

# FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Influencia del aditivo terrazyme y del caucho granulado en la subrasante de ampliación Las Iomas – Ventanilla, Lima 2021

#### TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE:

Ingeniero Civil

#### **AUTORES:**

Moreno Marroquin, Carolina Vanesa (ORCID: 0000-0003-1173-2322)

Portocarrero Escalante, Rodrigo Enrique (ORCID: 0000-0003-4198-6913)

#### ASESOR:

Mg. Minaya Rosario, Carlos Danilo

(ORCID: 0000-0002-0655-523X)

#### LÍNEA DE INVESTIGACIÓN:

Diseño de Infraestructura Vial

LIMA - PERÚ 2021

#### DEDICATORIA (AUTOR 1)

La concepción de este trabajo está dedicada principalmente a Dios y а mis padres, pilares fundamentales en mi vida. Sin ellos, jamás hubiese podido conseguir lo que tengo hoy por hoy. Su tenacidad y lucha insaciable han hecho de ellos el gran ejemplo a seguir y destacar, no solo para mí, sino para mis hermanos y familia en general. De igual manera agradecer a mi novio por la motivación y el apoyo incondicional, a mis mejores amigas que a pesar de la distancia conté con su apoyo moral mutuo para culminar esta privilegiada carrera.

#### DEDICATORIA (AUTOR 2)

Dedico esta tesis principalmente a Dios por brindarme la fuerza necesaria, a mis padres Maria y Luis por su apoyo incondicional y su paciencia, todo lo que soy es gracias a ellos. A mis padres políticos por su apoyo incondicional y motivación constante. Y por supuesto, a mi novia Natalia, por motivarme y estar conmigo incluso en los momentos difíciles, no lo habría logrado sin ella.

## AGRADECIMIENTO (Autor 2)

Agradezco a Dios por haberme dado la oportunidad de culminar esta parte de mi vida, al docente que nos acompañó y guio para poder culminar con éxitos, también agradezco a mis padres por el apoyo y el aliento, a mi novia Natalia Cadenas por brindarme su amor incondicional y brindarme aliento para nunca desistir en mis objetivos y metas. Gracias

## Índice

| Dedicatoria                                         | II  |
|-----------------------------------------------------|-----|
| Agradecimiento                                      |     |
| Índice                                              | IV  |
| Índice de tablas                                    | V   |
| Índice de figuras                                   | VII |
| Resumen                                             | IX  |
| Abstract                                            | X   |
| I. INTRODUCCIÓN                                     | 1   |
| II. MARCO TEÓRICO                                   | 5   |
| III. METODOLOGÍA                                    | 5   |
| 3.1 Tipo y diseño de investigación                  | 11  |
| 3.2 Variables y operacionalización                  | 12  |
| 3.3 Población, Muestra y muestreo                   | 13  |
| 3.4 Técnicas e instrumentos de recolección de datos | 15  |
| 3.5 Procedimientos                                  | 16  |
| 3.6 Método de análisis de datos                     | 17  |
| 3.7 Aspectos éticos                                 | 17  |
| IV. RESULTADOS                                      | 18  |
| V. DISCUSIÓN                                        | 52  |
| VI. CONCLUSIONES                                    | 57  |
| VII. RECOMENDACIONES                                | 59  |
| REFERENCIAS                                         | 61  |
| ANEYOS                                              | 60  |

### Índice de Tablas

| Tabla 1 : Ensayos realizados Laboratorio                                                               | 16 |
|--------------------------------------------------------------------------------------------------------|----|
| Tabla 2 : Tamizado obtenido de la calicata (C-1)                                                       | 19 |
| Tabla 3 :Tamizado obtenido de la calicata (C-2)                                                        | 20 |
| Tabla 4 Tamizado obtenido de la calicata (C-3)                                                         | 20 |
| Tabla 5 : Tabla de Clasificación AASHTO                                                                | 22 |
| Tabla 6 : Datos de Ensayo de Proctor modificado de muestra patrón                                      | 25 |
| Tabla 7 : Datos de Ensayo de Proctor modificado de muestra patrón con 0.20ml x Kg de TerraZyme         | 26 |
| Tabla 8 : Datos de Ensayo de Proctor modificado de muestra patrón con         0.25ml x Kg de TerraZyme | 27 |
| Tabla 9 : Datos de Ensayo de Proctor modificado de muestra patrón con 0.30ml x Kg de TerraZyme         | 28 |
| Tabla 10 : Datos de Ensayo de Proctor modificado de muestra patrón con 4.5% de caucho granulado        |    |
| Tabla 11 : Datos de Ensayo de Proctor modificado de muestra patrón col<br>6.5% de caucho granulado     |    |
| Tabla 12 : Datos de Ensayo de Proctor modificado de muestra patrón col<br>8.5% de caucho granulado     |    |
| Tabla 13 : Datos del ensayo de CBR de la muestra patrón                                                | 32 |
| Tabla 14 : Datos del ensayo de CBR de la muestra patrón con 0.20ml x la de TerraZyme                   |    |
| Tabla 15 : Datos del ensayo de CBR de la muestra patrón con 0.25ml x k<br>de TerraZyme                 |    |
| Tabla 16 : Datos del ensayo de CBR de la muestra patrón con 0.30ml x la de TerraZyme                   |    |
| Tabla 17 : Datos del ensavo de CBR de la muestra patrón con 4 5% de                                    |    |

