for the proper functioning of the renal filtration barrier) and
promotes the production of reactive oxygen species (a known factor involved in the pathogenesis of
CKD) [14,31]. The late stages of CKD are related to protein–energy wasting (reduced body protein and
fat mass, and usually reduced protein and energy intake), and since leptin inhibits appetite, it may
contribute to a further deterioration of nutritional status or even to malnutrition [32].

We show that increased serum levels of leptin observed in patients with CKD are accompanied by
increased expression of the leptin gene in adipose tissue. Previous studies suggested that decreased
kidney function (and as a consequence, decreased renal clearance of adipokines) may contribute
to the elevated circulating levels of leptin in patients with CKD [33]. However, our study showed
increased SAT mRNA levels and serum protein levels of leptin, which suggests that its production
in SAT may contribute to its serum concentrations. To date, the literature data on this subject are
very poor. Nordfors et al. reported elevated leptin gene expression only in adipose tissue in patients
with chronic renal failure with inflammation compared to patients with chronic renal failure with no
inflammation and no changes in leptin expression between patients with chronic renal failure and
healthy controls [33]. Nonetheless, they examined a small number of patients (15 patients with chronic
renal failure, including two with inflammation) and used in situ hybridization histochemistry for
gene expression quantification. In turn, Witasp et al. reported downregulation of the leptin gene
in abdominal subcutaneous adipose tissue of patients with advanced CKD with ‘uremic–metabolic
syndrome’ [34]. Since there are no data on how the expression of the leptin gene is regulated in
the adipose tissue of patients with CKD, we tried to find a molecular mechanism for the increased
expression of leptin in the SAT of our patients.

The consequences of changes in the FA profile are usually considered in the context of dietary
intake. Our recent study showed that CKD-related alterations of the FA profile influence hepatocyte
metabolism. Thus, in the present study, we examined the hypothesis that CKD-related FA alteration
can affect leptin gene expression in adipocytes. We found specific effects of FAs from various groups.
However, since each FA can have a different effect on adipose tissue, alterations in the FA profile
during CKD should be considered together as a whole. Thus, we made an effort to address this issue
by using total FAs extracted from patients and control serum. To the authors’ knowledge, this is
a unique research approach. Our data demonstrated, for the first time, that the altered serum FA
profile observed in patients with CKD increased adipocyte expression of leptin. Thus, it may also be
responsible for the increased expression of this adipokine in SAT and its elevated circulating levels.

The study has limitations that ought to be mentioned. Our data are derived from patients
at one point of chronic progressive disease. Further studies should consider the cross-sectional
selection of patients. Another limitation is that our study cohort was not very numerous and there are
relatively large deviations in some parameters; however, the differences were statistically significant.
Thus, our study can serve as a proof-of-concept report. The expression of leptin gene has been assayed
only at the mRNA levels. In our in vitro experiment, we used only one cell line as an adipocyte
model. Adipose tissue is a highly heterogeneous organ with cell- and depot-specific functions [35–37].
However, we chose 3T3-L1 differentiated adipocytes because they are a well-characterized and widely
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used cell line in metabolic, molecular, and endocrine studies, including studies on leptin expression
levels [38–41].

In conclusion, our study showed that increased leptin gene expression in SAT may contribute to
elevated concentrations of this adipokine in patients with CKD. Moreover, alteration of the serum FA
profile observed in the course of CKD might contribute to CKD-related elevated serum leptin levels,
through induction of its gene expression in adipocytes.

4. Materials and Methods

4.1. Study Subjects

Forty-six patients with stage 5 CKD (27 males and 19 females; pre-dialysis and dialyzed, recruited
from the Outpatient Unit of the Department of Nephrology, Transplantology and Internal Medicine in
the Medical University of Gdansk) and 57 healthy subjects or metabolically healthy subjects (31 males
and 26 females) who underwent hernia surgeries, matched for age and weight, with no known
kidney disease, were included in this study. Among the abovementioned participants, subcutaneous
adipose tissue, which is available during kidney transplantation, was taken from 22 patients with CKD
and from 11 metabolically healthy subjects who underwent hernia surgeries at the Department of
Surgery, Medical University of Gdansk. After overnight fasting, blood samples were taken from all the
participants of the study. The study was performed in agreement with the principles of the Declaration
of Helsinki of the World Medical Association. Experimental protocols received approval from the Local
Bioethics Committee at the Medical University of Gdansk (protocol numbers: NKBBN/664/2013-2014,
NKBBN/614-276/2014). The general characteristics of the study subjects and selected laboratory
parameters are presented in Table 2. Patients with CKD had higher creatinine, blood urea nitrogen,
and triacylglycerols, in comparison with control individuals.

Table 2. Selected biochemical and anthropometric characteristics of the study subjects.

Parameter CONTROL CKD

AGE (years) 47 ± 14.9 51 ± 13.0
BMI (kg/m2) 26.0 ± 3.8 25.9 ± 4.8

CREATININE (mg/dL) 0.9 ± 0.2 6.15 ± 2.5 *
BUN (mg/dL) 15.1 ± 3.6 44.8 ± 25.0 *

ALBUMIN (g/L) 39.5 ± 3.9 37.5 ± 4.6
CRP (mg/dL) 2.1 ± 2.5 4.9 ± 6.1 *
TG (mg/dL) 115.6 ± 59.6 150.2 ± 73.7 *
TC (mg/dL) 195.9 ± 45.5 200.6 ± 48.0

GLUCOSE (mg/dL) 96.2 ± 20.2 102.7 ± 27.8
INSULIN (mU/mL) 9.4 ± 5.4 9.6 ± 6.2

HOMA-IR 2.35 ± 2.0 2.8 ± 2.7

* Statistically significant compared to controls at p < 0.05. Values are the mean ± SD. BMI—body mass index;
BUN—blood urea nitrogen; CRP—C-reactive protein; HOMA-IR—homeostatic model assessment of insulin
resistance; TG—triacylglycerols TC—total cholesterol.

4.2. Materials and Reagents

From Avantor Performance Materials Poland (Gliwice, Poland) methanol, chloroform,
dichloromethane, n-hexane (all HPLC-grade), hydrochloric acid, and potassium hydroxide were acquired.
DMEM, glucose, bovine calf serum, glutamine, penicillin/streptomycin solution, fetal bovine serum,
dexamethasone, 3-isobutyl-1-methylxanthine, insulin, Oil Red O solution, palmitic acid, oleic acid,
docosahexaenoic acid, arachidonic acid phosphate-buffered saline, FAME mix, Nuclease-Free Water,
boron trifluoride–methanol solution, and 19-methyleicosanoic acid were obtained from Sigma-Aldrich (St.
Louis, MO, USA). Eppendorf laboratory consumables were used for experiments (Hamburg, Germany).
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4.3. Serum Leptin Assay

For the detection of serum leptin concentrations, the Leptin Human ELISA Clinical Range kit
(BioVendor, Brno, Czech Republic) was used according to the manufacturer’s instructions. In brief,
samples from the control group and samples from the CKD group were incubated in microplate wells
coated with polyclonal anti-human leptin antibodies. Bound leptin was detected by horseradish
peroxidase-conjugated polyclonal anti-human leptin antibody. Tetramethylbenzidine was used as a
substrate for peroxidase, and color intensity was determined by measuring the absorbance at 450 nm.

4.4. Serum Fatty Acid Profile Analysis

Total lipids were extracted from the serum of patients with CKD and healthy subjects, using the
method described by Folch et al., with a mixture of chloroform:methanol (2:1, v/v) [42]. Then, the lipid
extracts were dried by evaporation under a stream of nitrogen and alkaline hydrolyzed with 0.5 M KOH
in methanol, at 90 ◦C, for 3 h. Next, the mixture was acidified with 6 M HCl, and 1 mL of water was
added. Fatty acids were extracted three times, with 1 mL of n-hexane, and evaporated under a stream
of nitrogen. To obtain fatty acid methyl esters (FAMEs), 10% boron trifluoride–methanol solution was
added to each sample, which was then heated at 55 ◦C, for 90 min. After 1.5 h, 1 mL of water was added
to the mixture, and FAMEs were extracted three times with 1 mL of n-hexane and dried under nitrogen
stream. Fatty acid profiles were analyzed by gas chromatography–mass spectrometry (GC–MS), using a
QP-2010SE apparatus (Shimadzu, Kyoto, Japan), as described previously [16]. In brief, a 30 m 0.25 mm
i.d. ZB-5MSi capillary column was used (film thickness 0.25 μm). Temperature of the column was set
between 60 and 300 ◦C (4 ◦C/min). Helium was used as a carrier gas at the column head pressure of
100 kPa, and FAME ionization was carried out with 70 eV electron energy. Full-scan mode was applied,
with mass scan range m/z 45–700. Then, 19-methyleicosanoic acid was used as an internal standard.
FAMEs were identified by comparison with reference standards (37 FAME Mix, Sigma-Aldrich, St.
Louis, MO, USA) and NIST2011 reference library.

4.5. Adipocyte Culture, Differentiation, and Treatment

The 3T3-L1 cell line was obtained from American Type Culture Collection (Manassas, VA, USA).
Pre-adipocytes were cultured in expansion medium (Dulbecco’s modified Eagle’s medium (DMEM)
with 4.5 mg/mL of glucose supplemented with 10% bovine calf serum, 4 mM glutamine, 100 IU/mL
of penicillin, and 100 IU/mL of streptomycin), at 37 ◦C, in a 5% CO2 incubator. Cells were seeded
at approximately 3000 cells per cm2. Two days after reaching confluence, cells were differentiated
by replacing the expansion medium with high-glucose DMEM containing 10% fetal bovine serum
(FBS), 1.0 μM dexamethasone, 0.5 mM 3-isobutyl-1-methylxanthine (IBMX), and 1.0 μg/mL of insulin.
After 48 h, the differentiation medium was replaced by DMEM with 10% FBS, 10 μg/mL of insulin,
4 mM glutamine, 100 IU/mL of penicillin, and 100 IU/mL of streptomycin. Media were replaced every
other day. After 10 days, the adipocytes were fully differentiated (confirmed by Oil red O staining).
The 3T3-L1 fully differentiated adipocytes were used for experiments. Cells were supplemented for
48 h, with one selected fatty acid: PA, OA, DHA, and AA or with the full FA set isolated from pooled
serum of 10 randomly selected patients with stage 5 CKD, or 10 healthy controls. From pooled patient
or control serum samples, total lipids were extracted and hydrolyzed, as previously described in
Czumaj et al. (2019) [16]. A mixture of fatty acids isolated from the patients and controls sera was
added to the cell culture at exactly the same concentration as in the study participants’ sera. The FA set
isolated from the serum of patients with CKD was characterized by a higher content of MUFAs and
SFAs and a lower content of n-3 and n-6 PUFAs than FAs isolated from serum of control subjects [16].

4.6. Gene Expression Analyses

Total RNA isolation from in vitro cultured adipocytes and adipose tissue depots was carried out,
using an RNeasy Lipid Tissue Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s
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instructions. The RNA concentration and integrity were assessed by an Experion automated
electrophoresis system (Bio-Rad, Hercules, CA, USA). One microgram of RNA was reverse transcribed,
using the RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher Scientific, Waltham, MA, USA).
Quantitative real-time PCR was carried out in a CFX Connect Real-Time System (Bio-Rad), using the
SensiFAST SYBR No-ROX Kit (Bioline Meridian Bioscience, Cincinnati, OH, USA). The comparative Ct
method (ΔΔCt) was used for relative quantification of gene expression. The β-actin gene was used
for normalization.

4.7. Statistics

Data are presented as the mean ± SD. Statistical analyses were performed by using two-tailed the
Student’s t-test for two-group comparisons (including biochemical and anthropometric characteristics
of the study subjects presented in Table 2) or analysis of variance (ANOVA), followed by post hoc
correction (Bonferroni) for multi-group comparisons. The threshold of statistical significance was
defined as p < 0.05. During all analyses, every sample was run in duplicate. The cell culture experiment
was run in three independent attempts. All statistical analyses were performed by using STATISTICA
12 (TIBCO Software Inc., Palo Alto, CA, USA).
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Abstract: The pathogenic mechanisms underlying the Biology and Biochemistry of viral infections
are known to depend on the lipid metabolism of infected cells. From a lipidomics viewpoint, there are
a variety of mechanisms involving virus infection that encompass virus entry, the disturbance of host
cell lipid metabolism, and the role played by diverse lipids in regard to the infection effectiveness.
All these aspects have currently been tackled separately as independent issues and focused on the
function of proteins. Here, we review the role of cholesterol and other lipids in ssRNA+ infection.

Keywords: lipidomics; ssRNA+ virus; membrane fusion; lipid metabolism; cholesterol; sphingolipids;
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1. Introduction

The ongoing COVID-19 pandemic is developing (July 2020) worldwide with devastating global
consequences, both for social organization and healthcare systems. COVID-19 illness is brought about
by infection with the severe acute respiratory syndrome coronavirus SARS-CoV-2 [1,2], which is
an enveloped positive single-stranded RNA virus (ssRNA+) [3]. The most abundant studies
related to human diseases induced by ssRNA-positive viruses refer to Picornaviridae, Coronaviridae,
and Flaviviridae [4].

This impact in a short time span has brought the Biology and Biochemistry of viral infection
mechanisms to reach momentum. The infection mechanisms have been described for diverse unrelated
viral families [5], with the majority of them being DNA viruses. Within Picornaviridae, Coronaviridae,
and Flaviviridae, Rhino and Poliovirus (Picornaviridae), SARS-CoV, Middle East Respiratory Syndrome
Coronavirus (MERS-CoV), Hepatitis C virus (HCV), West Nile virus (WNV) and Dengue virus (DENV)
fall within the viruses whose life cycle biology is better known. Nonetheless, knowledge regarding
virus entry mechanisms and other related features of the virus life cycle has been gained from the
research on the influenza virus from the Orthomysoviridae family and the human immunodeficiency
virus from the Retroviridae family. Consequently, these and other unrelated viruses will be also
considered in this review from the point of view of the different aspects that affect the lipidomics of the
viral infection.

All ssRNA+ viruses initially infect mammal cells through the interaction of virus proteins with
any given host cell protein. Further fusion of the virus and host cell membranes is required for the
viral genetic material to get into the cell. Once inside the cell, the genomic and subgenomic viral RNAs
are translated into the virus proteins; these then lead the virus replication, which is a process that
involves modulation of the host cell lipid metabolism [3,5,6]. Consequently, along with other features,
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current lipid studies about the aforementioned virus infection focus their research on membrane fusion
and modulation of the lipid metabolism of the host cell. These two processes are considered separated
disciplines of the infection.

The fight against the virus infection encompasses primarily the inhibition of the binding of the
viral spike protein to the host cell’s receptor protein. Consequently, most of the current research focuses
on the role played by viral proteins but the lipid environment, where the proteins carry out their
function and regulation, is considered secondarily [7]. Nevertheless, improving the knowledge on how
the lipids are involved in the mechanisms of infection may provide clues to develop treatments and
better counteract the virus-induced pathology [3]. To fill this gap, here, we review the main aspects
regarding the lipidome regulation of the viral infection mechanism by ssRNA+ viruses.

2. Virus Entry: Lipid Rafts and Membrane Domains

2.1. Membrane Mechanical Properties Required for Virus Infection

The initial step in virus infection is the binding of any viral structural glycoprotein to a receptor of
the host cell. The spike protein accounts for such function in coronaviruses (CoVs) and other enveloped
viruses. After the virus is attached to the host cell protein, the process of membrane fusion starts to
get the viral genome into the host cell. This process implies viral envelope and host cell membrane
fusion, for which an energetically cost-effective barrier must be overcome. For example, in coronavirus,
membrane fusion is driven by the fusion peptide (class I), which is localized within the spike protein
(S protein) and becomes active after cleavage of the S protein at specific sites by host proteases or
pH-dependent mechanisms [4,6,8]. A different mechanism of attachment and endocytosis drives
the virus entry in the case of HCV. This mechanism is more complex than that of coronaviruses and
involves interaction of the virus envelope E1 and E2 proteins (class II fusion loop) with several host
cell proteins [9–11]. However, a membrane fusion-driven pore is also required in HCV to deliver the
viral genetic material into the host cell cytoplasm.

Two main mechanisms of membrane fusion have been described: viral endocytosis by host cell
membrane (endocytic pathway), and both viral and host cell plasma membrane fusion (non-endocytic
pathway). After docking of the virus to the attachment factor or the receptor on the host cell surface,
the virus may internalize its genomic material or the entire particle [12–14]. The non-endocytic
pathway encompasses the direct delivery of the genetic material through a pore formed in the cell
membrane by the induction of viral proteins at neutral pH. This pathway is typical of non-enveloped
viruses. The endocytic pathway is more complex and harnesses the host cell endocytosis machinery
for the virus internalization. Three main ways have been described in the endocytic pathway, namely:
the clathrin-mediated endocytosis (CME), the caveolae-mediated endocytosis (CavME), and the
macropycnocytosis. The best-known endocytic mechanism is the clathrin-mediated endocytosis.
The CME is used by small to intermediate-sized viruses. This mechanism uses vesicles coated by the
protein clathrin, which forms a polyhedral lattice that surrounds the cell membrane-derived vesicle
where the virus is internalized into the cell cytoplasm through the early endosomes. Clathrin coating
is coordinated by the adaptor protein (AP-2) and other adaptors; it is less commonly AP-independent.
The protein dynamin is involved in regulating the clathrin-coated vesicle (CCV) formation as well as its
scission from the membrane. Some viruses proceed to membrane fusion at this stage for releasing their
genome into the cytoplasm. The early endosomes have a pH of about 6.0 to 6.5; therefore, it is considered
that membrane fusion is not strictly pH-dependent. Other viruses need a lower pH for the membrane
fusion to be effective; thus, it is considered pH-dependent. A further step leading to endosome
maturation to become late endosomes with a pH of about 5 has to proceed before the membrane fusion
takes place and the genetic material is delivered to the cytoplasm. Sequential acidification of the virus
proteins from the early to late endosomes has also been suggested through the self-organized endosomal
network. Maturation of the early endosomes to late endosomes and trafficking between them is
controled by the Rab proteins, which are members of the Ras superfamily of small G proteins. Subsets of
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Rab proteins differ between the early and late endosomes, and the Rab subset change is accompanied for
by formation of the phosphoinositide PI(3,5)P2 from the precursor PI(3)P. Regarding lipid composition,
early endosome membrane lipids are primarily composed of unsaturated and short alkyl chains,
whereas long and saturated alkyl chains, such as in gangliosides, are predominant in the membrane
lipids of late endosmes. Membrane fusion in some viruses requires a further step in which late
endosomes are fused with lysosomes, this step giving rise to the late endosome/lysosome pathway.
Cholesterol depletion driven by its synthesis inhibition or extracting agents as methyl-β-cyclodextran
(MβCD) is used to assess whether the virus entry takes place through the caveolae/raft endocytosis.
This pathway in less known and encompasses the formation of initial endocytic vesicles enriched in
cholesterol from lipid-rafts, with complex signaling routes that involve the activity of tyrosine kinases
and phosphatases. Thereafter, the cargo is transported to the endoplasmic reticulum (ER) through early
and late endosomes. Most of the viruses using this endocytic pathway have different gangliosides
as receptors, mainly GM1, which has a high concentration in caveolae. Polyomavirus, which are
non-enveloped DNA viruses that replicate in the nucleus, use preferently this endocytic pathway,
but picornaviruses and the coronavirus HCoV-229E have also been reported to internalize through the
Caveolae-mediated endocytosis [15]. Macropinocytosis is a phagocytic-like mechanism of virus entry
that is currently utilized by the cell to internalized fluids; it is dependent on actin and implies the actin
cytoskeleton rearrangement to enable internalization of the virus particle [14]. Macropinocytic vacuoles
(macropinosomes) are formed after membrane ruffles fold to reach at its end the membrane again,
and the vacuole is closed through self-membrane fusion. These vacuoles containing the viral particle
may traffick afterwards through the early and late endosome network. Macropinocytosis is common
to large-sized viruses. However, recent work [16] has shown that Ebola virus (EBOV) may use a
macropinocytosis-like process to entry the host cell in a clathrin, caveolae, and dynamin-independent
manner, but dependent of actin and a lipid raft. Conversely, this virus may use as well an endocytic
pathway that is dependent on clathrin, caveolae, and dynamin. Which endocytic route is used by this
virus depends on the host cell type. Description of the current methodologies used to study the entry
route by viruses can be found in reference [14].

Some viruses may use different entry mechanisms, this feature being likely dependent upon
the membrane lipid composition of the host cell they infect as well as the particular cell surface
factor attachment used. CME is the entry route currently used by HCV, HIV-1, EBOV, rotaviruses,
and some coronaviruses, even though other routes can also be used as for EBOV (see above). A reaction
between clathrin and actin seems to be necessary for the effective entry of these viruses. Regulation by
microtubules of the CME has been reported for flaviviruses. DENV, WNV, and Semliki Forest Virus
(SFV, Alphavirus family, Togaviridae) have been found to depend on early endosomes (Rab5 protein
marker) for entry but not late endosomes (Rab7 protein marker), which means that they do not have
strict low pH requirements or depend on different acidification mechanisms for membrane fusion.
Conversely, influenza avian virus (IAV) needs both early and late endosomes to entry, thus reflecting
low pH dependence for membrane fusion. Marburg virus (MARV) may use for internalization a CME
through the endo/lysosomal pathway. Coronaviruses differ in their internalization mechanism among
strains. Thus, while HCoV-229E is known to use the Cav-ME route, SARS-CoVs use an endocytic
pathway that is clathrin- and caveolae-independent but receptor and pH-sensitive, with lipid rafts
playing an essential role [17]. This endocytic mechanism implies internalization of the receptor protein
angiotensin-convering enzyme 2 (ACE2) along with the spike protein into the early endosomes, but the
receptor is afterward recycled to the membrane via lysosomes. Nonetheless, previous studies showed
that SARS-CoV could enter through a pH-independent direct membrane fusion as it could infect cells
that do not express ACE2, such as enterocytes and hepatocytes [18]. Recent research on the virus
SARS-CoV-2 points to pH-independent direct cell and viral membrane fusion, which is a process that is
driven by the subunit S2 of the spike protein after cleavage by the cellular serine protease TMPRSS2 [19].
On the contrary, the infectious bronchitis virus (IBV), a gamma-coronavirus, was reported to use the
CME pathway to entry, with vesicle scission being mediated by GTPase dynamin 1, and a dependence
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on low pH and lipid raft localization of the receptor. Tracking of the virus trip inside the cell was
followed by using diverse inhibitors, cholesterol sequestering agents, and virus particles labeled with
fluorescent markers. Membrane fusion takes place at the late endosome/lysosome step of the endocytic
pathway, with deep rearrangement of the host cell cytoskeleton being induced by the endosomal viral
cargo [15]. Accordingly, viruses may sequester on their own profit the diverse endocytic pathways that
are currently used by the host cell, but variability of the proteins and even the general mechanisms
may also exist as a consequence of virus specifity.