| caucho gran | nulado                                                                                               | 37  |
|-------------|------------------------------------------------------------------------------------------------------|-----|
|             | : Datos del ensayo de CBR de la muestra patrón con 6.5% de                                           | 39  |
| Tabla 19    | : Datos del ensayo de CBR de la muestra patrón con 8.5% de                                           | 40  |
| Tabla 20    | : Datos del ensayo de Proctor Modificado Muestra patrón-                                             |     |
|             | : Datos del ensayo de Proctor Modificado Muestra patrón-                                             | .43 |
|             | : Datos de Ensayo de Proctor modificado de muestra patrón,<br>TerraZyme, patrón con caucho granulado | 44  |
| Tabla 23    | : Datos del ensayo de CBR de la muestra patrón y TerraZyme                                           | 47  |
|             | : Datos del ensayo de CBR de la muestra patrón y caucho                                              | 48  |
|             | : Datos del ensayo de CBR de la muestra patrón- caucho<br>TerraZyme                                  | 50  |
| Tabla 26    | : Clasificación y uso de suelos según el valor obtenido del CBR .                                    | 51  |

## Índice de figuras

| Figura N°1: Cuadro de especificación de calicatas                                                                | 14   |
|------------------------------------------------------------------------------------------------------------------|------|
| Figura N°2: Imagen de Número de Ensayos CBR                                                                      | . 15 |
| Figura N°3: Localización del A.H. Las lomas de ventanilla alta                                                   | 18   |
| Figura N°4: Carta de plasticidad                                                                                 | 21   |
| Figura N°5                                                                                                       | . 22 |
| Figura N°6                                                                                                       | 23   |
| Figura N°7: Curva Granulométrica Calicata 1                                                                      | 23   |
| Figura N°8: Grafica de relación % de humedad y densidad seca de la muestr                                        |      |
| Figura N°9: Grafica de relación % de humedad y densidad seca de la muestr<br>patrón con 0.20ml x Kg de TerraZyme |      |
| Figura N°10: Grafica de relación de % humedad y densidad seca de la mues<br>patrón 0.25ml x kg de TerraZyme      |      |
| Figura N°11: Grafica de relación de % humedad y densidad seca de la mues<br>patrón 0.30ml x kg de TerraZyme      |      |
| Figura N°12: Grafica de relación de % humedad y densidad seca de la mues patrón con 4.5% de caucho granulado     |      |
| Figura N°13: Grafica de relación % de humedad y densidad seca de la mues<br>patrón con 6.5% de caucho granulado  |      |
| Figura N°14: Grafica de relación % de humedad y densidad seca de la mues patrón con 8.5% de caucho granulado     |      |
| Figura N°15: Grafica de C.B.R de muestra patrón                                                                  | 32   |
| Figura N°16: Grafica de C.B.R de muestra patrón con 0.20ml x kg de<br>TerraZyme                                  | . 34 |
| Figura N°17: Grafica de C.B.R de muestra patrón con 0.25ml x kg de<br>TerraZyme                                  | . 35 |

| Figura N°18: Grafica de C.B.R de muestra patrón con 0.30ml x kg de<br>TerraZyme                                               | . 36 |
|-------------------------------------------------------------------------------------------------------------------------------|------|
| Figura N°19: Grafica de C.B.R de muestra patrón con 4.5% de caucho<br>granulado                                               | . 38 |
| Figura N°20: Grafica de C.B.R de muestra patrón con 6.5% de caucho<br>granulado                                               | . 39 |
| Figura N°21: Grafica de C.B.R de muestra patrón con 8.5% de caucho<br>granulado                                               | . 40 |
| Figura N°22: Grafica comparativa de resultados de máxima densidad seca entre la muestra patrón y añadida con TerraZyme        | . 42 |
| Figura N°23: Grafica comparativa de resultados de máxima densidad seca entre la muestra patrón y añadida con Caucho granulado | . 43 |
| Figura N°24: Grafica comparativa de resultados de máxima densidad seca entre la muestra patrón y añadida con Caucho granulado | . 44 |
| Figura N°25: Muestra patrón y herramientas para ensayo de Proctor modifica                                                    |      |
| Figura N°26: Muestra patrón con caucho granulado y herramientas para ensa                                                     | •    |
| Fuente: Elaboración propia                                                                                                    | . 46 |
| Figura N°27: Muestra patrón con TerraZyme y herramientas para ensayo de<br>Proctor modificado                                 |      |
| Figura N°28: Grafica de C.B.R de muestra patrón y TerraZyme                                                                   | . 47 |
| Figura N°29: Grafica de C.B.R de muestra patrón y Caucho Granulado                                                            | . 49 |
| Figura N°30: Grafica de C.B.R de muestra patrón - Caucho Granulado-                                                           |      |
| TerraZyme                                                                                                                     | . 50 |

#### RESUMEN

Esta investigación tuvo como objetivo general determinar la influencia del aditivo TerraZyme y el Caucho granulado en el mejoramiento de la subrasante en Ampliación Las Lomas –Ventanilla 2021; realizando los ensayos de granulometría, Proctor modificado y C.B.R. Formulándose la metodología: su diseño de investigación fue experimental (cuasi), su tipo de investigación nivel explicativo, enfoque cuantitativo. Sus resultados según los objetivos específicos al incorporar el TerraZyme en 0.20ml, 0.25ml y 0.30ml y caucho granulado al 4.5%, 6.5% y 8.5% fueron: primer objetivo específico determinar la máxima densidad seca con el TerraZyme el cual incremento de 2.008gr/cm3 a 2.013gr/cm3 con el 0.25ml de TerraZyme el segundo objetivo específico determinar la máxima densidad seca con el caucho granulado el cual incremento de 2.008gr/cm3 a 2.088gr/cm3 con el 4.5%, el tercer objetivo específico determinar la mejora del C.B.R al 100% de la M.D.S con el TerraZyme mejoró de 4.4% a 27.2% con el 0.25ml de TerraZyme y como cuarto objetivo específico determinar la mejora del C.B.R al 100% de la M.D.S con el caucho granulado mejoró de 4.4% a 11.7% con el 6.5% de caucho granulado. Conclusión la incorporación de Caucho granulado y TerraZyme mejoro la subrasante.

Palabras clave: TerraZyme, caucho granulado, subrasante

#### **ABSTRACT**

The general objective of this research was to determine the influence of the TerraZyme additive and the granulated rubber in the improvement of the subgrade in Ampliación Las Lomas -Ventanilla 2021; performing the particle size tests, modified Proctor and C.B.R. Formulating the methodology: his research design was experimental (quasi), his type of research was explanatory level, quantitative approach. Its results according to the specific objectives when incorporating the TerraZyme in 0.20ml, 0.25ml and 0.30ml and granulated rubber at 4.5%, 6.5% and 8.5% were: first specific objective to determine the maximum dry density with the TerraZyme which increased by 2.008gr / cm3 to 2.013gr / cm3 with 0.25ml of TerraZyme the second specific objective to determine the maximum dry density with granulated rubber which increased from 2.008gr / cm3 to 2.088gr / cm3 with 4.5%, the third specific objective to determine the CBR improvement to 100% of MDS with TerraZyme improved from 4.4% to 27.2% with 0.25ml of TerraZyme and as a fourth specific objective to determine the improvement of CBR to 100% of MDS with granulated rubber improved from 4.4% to 11.7% with 6.5% of granulated rubber. Conclusion The incorporation of Granulated Rubber and TerraZyme improved the subgrade.