Membrane fusion has been described to proceed through the catalytic action of three different
types of fusion peptides or fusion loops of class I, II, or III. These proteins afford the free energy
necessary to overcome through conformational changes the kinetic barrier due to repulsive hydration
strength. Most of the knowledge on the viral and host membrane fusion has been gained from the
influenza virus and its type I fusion peptide hemagglutinin. A detailed description of the three fusion
peptide-guided mechanisms involved in membrane fusion has been previously reviewed in [20–22].
Bringing the viral and the host membranes closer enough (c.a. 20 Å) for inducing the membrane
fusion is a process that entails membrane curvature and changes in the lipid bilayer phase. They are
driven by the insertion of a hydrophobic region of the fusion peptide, which requires dehydration
of the inter-membrane space. Nonetheless, from experiments with no-protein fusogens, such as
polyethilen glycol, it seems that membrane curvature stabilization is not a key player in membrane
pore opening. The calculated displacement of lipids in the outer leaflet of the host membrane accounts
for no more than 10% of the membrane area (about 3500 Å2), which does not represent a substantial
energetic demand [21]. This energetic burden has been demonstrated to be afforded by the cooperation
of three fusion peptides in influenza virus membrane fusion [23], whereas two adjacent trimers of
the fusion protein are required in West Nile virus [24]. This result points to the fact that the viral
membrane curvature may not actually impose a constraint for proceeding to the hemifusion step and
the formation of a steep curvature stalk, where the outer leafleats are merged. By the mesurement
of electron density profiles through X-Ray reflectivity in stalks formed from bilayers in a lamellar
state with different lipid compositions, Aeffner et al. [25] determined that the inter-bilayer separation
should attain 9.0 ± 0.5 Å in order to facilitate dehydration and promote stalk formation. These authors
also found that increasing the relative proportion of nonbilayer-forming, cone-shaped lipids, such as
glycerophosphoethanolamine or cholesterol, favored the stalk formation by reducing the hydration
energy barrier and, possibly, by contributing with their intrinsic negative curvature. As well, the energy
required for dehydration was, in this study, found to decrease with the length of the acyl chains of
the glycerophospholipids. However, the hemifusion stalk stage was not detected by Gui et al. [26]
using fluorescence and electron microscopy. The results of this study show that such a stage might be
an unstable intermediate that is quickly resolved toward the postfusion stage. Contrarily, localized
point-like contacts were abundantly visualized in this study, where the dimples formed in the target
membrane, about 5 nm wide, were drawn toward the virus surface. They were able to detect up to
well-resolved four types of virus–target membrane contacts at pH 5.5 and 5.25 using liposomes of
dioleylglycerophosphocholine, DOPC, with 20% cholesterol. At the lowest pH, a tight contact of the
two membranes through an extended length of about 100 nm (catalogued by the authors as type III) was
the predominant interaction, whose abundance was increased by about 3-fold in cholesterol-containing
liposomes in comparison to only DOPC liposomes.

Using synthetic peptides that resemble the fusion peptide hemagglutinin and electron spin
resonance (ESR), Ge and Freed [27] found that the most relevant effect of the synthetic fusion
peptides was the induction of highly ordered membrane domains, which came motivated by virtue
of electrostatic interactions between the peptide and negatively charged phospholipid headgroups.
A similar effect was reported for two putative fusion peptides enclosed in the spike glycoprotein
of SARS-CoV-1. It was found in this study that the inner water content in the lipid bilayer was
dropped by the insertion of the fusion peptide as a consequence of increased lipid packing, but only
in membranes containing negatively charged lipids, whereas the water content was only slightly
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altered in zwitterionic dipalmitoylglycerophosphocholine (DPPC) liposomes [28]. Additionally,
the fusion peptides created opposing curvature stresses in the highly bended membranes containing
nonbilayer-forming phospholipids. However, previous studies had pointed out that interaction with
the lipid headgroups is not an essential factor in reaching the membrane hemifusion state [21,29].
In SARS-CoV, the possibility of existing two fusion peptides that act in coordination has been
suggested [7]; one of the peptides would promote the dehydration process, while the other one would
act in modifying/disturbing the lipid organization within the target membrane [26,28,30]. Hence,
the catalytic role of the fusion peptide(s) is likely to tackle three properties of the target membrane
in the virus entry machinery: (i) dehydration of the intermembrane space for the fusing membranes
coming into the required proximity, (ii) to promote negative curvature to form the hemifusion stalk,
and (iii) to alter the lipid packing density, which will be generated in the highly curved local dimples
of the stalk [22,28]. The effectiveness of these three processes is likely to depend upon the membrane
lipid composition. Further research is devoted to this issue, and new clues are expected to come from
electron and fluorescence microscopy [31].

2.2. Raft Lipids Related to Virus Entry

Since the dominant phospholipid in the outer leaflet of most membranes is the bilayer-forming,
positive charged diacylglycerophosphosphocholine (PC), the idea was raised that the viral docking
to the receptor on the target cell and, consequently, the membrane fusion were likely to take place at
specific microdomains with particular lipid composition, the so-called lipid rafts [27,32–36]. A special
characteristic of the lipid rafts is the high content of cholesterol [37–39]. Even though a high content of
sphingolipids and gangliosides is also a defining characteristic of lipid rafts (Figure 1), direct in vivo
visualization still remains unresolved [39].

 
Figure 1. Relationship between the virus entry and replication with the lipidome. SREBP,
sterol regulatory element binding protein; SFA, saturated fatty acid. SARS-CoV-2 artwork was
modified from a work from We Are Covert, who allows anyone to use it for any purpose including
unrestricted redistribution, commercial use, and modification.

An unexplored possibility is that rafts do not have a permanent localized existence, but they arise
under the induction of certain proteins such as the hydrophobic insert of the viral fusion peptide or
the fusion loop. This fact might be also responsible for bringing negatively charged lipids from the
inner leaflet of the bilayer to its outer leaflet by flip-flop mechanisms. This hypothesis would explain
the promotion of virus entry by the interaction of the fusion peptide with the negatively charged
phospholipid headgroups [25,27] as well as the kinetics of the membrane fusion [25]. A number of
studies have shown that the hemifusion step and pore widening are sped up after increasing the relative
concentration of cholesterol in the bilayer composition, whereas either the depletion of cholesterol
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in the cell culture medium or the inhibition of cholesterol synthesis by statins was able to halt the
viral infection at the virus entry step [26–28,40,41]. The effect of cholesterol on promoting membrane
merging has also been observed for Bis-(monoacylglycero)-phosphate (BMP) [26]. This particular
phospholipid was shown to be strictly necessary for Dengue virus (DENV) entry even at low endosomal
pH [42]. As pointed out above, the exact role played by cholesterol is not known in detail, but its
intrinsic negative curvature seems to be an essential characteristic in promoting the stalk formation
during virus entry. However, a recent study shows that the cholesterol action is likely to involve a
direct influence on the oligomeric state of the fusion peptide after insertion into the host cell membrane,
as well as on the effects of the fusion peptide on the membrane reorganization and dynamics [43].
In another recent study, a new lipid-label-free methodology was used to measure the kinetics of
influenza virus infection [44]. According to the results of this study, cholesterol is able to augment
the efficiency of membrane fusion in a receptor binding-independent manner. Nevertheless, the rate
of membrane fusion was not altered. These results led the authors to conclude that the positive
effect of cholesterol in membrane lipid mixing is related to its capability to induce negative curvature.
Since membrane mixing was achieved in this latter study without binding of the spike protein of the
influenza virus to the host cell receptor, the catalytic effect of the fusion peptide might proceed in an
independent way in this virus. Cleavage of the spike protein in SARS-CoV-1 does not seem to be also
necessary for the fusion peptide to become fusogenic, but rearrangement of disulfide bridges in the S1
peptide after receptor binding are likely involved in the conformational changes driving the fusion
mechanism [43,45]. Contrary to these latter results, which point to the fact that membrane fusion
is independent of viral protein attachment to its receptor, Guo et al. reported lipid raft-dependent
viral protein binding with the suppression of viral infection if the lipid rafts were disrupted with
cholesterol drug-induced depletion; lipid rafts, as recognized by the caveolin-1 marker, were the
membrane domain where structural proteins of the infectious bronchitis virus (IBV) co-localized but
the nonstructural proteins did not [35]. The question regarding whether the lipid-raft domains may
serve as platforms to concentrate the proteins required for viral entry and, even though some evidence
exists, to activate signaling pathways inside the host cell still remains unsolved.

Sphingomyelins (SMs) are also common lipids found in lipid rafts, which contribute to make
these membrane microdomains detergent-resistant [34]. The structure of a representative of this lipid
class is illustrated in Figure 2. The ganglioside GM1, a sphingolipid, is used as a marker of lipid
rafts [34]. Sphingolipids (SLs) promote to an extent higher than Chol the liquid-ordered phase in the
outer leaflet of the membrane bilayer because of the long saturated acyl chains they currently contain
(the R group in Figure 2 may extend to a length of up to 26 C), in addition to their capability to form
intermolecular hydrogen bonds [46]. A relevant function of the lipid rafts has been suggested to be
the connection between the events outside the cell with the pathways inside the cell, thus acting as
‘signaling platforms’. With the aim of this function to be properly accomplished, the lipid rafts would
act as concentrators of specific transmembrane proteins, mainly receptors, whose compatibility with the
membrane phase would determine their selectivity. Thus, SLs would account for a role in connecting
the outer leaflet with the inner leaflet through their long saturated acyl chains. Regarding virus entry,
research has been primarily focused toward the role played by cholesterol, but a number of studies have
also enlightened the SM influence on this early step of viral infection. The displacement of cholesterol
by SMs and the other way round has been demonstrated, with the bilayer liquid-ordered phase being
preferentially determined by the interaction between SM and cholesterol. This interaction would be
controlled to a certain extent by the intracellular actin meshwork, which would also be responsible for
the compartmentalization of the membrane into lipid-specific domains [47]. Furthermore, the actin role
is possibly extended to the routing of the viral genomic material toward the replication place inside
the host cell. The hydrolysis of SM by sphingomyelinases to render the corresponding ceramide in
specific membrane domains is proposed to regulate the dynamics of cholesterol in the cell membrane,
the effect of such regulation being the progressive disassembly of cholesterol from the liquid-ordered
phase and its displacement. Since the interaction of ceramides with cholesterol has been suggested
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to be an apoptotic regulator, it can be expected that viral proteins would act in recruiting cholesterol
to displace the ceramide and to avoid the programmed cell death. This fact is added to the other
characteristics conferred by cholesterol to the membrane mechanical properties discussed above.
To study the influence of ceramide on membrane fusion during Semliki Forest Virus (SFV, Alphavirus
family, Togaviridae) infection, ceramide analogs have been used [48]. According to this experiment, in
which cholesterol-containing PC plus PE liposomes were used, the roles played by the 3-hydroxyl group
and the 4,5-trans carbon-carbon double bond of the sphingosine backbone (Figure 2) were found to be
essential in the fusion process. In additon, ceramide was the simplest SL to accomplish this significant
contribution in mediating the fusion, independently of the length of the acyl chain. More recently,
a Ca2+-dependent pathway of infection by the Rubella virus (RuV, Rubivirus family, Togaviridae)
was demonstrated to proceed through direct binding of the fusion loop in the viral E1 protein to
SM/cholesterol-enriched membranes [49]. However, the treatment of host cells with sphingomyelinase
proved that SM is exclusively required for viral entry but is not required for the further steps of viral
replication. SM in the host cell membrane and acid sphingomyelinase (ASMase) activity have also
been shown to be required by the Ebola virus (EBOV), a negative single-stranded RNA virus belonging
to the Filoviridae family, to get into the host cell. The ASMase activity renders ceramide that provoques
raft enlargement and membrane invagination [50]. This study also showed that the virus was able
to recruit both SM and ASMase to the raft where the viral attachment was happening. Conversely,
Bovine herpesvirus 1 (BoHV-1, Herpesviridae family) seems to require SM in the virus envelope but
does not in the host cell [51]. The role played by ceramides is contradictory as they may enhance or
inhibit virus replication, but this SL action seems to be related to the viral replication phase rather than
to the internalization phase [52–54]. In virus using the endocytic pathway, similar to the influenza
virus or the Ebola virus, it has been shown that activity of glucosylceramidase (GBA) is required for
viral entry and membrane fusion through the regulation of endocytosis, but in a virus-dependent
manner. It was also shown that trafficking of the epidermal growth factor (EGF) to late endosomes
was impaired in GBA-knockout cells, which negatively affects the virus entry through spoiling the
endocytic pathway [55]. Indeed, co-clustering of the HA attachment factor and EGF in submicrometer
domains that overlap partially has been reported recently [56]. Accordingly, there is evidence that SLs
have a function in enveloped ssRNA viruses at the early stage of infection that accounts for the viral
entry modulation, but further research is still necessary to unveil the exact mechanisms of SL reactions.

 

Figure 2. Structure of the most relevant lipids in virus infection is illustrated. Hydroxyl (HO) and
oxygen (O) atoms potentially involved in the interaction with the fusion peptide or fusion loop are
marked in red in cholesterol and sphingomyelin. The basic ceramide structure is marked in blue in
the sphigomyelin structure. In phosphatidylinositol (PI), the hydroxyl groups that can be esterified
with phosphate at the positions 3, 4, and 5 of the myo-inositol group to render PIP (PI3P or PI4P),
PIP2 (PI(3,4)P or PI(4,5)P), and PIP3 (PI(3,4,5)P), which are marked in red, blue, and violet, respectively,
are shown.
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Some CoVs (HCoV-OC43 and HCoVHKU1), as well as influenza A virus (whose fusion loop
is hemagglutinin, HA) and other non-related viruses (i.e., non-enveloped simian virus 40 SV-40,
of polyomavirus family), use the sialoglycan moiety (9-O-acetyl-sialic acid) of gangliosides or
glycoproteins located in membrane lipid rafts as receptors for the spike protein. The amino acid
Trp90 in the domain A of the HCoV-OC43 S protein was shown to be essential for receptor binding.
However, despite the fact that binding to 9-O-acetyl-sialic acid is required for membrane fusion,
further interaction of the virus protein with other host membrane sialoglycans or proteins is also
necessary to induce the conformational changes leading to membrane fusion [57,58]. Conversely,
formation of the complex SV40 protein with the host cell ganglioside GM1 was found to be enough to
induce the membrane curvature and invaginations required for membrane fusion [59].

As already discussed above, some studies have depicted the possibility that interaction of the
fusion peptide or fusion loop with negatively charged phospholipids on the host membrane might
be required for an efficient membrane fusion [25]. In this regard, phosphatidylserine (PS) contained
in the virus envelope has been demonstrated to serve after externalization as a virus co-receptor
through the T cell immunoglobulin mucin domain 1 (TIM-1) receptor in EBOV and other viruses,
even in an indispensable fashion [60–63]. In the study of Nanbo et al. [63], flipping of PS from the
inner leaflet to the outer leaflet of the cell membrane for virion adquisition and incorporation to its
envelope is proposed as a previous step to TIM1 binding. In herpes simplex virus (HSV), phospholipid
scramblase-1 (PLSCR1), after activation by HSV exposure, flips both PS and Akt to the outside of the
membrane in a Ca2+-dependent mechanism. PS is restored to the inner leaflet 2 to 4 h after infection to
avoid apoptotic triggering [62], suggesting a different role for PS in relation to the TIM-1 PS receptor.
However, the function of TIM-1 as an essential receptor for HAV has been disputed [64] due to the
finding that quasi-enveloped HA virions (eHAV) were able to infect TIM1-knockout Vero cells to a
similar extent to naked HAV. Hence, the authors proposed TIM1 to be an accessory attachment factor
by binding PS on the HAV envelope rather than an essential virus protein receptor. In spite of these
contradictory data, PS seems to act in any way in virus attachment and entry in certain virus families,
at least contributing to the process efficiency, but the exact role may depend on every virus or it may be
complementary to other factors.

A phospholipid currently associated to the inner leaflet of the lipid rafts is phosphatidylinositol
(PI), which is a negatively charged phospholipid with important and versatil signaling functions
(Figure 2) [65,66]. Abundant data suggest that a derivative of PI, the phosphatidylinositol
4,5-biphosphate (PIP2), accumulates preferently in liquid-disordered phases (Ld) [7], where the
cholesterol content is presumed to be low, and interplays with PS, which is rather localized in
liquid-ordered phases (Lo). PIs play an essential role also in endosome maturation, which is a requisite
for efficient virus infection of those using the endosomal pathway [56,66]. During HIV infection,
PIP2 has been proposed to coordinate the actin cytoskeleton changes required for efficient virus
entry in CD4+ T cells [67]; after virus attachment to the host cell receptor, PIP2 is recruited to the
binding membrane microdomain, and in this way, PIP2 controls the protein reactions, leading to actin
polymerization. As well in HIV-1, the requisite of PIP2 accumulation for the virus Gag protein to be
properly anchored and stabilized in the inner leaflet of the cell plasma membrane has been pointed
out [68,69]. Two isoforms, α and γ, of the phosphatidylinositol-4-phosphate 5-kinase family type
1 (PIP5K1) have recently been shown to participate in Gag stabilization by PIP2 through targeting
the Gag precursor Pr55Gag to the cell plasma membrane [70]. As commented above, interaction
with the headgroup of negatively charged phospholipids such as PS or PI may also contribute to the
dehydration process in the formation of the hemifusion stalk, with this contribution happening by
promotion of the inverted hexagonal phase in the lipid bilayer and binding of Ca2+ [25]. In in vitro
experiments with COS-7 cells and multilamellar vesicles (MLVs), unspecific binding of the Marburg
virus (MARV) mVP40 protein to PIP, PIP2, and even PIP3 species present in the MLVs, both in the
presence or absence of PS, has been reported. In this study, it was also found that with increasing PS
concentration, the association of mVP40 to MLVs rose up to a threshold. Furthermore, the addition of
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sphingosine with the aim to reduce the negative charge load in the inner leaftet of the COS-7 cells led to
a decrease in the binding level. These facts suggest that the electronic density, rather than the specific
lipid species, is a determinant factor for binding [70]. Activation of the PI3K pathway for signaling
is one of the most relevant features taking place for both entry and budding during infection by a
number of viruses [58,71–73]. PI3K converts PIP2 into phosphatidylinositol 3,4,5-triphosphate (PIP3).
In addition to stabilizing proteins or serving as a binding factor, PIP2 has been shown to collaborate
with Akt through the signaling pathway PI3K/Akt on avoiding apoptotic events, and in this way,
keeping the host cell metabolically active for virus replication and budding [71–73].

All these results clearly bring evidence that the lipid environment surrounding proteins involved
in virus infection has a relevant function in the virus entry mechanism. Different lipids are essential for
virus docking to the cell receptor either serving directly as (co)-receptors or providing the appropriate
environment (lipid rafts) for the necessary reactions (e.g., membrane curvature). In addition, the virus,
through specific protein conformational changes, takes advantage of several cell signaling pathways
controlled by diverse membrane lipids. This process allows the virus to govern the cell metabolism
following endocytosis of the viral genetic molecules.

3. Lipid Regulation in Virus Replication: Viral Factories

After the virus or its genome gets inside the infected cell, ssRNA+ viruses and other enveloped
ones that replicate in the cytoplasm manage the cell metabolism to develop the replication scaffold,
this membrane structure bolstering the so-called ‘virus factory’ [5,58,74–80]. There is consensus on
that the functions of these structures are (i) to compartmentalize the diverse processes involved in
viral genome replication, its envelopment, and structural protein assembly; (ii) to increase virion
concentration during budding before infecting naïve cells; and (iii) to create a protected environment
to escape the innate immune recognition of the viral components. Virus replication imposes an
extra-energetic expenditure to the cell metabolism. Hence, cell central metabolism is orchestated by
viral proteins to redirect toward the generation of enough energy and metabolites that are required
for virus replication. In particular, building the scaffold demands a high rate of new lipid synthesis.
Therefore, the lipid metabolism is hijacked by the virus proteins for the de novo synthesis of fatty acids
in order to generate the scaffold membranes, the replication complexes (RCs), as well as for energy
production in the β-oxidation pathway in the mitochondria. Concurrently, the cell metabolism needs
to be kept above a threshold level to avoid exhaustion of the host cell. Full understanding of the
mechanisms and related factors involved in virus–host interaction is a requisite for developing efficient
antiviral infection therapies.

3.1. Viral Replication Complexes

The scaffold structure raised for building the viral factory varies between different virus in their
morphology and possibly lipid composition. Flaviviruses develop a so-called ‘membranous network’
(MN) in a spherule/invagination type, while coronavirus does through a quarter-like type delimited by
‘double membrane vesicles’ (DMVs). Nonetheless, HCV (Flaviviridae) uses DMVs instead [77]; hence,
this morphological separation may have exceptions or be somewhat diffuse. An extended review of
the different virus family-related morphologies of the MNs as well as diverse factors influencing their
formation can be found in [22,75,76]. It should be remarked that the exact lipid composition of the RCs’
membranes is not known in detail yet, although there is evidence that their lipid profile differs from that
of the organelles from which they are generated. The enrichment of typical lipids such as cholesterol,
sphingomyelins, and glycosphingolipids in the lipid rafts seems to be a common feature of these MNs.
The RCs’ membranes may be originated from the endoplasmic reticulum (ER) in the perinuclear area,
as for example in SARS-CoV and Faviviridae [75,78,80], from the Golgi, giving rise to cytopathic vesicles
(CPVs) as in Togaviridae and Picornaviridae [75], from mitochondria (Nodaviridae) [79], or from the cell
plasma membrane (CPVs in Alphaviruses) [75]. However, vesicle trafficking between the ER and
the Golgi organelles may contribute to an undefinition in this regard. MNs, and in particular DMVs,
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are connected to the cytosol through a pore, which is believed to serve as the gate to the replication
scaffold for the requiered metabolites, in particular nucleotides. This pore-mediated gate has not been
detected up to date in SARS-CoV’s DMVs, which raises the concern of how the required metabolites
get inside the RCs. There is evidence from a number of studies that DMVs are the site of replication,
but it has also been shown that DMVs can be developed irrespective of whether RNA replication takes
place by the sole action of the viral proteins, at least for HCV [81,82]. Viral nonstructural proteins nsp3,
nsp4, and nsp6 are involved in DMV development in SARS-CoV-1 in a time-dependent manner and
correlating with RNA replication. Timecourse events have been shown to run with the initial formation
of single membrane vesicles (SMVs) during the first 2–4 h after cell infection. These futher evolve to
DMVs 16 h after infection, and they ultimately turn into multimembraneous vesicles (MMVs) close to
the cis-Golgi at the budding stage 36–48 h after infection, this latter transformation being coincident
with the formation of vesicle packets [75,78,79,83]. In HCV, NS5A seems to be enough for DMV
formation, but the collaboration of NS3-5B is required for completing efficient DMVs, whereas NS4B is
likely responsible for inducing the formation of SMVs [77,80,82]. Even though particular hints can be
likely associated to every particular virus, there are common features shared by all ssRNA+ viruses
regarding RCs’ structure and buildup.

3.2. Lipid-Related Host Factors Associated to the RCs’ Buildup

Enveloped viruses such as ssRNA+ viruses have a membrane lipid whose profile is different to
that of the original organelle membrane when the envelope is created. Since the viral membrane is
known to be enriched in cholesterol, sphingolipids, and phospholipids with saturated acyl chains,
the DMV is believed to be also primarily composed of such classes of lipids. An unusual sphingolipid,
dehydrosphingomyelin, along with PS and plasmalogens of PE were reported in the HIV envelope [84].
A role for sphingomyelin-to-ceramide conversion has been proposed in WNV budding, as its
envelope was found to be highly enriched in sphingomyelin [85]. More recently, using multi-color
super-resolution microscopy and mass spectrometry analysis, a substantial increase in PIP2 (from 11%
to 51%) and PIP3 (from 0.01% to 0.13%) was reported in the HIV membrane as compared with the
plasma membrane of the host cell [69]; this fact is related to the recruitment of Gag protein for efficient
membrane fusion as aforementioned (Figure 1).

However, the most striking and known lipid-related factor associated to the MNs’ development
is the PI4KIII signaling pathway. The PI4Pα isoform, which is mainly expressed in the ER, has been
shown to be a key factor for HCV replication, whereas the PI4KIIIβ is found in the Golgi and is
required by Picornaviruses and some HCV strains [75]. This enzyme interacts with the viral protein
NS5A, and disrupting this interaction prevents virus replication. The product of the PI4K enzyme is
PIP4; enrichment in this PI has been shown to act in different processes regarding virus replication:
membrane curvature, directly or indirectly through recluting cholesterol [86], glycosphingolipid
transport to the RCs by the action of the FAPP2 protein [87], and protein concentration. However,
conversely to these studies, it has been shown that currently used inhibitors of PI4KIIIα, enviroxime and
BF738735, actually exert their inhibition against PI3K [88]. Thus, this result points out a genomic
dependence on the PI kinases in HCV; otherwise, the action on PI3K is required only at the entry stage
(see above). Enviroxime-like inhibitors have been shown to halt enterovirus replication through the
action against PI4Kβ [89]. The de novo lipid synthesis has also been evidenced for WNV, from the
Flaviviridae family as HCV, to proceed in a PI4P-independent fashion and, concurrently, it is not related
to PI4KIII signaling [90]. There is no clear evidence on the fact that the PI4K signaling pathway has
a relevant function in MNs’ development. Hence, while PI4KIIIβ was shown to be important for
SARS-CoV’s DMV formation [91], another study did not find its metabolite, PI4P, within the host
factors involved in SARS-CoV replication, and the authors attibute to PI4P a function rather in virus
entry. However, the authors of this latter study acknowledge that siRNA methodology may provide
false negatives [92,93]. Since DMVs are not common in healthy cells but they can be observed during
authophagy, it has been suggested that SARS-CoV and other coronaviruses use the autophagy pathway
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for development of the DMVs; indeed, it has been shown that nsp6 in MHV or the equivalent nsp5-7
in arteriviruses, which hits the ER, can activate such a pathway [79,94]. Nonetheless, DMVs are
smaller than autophagosomes, and hence, they might be rather endoplasmic reticulum derived vesicles
(EDEsomes) enriched in PI3P and not follow exactly the same synthetic route [94]. Further work on
coronaviruses and autopahgy found that only the LC3-I protein, the microtubule-associated proteins
1A/1B light chain 3B, is localized on the replication membranes, but the active protein lipidated with
phosphatidylethanolamine LC3-II inserted into the autophagosome membrane is absent. Accordingly,
present knowledge on coronaviruses in regard to autophagy suggests that they take benefit of the
autophagocytic components but do not develop autophagosomes per se [95].