Keywords: TerraZyme, granulated rubber, subgrade

#### I. INTRODUCCIÓN

Las subrasantes suele presentar problemas acerca de baja resistencia al esfuerzo en el suelo, generando asi que las capas siguientes como la base y subbase tenga un mayor espesor. Se logro influenciar positivamente la resistencia al esfuerzo inicial de la subrasante con el aditivo TerraZyme y caucho granulado, logrando asi que que se reduzca los espesores de las capas de sub base y tambien de la base, reduciendo asi el tiempo y costo del diseño ya que tambien evitaremos extraer, remover y colocar otro material para la subrasante lo cual genera un costo por realizar dicha actividad. (Hernán, W. y Fernández, G., 2017) 1. Al nivel mundial, La estabilización de los suelos en las vías terrestres ha sido una técnica utilizada para mejorar el comportamiento mecánico de los suelos. En el proceso ha logrado solucionar diversos problemas en el material, tales como la resistencia al esfuerzo normal, la deformabilidad o comprensibilidad, la estabilidad volumétrica ante la presencia de agua, entre otros (Sánchez, Castro, Ureña, & Azañon, 2014)<sup>2</sup>. diversos paises como: Colombia, Ecuador, Colombia entre otros; optaron por la estabilizacion o mejoramiento de la capa de la subrasante, por motivos sociales, ambientales y económicos, donde se buscó elevar su capacidad de resistencia, su maxima densidad seca, con la finalidad de estabilizar y reutilizar la subrasante Estos fueron disminuyendo con la incorporación de aditivos orgánicos (TerraZyme), Terrasil y caucho pulverizado y así evitar defectos en el diseño, materiales y su construcción misma.

En el Perú, es importante contar con una infraestructura vial de pavimentos o vías de acceso que se encuentren en buen estado ya que es un medio importante con el cual generan ingresos económicos sea por mercadería, turismo, implantaciones entre otros, dicho desarrollo vial se da a través de la construcción, rehabilitación y mantenimiento de carreteras. El deterioro de los pavimentos construidos o caminos a nivel nacional incrementó por diversos factores, es debido a un mal procedimiento constructivo, mala compactación del terreno, incremento de cargas solicitadas, entre otros es por ello por lo que se implementa técnicas y procedimientos para poder estabilizar el suelo empleando aditivos y polímeros como respuesta a obtener mayor vida útil y minimizar gasto, empleando estudios previos que nos ayude a conocer las propiedades de la superficie, como su comportamiento y al emplear un

estabilizador corrobar que el material es óptimo para el uso que tendrá (Tomas, Cano, García, Santamarta y Hernández, 2012)<sup>3</sup> unos de las formas de estabilizar es con el aditivo TerraZyme y el caucho granulado, en diversas zonas del Perú como: Lima, Lima, Ayacucho, encontramos diferentes tipos de suelos que fueron materia de estudio, incorporándose caucho rallado, aditivo Perma-Zyme, aditivo TerraZyme, donde en la mayoría era un terreno arcilloso el cual presenta propiedades adecuadas para su utilización de manera directa, lo que conllevó a realizar una correcta estabilización físico - mecánica con agregados que proporcionen mejoras en sus propiedades.

En el ámbito local, se realizaron los estudios en la vía de Ampliación Las Lomas en el distrito de Ventanilla, esta vía tiene una transitabilidad vehicular fluida por lo cual se encuentra en la clasificación de carreteras de 3º clase, lo cual trae consigo infinidades de molestias hacia los transportistas y a la población, una de ellas es el excesivo tráfico vehicular que se originaron por la presencia de baches y ahuellamientos en el pavimento, lo cual ha generado accidentes de alta consideración, afectando así la infraestructura de los vehículos como también el comercio que se presencia en dicha zona, es por ello que se optó por realizar estudios en dicha vía y dar una solución a los problemas<sup>4</sup>. En la presente tesis se buscó implementar técnicas eco amigables para la estabilización de suelos, atendiendo la necesidad de mejorar las propiedades mecánicas del suelo aplicando el Caucho y el aditivo TerraZyme, así mismo daremos a conocer la mejora que hubo en el suelo al estabilizarlo y comparar sus resultados<sup>5</sup>. Formulación del Problema: Un pavimento es sumamente fundamental puesto que nos consienten un trueque social, cultural y económico, pero en muchas ocasiones los municipios no cuentan con el financiamiento correspondiente, es por ello que no todo el territorio cuenta con pistas y/o pavimentación como es el caso de Ampliación Las Lomas, siendo esta una zona crítica la cual no favorece la transabilidad tanto peatonal ni vehicular<sup>6</sup>. Mencionando con anterioridad la problemática se observó que Ampliación Las Lomas comprende un tipo de suelo arcilloso con presencia de limos, por ende, se planteó ver la influencia de la subrasante al adicionarle un material procedente de la zona de estudio ya que se adicionó el TerraZyme y Caucho en distintas cantidades para poder concluir su influencia en la mejora de subrasante y así poder hallar la proporción más beneficiosa.

Es por ello, que en la presente investigación se ha planteado el siguiente *Problema General*: ¿De qué manera el aditivo TerraZyme y Caucho granulado influye en la evaluación de la subrasante en Ampliación Las Lomas –Ventanilla 2021? En paralelo se plantearon los *Problemas Específicos* ¿De qué manera el aditivo TerraZyme influye en la máxima densidad seca de la subrasante en Ampliación Las Lomas –Ventanilla 2021?; ¿De qué manera el Caucho granulado influye en la máxima densidad seca de la subrasante en Ampliación Las Lomas –Ventanilla 2021?; ¿De qué manera el aditivo TerraZyme influye en la resistencia al esfuerzo de la subrasante en Ampliación Las Lomas –Ventanilla 2021?; ¿De qué manera la inclusión/aplicación Caucho granulado influye en la resistencia al esfuerzo de la subrasante en Ampliación Las Lomas –Ventanilla 2021?

#### Justificación del Problema

La presente investigación se justifica planteando alternativas innovadoras de solución para así poder mejorar la subrasante, teniendo como propuesta el uso de TerraZyme y/o Caucho Granulado; ya que se dará una utilización y valor agregado, obteniendo beneficios en la mejora de la subrasante como en la parte económica buscando así soluciones para estabilizar los pavimentos: La justificación teórica, según el INEI (2011), el material plástico y el caucho tiene gran impacto ambiental en la sociedad peruana, siendo así que el 4% de estos desechos es caucho. Además, en los últimos años, en Perú el crecimiento del sector automotriz causó índices alarmantes de contaminación y generó desechos sólidos, tales como los neumáticos, que en su mayoría no tienen un trato adecuado para su proceso de reciclado<sup>7</sup>. Así mismo se obtuvo validez y confiabilidad de las variables del proyecto, ya que se comprueba con los ensayos de laboratorio que el Caucho y el TerraZyme ayudan a estabilizar el terreno o el suelo<sup>8</sup>.

Justificacion ambiental El uso de estos residuos será un beneficio para el medio ambiente; ya que se reciclará para la obtención del material dando una solución ecológica al problema de estabilización en los caminos viales empleando desechos que contaminan el medio ambiente de la zona. Justificación social este proyecto beneficiará a los pobladores de la zona de Las lomas de ventanilla alta, al tener una vía de acceso más estabilizada, el mismo que les servirá para trasladar sus vehículos con menos baches, alargando la vida útil de la trocha. Justificación económica Se busca economizar los costos en la construcción de la subrasante, al

reemplazar un producto natural de la zona, mediante la incorporación del caucho granulado y comparando con el aditivo TerraZyme. justificación teórica esta aplicación técnica, ayudará a conocer una nueva alternativa en solucionar la estabilización de una subrasante, llenando así un vacío de conocimiento teórico y dejando de lado los tradicionales aditivos empleando en subrasantes.

En la presente investigación, se propone la *Hipótesis General*: La aplicación del aditivo TerraZyme y el Caucho granulado influye positivamente en la estabilización de la subrasante en Ampliación Las Lomas –Ventanilla 2021. En paralelo se plantearon las *Hipótesis Específicas*: La aplicación del aditivo TerraZyme aumenta la máxima densidad seca de la subrasante en Ampliación Las Lomas –Ventanilla 2021; La aplicación del Caucho granulado aumenta la máxima densidad seca de la subrasante en Ampliación Las Lomas –Ventanilla 2021; La inclusión del aditivo TerraZyme aumenta la resistencia al esfuerzo de la subrasante en Ampliación Las Lomas –Ventanilla 2021; La inclusión del Caucho granulado aumenta la resistencia al esfuerzo de la subrasante en Ampliación Las Lomas –Ventanilla 2021.

También se planteó el *Objetivo General*: Determinar la influencia del aditivo TerraZyme y el Caucho granulado en el mejoramiento de la subrasante en Ampliación Las Lomas –Ventanilla 2021. En paralelo se plantearon las *Objetivos Específicas*: Precisar la densidad seca máxima aplicando el aditivo TerraZyme en la subrasante en Ampliación Las Lomas –Ventanilla 2021; Precisar la densidad seca máxima aplicando el Caucho granulado en la subrasante en Ampliación Las Lomas –Ventanilla 2021; Determinar la resistencia al esfuerzo incluyendo el aditivo TerraZyme en la subrasante en Ampliación Las Lomas –Ventanilla 2021; Determinar la resistencia al esfuerzo incluyendo el Caucho granulado en la subrasante en Ampliación Las Lomas –Ventanilla 2021;