The autophatocytic pathway has also been associated to the start of HCV infection, but it seems
not to be necessary for the infection to go on [82]. Later on, it was shown that autophagy was key in
RNA replication at the onset of HCV infection [96], but the virus life cycle can go ahead afterward
without the autophagy system intervention. Further work has shown that HCV, and possibly DENV,
uses the autophagy system to evade the innate immune system [97]. Using immortalized human
hepatocytes defective of the autophagy-related proteins either beclin (BCN1) or ATG7, it was shown in
the latter study that disruption of the autophagy machinery elicites activation of the interferon signaling
pathway and leads to apoptosis of the infected cells. Triggering of the autophagy pathways takes
place after binding of the virus to the cell surface via the downregulation of mTOR and inactivation
of Akt signaling [95]. Conflicting results have been reported for the induction of autophagy by HCV
in regard to the unfolded protein response (UPR) [95]. Recent work [98] has bound the induction of
autophagy by HCV to Golgi membrane fragmentation to render vesicles that colocalize with the HCV
replicons. The immunity-related GTPase M protein (IRGM) mediates the phosphorylation of the early
autophagy initiator ULK1 as well as the Golgi membrane fragmentation in response to HCV infection.
The protein LC3 has also been detected in the replication membranes of the HIV-1, and the association
of LC3-II with Gag-derived proteins seems to be a requisite for the efficient maturation of the Gag
subunit p24 [14,99]. Members of the Picornaviridae family, non-enveloped viruses, have been reported
to subvert the autophagosome pathway as a means to exit the infected cell without membrane lysis;
support for this spreading mechanism comes from the finding of numerous extracelular vesicles that are
enriched in phosphatidylserine phospholipids [14]. The best studied virus regarding autophagy is the
dengue virus (DENV). Even though it was initially suggested that the DENV replication complexes are
developed from autophagosomes, further work pointed out that the replication of DENV took place on
invaginations arising from the endoplasmic reticulum (ER), while autophagy was rather used by DENV
to modify the lipid metabolism in a way that is known as lipophagy [100,101]. Lipophagy was first
shown to be an active way to get energy under starvation [102] through the association of autophagic
components with lipid droplets (LDs). Recently, lipophagy has been demonstrated to regulate the
fatty acid availability for the β-oxidation through contact sites between the mitochondria and the
ER [103]. Regarding virus-associated hijacking of the cell lipid metabolism, Heaton and Randall [100]
early showed that increased β-oxidation and the depletion of triglycerides was concurrent with and
necessary for DENV replication. Then, these features were linked to the action of autophagy through
the association with lipid droplets. A recent study by Zhang et al. [104] has found that AUP1, a type III
protein with signals for LDs and ER, plays a relevant role in lipophagy induced by DENV and other
flaviviruses such as WNV. Unmodified AUP1 is required for lipophagy triggering. A 10-fold increase
in the content of diacylglycerophosphocholines (PCs) was measured in this study in infected cells
containing unmodified AUP1, this increase being concomitant with a depletion of triacylglycerols and
cholesterol esters, whereas the contents of free fatty acids and unesterified cholesterol rose. Conversely,
smaller LDs, but not a reduction of their abundance, were observed in AUP1-knocked-out cells. Thus,
these data point to an augmented consumption of LDs in the infected cells. This study unveils the
mechanism that leads to the commented results; after the DENV protein NS4A associates with AUP1,
the complex is relocalized from LDs to autophagosomes, where the acyltransferase domain of AUP1 is
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activated for the generation of phospholipids. This process was found to be dependent on the AUP1
ubiquitylation status, with NS4A inhibiting the ubiquitylation of AUP1.

Similar to viral entry, cholesterol has been found to be also relevant in the RCs’ membranes [79,82].
Up to a c.a. 9-fold enrichment of cholesterol was found in HCV-developed DMVs as compared to its
content in the ER membranes from which DMVs were originated [77]. A key protein in cholesterol
metabolism associated to non-vesicular transport is the oxysterol-binding protein (OSBP). This protein
has been described to transport cholesterol to PI4P-enriched membranes, which would agree with its
collaboration in delivering cholesterol to DMVs with an abundant content of this PI [77]. The ceramide
transfer protein (CERT) and the four-phosphate adaptor protein 2 (FAPP2) are known to undergo a
similar fate in HCV infection [82]. An important protein involved in cellular lipid homeostasis is the
sterol regulatory element binding protein (SREBP), a bHLH-zip transcription factor with three isoforms;
SREBP1c regulates the expression of fatty acid (FA) biosynthesis genes [105,106], whereas SREBP2
transactivates genes implied in cholesterol biosynthesis, intracellular lipid transport, and lipoprotein
import [107]. A recent study shows that the inhibition of SREBP with the retinoid derivative and RAR-α
agonist AM580 prevents MERS-CoV infection by avoiding the formation of functional DMVs [105].
In this study, the lipid metabolism was the most affected pathway, with sterol biosynthesis being
strengthened at expense of the glycerophospholipid metabolic pathways. Fast activation of the lipid
biosynthesis enzymes Acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and HMG-CoA
synthase (HMGCS) was observed in such study, whose activity was partially blocked by AM580
inhibition of SREBP enzymes. Promotion of lipid biosyntheis after infection had already been pointed
out for HCV in an elegant proteomics and lipidomics study [108]. HCV infection elicites changes in
the proteome of host cells that resembled the Warburg effect described in cancer cells toward lactate
production and the support of continuous glycolysis; concurrently, the up-regulation of citrate synthase
(CS) and other lipogenic enzymes 24 h after infection was interpreted by the authors of the latter
study as indicative of re-routing of the tricarboxylic acid (TCA) cycle for cytosolic accumulation of
citrate, which would be used in FA synthesis. The up-regulation of peroxisomal and mitochondrial
FA oxidation pathways is concurrent with the other metabolic changes. An increase in pro-apoptotic
ceramides was observed in the latter study as well; two possible interpretations were attributed to this
finding, either a cytopathic effect after cell cycle arrest over time enough to complete virus offspring or
a defense response of the host cell to avoid infection spread.

Blocking cholesterol suitability for the membraneous network or endosomes used for the virus
replication and internalization has been demonstrated to inhibit the virus life cycle in a number of
unrelated viruses. Disruption of the SREBP pathway restrains the Andes virus (ANDV), an ssRNA-
virus, internalization, although it does not bind to the cell surface receptor [109]. In addition to
SREBP2, other components of this pathway were found to be necessary. The dependence of viral
entry on the sterol regulatory element binding protein cleavage activating protein (SCAP) and the
site 1 protease (S1P) was evidenced in cells null for these proteins. Thus, in the study of Petersen et
al. [109], the virus was not internalized in cells lacking S1P, this result pointing out that a complete
cholesterol biosynthesis pathway is required. Infectivity was also reduced 10-fold when the cells
were treated with methyl-β-cyclodextrin (MβCD), a cholesterol sequestering agent, and comparable
results were obtained after cell treatment with mevastatin or the S1P inhibitor PF-429242. However,
the S1P dependence of virus infectivity does not seem to affect other viruses, thus this route being likely
selective for hantaviruses [110]. In this study, the genetic or pharmacological disruption of the SREBP
pathway at the site of the regulatory element membrane-bound transcription factor peptidase/site
1 protesase (MBTPS1/S1P) dramatically reduced viral infection, which is a feature that confirms the
essential dependence of hantavirus on the high membrane cholesterol content for membrane fusion and
effective infection. The down-regulation of sterol synthesis at the gene level after infection was found
to be controlled by an interferon regulatory loop, in which a type I interferon-dependent mechanism
down-regulates the expression of SREBP2 [111], this result showing a link between the innate immune
response and cholesterol biosynthesis after viral infection. This type I interferon response toward
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cholesterol synthesis down-regulation was dependent on the mevalonate-isoprenoid branch as a
supply of mevalonate completely blocked the cholesterol synthesis, whereas a supply of cholesterol
did not. Additionally, in the presence of geranylgeraniol, the type I interferon inhibition of sterol
biosynthesis was severely diminished. Further research has shown that interferon may regulate the
sterol synthesis pathway in multiple forms through microRNAs [112]. In particular, miR-342-5p was
found to hit multiple SREBP-independent targets of the mevalonate–sterol synthesis pathway after
viral infection. The type I interferon response was also observed in regard to the impairment of the
formation of double membrane structures induced by arteriviruses as replication sites [113]. Host cell
fight against viral infection by a reduction of cholesterol availability has been also pointed out to come
from the antiviral effector protein interferon-inducible transmembrane protein 3 (IFITM3). This protein
interacts with vesicle-membrane-protein-associated protein A (VAPA), impeding its association with
the oxysterol binding protein (OSBP), and consequently, altering the normal function of OSBP. As a
result of the IFITM3 action, virus release into the cytosol is blocked by the accumulation of cholesterol
in multivesicular bodies and endosomes. This effect restrains the membrane fusion of the intraluminal
vesicles and that of the multivesicular bodies, which is a requisite for virus budding and release to the
cytosol [114]. The viral accesory protein of HIV Nef competes with the cholesterol transporter ABCA1
to prime the transport of cholesterol to lipid rafts as a viral strategy to raise the replication membranes,
thus overcoming the antiviral properties of ABCA1 [115].

The replication of Rabies virus (RABV), an ssRNA virus, is halted by the action of viperin (virus
inhibitory protein, endoplasmic reticulum-associated, IFN-inducible) in RAW264.7 cells. This protein
is induced by the RABV, IFV, HIV, or HCV infection through promotion of the innate immune response
bound to the TLR4 signaling pathway. The inhibitory activity of viperin on virus budding is related to
its capability to substantially drop the contents of cholesterol and sphingomyelin in the replication
membranes [116], thus pointing out the relevance of the membrane lipid composition for efficient
virus replication. The induction of viperin has also been proven for HCV and IFAV [111]. However,
viperin does not intervene in the inhibition of arterivirus-induced double membrane formation [113].

4. Additional Pathways of Lipid Metabolism Affected in Virus Infection

Remodeling of the lipid metabolism by virus infection may leave signals at the organism level even
some years after healing. The metabolome profile of patients undergoing SARS-CoV-1 infection during
the outbreak of 2002–2003 was assessed 12 years after overcoming the pathology [117]. An outstanding
result of this study regarding disturbed lipid metabolism was the elevation of phosphatidylinositol (PI)
and lysophosphatidylinositol (LPI) species concentrations in serum, which in turn correlated positively
with the levels of very low-density lipoproteins (VLDL); higher concentrations of products of the
phospholipase A2 (PLA2) such as lysophospholipids (LPPLs) and free arachidonic acid (AA) were
also found in patients as compared to healthy voluntiers, with a correlation between the level of AA
and the ratio of LPI(18:0) to total 18:0-PIs being observed as well. These results show a potential high
sensitivity of SARS-CoV patients to PLA2 activity. In the general context, the metabolome of these
patients pointed to hyperlipidemia, cardiovascular abnormalities, and glucose metabolism alteration
as a delayed efffect of the viral infection. Nonetheless, the authors acknowledge that some of the
related metabolic disturbations are likely owed to the pharmacological treatment. High levels of PLA2

group IID (PLA2G2D) in lungs of middle-aged mice as compared to young mice had previously been
associated to a fatal or worse outcome [118]. The authors of this study conclude that the negative
influence of this enzyme in SARS-CoV infection was to increase the concentration of anti-inflammatory
lipid mediators, mainly protaglandin D2 (PGD2), which impaired the efficient function of the immune
system [119]. In the recent SARS-CoV-2 outbreak (COVID-19), mortality has mostly affected aged
people above 60 years old, thus showing an age-related fatality as for SARS-CoV-1 and MERS-CoV [120].
Using a lipidomics approach, the effect of HCoV-229E and MERS-CoV infection on the host cell lipid
profile was recently investigated in cell culture [121]. The main conclusions of this study agree
with the raised content of AA and LPPLs through PLase activity, which indicates that the possible
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virus-induced activation of cPLA2 favors virus replication as a factor required for DMVs’ formation.
In this study, linoleic acid (LA) or AA supplementation to the culture cells suppressed replication,
which is a result that may be interpreted as a demonstration of the perturbation of the LA/AA axis of
the lipid metabolism.

In the COVID-19 outbreak, it has been suggested that increasing the levels of vitamin D could
help fighting against the SARS-CoV infection [122]. This suggestion is based on the fact that
25-hydroxyvitamin D3 was found to protect Huh7 cells against MERS-CoV [105]. Vitamin D is a
lipid-related compound belonging to the group of fat-soluble secosteroids, with the most important
form in humans being vitamin D3 (cholecalciferol) [123]. In a recent study, high doses of vitamin D
have shown protective effects against DENV infection through regulation of the Toll-like receptor
expression as well as the modulation of pro-inflammatory cytokines release, which suggests that
its action is focused toward the immune system modulation rather than to lipid metabolism [124].
However, evidence on the beneficial effects of vitamin D uptake is still poor, and more studies are
devoted to this issue.

Lipids, as components of membranes, are related to viroporins, which are specific viral proteins
that are known to create ion channels for ion trafficking [125–127]. The effect on cell metabolism of
diverse viroporins differs among them, but there is evidence that they are closely related to viral
pathogenity [125]. Viroporins may play a relevant role during virus infection, as they are involved in
membrane permeability and calcium homeostasis. Their participation in the development of vacuoles
from the ER during the DMVs’ formation has been suggested, but data on this issue are still scarce.
The regulation of Ca2+ flux by viroporins might favor the membrane fusion through the interaction of
this cation with the phospholipid headgroups and concurrently facilitate the required dehydratation
reaction. Viroporins are not required for virus replication with the exception of rotaviruses and
picornaviruses; thus, whether this function is exerted through the ion channels or another property of
viroporins remains an issue still unknown [125]. The lipid composition of the membrane may influence
the viroporin activity, leading to different versions of ion channels, which depends on the electric
charge that the phospholipids confer to the membrane and curvature [127]. A viroporin from rotavirus,
NSP4, was shown to co-localize with the autophagy marker protein LC3 in membranes accomodating
virus replication; this viroporin is implicated in the sequestering of autophagy for the transport of
proteins from the ER to the replication sites [128]. Further research is necessary to understand the role
played by viroporins in virus infection in order to consider them as potential therapeutic targets.

5. Conclusions

Remodeling of the virus-induced host cell lipid metabolism is a remarkable feature of the viral
infection that affects viral entry, replication of the genomic material, and the releasing of progeny.
A comperhensive view of the process is illustrated in Figure 3. The main actors are well known to
be cholesterol, sphingolipids, and PIs, but other lipid species and their related pathways such as the
LA/AA axis are also relevant. How to target the lipid metabolism in a safe manner to avoid virus
infection or reduce its pathogenity is a promising therapeutic tool, but it demands improving the
knowledge on the actual pathways that are affected over the virus life cycle. The exact mechanism
through which the enzyme inhibitors act on the key enzymes of the lipid metabolism is additionally
required to develop more efficient and safe therapeutic drugs. Since the lipid metabolism is essential
for proper cell function, selective drugs targeting the virus or exclusively the infected cells have to be
used to avoid harmful side effects.
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Figure 3. Comprehensive view of the virus replication process and the main lipids involved in
every step.
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Abstract: Fatty acids are closely involved in lipid synthesis and metabolism in cancer. Their amount
and composition are dependent on dietary supply and tumor microenviroment. Research in this
subject highlighted the crucial event of membrane formation, which is regulated by the fatty
acids’ molecular properties. The growing understanding of the pathways that create the fatty acid
pool needed for cell replication is the result of lipidomics studies, also envisaging novel fatty
acid biosynthesis and fatty acid-mediated signaling. Fatty acid-driven mechanisms and biological
effects in cancer onset, growth and metastasis have been elucidated, recognizing the importance of
polyunsaturated molecules and the balance between omega-6 and omega-3 families. Saturated and
monounsaturated fatty acids are biomarkers in several types of cancer, and their characterization in
cell membranes and exosomes is under development for diagnostic purposes. Desaturase enzymatic
activity with unprecedented de novo polyunsaturated fatty acid (PUFA) synthesis is considered the
recent breakthrough in this scenario. Together with the link between obesity and cancer, fatty acids
open interesting perspectives for biomarker discovery and nutritional strategies to control cancer,
also in combination with therapies. All these subjects are described using an integrated approach
taking into account biochemical, biological and analytical aspects, delineating innovations in cancer
prevention, diagnostics and treatments.

Keywords: cancer cell membranes; fatty acid biosynthesis; essential fatty acids; desaturase
enzymes; fatty acid signaling; fatty acid biomarker; sapienic acid; sebaleic acid; molecular
nutrition; inflammation

1. Introduction

The development of lipid research in the last two decades has brought a fundamental contribution
to the understanding of the main processes for cellular life, in all types of organisms as well as in
plants [1]. In particular, fatty acids are the building blocks of the large majority of lipid structures,
differentiated from lipids that have steroid and isoprenoid scaffolds. Fatty acids are known for
their multiple roles, ranging from energy providers and gene regulators to precursors of signaling
molecules and other important metabolites, but it is worth noting that fatty acids in phospholipids have
specific structural and functional roles in order to create the envelope of all types of cells, i.e., the cell
membrane [2]. In eukaryotes, fatty acids display structural diversity and, as represented in Figure 1
with the most important molecules for the organization of membrane phospholipids, are characterized
by specific chain length and number of unsaturations. First of all, the length of the hydrocarbon

Metabolites 2020, 10, 345; doi:10.3390/metabo10090345 www.mdpi.com/journal/metabolites175



Metabolites 2020, 10, 345

(hydrophobic) chains requires a certain number of carbon atoms (most often 16–22 carbon atoms) to
create the membrane compartment and the thickness of the lipid bilayers. Biosynthesis is initiated
with the formation of 16 carbon atoms containing palmitic acid, the first endogenous lipid which is
a saturated fatty acid (SFA) (Figure 1) made by the enzymatic system of fatty acid synthase (FAS).
Together with the chain length, another structural requirement present in unsaturated fatty acids is
the geometry of cis double bonds. The enzymatic system of desaturases introduces the unsaturation
in a precise position of the fatty chain (indicated with the carbon atom number; see Figure 1) and
this creates a bend (angle of ca. 30 degrees), modifying profoundly the biophysical properties of the
molecules [3]. The main endogenous formation of double bonds is due to delta-9 (Δ9) desaturase
(also known as stearoyl CoA desaturase SCD-1) operating on palmitic and stearic acids, as shown
in Figure 2A.

 

Figure 1. The fatty acid constituents of phospholipids: saturated fatty acids (SFA), monounsaturated fatty
acids (MUFA) and polyunsaturated fatty acids (PUFA) are shown with their most present structures in
eukaryotic membranes.

On the other hand, the polyunsaturated fatty acid (PUFA) structures are necessary to eukaryotic
cells but are not biosynthesized de novo, and the precursors of the omega-6 and omega-3 families must
be taken from the diet. The structures of the omega-6 and omega-3 precursors are shown in Figure 1
(linoleic acid and α-linolenic acid, respectively) and, after their uptake, other PUFAs are formed and
enter into the membrane composition, as shown in Figure 1. In Figure 2B, the two pathways followed
for long-chain PUFA biosynthesis are shown, with formation of omega-6 di-homo-gamma linolenic
(DGLA) and arachidonic (ARA) acids and omega-3 eicosapentaenoic (EPA) and docosahexaenoic (DHA)
acids. As a matter of fact, the transformation to mono- and polyunsaturated fatty acids (MUFA and
PUFA) provides the precious building blocks of membrane phospholipids involved in the regulation
of permeability and fluidity properties. MUFAs and PUFAs act in a manner opposite to SFA, which
instead create the rigidity and the gel status of the lipid bilayer. The role of fats in cancer is generally
recognized [4], and the SFA-MUFA pathway has been studied since it is one of the pieces of the puzzling
scenario for tumoral cell development and invasion [5]. However, considering that the membrane is
necessary for cell formation and reproduction, the ways in which the balance among SFAs, MUFAs and
PUFAs influences these steps are still to be defined. MUFAs can be obtained totally by an endogenous
process, whereas PUFAs cannot be biosynthesized in humans, as shown in Figure 2B. Due to this
“dietary dependency”, the effects of an impairment of both exogenous supply and endogenous
metabolism needs a comprehensive approach in order to examine cellular metabolism, signaling and
nutrition. This is why fatty acid-based membrane lipidomics drives important information in health
and diseases and, in particular in cancer “-omics”, it is needed for the comprehension of molecular
mechanisms and for biomarker discovery.
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Figure 2. Some metabolic transformations of fatty acids: (A) the saturated fatty acid (SFA), palmitic acid,
is transformed into stearic acid and the monounsaturated fatty acid (MUFA), oleic acid; (B) omega-6
and omega-3 precursors taken from the diet are transformed into the other polyunsaturated fatty acids
(PUFA) members of the two families.

Here we wish to remark that a multidisciplinary approach is necessary, where chemical, biological
and clinical skills are required all at once. Indeed, in membrane lipids research and medical applications,
all these skills are also necessary to address critical issues in protocols: are we fully conscious of
the difference in monitoring circulating lipids from those entering the cell membrane composition?
Can we make crucial decisions about what is the best sampling procedure for cell membrane lipids?
Finally, can we make an effort to unify protocols in one accredited procedure, so that big data can
be collected and results can be compared in multicentric studies? In our opinion, analytical and
chemical competences here come first, since they are required in order to build up accurate and reliable
protocols: the recognition of fatty acid structures must be unambiguous [6], as will be shown in this
review, taking into account that fatty acids are tissue-specific and each tissue has its own distribution
of these molecular components [7]. Quality control must involve the exact separation of fatty acids
from the sample to be analyzed, and if membranes are the target, the procedure must isolate them.
This accuracy is fundamental because, after analysis, fatty acids are interpreted for their biological
effects, as precursors to lipid mediators and contributors to membrane fluidity.

The contribution of fatty acids to membrane properties has been recognized for a long time,
particularly in cancer development [8]. More recently, it has been discussed as evidence that the
application of membrane modification and manipulation as part of cancer therapeutical strategies is
still not developed [9].

An interplay between biosynthesis and diet regulates fatty acid availability. We gathered the
literature on how fatty acids are implicated in tumor onset and progression and how the cancer
lipidome reflects the activation of the de novo synthetic pathways. In this overview, we wish also to
highlight our own work on the discovery of a family of MUFA positional isomers, the n-10 family,
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as new biomarkers of the metabolic shift that allows human cells to build up the first endogenous
PUFA component, sebaleic acid [10]. The review also covers the link between obesity and cancer in
order to understand why and when lipid supply causes health complications, highlighting specific
fatty acids for their biological effects, signaling and contribution to the membrane properties that
influence cell growth and death. From this scenario, several hints emerge for innovative strategies in
cancer prevention (primary and secondary) using fatty acid-based membrane lipidomics and fatty
acid balance.