#### II. MARCO TEÓRICO

A nivel Nacional se tiene a: Benavente y Navarro (2020) su investigación tuvo como objetivo Identificar la influencia del caucho rallado de neumáticos inservibles en el comportamiento mecánico geotécnico de un tipo suelo granular y el caucho rayado utilizado proviene de la empresa de Grass sintético Oak Sports. Su estudio fue de tipo experimental, las muestras fueron de la cantera Laguna Satipo-Mazamari, se realizaron los ensayos de límites de consistencia, Proctor estándar y CBR, emplearon el 5%, 10% ,15% y 20% de caucho rallado calculado respecto al peso teniendo como resultado se obtuvo que al adicionar mayor cantidad de caucho la densidad seca máxima fue disminuyendo, se obtuvo como resultado del Proctor estándar una M.D.S de 1.825 gr/cm3 al 10% una M.D.S de 1.713 gr/cm3, al 15% una M.D.S 1.596 gr/cm3 y con el 20% una M.D.S de 1.513 gr/cm3 pero el óptimo es el 5% ya que tiene mejor resistencia al esfuerzo y mayor densidadcortante<sup>9</sup>. Chambi (2015), su investigación tuvo como objetivo determinar las características físicas y mecánicas de los suelos de las canteras Pekosani y Chijuya de composición finos y mejoramiento de los mismos utilizando aditivo Perma-Zyme 22x para la conformación de la capa de rodadura en carreteras de tipo afirmado. Su estudio fue de tipo experimental, las muestras obtenidas de las canteras junto con el aditivo se realizaron los ensayos correspondientes y tuvo como resultado para la cantera Pekosani que su MDS aumento según la cantidad de aditivo que le colocaran, desde el terreno natural que tenía 2.05 gr/cm3 a 2.10 gr/cm3 ( 1Ltr/30m3), 2.08 gr/cm3 (0.9Ltr/30m3), 2.13 gr/cm3 (1.1Ltr/30m3), para la cantera Chijuya desde el terreno natural que tenía 1.98 gr/cm3 a 2.03 gr/cm3 (1Ltr/30m3) , 2.00 gr/cm3 ( 0.9Ltr/30m3), 2.05 gr/cm3 ( 1.1Ltr/30m3), así mismo su C.B.R al 100% M.D.S 1" de la cantera Pekosani sin aditivo fue de 41.00 ,con 1Ltr de aditivo aumento al 50.30, con 0.9Ltr de aditivo aumento al 48.60, con 1.1Ltr de aditivo aumento al 53.20, su C.B.R al 100% M.D.S 1" de la cantera Chijuya sin aditivo fue de 27.00 ,con 1Ltr de aditivo aumento al 34.50, con 0.9 Ltr de aditivo aumento al 32.00, con 1.1Ltr de aditivo aumento al 37.50<sup>10</sup>.

Gallegos y Palomino (2021), su investigación tuvo como objetivo Evaluar de qué manera influye la estabilización química mediante polímeros, en el incremento del valor del CBR en el afirmado, tramo Huanta - Luricocha, Ayacucho. Su estudio fue de tipo experimental, se extrajo muestras del terreno a través de las calicatas para

realizar su respectivo ensayo para la obtención del C.B.R y tuvo como resultado que el aditivo TerraZyme mejoro el comportamiento del afirmado teniendo los valores siguientes; para el terreno natural su C.B.R al 100% es de 40.1, agregándole 38ml/m3 del aditivo aumento a 45.8, agregándole 57ml/m3 del aditivo aumento a 55.9, agregándole 61ml/m3 del aditivo aumento a 67.9, así mismo su máxima densidad seca del terreno aumento, teniendo un MDS del terreno natural de 2.133 gr/cm3, agregándole 38ml/m3 del aditivo aumento a 2.199 gr/cm3, agregándole 57ml/m3 del aditivo aumento a 2.204 gr/cm3, agregándole 61ml/m3 del aditivo aumento a 2.225 gr/cm3, se sugiere emplear más de 61 ml/m3 de aditivo ya que siguió mejorando los resultados hasta dicha dosificacion<sup>11</sup>.

A nivel Internacional tenemos a: Bocanegra, Ruiz y Alfonso (2015), su investigación tuvo como objetivo establecer las mejoras en resistencia y disminución de la plasticidad que se presentan al aplicar un aditivo orgánico a un suelo de subrasante. Su estudio fue de tipo experimental, se realizaron los ensayos para la obtención del límite plástico limite liquido e índice de plasticidad, ensayo de Proctor modificado y la obtención del C.B.R y tuvo como resultado que el material aglutinante utilizado aumento densidad y obtuvo una humedad óptima, ya que en el análisis inalterado de CBR a dos penetraciones antes de las inmersiones fue en promedio de 2.2% y después fue de 2.0%. Así mismo, cuando se estabilizo el suelo se obtuvo un CBR de 8.8% Este resultado resulta positivo ya que este aditivo minimiza los costos de triturados y de mantenimiento de las vías<sup>12</sup>.