2. Fatty Acids and Lipid Supply for Membrane Formation in Cancer

Cancer is a very complex disease due to the large number of factors involved. Cells develop
a great capacity to grow, proliferate and survive under stress conditions. They modify several
processes to achieve favorable environments, such as the metabolism of lipids, carbohydrates, proteins
and nucleotides, being able to maintain the functionality of the structures and functions [11,12].
Adapted metabolic pathways allow cancer cells to obtain energy, form metabolic intermediates
and synthesize fatty acids, even when the exogenous availability of these compounds is reduced.
For example, the hyperactivation of the phosphatidylinositol-3 kinase and AKT (PI3K-AKT) transduces
the signal from the hormone insulin to drive glucose uptake and is one of the most frequently mutated
pathways in cancer [13]. In this case, glycolysis is favored, leading the cells to form pyruvate, which
could be used for ATP synthesis or for de novo lipogenesis [14]. The hyperactivation of PI3K-AKT also
activates the glutamate pyruvate transaminase 2 (GPT2), favoring glutamine anaplerosis to supply
sufficient metabolites for FA synthesis and, finally, remodel the cellular lipidome [15]. In the latter
case, it has been shown that such remodeling makes lipids an important hallmark of cancer [16].
The overexpression of FA transporters, such as fatty acid translocase CD36, plasma membrane fatty
acid-binding proteins (FABP) and the fatty acid transport protein family (FATP), elevates the uptake of
exogenous FAs with their subsequent storage in lipid droplets (LDs), as is known in ovarian cancer, and
this is in connection also with adipose tissue, as will be explained in Section 5 [17]. To fully evaluate
the lipid supply and understand their role in cancer, we must distinguish between de novo synthesized
and dietary fatty acids, as explained below.

2.1. De Novo Synthesis of Saturated and Monounsaturated Fatty Acids

Combined with a greater capacity for the biosynthesis of lipids, cancer cells are not only able to
maintain lipid homeostasis but also to provide ATP and NADPH in conditions of metabolic stress and
sufficient precursors to deal with the formation of lipid rafts that are essential for protein dynamics
in membranes and cell survival [18,19]. Since phospholipids are the basic units of membranes, in
cancer disease different enzymes involved in their endogenous synthesis are highly expressed, such as
ATP-citrate lyase (ACLY), acetyl CoA carboxylase (ACC) and fatty acid synthase (FAS) [20,21]. Each of
them represents itself a target of study against cancer. Whereas in nutrient-unlimited and aerobic
conditions, the glucose metabolism forms citrate through the tricarboxylic acid cycle (TCA), to later
convert into acetyl CoA, being the key for de novo synthesis, cells also develop an alternative strategy
to form FA when there is a lack of nutrients and hypoxia (Figure 3). Several groups have proposed
that, in these mentioned cases, the TCA cycle can be modified to run in reverse and use glutamine
from storage to act as source of acetyl CoA [22,23], whereas others describe that acetyl CoA can be
obtained from histone deacetylation [24]. In the case of FAS, in addition, it responds to signals from
the activation of the AKT and MAPK (mitogen-activated protein kinase) pathways, which, in turn,
are also favored in cancer processes [25]. Besides the fact that the production of FAs is essential to
sustain the structure and demands of membranes, their composition is also decisive in guaranteeing
the functions of the dividing cells. The production of monounsaturated fatty acids (MUFA) from SFA
provides fluidity, functionality and flexibility, which are essential for tumor cells. This step involves the
action of delta-9 desaturase enzyme (known also as stearoyl CoA desaturase, SCD-1, and reported in
Figure 3), which can act on both palmitic (16:0) and stearic (18:0) acids. As with the enzymatic complex
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from de novo synthesis, SCD-1 is overexpressed in cancer and regulated by different signaling cascades
such as MAPK and AKT or systems such as p53 [26], attracting interest in their inhibition [4,5].

 

Figure 3. The de novo synthesis of saturated fatty acids (SFA) starting from acetyl CoA and the
transformation to monounsaturated fatty acids (MUFA) by two desaturase enzymes. Structures of
some of these fatty acids are shown in Figure 1. ACC: acetyl CoA: carboxylase; FAS: fatty acid synthase;
ELOVL: elongase enzyme; Δ6D: delta-6 desaturase (Δ6); SCD-1: stearoyl CoA desaturase.

Cancer cells modify lipid metabolism in order to respond to environmental modifications.
Hypoxia, for example, affects acetyl CoA formation from glucose and SCD-1 activity, as they are oxygen
dependent. However, in this case, tumoral cells escape the need for fatty acid synthesis by increasing the
uptake of lysophospholipids as a shortcut to prepare phospholipids. FABPs are transcriptional targets
of hypoxia-inducible factors (HIFs) that facilitate extracellular scavenging of long-chain unsaturated
lysophospholipids, which can be used as a nutrient source under conditions of metabolic stress [15].
Interestingly, this effect can occur even in aerobic conditions after oncogenic RAS activation, making
it independent from SCD-1, to achieve sufficient MUFAs [27]. It is worth highlighting the existing
debate about whether fatty acids used by cancer cells are of endogenous or exogenous (dietary) origin,
since some studies did not find differences [28]. Lipidomic studies have a fundamental role in the
elucidation of the decisive contribution of fatty acid biosynthesis, evidencing storage, lipolysis and
membrane remodeling implied in tumor onset, progression and metastasis. Table 1 summarizes the
most important fatty acid-driven mechanisms and related biological effects.

Table 1. The main fatty acid-driven mechanisms and biological effects in cancer onset, growth
and metastasis.

Entry Implicated Mechanism Biological Effects Lit

1 Desaturation from 16:0 to 6c-16:1
(sapienic acid) Support of membrane biosynthesis during proliferation [29,30]

2 mTORC2 regulation of lipid metabolism Glycolysis and lipogenesis activation [31,32]

3 Acetyl CoA synthetase 2 promotion of
acetate utilization

Maintaining cancer cell growth under hypoxia and metabolic
stress [33]

4 Adipokines mediation of ovarian cancer
metastasis Induction of lipolysis and β-oxidation to provide energy [34]

5 Enhanced uptake of exogenous
lipoproteins

(a) Cholesteryl ester accumulation, induced by PTEN loss and
PI3K/AKT activation, to sustain cancer aggressiveness
(b) Increased amount of cholesterol and overexpression of
low-density lipoprotein receptor to boost proliferation
(c) Sustaining proliferation and aggressive potential of breast
cancer tumors

[35]
[36]
[37]

6 Increase in lipid droplets in tumor cells Increased COX-2 expression and storage in droplets, with
effects on proliferation [38]

7 Stearoyl CoA desaturase essentiality for
cancer cell survival

Inhibition of FA desaturation, blocking the synthesis of lipids
and impairing cell survival [39]
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Readers are directed to the original references cited in Table 1 to elaborate on each subject
appropriately. Among these mechanisms, a recent one (Entry 1) was individuated by some of our
group, investigating the analytical protocols for efficient separation of the MUFA positional isomers,
which will be addressed in Section 4. Knowledge of different mechanisms is necessary for research of
new therapeutic targets that can act in a synergic manner, to disturb organization of membrane lipids,
destabilize lipid rafts and activate apoptosis signaling [18,19].

2.2. PUFA Intake and Omega-6/Omega-3 Balance for Membrane Fatty Acid-Mediated Signaling

On the basis of the importance of phospholipids for cell formation, the “membrane hypothesis”
can be drawn, for which the initial steps of death or life of tumoral cells could be also driven by the
quality of the membrane fatty acids. To create a fatty acid balance among SFA, MUFA and PUFA
residues in the individual, it must be taken into account that the dietary intake of omega-6 and
omega-3 regulates the presence of PUFA residues in lipid pools. Once the individual pool is formed,
it exerts strong control upon the membrane composition and the types of fatty acids that will be
detached from membrane phospholipids to determine the related cell fate. Indeed, the phospholipase
A2 (PLA2)-induced release of fatty acids from membranes is a well-known process, involved in the
membrane remodeling cycle, i.e., the Lands cycle [40]. It does not discriminate between omega-3
and omega-6 structures, thus highlighting the importance of the above-mentioned balance present
in membranes for pro- and anti-inflammation signaling. Indeed, every time that the release in the
cytoplasm of arachidonic acid from phospholipids occurs by PLA2, causing the subsequent formation
of its eicosanoid mediators, other omega-6 and omega-3 fatty acids are released as well, such as
di-homo gamma-linolenic acid (DGLA), eicosapentaenoic and docosahexaenoic acids (EPA and DHA).
They are, in their turn, precursors of other lipid mediators with mainly anti-inflammatory properties,
thus integrating the final inflammation and resolution responses [41]. Obviously, the result depends
on the presence and balance of these fatty acids in membranes. Since recent data suggest inflammation
as an important aspect in activating cancer proliferation pathways and resistance, it is evident that the
membrane predisposition through its fatty acid composition is a piece of information to gather in the
puzzling scenario of the cancer disease. Cancer is generated not only by genetic alterations, as a result of
intrinsic or exogenous mutagens, but also by long-term exposure to acute or chronic inflammation. It is
now becoming clear that the proliferation of cells alone does not cause cancer. However, sustained cell
proliferation in an environment rich in inflammatory cells, growth factors and DNA-damage-promoting
agents is necessary in the neoplastic process, promoting survival and migration. In this way, the causal
relationship that exists between inflammation, innate immunity and cancer is more widely accepted [42].
Many of the molecular and cellular mechanisms that mediate this relationship are still unresolved,
but the role that FAs play in inflammation processes related to cancer is increasingly relevant. Indeed,
the role of dietary PUFAs omega-6 and omega-3 is a matter for discussion of their effects on cancer
incidence and evolution [43]. The negative impact of Western diets, rich in omega-6, has recently
been described in societies in which the intake of omega-6 fatty acids was traditionally in balance
with that of omega-3. The number of cases with diseases associated with inflammatory processes, as
well as their worse prognosis, has increased [44]. The scientific debate on the importance of the PUFA
intake for cancer risk has not yet reached a conclusion. Large population studies are needed to address
this task. For example, in a recent population-based (100,881 participants) prospective cohort study,
using self-reported dietary data from the Västerbotten Intervention Programme, statistically significant
associations have been described between a more anti-inflammatory or healthier diet and reduced risk
of cancer [45]. In the development of inflammation mediated by PUFAs, both omega-6 and omega-3
FAs play crucial roles, since these two families of FAs are in constant competition with each other
and, broadly speaking, they develop opposite effects. In this sense, omega-6 FAs are more related to
inflammation (through the arachidonic acid (AA) cascade) and omega-3 to anti-inflammatory effects.
Figure 2B shows how both omega-3 and omega-6 are closely related, by sharing the same enzymes for
each step of their transformations. This fact implies that, from the beginning, there is a need for balance
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between the families, since, if one is favored, it will hinder the synthesis of products from the other. It is
worth adding that there are regulations also from the FA-derived mediators’ formation and interactions:
in the formation of prostaglandins (PG) and leukotrienes (LT) from omega-6 or omega-3 fatty acids,
cyclooxygenases (COX-1, COX-2) respond more intensely for intermediates of omega-6 origin in the
case of PG (PGD2, PGE2). Furthermore, not only enzymes but also receptors show different affinities,
again being favored by PGs and some LTs of the omega-6 series [44]. Thus, in an environment in
which omega-6 is biochemically favored, sufficient intake of omega-3 can have a key effect on the
PUFA metabolism dynamics, as well as on the intensity of the action of the different eicosanoids.
The involvement of PUFAs in cancer is demonstrated here by a few representative examples: regarding
omega-6, AA modulates the activation of the nuclear factor kappa-light-chain-enhancer of activated
B cells (NF-κB), involved in the immune response and altered in this disease. It also induces focal
adhesion kinases, which promote progression and metastasis [46]. The signaling activity of AA is
exerted through its transformation to PGE2, and, indeed, the overexpression of COX-2 protein was
highlighted in several types of cancer, whereas human breast cancers frequently have high PGE2 levels,
and breast tumors with high COX-2 protein levels are more likely to metastasize [47]. This led to
consideration of COX inhibitors for cancer therapies, evaluating also their effects on angiogenesis.
In this scenario, the PG interaction with EP receptors (E-series prostaglandin receptors), a family of
G-protein coupled receptors designated as EP1–3 and EP4, was individuated, with the corresponding
activation or deactivation of the c-AMP cascade or the extracellular signal-regulated kinase (ERK) 1 and
ERK2 by way of PI3K [48]. As a matter of fact, not all the omega-6 FAs are equal in the tumor effects,
and some studies suggest that, unlike the downstream omega-6 AA, the upstream omega-6s, such as
linoleic acid (LA), γ-linolenic acid (GLA) and di-homo gamma-linolenic acid (DGLA), may possess
anticancer effects. In fact, GLA and DGLA may exert anticancer properties via the production of
PGE1. Although more work is needed to clarify the molecular basis of the anticancer effects of GLA
and DGLA, it has been demonstrated that they are able to regulate gene and protein expression,
disrupting cell-cycle progression and inducing apoptosis, a mechanism which implies also a direct
effect on the lipid composition in cell membranes [48]. Regarding omega-3 PUFAs, they have the
opposite effect to that mentioned for AA. For example, the combination of EPA and DHA decreases
the production of eicosanoids formed from AA, leading to the inactivation of NF-κB and hindering
proliferation [46]. They are also able to inhibit the activity of AKT protein, which is involved in
cell survival and the inhibition of apoptotic processes [49]. Furthermore, PUFAs are involved in
different processes such as lipid peroxidation, cell oxidative stress [50,51] and regulation of gene
expression for controlling growth factor mediated carcinogenesis [52]. Moreover, there are other
mechanisms involving lipid-based events that affect human health. The interest in ethanolamides has
increased, as they are biological compounds that may have important beneficial actions by controlling
inflammatory responses without being classical steroidal and non-steroidal anti-inflammatory drugs,
that act by inhibiting the cascade of arachidonic acid. Palmitoyl ethanolamide (PEA) is an endogenous
lipid mediator that can be found in foods (tomato, soybean, peanut) formed by palmitic acid and
ethanolamide, with anti-inflammatory, neuroprotective and analgesic activities [53]. The suggested
mechanisms of action involve various metabolic pathways in which some receptors seem to be activated
directly (peroxisome proliferator activated receptor alpha (PPAR-α) and orphan G-protein coupled
receptor 55 (GPR55)) or indirectly (cannabinoid receptors, CB1 and CB2) and transient receptor potential
vanilloid type-1 channel (capsaicin receptor or TRPV1)) [53,54] to modulate mast cell activation and
degranulation [53]. In colitis-associated cancer, more specifically, PEA inhibits angiogenesis through
PPAR-α, suggesting a protective effect in both inflammation and cancer, being able to reduce mucosal
damage, disease progression and carcinogenesis [55]. To conclude with the PUFA scenario, a brief
mention of PUFA peroxidation products and the oxidative-based pathways to induce apoptosis in
cancer, including ferroptosis, is made here, directing readers to reported works in these fields [56,57].
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3. The Membrane Fatty Acid-Based Profile in Cancer and the Relevance of Erythrocytes

Considering the importance of fatty acids in membranes, a “bottom-up” approach can reveal
the main changes in fatty acid profile between healthy controls and cancer patients. A systematic
study of membrane fatty acid-based profiles in large populations is lacking, as is the agreement
regarding the biological compartment in which fatty acids are measured. Therefore, there is large
heterogeneity of data that does not currently allow us to draw conclusions about the most significant
changes occurring in fatty acids in the human body. However, it is important to remark that, from
the emerging scenario of fatty acids’ involvement in cancer metabolism, it is reasonable to focus the
efforts towards the cell membrane compartment. In this respect, the significance of the erythrocyte
cell membrane and its fatty acid composition is highlighted for several reasons: (a) the numerosity
of erythrocytes and the predominance among other tissues of these cells, which constitute 70–80%
of the total cells formed each day [58], rendering them the best representatives of the availability of
fatty acids to construct membrane phospholipids; (b) the continuous exchange of the erythrocyte
membrane phospholipids with lipoproteins and tissues in order to reshape the molecular content
and satisfy homeostatic requirements [59,60]; (c) the biological mission to reach tissues and organs
during the erythrocyte’s average life span of four months in humans, which requires the best
performance of membrane properties in order to efficiently exchange gases; (d) the presence of the
most representative SFA, MUFA and PUFA molecules and the preferred storage of arachidonic acid,
known to be present in membrane phospholipids by 13–17%, as well as of other precious PUFAs [6].
Based on these considerations, the fatty acid profile can give information on the balance of these
molecular components in erythrocyte phospholipids and help to establish the changes occurring under
healthy and unhealthy conditions. Indeed, the fatty acid-based membrane lipidome monitoring used
in different human conditions revealed how the endogenously and exogenously-derived fatty acids
of erythrocytes are affected [61–64]. In Table 2, the relevant data relating to erythrocyte fatty acid
monitoring from studies on cancer patients are gathered, highlighting the cancer types, the country
and the number of patients and detailing the most important conclusions of each study. It is interesting
to note that the SFA-MUFA transformation emerges as an important biomarker of cancer status, as well
as the ratio between omega-6 and omega-3 PUFAs.
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From these results, it is also clear that a large multicentric population study would definitely yield
important results regarding the adoption of the fatty acid membrane profile for the follow-up of patients
and therapies, assessing the importance of fatty acid biomarkers in primary and secondary prevention
and discovering the molecular and clinical effects of personalized diets for cancer. We believe that
the work in progress to map genetic alterations that control cell-cycle progression, apoptosis and cell
growth in cancer [77] can be combined with molecular indicators such as membrane lipidomics in each
tumor type to obtain more insights into the lipid pathways in cancer and clarify the epigenetic role
of nutrition.

4. The Study of the Cancer Lipidome and the Discovery of De Novo Pathways: Fatty Acid
Positional Isomers as New Biomarkers of Metabolic Shift

Lipidomics in cancer helps to clarify the connections between disease and lipidome, discovering
novel lipid biomarkers for diagnosis as well as alternative and synergic strategies for therapy [78].
As mentioned before, the intake of essential fatty acids (EFA) with the omega-6/omega-3 PUFA balance
is of crucial importance since membranes cannot be formed without this supply. The essentiality of
PUFA derives from the fact that the insertion of a second double bond in the MUFA structure cannot
occur in eukaryotic cells, which means that cells do not have desaturase enzymes able to convert oleic
acid (as well as palmitoleic and vaccenic acids) into PUFA in the biosynthesis (see Figures 1 and 3).
Since neither healthy nor cancerous cells can be formed without PUFA, it can be asked whether the
dependence on dietary PUFA is a common feature and a limiting step of both types of cell metabolism.
The answer to this question is not as straightforward as it seems, and in fact only recently have
investigations been directed toward the study of the influence of metabolism and diet on the human
lipidome. In lipidome analysis, it was also discovered that chemical skills are very important to create
unambiguous protocols and distinguish fatty acid structures, especially those presenting unsaturations.
A seminal example is provided by the report demonstrating for the first time of the presence of sapienic
acid in various fractions of human plasma. This is a positional isomer of palmitoleic acid, which has
the double bond in C6-C7 instead of C9-C10 [79]. The analytical approach for the unambiguous
characterization and discrimination of positional and geometrical fatty acid isomers having the 16:1
structure is crucial for the determination of the sapienic acid presence. We described in detail the
protocol of fatty acid analysis, which includes a crucial derivatization step to localize the double bond
position, using the well-known dimethyl disulfide (DMDS) adducts and its diagnostic fragmentation in
mass spectrometry [6,10,63,79]. It must be added that such derivatization procedure and mass spectra
can be performed by regular equipment in chemical labs, and do not require specialized and expensive
instrumentation. The quantitation of this fatty acid was performed in cholesteryl esters isolated from
human plasma of healthy people (n = 5) (50.0 ± 4.0 ng/mL) and in commercially available human low
density lipoprotein (LDL) samples (35.0± 2.0 ng/mL). How these levels are affected by health conditions
in large cohorts remains to be thoroughly explored. These findings prompted us to understand in
more detail the biosynthetic origin of sapienic acid. It is reported that, compared to all other types
of cells that primarily form oleic acid (Figure 2A), sebocytes change their palmitic acid metabolism
by the intervention of delta-6 (Δ6) desaturase enzyme (Figure 4) [80]. However, the systemic role of
sapienic acid was not explored, and it was not highlighted the crucial step, that is the partition of
palmitic acid between SCD-1 and delta-6 desaturase enzymes (see Figure 3). Whether this partition
indicates a metabolic diversion with health significance is under current investigation. As a matter of
fact, palmitic acid is an unusual substrate for delta-6 desaturase, which is an enzyme mostly involved
with exogenous omega-6 and omega-3 EFA; therefore, the activation of sapienic acid biosynthesis
could be attributed to several reasons, including (a) strong availability of the SFA substrate due to
FAS activation, the latter well known in cancer [12,26,81]; (b) enzymatic activity competition or lack of
normal intake/ presence of PUFA substrates [80,82]; (c) involvement of enzymatic polymorphism and
competitive activity of desaturase for PUFA and SFA metabolisms [83]. Aiming at exploring sapienic
acid and the other positional MUFA isomers in cell metabolism, we used the human colon carcinoma
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cell line Caco-2 to compare the results of supplementation of sapienic and palmitoleic acids (150 and
300 μM), discovering that both are rapidly incorporated into membrane phospholipids and also that
the former is converted to 8cis-C18:1 and 5cis, 8cis-18:2, as depicted in Figure 4, bringing also these
two fatty acids in the cell membrane phospholipid composition. The n-10 fatty acid family has a still
unexplored meaning for cancer cells and we were the first to demonstrate in a cancer cell line that it
involves a unique type of endogenous PUFA biosynthesis (i.e., sebaleic acid; Figure 4) leading, more
importantly, to its incorporation into membranes.

Figure 4. The metabolism of palmitic acid to sapienic acid (6cis-16:1) and its subsequent transformation
to obtain the PUFA, sebaleic acid (5cis, 8cis-18:2).

The concomitant isolation of cholesteryl esters and triglycerides from the cell line demonstrated
that the n-10 fatty acids “invade” all lipid classes, and, even at high concentrations (300 μM) and at
long time exposures, they are not harmful (sapienic acid EC50 232–265 μM for 96 h) [29]. In the same
study, the biophysical properties of the cell membranes were monitored by two-photon fluorescent
microscopy, using Laurdan as a dye, showing that the supplementation of sapienic acid, with respect
to its positional isomer palmitoleic acid, increased fluidity in several regions, evidently correlated
with the formation and distribution of n-10 MUFA and PUFA in lipid domains. Following the interest
in extracellular vesicles EVs (exosomes) as relevant sites for cancer metabolism and diagnostics [84],
we investigated the presence of the n-10 fatty acid family, comparing membrane phospholipids and
EVs of prostate cancer cell lines with different degrees of aggressiveness: PC3 (prostate cancer) and
LNCaP (prostate derived from metastatic site: left supraclavicular lymph node), the former being more
aggressive [10]. We found that 12–13% of the membrane fatty acids of these cell lines were composed
of n-10 fatty acids, with the sapienic acid content >7%. In EVs, n-10 fatty acids were 9% for PC3 EVs
and 13% for LNCaP EVs, with statistically significant increases in 8cis-18:1 and 5cis, 8cis-18:2, which is
relevant considering that the EV are involved also in the transport of biologically active lipids and lipid
metabolites to feed cancer tissues. This discovery can have a strong impact also in cancer diagnostics
and follow-up of intervention efficacy. We envisaged that the sapienic/pamitoleic ratio, found equal to
3.5 in prostate cancer cells, also provides a measure of the partition into two metabolic pathways, and,
in these cell lines, the delta-6 desaturase transformation of palmitic acid was found to be unusually
high. A parallel evaluation of gene expression for desaturase (FADS) and elongase (ELOVL) enzymes
by qRT-PCR (quantitative real time polymerase chain reaction) evidenced significant increases in FADS
expression in PC3 with respect to LNCaP cells, and the higher expression of ELOVL5 in PC3 compared
to LNCaP cells with ELOVL6 significantly lower. We found interesting evidence of higher desaturase
activity in the most aggressive PC3 cell line, and suggested deepening the study of FADS3 desaturase,
which, so far, has an uncertain metabolic role [85]. Indeed, the role of desaturase enzymes represents
an important aspect in cancer metabolism and is also considered as a target in anticancer therapy,
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as reported in reviews [86] showing these strategies applied in preclinical trials. Regarding elongases,
most of them are tumor specific: for example, ELOVL1, ELOVL5, ELOVL6 and ELOVL2 are highly
expressed in breast cancer [87,88] and ELOVL7 in prostate cancer [89]. In the new scenario of the
n-10 fatty acid family, a recent work confirmed the presence of sapienic acid in different cancer cell
lines, defining it as a contributor to cancer plasticity [30], and another paper reported an increase in
the transformation of palmitic acid to sapienic acid induced by the increase in mammalian target of
rapamycin (mTOR) and sterol regulatory element-binding protein 1 (SREBP-1) signaling in mouse
embryonic fibroblasts (MEFs) and U87 glioblastoma cells [90]. In this report, the inhibition of the two
signaling pathways led to a decrease in sapienic acid biosynthesis. On the other hand, it must be
recalled that fatty acids’ enzymatic activities can be influenced by dietary fats, as previously shown for
the competition between palmitic acid and PUFA omega-6 and omega-3 precursors [91].