Rodriguez (2016), su investigación tuvo como objetivo Analizar la subrasante por medio de la inclusión del material TERRASIL, como material alternativo para el mejoramiento. Su estudio fue de tipo experimental, se realizaron lo ensayos de Proctor modificado, relación de soporte de california C.B.R, límites de Atterberg y tuvo como resultado que el aditivo de producto químicos biodegradables mejoro el terreno natural, tanto en su densidad que fue obtenido del ensayo Proctor modificado desde la abscisa 0+000 que era de 1.661% y paso a ser 1.734% hasta la abscisa 3+822 que era de 1.535% a 1.643%, así mismo su C.B.R que fue obtenido del ensayo relación soporte de california desde la abscisa 0+000 que era de 19.6% y paso a ser 23.03% hasta la abscisa 3+822 que era de 16.01% a 17.68.% <sup>13</sup>.

Álvarez (2020), su tuvo como objetivo analizar la adición de caucho pulverizado

proveniente de llantas en desuso como solución eficiente para reforzar los suelos blandos de subrasante que se encuentra en la sabana de Bogotá con un dosificación de 1.5%, 2.5% y 3.5% Su estudio fue de tipo experimental, se realizaron los ensayos correspondientes para la obtención del CBR y tuvo como resultado fue que el polvo de caucho es un material que puede ser aprovechado para reforzar un suelo que presente inestabilidad, ya que incrementa algunas propiedades mecánicas del suelo como la resistencia al esfuerzo cortante, la cohesión y el ángulo de fricción de un suelo arcilloso, además el CBR mejoro en gran medida al mezclar el 1.5% , 2.5% y 3.5% de polvo de caucho con el suelo inadecuado logrando aumentar a un 56%, 172% y 194% al 100% de la M.D.S<sup>14</sup>. En otros Idiomas tenemos a: Kumar (2020), in his research had as an objective to analyze the soil properties under influence of Terrazyme and waste plastic cement bag strips. It was an experimental study where it was used the sub-grade soil from a village named Meghaul, in Madhubani district, Bihar. In addition, it was used Terrazyme and plastic bag strips cut into strips of 1, 2 and 3cm length. The conclusion of the objective of this study was that Terrazyme increases the plastic limit by 9.86% when used at concentration of 0.3% of dry soil by weight and consistency index was increased by 46% due to Terrazyme. However, the CBR value of soil treated with 0.5% plastic bag strips of length 2cm is obtained as 9.87%, showing an increment of 19.16% as compared to untreated soil. Finally, the maximum increment in CBR value is 25.86%, which is obtained when soil is treated with 0.5% plastic bag strips of length 2cm and 0.3% Terrazyme as compared to

Farooq and Sukhdeep (2020), in his research entitled had as an objective to study the experimental outcome by doing various bio-enzymatic soil stabilization tests and to optimize the quantity of Terrazyme dozes to be used as stabilizing agent. It was an experimental study where black cotton soil was collected and Terrazyme was brought from market. The conclusion of the objective of this study was that geotechnical properties of online purchase black cotton soil was effectively improved by using different dosages of Terrazyme, that is 250ml/2m3, 250ml/1.5m3, 250ml/1.0m and 250ml/0.5m3 respectively. It was observed that the soaked CBR values of every black cotton soil was improved considerably and the best result for Unconfined Compression Test was observed with dosage of 250ml/0.5m3 at curing

untreated soil<sup>15</sup>.

time period of 28 days<sup>16</sup>.

Gerard (2014), in his research had as an objective finding the most beneficial way of reusing the waste tyres through ground improvement which will contribute to sustainable development. The study was carried out to investigate the effect of shredded waste tyres on shear strength when randomly mixed with selected sandy soils of South Africa. It was an experimental study where using tyre shred-sand composites performed well. In their study, tyre shreds ranging from 36 mm to 76 mm were used. The conclusion of the objective of this study was that It was noted that the addition of tyre shred to both Cape Flats and Klipheuwel sands enhanced their shear strength up to a certain dosage then levelled off. The highest values from all categories of composites were reached at shred content of 30% by dry mass. This dosage was found to be an optimum tyre shred dosage to reinforce selected granular soils of South Africa<sup>17</sup>.