New pathways involving SFA and MUFA are going to be discovered, provided that analytical
protocols are able to give satisfactory results, such as was recently shown by the transformation of oleic
acid in MCF7 cell lines into an eicosanoic fatty acid (7cis, 11cis-20:2) obtained by the unusual activity of
FADS1 desaturase introducing a double bond at the level of C7 and not C5 [92]. Considering all the
published work on the subject, so far only our experiments with cancer cell lines demonstrated the
new pathway that brings about endogenous PUFA synthesis (sebaleic acid) and determined the n-10
FA insertion at the level of membrane phospholipids. We believe that this outcome of the sapienate
metabolism is the real contribution to cancer plasticity, strongly influencing fluidity changes that are
deeply embedded in cancer signaling and metabolism. We envisage that the pathway of sapienic
acid will have a strong development in metabolic, therapeutic and nutritional research; here, we have
provided a careful literature summary of the various contributions available so far, that we hope will
be useful to researchers interested in the field.

5. Link between Obesity and Cancer: When the Lipid Supply Becomes Dangerous

Despite the difficulty of definitively proving that obesity is one of the causes of cancer, it
remains a recognized risk factor contributing to the development and progression of tumors [93].
Several observational studies evidenced that obese and overweight subjects have a higher risk of
developing cancer than lean subjects; in 2016, the International Agency for Research on Cancer (IARC)
declared that obesity was associated with an increased risk for 13 types of cancer, indicated in Table 3
with their corresponding epidemiological studies [94,95].

Table 3. Increased risk for 13 cancer types correlated to overweight/obesity (% increased risk OW/OB
vs. lean) and their corresponding epidemiological studies.

Cancer Type Increased Risk (OW/OB vs. Lean) References

Endometrial 150–200% [96,97]

Esophageal 200–400% [98,99]

Gastric cardia 168–188% [100,101]

Liver 17–89% [102–104]

Kidney 200% [105–107]

Multiple myeloma 10–20% [108–110]

Meningioma 10–20% [111,112]

Pancreatic 50–60% [113,114]

Colorectal 30–60% [115–117]

Gallbladder 20–60% [118,119]

Breast 20–40% [120–123]

Ovarian 10–30% [97,124]

Thyroid 10–30% [125–127]
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The clarification of the mechanisms binding obesity to cancer is crucial for the diagnosis and
implementation of effective therapies. Here, we have gathered the main molecular pathways connecting
adipose tissue (AT) and adipocytes with cancer cells in the tumor microenvironment, as well as their
impact on cancer growth, invasion and metastasis. We summarize relevant connections between
adipose and cancer tissues in Figure 5.

 

Figure 5. Relevant metabolic connections between adipose and cancer tissues; the arrow ↑ means
increase, the arrow↓means decrease.

The close localization between adipose tissue and cancer cells, immoderately increased in
obese subjects due to the effect of excess of calories not consumed, induces a deep modification
of the phenotype and functioning of adipocytes, which become cancer-associated adipocytes (CAA),
promoted for the induction of lipolysis by cancer cells. Adipocytes are decreased in number and
size, showing delipidization and de-differentiation to fibroblast-like phenotype [128–131]. It is well
known that the exposure of adipocytes to cancer cells for long periods, with consequent fibroblast
morphology, induces the formation of cancer cell fibroblast populations that are involved in tumor
invasiveness [132]. In this context, the transformation of adipocytes provides a total alteration of
their secretory function involved in endocrine, metabolic and immune systems. The ways in which
the specific fatty acid status of adipocytes is involved in the support of cancer cells growth and
metastasis are not yet well defined. The identification of several fatty acid unbalances in the erythrocyte
membranes of obese patients certainly highlights derangements of lipid metabolism, including the
above mentioned sapienic acid pathway [63]. Increased release of free fatty acids accompanies altered
levels of adipokines and pro-inflammatory cytokines, growth factors and hormones [133]. The signaling
in several types of cancer cells is sustained by adipokines secreted by adipocytes, mainly including
leptin, adiponectin, oestrogens, insulin-like growth factor 1 (IGF-1) and hepatocyte growth factor
(HGF). In particular, the leptin/adiponectin ratio can be an interesting value to examine, due to the
opposite effects of these hormones. Leptin stimulates a cascade of signaling events inducing JAK2/STATs,
MAPK/ERK 1/2, PI3K/AKT and PKC, JNK, p38 MAPK and AMPK pathways in diverse cellular types (see
abbreviations) [134]. The mechanism implicates the interaction with transmembrane leptin receptor (LRb)
that, if phosphorylated, mediates downstream LRb signaling controlling STAT3 (signal transducer and
activator of transcription 3) and ERK activation [135,136]. Simultaneously, high levels of leptin induce
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the stimulation of monocytes into macrophages, leading to chronic, obesity-associated inflammation.
Leptin increases the expression of anti-apoptotic proteins, inflammatory markers (tumor necrosis
factor, TNF-α, interleukin IL-6) and angiogenic factors (vascular endothelial growth factor, VEGF),
all processes involved in cancer cell survival, proliferation and migration [137,138]. On the other hand,
adiponectin is inversely correlated to the body mass and cancer, inducing apoptosis and decreasing
tumor vascularization. It modulates multiple signaling pathways, exerting its physiological and
protective functions through the receptors AdipoR1 and AdipoR2 [139–141]. It is also able to block
angiogenesis, inhibiting endothelial cell proliferation induced by FGF2 (fibroblast growth factor 2) as
well as the migration of endothelial cells by VEGF. Furthermore, adiponectin inhibits cancer growth
and proliferation, interfering with several pathways like AMPK, MAPK and PI3K/AKT, ERK1/2-MAPK
pathway and GSK3/catenin, inducing G0/G1 cell-cycle arrest [142–145]. Adiponectin-induced cell death
is also accompanied by an increase in intracellular reactive oxygen species (ROS). As a matter of fact,
adiponectin pre-treatment suppresses leptin-induced ERK and AKT signaling [146]. Here, we only
mention the roles of insulin and glucose levels and their interactions with specific receptors, such as
insulin-like growth factor 1 (IGF-1) and hepatocyte growth factor (HGF), that correlate with increased
risks of specific cancers, like ovarian and breast cancers, mainly through activation of PI3K/AKT and
MAPK pathways [147], while the inhibition of IGF-IR kinase activity prevents the growth-promoting
effect of adipocytes on breast cancer cells [148]. Additional factors are connected with the altered
environment of adipose tissue and cancer for the increase in inflammatory conditions, with consequent
liberation of pro-inflammatory mediators, among them TNF-α and IL-6, contributing to the growth and
differentiation in tumors like lymphoma, pancreatic and liver cancers. TNF-α induces carcinogenesis,
activating the nuclear transcription factor NF-κB that prevents apoptosis, allowing enhanced cell
survival, growth and proliferation [134,149]. IL-6 is normally elevated in obesity, induces JAK-STAT3
signal transduction and, stimulates cell proliferation, differentiation and metastasis. It mediates cell
proliferation through the MAPK pathway; in fact, in some studies, the inhibition of MAPK stopped
proliferation in the presence of IL-6, evidencing the role of cytokines in cell proliferation connected
with inflammation [150]. Inflammation signaling, as discussed in Section 3, is an important piece of
information to acquire in order to estimate factors that trigger cancer and its progression. The need for
an integrated metabolic scenario emerges, linking the balance of membrane fatty acid precursors of
eicosanoids and other lipid mediators with the effects of fat accumulation and hormonal control.

The effect of transformation of adipocytes in CAAs is evidenced also by increased release of free fatty
acids (FFA), with the immediate effect of generating energy to fuel tumor growth [151]. The mobilization
of FFA from adipocytes is performed in three steps by lipase enzymes: ATGL (adipose triglycerides
lipase), HSL (hormone sensitive lipase) and MAGL (mono acylglycerol lipase), enhancing their
circulating levels [93]. Seminal experiments of co-culture of adipocytes with cancer cells showed that
there is stimulation of lipolysis in adipocytes releasing FFA and glycerol, with a reduction in adipocyte
size [152]. The amount of FFA promoted cancer progression, delivering building blocks for cancer cells
but also stimulating lipid metabolism; in ovarian cancer cells, co-cultures with adipocytes induced
upregulation of fatty acid β-oxidation (FAO), with a consequent large quantity of ATP [133,139,153,154],
supporting the energy demand of the tumor mass. The transfer process of FFA between adipocytes
and cancer cells is mediated by fatty acid-binding protein 4 (FABP4), which supplies energy to the cells
and also active oncogenic pathways like IL-6/STAT3/ALDH1, leading to an enhanced stem cell-like
phenotype and tumor progression [133]; FABP4 expression increased in cancer cells co-cultivated with
adipocytes [155]. The interesting connections of disease development with the fatty acid structures
and functions discussed in the previous sections should appear clear at this point, and this review
has the scope of stimulating a constructive debate among scientists involved in cancer cell biology,
metabolomics and lipidomics in order to use the substantial information available to develop lipid-based
diagnostics and strategies for cancer.

The recent results obtained with EVs in cancer offer promising perspectives on mechanistic and
diagnostic developments [156]. The transport of lipids by EV from AT can be an important player in
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the whole scenario. In a case study of melanoma, the biomolecular transfer process of EVs seems to
increase in the presence of obesity. Incubation of melanoma cells with EVs deriving from AT caused
the redistribution of lipid droplets close to mitochondria and the increase of fatty acid oxidation [157].
Research conducted on overweight subjects showed that exosomes derived from cancer cells were
incorporated by adipocytes, modifying transcriptome and cytokine secretion; the exosomes obtained
from adipocytes strongly helped tumor growth by angiogenesis and enhanced inflammation, recruiting
macrophages, activating kinases and involving the NF-κB signaling pathway [158,159]. Together with
the analysis of the fatty acid types contained in EVs, including sapienic and sebaleic acids, the EVs
have enormous potential for unveiling new aspects of lipid supply to cancer.

Obesity also influences the effects of anticancer therapies, as shown in obese cancer patients
compared with non-obese patients evaluated for the effects of the same drug treatment [160]. Besides the
various aspects involved in these effects, it is important to highlight that the fatty acid constituents of
adipose tissue assume a fundamental role in the modification of pharmacokinetics, conferring drug
resistance [161,162].

In the scenario of lipid metabolism, the role of lipophagy (i.e., autophagic degradation of
lipid droplets, the main lipid storage organelles of eukaryotic cells), discovered in 2009 to have
important consequences on health [163], must be mentioned here, in connection with the ongoing
debate concerning the role of fasting strategies in cancer treatment [164]. The ways in which calorie
restriction/control impacts obesity and cancer treatment will be matter for further research and active
debates from different perspectives [165].

6. Some Considerations of Fatty Acid-Based Membrane Lipidomics and Lipid Therapy

Tumoral cells develop accelerated de novo lipogenesis as well as strong lipid recruitment, also taking
advantage of obesity, to sustain their needs. However, the quality of fatty acids contributes to their
invasiveness, also due to their influence on the biophysical properties of membranes and signaling
cascades. The proposal of the “membrane hypothesis” links the initial steps of death or life of tumoral
cells with the moment of the phospholipid aggregation for membrane formation and the balance
between the saturated and unsaturated fatty acid types present in the individual. This crucial balance
is different from tissue to tissue, since each tissue has its own composition [7], and it is important to
remark that the membrane formation is a completely spontaneous process of phospholipid aggregation,
which in their turn are formed by the availability of fatty acids in the lipid pools. It could be said that,
with respect to the adequate intake (AI) of lipids established by the main international agencies of health
and food [166], the lipid pool should be able to reach a satisfactory balance, with scarce possibilities for
impairment or excess. We are aware of the strong ongoing debate about the interplay between genetics
and other causes of cancer [167–170]; however, we wish to highlight the importance of the environment
(including nutrition), able to interfere with fatty acid levels and metabolic transformations, with strong
impact on inflammatory responses and stress conditions, including on hormonal effects such as
explained in obesity (Section 5), that can change the “normal” scenario and create unbalances. In our
opinion, it is timely to introduce the monitoring of SFA, MUFA and PUFA membrane levels in clinical
practice, in view of evaluating strategies that influence the formation of membranes in the individual.
Fatty acid-based membrane lipidomics can give the necessary information to estimate the correctness
of the molecular pool, which is the conditio sine qua non for the healthy behavior of this important
compartment [61]. It is worth recalling that the erythrocyte membrane compositions of patients under
parenteral nutrition reflected the lipid emulsions given to them. In particular, olive oil emulsion was
able to induce statistically significantly higher levels of arachidonic acid and omega-6/omega-3 ratio
compared to patients treated with a lipid emulsion containing a small percentage of fish oil [64]. This is
an important message for those involved in patient care and nutrition and also for considering the
exact dosage of fatty acid supplementations for therapeutic purposes. As a matter of fact, membrane
homeostasis and related therapies are nowadays emerging, targeting cell membranes by dietary
bioactive molecules able to obtain the remodeling of plasma membrane domains. The attenuation
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of oncogenic protein activity by modulating the membrane organization of essential proteins and
lipids was proven and this is a promising way to use such an approach to manage cancer expansion.
It is worth underlining that omega-3 has a very potent influence on membrane organization and
this ability, combined with the anti-inflammatory activity, should be developed toward successful
cancer treatments [171,172]. However, it is also evident that, without assessing the membrane status in
the individual, the assignment of the lipid strategy cannot be precise, in types and doses, thus even
bringing about contrasting clinical outcomes since the membrane unbalance results or remains altered.
Therefore, it will be necessary to develop a multidisciplinary approach, involving also clinicians, for
the understanding of membrane molecular profiles and for creating protocols of membrane lipidomics
and lipid therapy, gathering evidence-based results. In this direction, lipid replacement therapy
(LRT) is described as a natural medicine approach to replace damaged lipids in cellular membranes
and organelles; however, no personalization is proposed [173]. In the context of membrane therapy,
we must also mention natural fatty acids with a structure able to interfere with lipid enzymes, such as
sterculic acid, a cyclopropane-containing derivative of oleic acid (9,10-methylene-9-octadecenoic acid)
found in plants of the genus Sterculia. This is an inhibitor of SCD-1, and of the related cascades,
as previously explained, which has attracted interest for application in various diseases, including
cancer [174]. As previously described, lipid enzyme inhibitors (fatty acid synthesis and desaturation)
are attracting interest for innovative cancer treatments, and readers are directed to reviews to deepen
the state-of-the-art of such therapeutic strategies [15,21,174].

Focusing on mature erythrocytes, their membrane composition data can be gathered from cancer
patients, accompanying the biological sample with an accurate food questionnaire. By this approach,
we were able to highlight in a preliminary study of cancer patients that they have SFA-MUFA membrane
levels which are significantly different from controls and independent of dietary intakes [69]. It is also
straightforward that the analytical protocols used for membrane lipidomic analysis must be certified by
international accreditation bodies, and it is advisable that such protocols are unified and automatized
by high-throughput procedures, in order that clinical laboratories can gather reliable “big data” to
depict cancer lipidomics in an incontrovertible manner.

7. Conclusions

The acquisition of a multidisciplinary vision of fatty acids’ relevance to membrane formation
and cancer development is necessary in order to go from the bench to the bedside and to the home
of patients, associating nutrient choice with strategies to defeat cancer. The growing understanding
of the response of cancer to diet will lead to new therapeutic opportunities but, at the same time,
will have practical use in the everyday lives of patients, solving also contrasting effects reported in the
literature for PUFA supplementation [175]. It is desirable to increase efforts for a larger understanding
of molecular nutrition effects in combination with pharmacology and immunology to control this
multifaceted disease [176]. Researchers of several disciplines are required in order to accomplish such
goals. Specific effort is needed by clinical units to introduce fatty acid diagnostics tools and therapies
to prove the validity of the concepts and translate them into medical practice. Indeed, previously
reported clinical effects for some fatty acids, such as the omega-6 γ-linolenic acid (see Figure 2), of its
antitumoral synergy with chemotherapy [177] must take into account its rare presence in foods and
be evaluated in a personalized way, also determining the level of this fatty acid in the individual.
Therefore, knowledge of molecular diagnostics, such as membrane lipidomics, is a fundamental step
toward including endogenous and exogenous fatty acids in the cancer scenario.
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Abbreviations

AKT Protein kinase B
AMPK 5′ adenosine monophosphate-activated protein kinase
AT Adipose tissue
ATGL Adipose triglycerides lipase
ATP Adenosine triphosphate
CAAs Cancer-associated adipocytes
DMDS Dimethyl disulfide
EFA Essential fatty acids
ERK Extracellular signal-regulated kinases
EVs Extracellular vesicles
FABP Fatty acid binding protein
FADS Fatty acid desaturase
FAO Fatty acid oxidase
FFA Free fatty acids
FGF2 Fibroblast growth factor 2
GSK3 Glycogen synthase kinase 3 beta
HGF Hepatocyte growth factor
HSL Hormone sensitive lipase
IGF-1 Insulin growth factor 1
IL-6 Interleukin 6
JAK2 Janus kinases 2
JNK c-Jun N-terminal kinases
LDL Low density lipoproteins
LNCAP Prostate derived from metastatic site
LR Leptin receptor
MAGL Mono acylglycerol lipase
MAPK Mitogen-activated protein kinases
MEFs Mouse embryonic fibroblasts
PC3 Prostate cancer
PI3K Phosphoinositide 3-kinases
PKC Protein kinase C
PPAR Peroxisome proliferator activated receptor
SREBP-1 Sterol regulatory element- binding protein 1
STAT Signal transducer and activator of transcription protein
STAT3 Signal transducer and activator of transcription 3
TNF-α Tumor necrosis factor alpha
VEGF Vascular endothelial growth factor
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Abstract: While immunotherapies for diverse types of cancer are effective in many cases, relapse is
still a lingering problem. Like tumor cells, activated immune cells have an anabolic metabolic profile,
relying on glycolysis and the increased uptake and synthesis of fatty acids. In contrast, immature
antigen-presenting cells, as well as anergic and exhausted T-cells have a catabolic metabolic profile
that uses oxidative phosphorylation to provide energy for cellular processes. One goal for enhancing
current immunotherapies is to identify metabolic pathways supporting the immune response to
tumor antigens. A robust cell expansion and an active modulation via immune checkpoints and
cytokine release are required for effective immunity. Lipids, as one of the main components of the cell
membrane, are the key regulators of cell signaling and proliferation. Therefore, lipid metabolism
reprogramming may impact proliferation and generate dysfunctional immune cells promoting tumor
growth. Based on lipid-driven signatures, the discrimination between responsiveness and tolerance
to tumor cells will support the development of accurate biomarkers and the identification of potential
therapeutic targets. These findings may improve existing immunotherapies and ultimately prevent
immune escape in patients for whom existing treatments have failed.

Keywords: immunotherapy; cancer; lipids; biomarkers; metabolism

1. Introduction

Following the discovery of the structure of DNA in 1953 [1], increasingly efficient technologies for
the study of the whole genome (genomics) have enabled assessments of genome-based pathologies in
large population cohorts [2]. However, since a broad number of factors, including environment, diet or
lifestyle, are important in the etiology of diverse diseases such as cancer, a high-dimensional biological
approach appears to be required [3]. A multi-omics/systems-level approach, which encompasses the
combined analysis of data from genomics, RNA transcription (transcriptomics), proteins/peptides
(proteomics) and metabolites (metabolomics), enables one to overlay gene information onto a
complementary understanding of accrued molecular mechanisms [4]. Lipidomics represents an
emerging discipline from metabolomics that connects lipid biology, technology and medicine, and that
strives to build an all-inclusive atlas of the cellular/tissue lipidome [5]. In this regard, the role played
by lipids in the etiology and treatment of cancer has loomed large over the last decades.

Early evidence that cancer cells undergo characteristic metabolic alterations was documented
by Otto Warburg in the first half of the twentieth century. In a paradoxical process in terms of
adenosine triphosphate (ATP) production, cancer cells increase the consumption of glucose to support
aberrant cellular proliferation. Because proliferating tumor cells require cholesterol and other lipids,
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perturbations in the lipid metabolism are emerging as potential targets for therapeutic intervention in
cancer [6,7]. Cancer immunotherapy has proven to have an unprecedented positive impact in clinical
oncology. Increased evidence suggests that glycolytic metabolism not only rules cancer signaling but
also the antitumor immune response where activated inflammatory immune cells display the same
metabolic profile as tumor cells [8] (Figure 1). Multiple studies have separately reported the impact of
lipids on immune cells and tumor progression. However, so far, little work has focused on reviewing
how the lipid metabolism is associated with the immune response to tumors. Taking this shortfall into
account, we aim to highlight the role of lipid mediators in the context of immune activation in order to
explore potential biomarkers and therapeutic targets for cancer.

 

Figure 1. A metabolic shift is required by immune cells for them to respond actively to tumor cells.
Inactive immune cells rely on oxidative phosphorylation (OxPhos) and fatty acid (FA) oxidation (left),
while activated and responsive cells increase glucose uptake/glycolysis, resulting in an increased FA
synthesis and lactate production (central panel). Lipogenesis, required for a robust cell proliferation,
also characterizes tumor cell metabolism (right). Therefore, an untargeted lipid-based treatment to fuel
effector immune cells may produce self-defeating effects inducing tumor cell growth. Many other lipid
intermediates regulate inflammation, and exogenous lipids such as gut microbiota-derived short chain
fatty acids (SCFAs) may impact the host immune response to tumor cells. Together, these findings
indicate (1) the exhaustive regulation required to maintain immunity balance in the presence of tumor
cells, and (2) the essential role of a large variety of lipids in this control. New precise lipidomic-based
strategies may enhance therapeutic targeting and improve the capacity of existing immunotherapies to
control tumor progression.

2. Lipid Metabolism Impacts Immune Activation against Tumor Progression

2.1. Lipid Interplay with Immune Regulation

Tumors impact immune cell function by supporting cancer stem cell survival, metastasis and
immune evasion. The aggressiveness of tumor cells is linked to their capacity to store high levels
of lipids and, in particular, cholesterol [6]. Metabolic challenges in the tumor microenvironment
(TME), including hypoglycemia and hypoxia, induce changes in tumor cellular metabolism like aerobic
glycolysis and fatty acid oxidation (FAO) [9]. In response, immune cells show the capacity to modulate
lipid metabolism to better adapt to these special metabolic conditions.

The innate immune system is the first barrier against external stimuli, which are recognized via
Toll-like receptors (TLR). TLR-dependent response, which regulates the activation of antigen-presenting

202



Metabolites 2020, 10, 332

cells (APC) (mainly macrophages or dendritic cells (DCs)), shifts the intracellular metabolism towards
the glycolysis-fueled synthesis of fatty acid (FA) [10,11]. After the initial broad immune response,
an adaptive immune response is initiated when APCs process and present antigens for recognition
by certain lymphocytes such as T cells. Both phases of the immune response are characterized by a
fragile equilibrium, whereas the heterogeneous groups of immune cells communicate and modulate
each other via cytokine release. In this sense, cytokine production in activated DCs has been related
to phospholipid remodeling to support FA demands [12]. Immune effector cells, such as T cells
and macrophages, are induced by tumor-specific antigens and tumor-associated antigens. However,
regulatory mechanisms of the immune system, such as immune checkpoints, make this cellular
response incapable of preventing tumor progression. Immune check points are inhibitory regulators
crucial for maintaining self-tolerance and controlling the duration of the immune response in order
to prevent collateral tissue damage [13]. Since these key immune-regulatory molecules are used by
tumor cells to promote evasion, immune checkpoint inhibitors have demonstrated their effectiveness
as clinical targets for cancer immunotherapy [14]. This breakthrough is based on currently approved
blocking monoclonal antibodies that inhibit cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and
the programmed cell death protein PD-1/PD-L1 axis [15].

Endogenous lipid reserves provide energy to T cells but may also regulate T cell function by an
immune checkpoint such as PD-1 [16]. PD-1 is a member of the cluster of differentiation 28 proteins
(CD28) superfamily that delivers negative signals upon interaction with its two ligands, the PD-L1
and PD-L2 proteins. PD-1 activation impairs glucose and glutamine uptake whilst promoting FAO
and catabolism of endogenous esterified fatty acids in both cytotoxic (CD8+) and helper (CD4+) T
cells [16,17]. Another lipid pathway that targets PD-1 is regulated by the members of the peroxisome
proliferator-activated receptors (PPAR) subfamily. This subfamily of nuclear receptors might be
modulated by fatty acid signals derived from exogenous sources, including diet [18]. PPAR is crucial
in supporting the accumulation and function of immunosuppressive regulatory T cells (Tregs) [19].
In concordance, it has been reported that PPAR-γ inhibition increases the efficiency of anti-PD-1
antibody immunotherapy, leading to the suppression of tumor progression in colon adenocarcinoma
and melanoma models [20,21]; likewise, an agonist for another isomer, PPARα, is able to restore the
anti-melanoma effects of tumor-infiltrating lymphocytes (TILs) by blocking the reprogramming to fatty
acid catabolism in mice [22].

TILs, largely comprised of CD8+ and CD4+ T cells, as well as natural killer (NK) cells, are key
players in tumor cell death. This particular function of both cell subtypes has been shown to be
dependent on the profile of polyunsaturated fatty acids (PUFAs) in the cell membrane [23]. However,
current work on how PUFA supplementation may affect TIL function in humans is often contradictory.
Whereas it has been reported that the percentage of NK cells in mouse blood is reduced after dietary
supplementation of docosahexaenoic acid (DHA, 22:6 n-3) and eicosapentaenoic acid (EPA, 20:5
n-3) [24], a similar previous study using EPA-rich oil in the diet did not find such differences [25].
The discovery of the G-protein-coupled receptors (GPCRs) suggests that many of the effects of dietary
FAs may be receptor-mediated. This family of cell-surface free-fatty acid receptors includes the
long-chain fatty acid receptors FFA1 and FFA4. Anti-inflammatory effects of omega-3 PUFAs, especially
EPA and DHA, have been related directly to the expression of these FFA receptors. Hence, FFA4
knock-out mice have shown a higher proportion of pro-inflammatory macrophages than the wild
type [26]. In addition, agonists of FFA receptors have been connected with the suppression of the
proliferation and migration of a large variety of tumor cells [27,28].

The phenotype and maturation of T cells is also regulated by the fatty acid metabolism.
Differentiation of T cells is dependent on de novo FA synthesis and uptake. In tumor tissue, the
inhibition of de novo fatty acid synthase (FAS) by different targets, such as acetyl-CoA carboxylase
1, promotes Tregs but suppresses memory T cell lineage (Th17) differentiation [29]. The challenge
of maintaining T cell function in a nutrient-depleted environment like the TME is resolved by other
effector T cells. Unlike naïve and central memory T cells, effector memory T cells are less dependent
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on FA metabolism [30]. This feature plays an essential role in establishing immune equilibrium,
since most effector T cells are removed after antigen elimination, whereas memory T cells remain for
rapid response upon antigen re-exposure. The analysis of other molecules such as the mammalian
target of rapamycin (mTOR) extends the list of lipid mediators that contribute to maintaining the
immune balance. mTOR regulates Tregs differentiation, function and survival, ultimately defining the
immunosuppressive profile of the TME [31]. Tregs are a dominant suppressive population that infiltrate
the TME and dampen anti-tumor immune responses by inhibiting the effector T-cell function [32].
The singular metabolism of Tregs, including an increased FAO, provides them with critical advantages
to survive and proliferate under hypoxia or low glucose conditions within the tumor [32,33].

The delivery and cellular distribution of PUFAs are indirectly regulated by desaturases, which
perform the desaturation and elongation of essential fatty acids. However, phospholipases A2 (PLA2)
are the main cellular regulators of PUFA release, maintaining the homeostatic levels of several free
PUFAs, and in particular of those that are precursors of mediators with pro-inflammatory properties,
such as arachidonic acid (AA, 20:4 n-6). In the inflammation process, AA is released by PLA2

activity, and prostaglandin E2 (PGE2) is subsequently generated from arachidonic acid by the enzyme
cyclooxygenase-2 (COX-2) [34,35]. One of the mechanisms that Tregs uses to suppress T cell activity is
PGE2 production, which can be reversed by COX-2 inhibitors [36]. PGE2 is essential in homeostasis,
and while its pro-inflammatory role is crucial for host cell self-preservation, its immunosuppressive
effects may support tumor progression [37]. Besides directly mediating inflammation, PGE2 might be
used as an intermediate not only in the signaling between immune cells but also between immunity
and tumors. Hence, PGE2 released from DCs affects the generation and proliferation of Tregs by
immunosuppressive cytokines like IL-10, whereas PGE2 released from tumor cells is able to regulate
DC maturation [37–39]. This COX2/PGE2 pathway is also involved in the regulation of the immune
checkpoint enzyme expression, like PD-L1, in tumor-infiltrating macrophages and other myeloid
cells [40]. Moreover, a recent study suggests that the combined blockade of PD-1 and PGE2 pathways
is a promising therapeutic strategy for enhancing antitumor activity. This effect is due to an increased
frequency of T cell-recognized tumor antigens, whose dysfunction is regulated by PD-1 [41].

Suppressing tumor immune surveillance may lead to the exhaustion or inactivation of
pro-inflammatory immune cells and may, subsequently, promote tumor growth and metastasis.
Myeloid-derived suppressor cells (MDSC) and immunosuppressive type II (M2) tumor-associated
macrophages (TAMs) are fueled by the ß-oxidation of lipids, rather than glycolysis, within the TME [42].
Recent studies have shown that the phenotype of M2-like TAMs is controlled by intracellular long-chain
fatty acid (LCFA) homeostasis, specifically unsaturated fatty acids like oleate [43]. Additionally,
lipid metabolism provides a mechanistic explanation for TAM polarization and differentiation [44].
The upregulation of lipogenesis by sterol regulatory element-binding protein-1 (SREBP1) promotes the
transcriptional response of macrophages to TLR signaling by driving the synthesis of anti-inflammatory
fatty acids [45]. SREBP1 signaling also impacts tumor cells by sustaining the high energetic demands
required for their growth and survival, and has been shown to be important in melanoma and
prostate cancer progression [46–49]. One of the metabolic effects of SREBP1 is the regulation of the de
novo lipogenesis by the upregulation of, among others, fatty acid synthase (FAS) and stearoyl-CoA
desaturase-1 (SCD-1) [50,51]. Consequently, the upregulation of SREBP1 entails the upregulation of
saturated and monounsaturated fatty acids, both free and in glycerolipids. Regarding macrophages,
stimulation by lipopolysaccharide (LPS), a component of cell wall of gram negative bacteria, upregulates
SREPB1 expression which is required for the inflammatory response [52,53]. In contrast, the activation
of liver X receptors (LXRs), which also upregulate SREPB1, decreases the inflammation level in
macrophages [54]. Because of this opposed effect, it is expected that the level of de novo lipogenesis in
TAMs presents a complex relationship with their activation state. LXRs are regulated by oxysterols
and SREPB1 by sterols in the cell environment. Consequently, not only diet but also the tumor lipid
microenvironment can regulate the metabolic/pro-inflammatory status of TAMs. In addition, external
palmitic acid reprograms the microglia metabolism in a way that mimics LPS treatment [55], whereas
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oleic acid reduces the pro-inflammatory response [56]. Furthermore, sexual hormones in the TME also
play a key role in the lipid metabolism and the inflammatory state of TAMs. The androgen receptor
decreases the LXR and SREBP1 activity, which decreases the de novo lipogenesis and remodels the
lipid metabolism [57,58]. Interestingly, the interaction between prostate cancer cells and macrophages
regulates the resistance to hormonal therapy [59]. This fact suggests an interplay in tumor growth
among: (1) the activation of the androgen receptor, (2) the tumor microenvironment and (3) the
LXR-mediated lipogenesis in both the tumor and TAMs. Altogether, these studies suggest that both
the lipidic and hormonal microenvironment interact to reprogram the metabolic and inflammatory
state of TAMs. This reprogramming is associated with therapy resistance and patient prognosis.

LXRs are major regulators of FA and cholesterol homeostasis. Cholesterol, a nonpolar lipid
transported in plasma by low-density lipoproteins (LDL) and high-density lipoproteins (HDL), has
been linked to the effect of IL-10 in immune regulation. The inhibition of cholesterol biosynthesis
with atorvastatin or 25-hydroxycholesterol regulates IL-10 production by inducing human CD4+ T
cells to switch from an effector to an anti-inflammatory profile [60]. Furthermore, given the role of
lipoproteins as cholesterol carriers, while they promote tumor growth by regulating T cell activation
and functionality [61], recent studies have used them as anti-tumor drug delivery vehicles [62].

The impact of lipids on the immune response to cancer includes post-translational modifications.
Palmitoylation has been found to be important in the context of cancer immunotherapy. This
post-translational process involves the binding of palmitate (C16:0) to amino acid residues. Yao and
colleagues identified palmitoyl transferase ZDHHC3, which contains a conserved Asp-His-His-Cys
(DHHC) signature motif, as the main acyltransferase required for PD-L1 palmitoylation. This lipid
modification stabilizes PD-L1 by blocking ubiquitination, which ultimately prevents lysosomal-driven
degradation. Thus, DHHC3 targeting enhances T cell cytotoxicity against cancer cells in vitro, as well
as the in vivo antitumor effect in a colon carcinoma model [63]. Other studies have related the ablation
of ZDHHC3 in human mammary tumor cell xenografts to a reduced primary and lung metastasis
infiltration. This effect correlates with an enhanced recruitment of macrophages and NK cells to the
tumor, and its subsequent clearance [64].

2.2. Short-Chain Fatty Acids from Gut Microbiota as Effectors of the Immune System

FAs with chain lengths ranging from one to six carbon atoms are produced by trillions of harmless
microorganisms that inhabit the human gastrointestinal tract. These short chain fatty acids (SCFAs)
are the major end product derived from gut microbiota; very high concentrations are found in the
colon [65]. The presence of SCFAs (propionic, butyric, acetic and valeric acids) regulates the intestinal
microenvironment by reducing pH and impacting the microbial function and composition [66]. Besides
various gut disorders, gut microbiota also play an important role in central nervous system disorders,
the immune system and cancer malignancies [67]. Although the role of butyrate in fueling tumor cells
proliferation has been described [68], SCFAs have been generally perceived as tumor suppressors
because they induce cancer cell differentiation and apoptosis [69]. The ability of SCFAs to regulate
effector immune cells is considered one of the essential mechanisms accounting for their anti-tumor
properties [70]. SCFAs engage GPCRs such as FFA2 and FFA3, and act as histone deacetylases (HDACs)
to regulate the activity of innate immune cells such as neutrophils, macrophages and DCs, and they
also modulate antigen-specific adaptive immunity mediated by T cells and B cells [71,72].

SCFAs, particularly butyrate, directly impact the immune response to cancer through the
reprogramming of the cellular metabolism. In activated CD8+ T cells, butyrate increases glycolytic
activity, mitochondrial mass and membrane signaling. Butyrate-stimulated CD8+ T cells also show
functional uncoupling of the TCA cycle from glycolysis, promoting additional sources of carbon such
as glutamine and FAs [73]. An increased FA intake in butyrate-treated CD8+ T cells serves to charge the
TCA cycle, but triacylglycerides and phospholipids are other candidates that serve as suppliers [74,75].
The anti-inflammatory properties of SCFAs are also related to the ability of butyrate and propionate to
abrogate IL-12 release from APCs, a cytokine with a primary role in effector T cell stimulation [76,77].
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In contrast, both SCFAs are also associated with resistance to immune checkpoint CTLA-4 blockade
and a higher proportion of Treg cells. These effects limit the clinical outcome of cancer patients treated
with anti-CTLA-4 blocking monoclonal antibodies [78].

The capacity of butyrate to regulate T cell polarization and immune checkpoint blockade correlates
with the diversity of commensal microbiota. In human bacterial communities, most butyrate-producing
colon bacteria belong to the Firmicutes phylum. The equilibrium between species defines the therapeutic
outcome, and a low Bacteroidetes/Firmicutes ratio has been used to identify lung cancer patients [79].
Moreover, the relative abundance of other specific bacteria, such as Bifidobacterium, increases
anti-PD-L1 efficacy, promoting anti-tumor immunity [80]. Taken together, these findings point toward
an alternative therapeutic strategy by targeting immune cells on a metabolic level. Augmenting the
efficacy of the immune system by targeting the lipid metabolism could be useful for improving the
antitumor immune response. However, as Chalmin et al. postulate, targeting the lipid metabolism may
affect multiple immune populations and could have unpredictable outcomes [81]. Thus, since fatty
acid oxidase is required not only for effector T cell development but also for Treg differentiation [82], its
blockade limits Treg-dependent immunosuppression. Despite these drawbacks, data suggest that the
capacity to define specific lipid reprogramming that correlates with disease stages will help to design
new cancer treatments. The balance between immune activation and suppression is a critical feature
of immunity, and lipids are able to alter this equilibrium. Therefore, targeting the lipid metabolism
may be used to induce immune stimulation, which will ultimately determine the clinical success of
cancer immunotherapy.

3. Lipids as Biomarkers of Immune Response to Cancer

Accurate and predictive biomarkers to diagnose early stages of disease are a critical objective
of clinical and biomedical research. Lipids, among several other metabolites such as amino acids or
sugars, have been described as potential predictors of systemic alterations that discriminate between
healthy controls and patients [83]. Clinical success often hinges on an early diagnosis, especially in
long and age-related malignances like Alzheimer’s disease or cancer [84]. New technologies for the
qualitative and quantitative analyses of metabolites can provide essential information on pathological
conditions that can result in profound alterations in the architecture of the immune system. Identifying
the metabolic profile associated with the immune response to tumor cells has emerged, parallel to
immunotherapy, as a tool for obtaining an early and accurate diagnosis and for designing personalized
treatments, both being essential for better clinical outcomes in cancer patients.

An increased de novo synthesis of fatty acids is required for membrane synthesis and, therefore,
for the growth and proliferation of both immune and tumor cells. This makes fatty acids robust
biomarker candidates. Recent studies have shown that genetic alterations observed in acute myeloid
leukemia (AML) patients control lipid dynamics and metabolism [39,85]. Interestingly, patients with
AML can be identified by specific lipid signatures in plasma [86] and bone marrow [87]. Whereas lipid
biomarkers have been used to identify tumor progression, the relationship between a characteristic lipid
profile and the immune response to cancer is still poorly understood. The major clinical advantages of
immune checkpoint inhibitors have generated considerable interest in discovering biomarkers that
predict the response to treatment [88]. Recent studies propose serum concentrations of very long chain
fatty acids (VLCFA) as a way to identify the response to immune checkpoint inhibitors in urological
cancer [42]. The rationale for this biomarker is motivated by the finding that lower serum VLCFA
levels are associated with highly immunosuppressive TME with a high-VLCFA consumption rate.

As discussed previously, de novo lipogenesis is also associated in a complex manner with the
metabolic/inflammatory state of TAMs. Consequently, the lipids associated with the de novo lipogenesis
act as biomarkers of tumor growth and the activation of TAMs. The LXRs/SREBP1 pathway is the
key player in the regulation of the de novo lipogenesis, and it is involved in tumor growth and in
the inflammatory response [89]. LXRs/SREBP1 upregulation in tumor or inflammatory cells leads
to an increase of saturated and monounsaturated fatty acids via the activation of FAS and SCD-1,
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which are incorporated into glycerolipids by acyltransferases. Consequently, the upregulation of
glycerolipids with saturated and monounsaturated fatty acids acts as a biomarker for the tumor synthesis
of membranes and the activation of macrophages [90,91]. In addition, LXRs/SREBP1 upregulate
glycerol-3-phosphate acyltransferase 1 (GPAT-1), which has a strong preference for transferring
palmitic acid to the sn-1 position of glycerol-3-phosphate. This leads to an enrichment of glycerolipids
with palmitic acid in the sn-1 position of the glycerol backbone. Consequently, the triacylglycerides
with palmitic acid in the external position of the glycerol act as a biomarker of LXRs/SREBP1 activation
and the de novo lipogenesis [92,93]. In conclusion, these triacylglycerides have the potential to be used
as biomarkers for (1) monitoring the metabolic reprogramming of TAMs in the TME, and (2) the effect
or resistance to immunotherapy by evaluating the up- or downregulation of lipogenesis in the tumor.

Because SCFAs from gut microbiota have a wide-ranging impact on the host physiology, these
metabolites are also increasingly studied as predictive biomarkers. SCFAs and microbiota composition
have been used to determine the risk of cancer, and reduced levels of butyric acid in patients
with colon cancer have been reported [94,95]. The levels of butyrate are also correlated with the
responsiveness to melanoma in mice treated with antibiotics [96]. Recent results have reported a
correlation between the relative abundance of certain SCFA-producing microbiota and the outcome of
PD-1-based immunotherapy in melanoma patients [97]. These data correlate with those from a recent
study that makes the case for the reduced serum content of SCFAs being a biomarker of refractory
non-small cell lung cancer (NSCLC) [67]. According to Boticcelli et al., lower levels of SCFA are found
in the fecal samples of patients with a poor prognosis treated with Nivolumab, a human PD-1-blocking
antibody. Together, these results show that gut microbiota-induced immune effects are dependent on
the specific cancer therapy and that certain blood lipid biomarkers are able to predict this relationship.

When cancer care is delayed, patient treatment is associated with greater clinical complications
and a lower survival rate. In order to have the best chance for a successful treatment and prognosis, an
early and precise diagnosis of cancer progression before and during the treatment is critical. Thus,
identifying biomarkers that can monitor the tumor response in every stage of treatment has huge
clinical implications. Further studies will be needed to correlate the lipid profile with the immune cell
phenotype and immune checkpoint expression within the tumor. These data will help to discriminate
between pro-inflammatory and immunosuppressive TME populations, resulting in more accurate
biomarkers of cancer progression.

4. Active Modulation of Lipid Metabolism to Improve CAR T Cell Therapy

Chimeric antigen receptor—engineered T cell (CAR T) therapy has demonstrated its long-term
clinical benefit for patients with advanced cancers [98]. CART therapy involves genetically modified
patient T cells with chimeric antigen receptors that recognize specific antigens on the tumor cell
surface. The antitumor efficacy of immunotherapy against hematologic cancers has been extended
to other tumors [99–101]. Among diverse potential targets, such as CD19 for B-cell malignancies,
GD2, a disialoganglioside glycolipid, was identified as a tumor antigen more than 30 years ago [102].
GD2 is normally present in developing brains and can be overexpressed in some tumors, with a
greater recurrence in childhood cancer neuroblastoma, melanoma and diverse pediatric sarcomas [103].
However, while GD2-specific antibody therapies used in the treatment of neuroblastoma have been
shown to be successful, the fatal neurotoxicity of GD2-specific CAR T cell therapy that has been observed
in some studies suggests that GD2 may be a difficult target antigen for CAR T cell therapy [104].

Several studies and clinical trials reveal that CAR T cell therapy for leukemia achieved high rates
of complete remission, but therapy-relapsed leukemia remains a significant source of mortality [105].
Because T cell exhaustion elevates the risk of relapse [106], additional research on how to avoid this
detrimental effect is urgently needed. Differentiated effector T cells use glycolysis for proliferation,
and after activation they ultimately succumb [21]. Only a small proportion of long-surviving memory
T cells with OXPHOS-mediated ATP production contributes to a favorable and durable antitumor
response in the TME [107]. Since Notch signaling, a conserved cellular interaction mechanism,
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promotes mitochondrial biogenesis and FA synthesis, recent studies have evaluated the impact of the
manipulation of this metabolic pathway on the success of CAR T cells. According to Kondo et al. [108],
the overexpression of Notch and its downstream gene Forkhead box M1 (FOXM1) results in enhanced
anti-tumor effects as compared with conventional CART cells, suggesting a novel strategy to improve
CART-based therapy [108].

The success of CAR T cell therapy in treating hematological malignancies is limited in solid tumors,
where finding, entering and surviving in the tumor are extra challenges [109]. Other restrictions are
driven by constraints from the on-target off-tumor toxicity of CAR T cells, where the lack of tumor
specificity increases the potential risk for normal tissues to be attacked by CAR T cells [109,110].
In order to avoid these limitations, new strategies have focused on providing an anti-tumor effect with
an absence of side-effects. Besides the enormous ability of PUFAs, such as AA, EPA and DHA, to
regulate the immune responses, as presented above, gamma-linolenic acid (GLA, 18:3 n-6) has shown
a selective effect against tumor cells [111]. According to an open-label clinical study that included
21 patients with stage IV glioma, the intra-tumor injection of GLA enhanced the sensitivity of tumor
cells to chemotherapeutic drugs and radiation, producing tumor regression without harming normal
cells [112]. Additionally, together with AA, EPA and DHA, GLA has been reported to regulate the
antioxidant properties of glutathione peroxidase 4 (GPX4), as well as the levels of cytokines such as
IL-1, IL-6 and tumor necrosis factor alpha (TNF-α) that play essential roles in inflammation [113,114].
These data suggest that the combination of PUFAs as an adjuvant may help immunotherapy block
tumor progression.

Lipid metabolism has a dual impact on CAR T cell therapy. Lipids can systematically fuel
tumor cells and immune cells. However, enhancing the immune response via CAR T cells presents
evident advantages beyond the described obstacles. T cells can be successfully designed and prepared
for the restricted metabolic conditions within the TME [115]. Identifying and reprogramming the
mechanisms involved in the dysfunction of CAR T cells may help support more proliferative and
ultimately successful CART cell-based therapies [109]. Therefore, metabolic targets that include the
lipid metabolism may generate improved CAR T cells, so as to avoid cancer relapses related to T
cell disability.

5. Conclusions

The complexity and variability of tumors still constitute a challenge for physicians and researchers.
Although immunotherapy has attained ambitious milestones and improved prognoses for cancer
patients, the systemic character and self-regulation capacity of immunity should be considered in order
to obtain improvements. A multi-focal anti-tumor strategy, in combination with other treatments,
appears to be required in order to avoid relapses; moreover, it should draw from diverse perspectives:
First, a global intervention, by for instance modulating the gut microbiota, which could have positive
effects on the immune cell activity; second, an early and precise diagnosis so as to achieve better
clinical outcomes; and third, targeted treatments, where genetically engineered patient CAR T cells
have already shown clinical benefits.

Current treatment limitations are related to an immunosuppressive TME, which modifies the
T cell function in terms of differentiation and exhaustion. Combining CAR T cells with checkpoint
inhibitors and the depletion of suppressive factors in the microenvironment via lipid targets may
mitigate this phenomenon. Although new studies will be necessary to characterize specific metabolic
pathways implicated in the immune response to tumor cells, data suggest that lipid reprogramming
will be key to generating a favorable metabolic environment to avoid tumor evasion.

In conclusion, the modulation of the immune system has been extensively demonstrated to be
an effective cancer treatment. However, further investigations should focus on reducing treatment
limitations that ultimately lead to tumor relapse. Several studies are currently focusing on therapy
improvements by facilitating energy influx to T cells, where lipids play an essential role. Targeting
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lipid reprogramming in the immunity setting may generate new tools to create lasting, robust and
personalized therapies against cancer.
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Abstract: Cardiovascular disease (CVD) is the leading cause of death worldwide. There are numerous
factors involved in the development of CVD. Among these, lipids have an important role in
maintaining the myocardial cell structure as well as cardiac function. Fatty acids (FA) are utilized
for energy, but also contribute to the pathogenesis of CVD and heart failure. Advances in mass
spectrometry methods have enabled the comprehensive analysis of a plethora of lipid species from
a single sample comprised of a heterogeneous population of lipid molecules. Determining cardiac
lipid alterations in different models of CVD identifies novel biomarkers as well as reveals molecular
mechanisms that underlie disease development and progression. This information could inform
the development of novel therapeutics in the treatment of CVD. Herein, we provide a review of
recent studies of cardiac lipid profiles in myocardial infarction, obesity, and diabetic and dilated
cardiomyopathy models of CVD by methods of mass spectrometry analysis.

Keywords: cardiovascular disease; heart failure; myocardial infarction; obesity; diabetic
cardiomyopathy; dilated cardiomyopathy; lipids; lipidomics; mass spectrometry

1. Introduction

Cardiovascular disease (CVD) is the leading cause of death worldwide [1]. CVD encompasses
stroke, cardiomyopathy, coronary artery disease (CAD), and other disorders that can lead to myocardial
infarctions and heart failure. The pathophysiological processes in each of these diseases can differ,
but lipids play a significant role in every model of CVD [2]. Lipid molecules are important structural
components of cardiomyocyte plasma and organelle membranes. For example, a specific phospholipid
molecular species composition is necessary for the assembly of the electron transport chain in the
mitochondria [3]. In addition, fats are the primary fuels utilized for cardiac energy production [4–6].
Therefore, lipids have a direct role in cardiovascular function. On the other hand, regarding lipid
excess experienced when diets high in fat are consumed, hyperlipidemia and hypercholesterolemia
can result, which puts patients at risk for developing atherosclerosis and cardiometabolic disease [7,8].

The development of mass spectrometry (MS) technology such as high performance liquid or
gas-chromatography MS (HPLC-MS/GC-MS) separation techniques and ionization methods such as
electrospray ionization MS (ESI-MS), and matrix assisted laser desorption/ionization MS (MALDI-MS)
have enabled the detailed analysis of chemically complex lipids from biological tissues, which contain
heterogeneous pools of lipid species [9]. These MS methods are increasingly utilized to analyze multiple
lipid species from a single sample in a methodology termed lipidomics. This has been an important
advance for identifying potential biomarkers of disease. A number of studies have analyzed the
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changes in serum lipid profiles of patients with CVD [10–16]. However, information about lipid profiles
in cardiac tissues in models of CVD is more limited and has not been reviewed. The following review
will focus on recent lipidomic research findings about lipid profiles in cardiac tissue in experimental
models of CVD that has contributed novel information about lipid biomarkers for myocardial infarction,
obesity, and diabetic and dilated cardiomyopathies by MS methods. Furthermore, this review will
focus on current and novel therapies that alter cardiac lipid profiles.

1.1. Importance of Lipids in the Development of Cardiovascular Disease

Lipids are a class of amphipathic molecules that are characterized as being insoluble in water [17].
They consist of a wide array of structures including some that are depicted in Table 1. Lipids play
an important role in CVD development. Beyond their well recognized structural function in lipid
bilayers [18], lipids can also act as signalling molecules and secondary messenger molecules such as
those involved in G protein coupled receptor signalling [19,20]. An excess of deleterious lipid species
can also contribute to CVD progression [7]. Obesity is a growing epidemic and patients characterized as
obese are at risk for developing cardiovascular complications that could be linked to 3.4 million deaths
worldwide in 2010 [21]. High fat and high cholesterol diets found in Western countries contribute to
the development of cardiovascular risk factors such as hyperlipidemia and hypercholesterolemia [8].
High levels of these circulating lipids can lead to the accumulation of lipid plaques in arterial walls,
which are also known as atherosclerosis [22]. Specifically, high quantities of low-density lipoprotein
(LDL) increase the likelihood of LDL translocating from the arterial lumen to the endothelial intima [23].
LDL oxidation results in the release of cytokines, which signal uptake of the modified lipoproteins by
macrophages [24]. Macrophage-filled particles or foam cells can efflux cholesterol out of the arterial
wall into the blood stream or undergo apoptosis, which results in fatty streaks [25]. Fatty streaks are
then converted to fibrous plaques, which can block arterial blood flow. Furthermore, macrophages
release growth factors, which initiates smooth muscle cell proliferation from the media across the
internal elastic membrane and into the intima. This results in further bulging and blockage of blood
flow [25]. CAD is a result of atherosclerotic plaques that occur in the micro vessels, which supply
blood to the heart. When these arteries are blocked, it results in ischemic injury as a result of hypoxic
conditions [26]. In this environment, the heart relies on anaerobic respiration. Further cardiovascular
compensation and influx of blood flow can result in reperfusion injury since sudden increases in
oxygen leads to increased reactive oxygen species (ROS) and calcium flux, which causes cardiomyocyte
damage (e.g., myocardial infarction (MI)) and death [26].

High density lipoprotein (HDL) and LDL cholesterol are standard measurements for patients at
risk for the development of myocardial infarctions and CVD in the clinic [27]. Troponin I and creatine
kinase are used as markers for cardiac damage [28]. However, new biomarkers for earlier disease
diagnosis are needed to prevent CVD progression. Recent advances in MS technology have enabled the
determination of lipid quantities and composition in serum as well as in myocardial tissues. In order
to analyze the large datasets that accompany lipidomic analyses, researchers must apply consistent
computational and statistical approaches. The lipidomics standard initiative, launched in 2018, aims to
overcome challenges presented by working with lipidomic data [29,30]. Specifically, using software for
lipid annotation, overreporting and using arbitrary units rather than concentrations when reporting
lipid species. For example, according to this initiative, when quantifying lipids from tissue internal
standards must be added prior to lipid extraction, standards should not be present in samples and
tissue samples should be normalized to wet weight or protein [29]. Standardization is critical in order
to determine clinical reference values, which can bring the lipid biomarkers identified at the lab bench
to clinical use at the bedside for patient diagnosis.
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Table 1. Lipid Classes and Examples of General Structures.

Lipid Class Examples of General Structure

Fatty Acyl Lipids Fatty Acids (FA)

Glycerolipids
Diacylglycerol (DG)
Triacylglycerol (TG)

Glycero-phospholipids

Phosphatidylcholine (PC)
Phosphatidylethanolamine (PE)
Phosphatidylserine (PS)
Phosphatidylinositol (PI)
Phosphatidylglycerol (PG)
Cardiolipin (CL)

Sphingolipids
Sphingosine
Sphingomyelin (SM)
Ceramide (CER)

Sterol Lipids
Cholesterol
Cholesterol Ester (CE)

Table is limited to lipids discussed in the review. Structures are examples or general structures. R1, R2, R3, and R4
indicate unspecified fatty acid groups. X specifies phosphatidyl head group. Structures made with MarvinSketch
Version 20.11 [31].
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1.2. Cardiac Lipid Composition

The heart is composed of numerous cell and tissue types. Cardiomyocytes account for the
largest percentage (30–40%) of cells within the heart, which occupy ~70–85% of heart volume [32,33].
Studies investigating the lipid composition in the heart began in the 1950s. Gray and colleagues
performed the first studies to isolate and determine the composition of phospholipids from the ox
heart by chromatography separation [34]. These studies established that lipids, which constitute
cardiac tissues include free fatty acids (FA), triglycerides (TG), diglycerides (DG), cardiolipin (CL)
phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidylcholine (PC) [35]. A recent
large scale lipidomic study in rats has been able to decipher tissue-specific lipid composition [36].
These data reinforce the classical cardiac lipid composition and compare the lipid composition of
major tissue types. The heart exhibited a high abundance of PC, PE, PS, phosphatidylinositol (PI),
phosphatidylglycerol (PG), and CL species [36]. PG is a precursor for CL synthesis and was enriched
in the heart when compared to other tissues, which may be indicative of the high mitochondrial
content in cardiac tissue [36]. Mitochondria are closely linked to cardiac function since cardiomyocyte
contractility require an abundance of ATP production.

Cardiac muscle contains high numbers of mitochondria in order to produce sufficient amounts of
ATP to supply the heart with abundant energy needed for the mechanical action of pumping blood
throughout the body. CL is abundant in the heart and is a major phospholipid of the inner mitochondrial
membrane [37]. It is a unique phospholipid since it composed of two glycerol phosphatidyl moieties.
This means CL is comprised of four fatty acyl molecules (Table 1) [38]. Tetra-linoleic acid is the
predominant form of CL in the mature heart [38]. It is responsible for the mitochondrial structure and
the function of inner mitochondrial membrane proteins. For example, it is required for the efficient
transfer of electrons and the formation of super complexes in the respiratory chain [39]. Therefore,
the cardiac lipid composition and the lipids in the mitochondria play an important role in cardiac
energy production and, as a result, are implicated in cardiac function.

1.3. Cardiac Lipid Utilization

FA and glucose are the major fuel sources of the heart [5,40]. Specifically, the utilization of
FA through beta-oxidation and subsequent oxidation-reduction reactions within the tricarboxylic
(TCA) cycle are responsible for the majority of ATP production in the heart [41]. FA are transported
into the cardiomyocyte through the plasma membrane by the FA binding protein. CD36 and FA
transport proteins (FATPs) [42,43]. The FA are acylated by some transporters (e.g., FATPs) or through
acyl-Coenzyme A synthetase. Carnitine palmitoyltransferase I (CPT-I) then converts the acyl-CoA
derivatives into long-chain acylcarnitine molecules on the outer side of the outer mitochondrial
membrane. The acyl-carnitine molecules are transported through the inner membrane space and
then across the inner mitochondrial membrane by carnitine-acylcarnitine translocase [42]. On the
inner membrane, CPT-II is responsible for transferring the acyl residue from carnitine back onto a
CoA molecule. The FA acyl-CoA molecules can then enter beta-oxidation for the conversion of FA
into acetyl-CoA, which enters the TCA cycle [42]. The TCA cycle produces nicotinamide adenine
dinucleotide (NADH) and flavin adenine dinucleotide (FADH2) molecules, which can be utilized by
the electron transport chain for the production of ATP [44].

In CVD including MI and pathological cardiac hypertrophy, cardiac metabolism changes from a
state of primarily relying on FA and glucose through oxidative phosphorylation to utilizing anaerobic
energy production such as glycolysis [41,45,46]. Glycolysis is an inefficient means of energy production
in the failing heart [41]. Inefficient ATP production can lead to increased ROS and further oxidation
of phospholipids and cardiotoxicity [47,48]. Lipid molecules play an important role in cardiac
energy production, the plasma membrane, and organelle composition as well as the progression and
pathogenesis of CVD such as the development of atherosclerotic plaques. Mass spectrometry methods
are now being used in order to determine lipid levels and examine lipid composition in models of CVD.
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2. Models of Cardiovascular Disease

One of the first MS studies performed in cardiac tissue was reported in 1968 by Funasaki and
Gilbertson who isolated and identified cholesteryl alkyl ethers from bovine cardiac muscle [49].
Advancements in MS methods [50] have enabled researchers to use these technologies to investigate
how lipid species are being altered in the cardiac lipidome (the entire lipid composition of the heart)
and how it is altered in different models of CVD.

2.1. Cardiac Lipid Profiles in Experimental Myocardial Infarction Models

MI is the loss of blood flow that leads to myocardial damage [26]. As described above,
atherosclerotic plaques are the main cause for MIs. Hsueh et al. were the first to identify that ischemia
stimulates fatty acid release in rabbit heart tissue by chromatography separation [51]. The following
study identified increases in arachidonic acid in ischemic canine myocardium using high pressure
LC separation [52]. Researchers also began using MS methods to examine molecular changes that
occur post-MI. The first study to utilize MS technology to examine lipids after a MI was in 1979,
where Epps and colleagues identified an increase in N-acylethanolamine 24 h after a canine heart was
subjected to ligation of the left descending artery [53]. Since then, numerous studies have examined the
effect of MIs on cardiac lipids. For example, in a recent paper utilizing an ischemia and/or starvation
model in the H9c2 rat cardiomyocyte cell line, differences in lipid levels including PC (34:1), PC (36:2),
lyso-phosphatidylcholine lysoPC (16:0), lysoPC (18:1), lysoPC (18:0), PE (34:1), PS (36:1), PI (36:2),
PI (38:3), PI (38:5), sphingomyelin (SM) (34:1), CL (68:4), CL (72:5), and CL (74:7) were observed [54].
Increases in lyso-PCs and decreases in CL were observed in ischemic/starvation conditions compared
to controls [54]. Similar results were reported by Nam and colleagues who performed metabolomic
and lipidomic analysis of rat hearts, which followed ligation of the left anterior descending coronary
artery by ultra-HPLC-MS. In this animal model, gradual increases of free FA, ceramides, PE (40:6),
lysoPE(16:0), PC (30:0), PC (32:1), lysoPC (16:0), lysoPC (o-16:0), lysoPC (o-18:0), PG (40:8), PG(42:9),
lysoPG (18:2), PS (38:4), SM, and mono and triacylglycerides were observed [55]. Alterations in
acylcarnitines, adenine, S-adenosyl methionine, adenosine monophosphate, NAD+, and succinic acid
were reported, which suggested a disruption in lipid metabolism. Additional lipidomic studies have
also described increased de novo ceramide synthesis and accumulation of long chain ceramides in
human serum myocardial tissue [56]. Using an animal model of ischemic left ventricular dysfunction
and the serine palmitoyl transferase (SPT) inhibitor, myriocin, this study also showed that reduced
ceramide accumulation (C16, C24:1, C24) prevented ventricular remodelling post-MI [56].

A study using a rat MI model reported increases in lysoPC (16:0), lysoPC (18:0), lysoPC (18:2),
lysoPC (18:1), lysoPC (20:4), and lysoPE (18:0) in heart tissue by MALDI-MS imaging technology
similar to that of the cell and animal studies discussed previously [57]. However, in a comprehensive
lipidomic analysis of post-MI cardiac mouse tissue by Halade and colleagues, strong increases in
lysophospholipids were not observed [58]. This discrepancy could be due to species’ specific differences
but warrants further investigation. MALDI imaging MS technology has been used to identify spatial
distribution of lipids within cardiac tissue such as the even distribution of tetralinoleic acid CL within
healthy heart sections [54,55]. The study by Halade et al. is unique as it identified FA substrates
such as arachidonic, docosahexaenoic, eicosapentaenoic acid, and their bioactive lipid mediators
(e.g., hydroxydocosahexaenoic acid, hydroxyeicosapentaenoic acid) in infarct LV post MI tissue using
MALDI-imaging [53]. The study also reported an increase in PC (36:4), PC (40:8), PC (40:6), and oxidized
PC (O-32:0), PC (O-34:0), and PC (O-42:2), which could be indicative of oxidative stress as a result
of ischemic conditions that occur during MIs. More specialized studies have focused on the lipid
composition of organelles’ membranes such as the nucleus. Williams and colleagues employed ESI-MS
methods and identified the loss of choline and ethanolamine glycerophospholipids in the nuclear
membrane from ischemic and reperfused rat myocardial tissue [59].

Novel studies are now using transgenic and knockout (KO) animal models to decipher pathways,
which contribute metabolic signalling in CVD. In a follow-up study, researchers used lipoxygenase
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(LOX−/−) deficient mice to study its effect on ischemic heart failure [60]. LOX enzymes are a class of FA
metabolizing enzymes and, therefore, play an important role in regulating bioactive lipid mediators
and FA utilization during myocardial injury [60]. Hearts from LOX deficient mice displayed both
increases and decreases in certain PC and lysoPCs species with specific fatty acyl compositions [60].
Additionally, they exhibited increases in sphingolipids in comparison to wild-type mice. Ultimately,
the LOX−/− mice showed altered lipidomic and metabolomic profiles and exhibited delayed heart
failure progression and improved survival. However, additional studies are needed to decipher
important protein, enzyme, and lipid targets that contribute to lipidome alterations during CVD
progression and how these alterations can be prevented.

Lipidomic studies of cardiac tissue post MI allow for a greater understanding of how the cardiac
lipidome is altered as well as the changes of the fatty acyl chains within these lipid classes. This is
notable because it can provide insights into the molecular mechanisms of the pathogenesis of CVD.
Understanding these changes may help the development of better therapies to prevent and treat MIs
and could be translated to other models of CVD.

2.2. Cardiac Lipid Profiles in Animal Models of Obesity

Weight gain puts patients at risk for developing dyslipidemia and lipotoxicity [61]. In addition to
hypertension and diabetes, patients that are characterized as obese are at twice the risk for developing
cardiovascular complications [62]. Thus, analysis of the lipidome provides a wealth of information
about mechanisms of disease progression. In a study comparing standard, high fat, or high fat/high
sucrose (western) diets in rat hearts, researchers identified increases in C16, C18, C20, and C24 ceramides
in the western diet group by HPLC-ESI-MS methods [63]. As expected, increased cardiac TG levels
were also observed [63]. In heart tissue of mice fed a high fat diet, increases in polyunsaturated fatty
acyl chains were observed in ceramides, glycosphingolipids, and sphingomyelins whereas decreases
in monounsaturated fatty acyl chains were observed in phospholipids and sphingomyelins [64].
In another study, researchers determined that feeding mice a diet enriched in polyunsaturated fatty
acids (arachidonic acid, eicosapentaenoic acid, or docosahexaenoic acid supplemented) for two weeks
decreased cardiac phospholipids containing linoleic acid when compared to control mice on a fish
meal free diet [65]. This study also went on to describe differences in the oxylipin profiles of tissues in
a targeted lipidomics approach.

Peroxisome proliferator-activated receptor-gamma coactivator 1β (PGC1β) is a transcriptional
co-activator, which has a role in regulating mitochondrial biogenesis genes and is thought to have a
role in the development of obesity and diabetes [66,67]. McCombie et al. utilized a PGC1β KO mouse
model to investigate lipidomic changes induced by a high fat diet [68]. In this study, LC-MS lipidomics
of cardiac tissue revealed alterations in polar lipid composition and increases in TG. The preceding
study focused on results from a combined dataset of male and female mice. However, they did
report larger differences in male datasets in KO mice fed a high fat diet when compared to females
using partial least squares discriminant analysis (PLS-DA) models, which indicated the importance of
performing sex-specific lipidomic studies.

Using cardiac specific diacylglycerol O-acyltransferase 1 (DGAT1) transgenic mice as a model of
cardiac steatosis, LC-MS analysis of myocardial tissue revealed no changes in ceramides [62]. In contrast,
exposure of these mice to angiotensin II resulted in increased ceramide levels [62]. Increased ceramide
ratios (C16:0/24:0) in plasma have been associated with increased cardiac remodelling and cardiac
dysfunction in a human study, which examined 2652 Framingham Offspring Study participants [69].
Therefore, activation of the renin-angiotensin system exacerbates the risk of cardiac lipid remodelling.
This could be a rationale for investigating whether angiotensin converting enzyme (ACE) inhibitors
prevent increased ceramides in models of CVD.

More comprehensive models are now being developed where diets are coupled with models of
CVD and aging. A recent study investigated the effect of high-unsaturated fatty acid diet (HUFA) on
rats subjected to supra-valvar aortic stenosis (SVAS). The study reported decreases in unsaturated
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(oleic and linoleic) free fatty acids as well as diacylglycerol and triacylglycerol molecules in SVAS
heart tissue. However, the HUFA diet did not restore these lipids to normal levels [70]. In one model,
mice on a PUFA diet had impaired wound healing post-MI [71]. The study specifically observed
an increase in plasma arachidonic acid by LC-MS analysis, which implicated a high PUFA diet that
increases pro-inflammatory lipid metabolites capable of affecting post-MI tissue [71]. In another study
combining obesity and MI, researchers examined mitochondrial lipid species from cardiac tissue [72].
Decreases in PCs, PEs, and increases in TGs, lysoPCs, and lysoPEs were reported in mitochondrial
lipids from total cardiac tissue of rats subject to MI. In contrast, MI rats fed high fat diets did not exhibit
such drastic changes in cardiac mitochondrial glycerophospholipids [72]. This study also reported
decreases in total CL. Under closer inspection, the researchers reported decreases in CL (18:2) but
increases in CL (20:4, 22:6) in high fat fed groups post MI. This interesting finding suggests that CL
composition was altered from a form enriched with linoleic acid to one that is increased in arachidonic
acid [72]. The study went on to show an association between levels of fibrosis with cardiac lipids
such as TG, CL, ceramide, and several plasma microRNA (miRNA) species including 194-5p, 301a-3p,
144-5p, and 15b-5p [72]. These findings could be significant since miRNA play an important role in
transcriptional regulation. Studies such as these could bridge the gap between lipidomic alterations
and epigenetic regulation. Complex models of obesity and MI are more representative of cardiac lipid
changes that occur in patients in the clinic. Furthermore, they can be used to more accurately decipher
the molecular pathways and epigenetic changes that occur in these diseased states.

2.3. Cardiac Lipid Profiles in Diabetic Cardiomyopathy Models

Diabetic cardiomyopathy is characterized by structural and functional changes that occur in the
myocardium as a result of diabetes mellitus [73]. Specifically, these changes occur without the presence
of CAD or hypertension but are a direct result of diabetes [73]. Hypertrophy or thickening of ventricular
walls is a characteristic of diabetic cardiomyopathy and leads to diastolic dysfunction typically with
conserved systolic function [74,75]. Ultimately, these structural and functional changes can lead to
heart failure. The first study to use MS technology (by ESI-MS) was performed by Han and colleagues
who examined alterations in the lipid profile of the diabetic myocardium [76]. Utilizing a rat model and
a single injection of streptozotocin, they identified alterations to ethanolamine glycerophospholipids.
Specifically, a 24% increase in PE and a 44% increase in plasmenylethanolamine could be restored by
insulin treatment [76]. The study identified a 60% decrease in TG, which was not prevented by insulin
treatment. Furthermore, a 44% increase in PI and small increases in PG and PS molecular species were
also observed. No changes in CL were identified in the heart tissue from this streptozotocin-induced
diabetes model. Reminiscent of the PUFA MI model, this group also identified a predominance of
PC molecules with arachidonic acid FA moieties in their lipid fractions. However, no statistically
significant differences between the diabetic and control rats were observed [76]. The same group
followed up with a separate study to examine the acylcarnitine species from cardiac tissue in the
streptozotocin-induced diabetes rat model using ESI-MS approaches. They identified a four-fold
increase in long-chain acylcarnitines (16:0, 18:2, 18:1, 20:4) in diabetic myocardium compared to
controls that could be partially or fully reversed with insulin treatment [77]. These data suggest that
impaired FA transport or β-oxidation of FA leads to the accumulation of acylcarnitine species in diabetic
cardiomyopathy. The same group also performed a study in streptozotocin-induced diabetic mice
using a shotgun MS approach. Unlike rats, CL depletion as well the CL precursor PG was observed
in diabetic myocardium mice (7.2 nmol/mg to 3.1 nmol/mg in diabetic hearts) [78]. These findings
suggest that CL depletion occurs through ineffective FA utilization, which leads to lipotoxicity that
manifests into diabetic cardiomyopathy.

Using leptin receptor deficient mice as a model of diabetic cardiomyopathy increases in TGs and
DGs as determined by MS analysis, which were observed in cardiac tissue. There were increases in
C14:1, C16:1, C16:0, C18:1, and C20:4 free fatty acid molecular subspecies in the leptin receptor deficient
mice compared to controls [79]. Similar to the MI models reviewed above, leptin receptor deficient
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mice also exhibited increases in ceramides, SM, PC, lysoPC, and PE. In a more recent paper using
UPLC/QTOF/MS with ESI positive and negative modes to distinguish acyl chains at the sn-1 and sn-2
positions in myocardial tissue revealed down regulation of PC (22:6/18:2), PC (22:6/18:1), PC (20:4/16:1),
PC (16:1/18:3), PE (20:4/18:2), PE (20:4/16:0) and an increase in PC (20:2/18:2), PC (18:0/16:0), PC (20:4/18:0)
in a streptozotocin-induced rat model [80]. This study revealed that diabetic cardiomyopathy also
induced differences in the fatty acyl chain composition of glycerolipids such as PC and PE. Reporting
these changes allows for a more reliable comparison of changes in lipid profiles between models of
CVD such as MI and other cardiomyopathies. The power of MS technology is now allowing researchers
to decipher how lipid species are being affected at a global scale and at the chemical level. However,
more investigation needs to occur in other cardiomyopathy models.

2.4. Lipid Profiles in Cardiac Hypertrophy

Cardiac hypertrophy is characterized by ventricular wall thickening, which can be accompanied
by both reduced systolic and diastolic function [81]. Pathological causes for cardiac hypertrophy
include hypertension and valvular disease [82]. A common experimental model of cardiac hypertrophy
is transverse aortic constriction (TAC) in which surgical ligation of the transverse aorta leads to a
pressure-overload induced hypertrophy [83]. A recent study used this model of TAC to investigate
molecular changes in mice with cardiac restricted acyl-coenzyme A synthetase-1 overexpression
(ACSL1) [84]. ACSL1 is responsible for mediating the activation of long-chain fatty acids to acyl-CoA
substrates, which can undergo further β-oxidation for energy production within the heart [85].
LC-ESI-MS/MS of TAC heart tissue revealed increases in ceremide levels (C16, C24:1, C24), which were
not observed in the ACSL1 overexpressing hearts subject to TAC. ACSL1 TAC hearts exhibited increases
in C20 and C22 ceramides. The authors suggest that ACSL1 overexpression could, therefore, mitigate
TAC-induced cardiac hypertrophy through mitochondrial oxidative metabolism.

2.5. Lipid Profiles in Dilated Cardiomyopathy

Dilated cardiomyopathy is characterized by an enlarged ventricle, ventricular wall thinning,
reduced ejection fraction, and decreased cardiac output [86]. In contrast to diabetic cardiomyopathy,
it is characterized by both systolic and diastolic dysfunction. It can be caused by genetic mutations
(e.g., Tafazzin, β-Myosin heavy chain, α-Tropomyosin, Cardiac troponin T, Lamin/C (LMNA))
or chemical toxicity (e.g., anthracycline chemotherapeutics). However, it is often idiopathic [87].
One study performed lipidomic analysis of serum from control individuals and patients with dilated
cardiomyopathy as a result of an LMNA mutation. In the serum, changes in PC (38:5e, 38:2) and TGs
were identified [10]. Sparagna and colleagues performed a study examining CL in human left ventricular
tissue samples and in the spontaneously hypertensive heart failure (SHHF) rat model, which exhibits
idiopathic dilated cardiomyopathy (IDC) [88]. The human tissue in this study was isolated from the
left ventricle of explanted hearts of patients diagnosed with IDC (n = 10) and exhibited decreases in
tetra-linoleic CL [88]. Similar decreases in tetra-linoleoyl CL in subsarcolemmal and interfibrillar cardiac
mitochondria isolated from 5-month rats and 15-month rats were observed in parallel with increases
in CL species with oleic and arachidonic acid side chains. Additionally, a positive relationship with
decreased tetra-linoleic CL and impaired cytochrome oxidase activity was observed [88]. This shows
the importance that cardiac tissue lipid composition plays in mitochondrial function. In the same
study, a rat model of heart failure using SHHF rats subject to thoracic aortic banding (TAB) surgery
was also used and decreased tetra-linoleic CL. Increased CL species containing oleic and arachidonic
acid side chains were observed in the rat heart tissue. While, in a follow-up study, LC-MS/MS
analysis of cardiac tissue explants from eight human patients with dilated cardiomyopathy revealed
lower levels of linoleic acid and also reported similar increases in arachidonic and docosahexaenoic
acid phospholipid species [89]. These elevated polyunsaturated fatty acid product/precursor ratios
suggested that delta-6-desaturase enzyme activity was elevated in dilated cardiomyopathy. Notably,
inhibition of the delta-6-desaturase enzyme (with SC-26196 for four weeks) reversed these changes
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in polyunsaturated fatty acid composition in two different rat models of heart failure (SHHF and
TAC). Inhibition of delta-6-desaturase also attenuated elevations in pathogenic eicosanoids and lipid
peroxides and normalized the CL fatty acyl chain composition in the rat heart [89]. Another study
performed LC-ESI-MS in left ventricular tissue from pediatric patients with IDC and reported similar
decreases in total and tetra linoleic CL. The authors do, however, report a unique pediatric cardiac CL
profile attributed to differences in the expression of CL biosynthesis genes with age [90].

Doxorubicin (DOX) is an anthracycline chemotherapeutic used in treating pediatric leukemias
and lymphomas, but its utility is limited since high dosages of DOX put patients at risk for developing
a dilated cardiomyopathy [91,92]. In animal models, DOX is frequently used to induce dilated
cardiomyopathy. There has been a modest number of published studies examining cardiac tissue
profiles by MS methods in DOX models of dilated cardiomyopathy. In one study, male and female rats
were injected with 2 mg/kg of DOX weekly for seven weeks and lipidomic analysis was performed [93].
This study uncovered sex-specific differences in the cardiac lipid profile with response to DOX treatment.
Male rats exhibited decreased phospholipid content in cardiac tissue after DOX treatment. Specifically,
sex-specific fatty acid composition of PE and PC were different in males and females prior to and after
DOX treatment. Furthermore, analysis of CL species revealed no sex differences, but DOX treatment
induced a decrease in the most abundant tetra-linoleic CL and an increase in every other CL species [93].
In another study, rats were injected with 2.5 mg/kg of DOX for two weeks and MS analysis of ceramides
revealed an increase in C16 and C18 ceramide levels in heart tissue [63]. These two studies illustrate
some of the similarities of cardiac lipid profile alterations to other models of CVD discussed above
including the depletion of CL in models of diabetic cardiomyopathy and obesity and the increase in
ceramides seen in MI models.

2.6. Similarities in Cardiac Lipid Profiles in Models of Cardiovascular Disease

CVD encompasses a wide range of cardiac diseases that have different underlying causes. Cardiac
lipid profiles in these models share many similarities. Specifically, most models (whether they
be MI, obesity, diabetes, or dilated cardiomyopathy) show increases in ceramide, sphingomyelin,
and lyso-phospholipids in cardiac tissue, which suggests these may be molecular markers of disease
progression. Increases in ceramides have also been linked to increases in apoptosis in a variety of
models including neonatal rat cardiomyocytes [94–96]. Furthermore, ceramides have been shown to
modulate lipotoxic cardiomyopathy in mice through interactions with proteins involved in cardiac
contractility, apoptosis, and lipogenesis (myosin chaperone, annexin, and fatty acid synthase) [97].
Other similarities in the findings from lipidomic studies in different models of CVD was increases
in arachidonic acid fatty acid acyl chains in the failing heart. Specifically, in most models of CVD,
when measured, there appears to be decreases in tetralinoleoyl CL species and increases in other forms
of CL such as those containing arachidonic. Since CL is so closely linked to the electron transport
chain, changes in lipid composition of CL could be related to disrupted oxidative phosphorylation
super-complex formation and, thus, decreases in cardiac energy production.

Where the lipidomic studies differ is in changes to phospholipid fatty acyl composition. Specifically,
phospholipid fatty acid molecules are shown to be increased and decreased in different models of
CVD. This could be an indication of different alterations to FA metabolism, which may be present in
different models (e.g., diabetic vs. dilated cardiomyopathies). Other differences include changes in
glycerolipids. For example, obesity and diabetic models frequently cite increases in TG and DG lipid
species. Specifically, DG lipid accumulation has been linked to impaired insulin-stimulated glucose
oxidation in the heart [98] and incomplete oxidation of fatty acids in skeletal muscle, which leads to
insulin resistance and mitochondrial dysfunction [99]. In contrast, MI and dilated cardiomyopathy
models do not exhibit altered DG species or did not report them altogether. The lipidomic studies
discussed are summarized in Table 2.

225



Metabolites 2020, 10, 254

T
a

b
le

2
.

Su
m

m
ar

y
of

lip
id

om
ic

s
st

ud
ie

s
in

m
od

el
s

of
ca

rd
io

va
sc

ul
ar

di
se

as
e

by
m

as
s

sp
ec

tr
om

et
ry

.

C
V

D
M

o
d

e
l

A
n

im
a

l/
C

e
ll

S
p

e
ci

e
s

N
N

u
m

b
e

r
O

th
e

r

L
ip

id
S

p
e

ci
e

s
M

a
ss

S
p

e
ct

ro
m

e
tr

y
(M

S
)

T
e

ch
n

o
lo

g
y

R
e

fe
re

n
ce

G
ly

co
li

p
id

s
P

h
o

sp
h

o
li

p
id

s
S

p
h

in
g

o
li

p
id

s
T

G
D

G
P

C
P

E
P

I
P

S
P

G
L

y
so

P
L

O
x

P
L

C
L

C
E

R
S

M

M
I

a
n

d
IR

M
o

d
e

ls

St
ar

va
ti

on
/I

sc
he

m
ic

H
9c

2
3

FF
A
�

�
↑

�
�

�
�

↓
H

PL
C

-M
S/

M
S

[5
4]

LA
D

C
A

Li
ga

ti
on

R
at

8
FF

A
/A

C
↑

↑
↑

-
↑

↑
↑

↑
↑

U
PL

C
-Q

TO
F-

M
S

[5
5]

Is
ch

em
ic

C
M

Pa
ti

en
t(

Se
ru

m
/T

is
su

e)
15

–6
4

�
LC

-M
S

[5
6]

LA
D

C
A

Li
ga

ti
on

M
ic

e
(S

er
um
/T

is
su

e)
4–

20
�

LC
-M

S
[5

6]

LA
D

C
A

Li
ga

ti
on

R
at

5
�

↑
M

A
LD

I-
M

S
[5

7]

LA
D

C
A

Li
ga

ti
on

M
ic

e
6

U
FA
/S

FA
↑

↑
↑

M
A

LD
I-

M
SI

an
d

LC
-M

S/
M

S
[5

8]

IR
In

ju
ry

(1
5

m
in

)
R

at
6

↓
↓

ES
I-

M
S/

M
S

[5
9]

LA
D

C
A

Li
ga

ti
on

LO
X

-/
-

M
ic

e
37

–4
9

A
C
�

�P
L

�
↑

LC
-M

S/
M

S
[6

0]

O
b

e
si

ty
M

o
d

e
ls

H
F

D
ie

to
r

H
FH

S
D

ie
t

R
at

6
↑

LC
-M

S
[6

3]

H
F

D
ie

t
M

ic
e

10
↑

↑
�P

L
↑

↑
G

C
-M

S
[6

4]

PU
FA

D
ie

t
M

ic
e

5
TC
↓/F

A
�

↑
�

G
C

-M
S

[6
5]

H
F

D
ie

t
PG

C
1β

-/
- M

ic
e

5–
10

↑
�

�
G

C
-M

S
LC

-M
S

[6
8]

C
ar

di
ac

St
ea

to
si

s
D

G
A

T1
M

ic
e

6–
9

↑
�

U
PL

C
-Q

TO
F-

M
S

[6
2]

M
ix

e
d

M
o

d
e

ls

SV
A

S
H

U
FA

M
ic

e
11

–1
4

U
FA
↓/↑

SA
�

�
G

C
-M

S
[7

0]

H
F

D
ie

t/A
gi

ng
/

LA
D

C
A

Li
ga

ti
on

M
ic

e
(p

la
sm

a)
3–

8
A

A
↑

LC
-M

S/
M

S
[7

1]

H
F

D
ie

t/L
A

D
C

A
Li

ga
ti

on
R

at
8–

10
↑

↓M
I

↓M
I

�M
I

�
�

U
PL

C
-Q

TO
F-

M
S

[7
2]

D
ia

b
e

ti
c

C
M

M
o

d
e

ls

St
re

pt
oz

ot
oc

in
In

je
ct

io
n

R
at

6
↑

-
↓

↑
↑

↑
-

-
ES

I-
M

S
[7

6]

St
re

pt
oz

ot
oc

in
In

je
ct

io
n

R
at

4–
6

A
C
↑

ES
I-

M
S

[7
7]

St
re

pt
oz

ot
oc

in
In

je
ct

io
n

M
ic

e
7

↑
↓

↓
ES

I-
M

S
[7

8]

G
en

et
ic

Le
pR

db
/d

b
M

ic
e

5–
6

FF
A
↑

↑
↑

↑
↑

↑
↑

↑
ES

I-
M

S
[7

9]

H
F

D
ie

ta
nd

St
re

pt
oz

ot
oc

in
R

at
11

–1
2

�
↑

U
PL

C
-Q

TO
F-

M
S

[8
0]

226



Metabolites 2020, 10, 254

T
a

b
le

2
.

C
on

t.

C
V

D
M

o
d

e
l

A
n

im
a

l/
C

e
ll

S
p

e
ci

e
s

N
N

u
m

b
e

r
O

th
e

r

L
ip

id
S

p
e

ci
e

s
M

a
ss

S
p

e
ct

ro
m

e
tr

y
(M

S
)

T
e

ch
n

o
lo

g
y

R
e

fe
re

n
ce

G
ly

co
li

p
id

s
P

h
o

sp
h

o
li

p
id

s
S

p
h

in
g

o
li

p
id

s
T

G
D

G
P

C
P

E
P

I
P

S
P

G
L

y
so

P
L

O
x

P
L

C
L

C
E

R
S

M

H
y

p
e

rt
ro

p
h

y
M

o
d

e
ls

TA
C

A
C

L1
M

ic
e

3–
17

↓
�

ES
I-

M
S/

M
S

[8
4]

D
il

a
te

d
C

M
M

o
d

e
ls

(S
H

H
F

R
a

ts
a

s
V

a
li

d
a

ti
o

n
)

ID
C

M
Pa

ti
en

t(
Se

ru
m

)
8–

11
↓

↓
↓

U
PL

C
-M

S
[1

0]

SH
H

F/
TA

B
R

at
4

�
LC

-E
SI

-M
S

[8
8]

ID
C

M
Pa

ti
en

t(
LV

Ti
ss

ue
)

10
–1

1
�

LC
-E

SI
-M

S
[8

8]

SS
H

F
R

at
4–

10
�A

A
LC

-E
SI

-M
S

[8
9]

ID
C

M
H

um
an

(L
V

Ti
ss

ue
)

8
�A

A
LC

-E
SI

-M
S

[8
9]

ID
C

M
Pe

di
at

ri
c

(L
V

Ti
ss

ue
)

20
–4

4
↓

LC
-E

SI
-M

S
[9

0]

D
O

X
(2

m
g/

kg
W

ee
kl

y
7X

)
R

at
4

�
�

�
�

LC
-M

S/
M

S
[9

3]

D
O

X
/H

FH
S

D
ie

t(
15

m
g/

kg
C

D
)

R
at

6
↑

LC
-M

S
[6

3]

C
V

D
:C

ar
d

io
va

sc
u

la
r

D
is

ea
se

.
M

I:
M

yo
ca

rd
ia

li
nf

ar
ct

io
n.

IR
:R

ep
er

fu
si

on
in

ju
ry

.
L

A
D

C
A

:L
ef

t
an

te
ri

or
d

es
ce

nd
in

g
co

ro
na

ry
ar

te
ry

.
H

F:
H

ig
h

fa
t.

P
U

FA
:p

ol
yu

ns
at

u
ra

te
d

fa
tt

y
ac

id
d

ie
t.

SV
A

S:
su

p
ra

-v
al

va
r

ao
rt

ic
st

en
os

is
.

H
U

FA
:h

ig
h

u
ns

at
u

ra
te

d
fa

tt
y

ac
id

d
ie

t.
TA

C
:t

ra
ns

ve
rs

e
ao

rt
ic

co
ns

tr
ic

ti
on

.
ID

C
M

:i
d

io
p

at
hi

c
d

ila
te

d
ca

rd
io

m
yo

p
at

hy
.

SH
H

F:
Sp

on
ta

ne
ou

sl
y

hy
pe

rt
en

si
ve

he
ar

tf
ai

lu
re

.F
FA

:F
re

e
fa

tt
y

ac
id

s.
TG

:T
ri

gl
yc

er
id

e.
D

G
:D

ig
ly

ce
ri

de
s.

PC
:P

ho
sp

ha
tid

yl
ch

ol
in

e.
PE

:P
ho

sp
ha

tid
yl

et
ha

no
la

m
in

e.
PI

:P
ho

sp
ha

tid
yl

in
os

ito
l.

P
S:

P
ho

sp
ha

ti
d

yl
se

ri
ne

.
P

G
:P

ho
sp

ha
ti

d
yl

gl
yc

er
ol

.
Ly

so
P

L
:L

ys
o-

p
ho

sp
ho

lip
id

s.
O

xP
L

:O
xi

d
iz

ed
p

ho
sp

ho
lip

id
s.

C
L

:C
ar

d
io

lip
in

.
C

E
R

:C
er

am
id

es
.

SM
:s

p
hi

ng
om

ye
lin

.
A

C
:

A
cy

lc
ar

ni
ti

ne
.A

A
:A

ra
ch

id
on

ic
A

ci
d.
↑i

nc
re

as
e.
↓d

ec
re

as
e.
�i

nc
re

as
e

or
de

cr
ea

se
de

pe
nd

in
g

on
FA

ch
ai

n.
-:

N
o

ch
an

ge
.B

la
nk

:N
ot

re
po

rt
ed

.

227



Metabolites 2020, 10, 254

3. The Effect of Current and Novel Therapies on Cardiac Lipid Profiles

Extensive efforts have gone into examining how cardiac lipid profiles are altered in different
models of CVD. The next area of lipidomic research reviewed focuses on understanding how current
therapeutics used in treating cardiovascular and lipid disorders affect cardiac lipids.

3.1. The Effect of Non-Pharmacological Interventions on Cardiac Lipid Profiles

Non-pharmacological interventions such as diet and lifestyle changes are often the front line to
prevent CVD in patients who are at risk [100]. A recent study utilized the power of MS technology
to examine how cardiac lipid profiles are altered in models of exercise and CVD [101]. Specifically,
they were interested in examining the differences between physiological hypertrophy that occurs as a
compensatory mechanism in response to exercise and the pathological hypertrophy that occurs during
CVD. Using a swim model of exercise and a four-week model of pressure overload TAC, LC-MS/MS
technology was utilized to perform lipidomic analysis of cardiac tissue. A total of 104 lipid species
were significantly altered in swimming mice compared to controls, and 100 lipid species in the severe
TAC model. Lipid concentrations in this study were determined by internal standards and normalized
to levels of PC rather than protein concentrations or tissue weight. In these models, differences
between PC lipids were not observed. However, phospholipids such as alkylphosphatidylcholine
(PC(O)), alkylkphosphatidylethanolamine (PE(O)), and phosphatidyl-ethanolamine plasmalogens
(PE(P)) were decreased in the hearts of exercised mice and unchanged in the TAC mice. Furthermore,
sphingolipids were decreased in cardiac tissue from the exercise model and increased in the TAC
model of CVDs. This study suggests that differences in cardiac sphingolipid levels could distinguish
between physiological and pathological hypertrophy, which are indicative of damage to cardiomyocyte
cell membranes. Identification of how non-pharmacological interventions affect myocardial lipids
is important since it may provide information on the actionable mechanism of classic and novel
therapeutics used in treating CVD.

3.2. The Effect of Commonly Prescribed CVD Medications on Cardiac Lipids

There is a modest amount of literature that focuses on how common drugs (e.g., statins, fenofibrates)
used to treat cardiovascular and lipid disorders affect the cardiac tissue lipidome. Statins prevent
cholesterol synthesis by inhibiting 3-hydroxy-3-methyl-glutaryl–CoA reductase and, in turn, reduce
circulating levels of LDL. There are several studies that examine serum lipidomics in patients treated
with statins [27,102–105]. They report decreased plasma TGs and circulating sphingomyelins in
patients treated with statins. However, to date, no study has used MS technology to examine the effect
of statin therapy on the cardiac tissue lipidome in obesity models.

Other commonly used therapeutics in treating CVD such as atherosclerosis are fibric acid
derivatives. Drugs such as gemfibrozil, fenofibrate, and clofibrate lower TG and LDL levels by
increasing lipoprotein lipase activity and inhibiting synthesis of very low-density lipoprotein by
activating peroxisome proliferator activated receptor α (PPARα)[46,106]. The Fibrate Intervention and
Event Lowering in Diabetes (FIELD) study identified that patients treated with fenofibrates did not
benefit the primary endpoint of coronary heart disease events [107]. A substudy of the FIELD assessed
serum from patients treated with fenofibrates and identified decreases in lysoPCs and increases in SM.
Consistent with the paucity of research surrounding the cardiac lipidome in response to statin therapy
in models of CVD, there is also a lack of studies that examine how these tissues are affected by other
classic drugs used in treating CVD such as fibric acid derivates. Future studies should aim to examine
how drugs already used in treating CVD affect cardiac lipids.

3.3. The Effect of Natural Health Products and Novel Drugs on Cardiac Lipid Profiles

Resveratrol is a polyphenolic molecule derived from plants shown to improve myocardial lipid
oxidation and cardiac function in rats [108]. We have shown that, in the spontaneously hypertensive rat
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model of cardiac hypertrophy as well as the Wistar control rat strain, resveratrol attenuates pathological
cardiac hypertrophy and using mass spectroscopy increases total CL mass as well as the tetra-linoleic
CL species [109]. Therefore, resveratrol-induced increases in cardiac CL could be linked to improved
mitochondrial function. Berberine is a naturally occurring alkaloid extracted from various plants
and used in traditional Chinese medicine. It is also available at health food markets [110]. A recent
study examined the effect of berberine on myocardial lipid profiles in a high fat, high sucrose diet and
a streptozotocin-induced rat model of diabetic cardiomyopathy [110]. Berberine partially reversed
alterations to PC (16:0/20:4), PC (18:0/18:2), PC (18:0/18:2), PC (18:0/22:5), PC (20:4/0:0), PC (20:4/18:0),
PC (20:4/20:2), PE (18:2/0:0), and SM (d18:0/16:0) in diabetic heart tissue. Berberine also decreased
SM, which is a lipid species often reported as upregulated in other models of CVD (obesity, dilated
cardiomyopathy). Resveratrol and berberine are thought to have antioxidant capabilities as indicated
by decreased ROS levels [111,112]. However, when compared to placebos in clinical trails, antioxidants
have had little success in treating CVD [113]. This could be due to improper timing or dosing.
Other concerns regarding natural health products such as resveratrol or berberine is their lack of
specificity. These compounds have multiple targets, which means they can have a broad impact on
metabolism. However, initial studies suggest that some natural health products could be broadly
protective in CVD by modifying lipid profiles. This result merits further investigation [114–116].
Therefore, it may be efficacious to investigate novel drugs that have specific protein or lipid targets.

Another novel therapeutic that is gaining attention in treating CVD is elamipretide (a.k.a. Bendavia,
MTP-131 and SS-31). Elamipretide is a cell permeable tetrapeptide, which is targeted to the mitochondria
by binding directly to CL and reducing ROS formation while increasing mitochondrial function [117].
It has been shown to have cardioprotective effects in animal models of atherosclerotic renovascular
disease [118], ischemic-reperfusion injury [119], myocardial infarction [120], hypertension [121],
DOX-induced cardiomyopathy models [122], and improvement in mitochondrial function in failing
human myocardium [123]. One study has employed MS approaches to examine how elamipretide
alters lipids. Specifically, they examined a decrease in tetra-linoleic CL in explanted failing heart
tissue from pediatric and adult patients. Treatment with elamipretide prevented changes in CL when
compared to untreated controls [123]. The study reports coupling of oxidative phosphorylation
supercomplex activity as the mechanism of action. However, more comprehensive lipidomics studies
are needed to assess the effect of elamipretide on the entire cardiac lipidome.

4. Conclusions

Lipidomic analysis by MS technology is an expanding field of research. Lipids play an important
role in cardiac structure, function, and disease progression. Utilizing this sensitive technique to
determine changes that occur in cardiac lipid profiles in models of CVD (MI, obesity, diabetic, or dilated
cardiomyopathies, etc.) is important in understanding the pathology behind each disease. Furthermore,
performing lipidomic studies in experimental models of CVD holds the promise of increasing our
understanding of how novel therapeutics affect the heart. New challenges facing the ever-growing
field of lipidomics will include data standardization to generate comparable and reproducible results.
Future cardiac lipidomic studies should also focus on sorted cell populations from cardiac tissue to
address heterogenous cell populations found in cardiac tissue during CVD. Ultimately, the intention
of utilizing MS approaches will be to integrate lipidomics data with other -omics technology to get a
better understanding of how the cardiovascular system is affected in its entirety in disease models.
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