Rajendran and Jaisankar (2017), in his research had as an objective to carryout extensive experimental study on the effect of Terrazyme on index properties and strength of expansive soil. It was an experimental study were an expansive soil is treated with different percentages of a Terrazyme which was cured for 7, 14 and 28 days. The conclusion of the objective of this study was that The Terrazyme when mixed with soils reduces the plasticity characteristics and enhances the strength soil considerably. So, Terrazyme can also be used to improve the characteristics of expansive soil<sup>18</sup>.

Sravan and Nagaraj (2015), in his research had as an objective to explore the beneficial utilization of Terrazyme in small quantity along with an optimum combination of lime and cement in preparation of CSEBs. It was an experimental study were locally available red earth, sand, ordinary Portland cement, lime and Terrazyme were used for the preparation of CSEBs. The conclusion of the objective of this study was that properties has been clearly brought out because addition of Terrazyme to solid helped the liquid limit reduced with time, while plastic limit increased with time<sup>19</sup>.

Tasalloti, Chiaro, Murali y Banasiak (2021), su investigación tuvo como objetivo representar una gran fuente de materiales de construcción sostenibles, de bajo costo y fácilmente disponibles que tienen excelentes propiedades de ingeniería. Su reutilización (en forma de caucho granulado mezclado con suelos) en aplicaciones

de ingeniería civil (geotécnica) de reciclaje de gran volumen sería beneficioso y debería fomentarse. Se estima que en la actualidad en todo el mundo solo menos del 10% de los ELT se reutilizan en aplicaciones geotécnicas, mientras que casi el 40% se recicla como combustible derivado de neumáticos. Fue de tipo experimental proporcionando información útil que facilite el uso de SRM como materiales de construcción geotécnicos, este artículo de revisión presenta una revisión completa de la investigación publicada sobre las propiedades de ingeniería de los suelos granulares (es decir, principalmente arena y grava) mezclados con varias inclusiones de caucho reciclado. Tuvo como conclusión datos experimentales disponibles, se examinan y los resultados de los análisis se presentan y discuten principalmente en términos de los efectos del contenido de caucho y la relación de aspecto (relación de tamaño de partícula mediana de caucho a grava) en las propiedades de compactación, permeabilidad, resistencia y compresión junto con las propiedades dinámicas y características de deformación cíclica de los SRM<sup>20</sup>.

#### Definición de Subrasante

La subrasante, es parte de la carretera y se encuentra en el mismo terreno natural así mismo debe cumplir con características estructurales para evitar fallas ya que sirve de soporte para las capas del pavimento<sup>21</sup>.

La estabilización del suelo se puede usar para mejorar la subrasante pobre; por lo tanto, puede reducir el grosor del diseño del pavimento y también aumentar la vida útil del pavimento.

#### Dosificación

Es el proceso en el cual se elige los ingredientes para tener la combinación más conveniente y adecuado, para así obtener más trabajabilidad y consistencia adecuada del producto que está en un estado no endurecido<sup>22</sup>.

#### Caucho granulado

El caucho granulado es antienvejecimiento, de larga duración y fácil mantenimiento. Las propiedades físicas del caucho granulado obtenido son sólidos en forma de granulado, de color negro con un diámetro de 4mm. Además, que el uso de materias primas de caucho no es contaminante, presenta elasticidad moderada, es antideslizante, tiene buena permeabilidad al agua y resistencia a la abrasión<sup>23</sup>

#### Aditivo TerraZyme

Es un aditivo orgánico el cual es elaborado a base de extractos de plantas naturales

gracias a de la fermentación, la formulación final contiene diversos también incluye enzimas. El aditivo reduce la permeabilidad y la plasticidad en suelos arcilloso, lo cual reduce el daño y deformación que usualmente se produce ante las condiciones húmedas del suelo, también ayuda al suelo a fortalecerlo volviéndolo así más denso y estable haciendo así que la resistencia a la comprensión aumente<sup>24</sup>.

#### Ensayo Proctor Modificado

Este ensayo es empleado a fin de alcanzar la relación del contenido de humedad de la muestra y su peso seco del área, se compacta en moldes de 4 a 6 pul. de espesor. Con un pistón de 18 pulg. de altura originando así un esfuerzo de 56000 lb/p<sup>2</sup> <sup>25</sup>.

#### Óptimo Contenido de Humedad

Eestá representada por porcentaje, el cual un suelo al ser compactada con un esfuerzo especifico facilita una máxima densidad seca, puede ser modificado o estándar el esfuerzo<sup>26</sup>.

#### Ensayo CBR

Es un procedimiento de prueba de laboratorio ASTM D1883 para el ensayo de CBR, es un procedimiento práctico y fácil, que tiende a contraponer la resistencia a la inserción de la muestra con la de una muestra "patrón" aplicando un pistón de tamaño promedio<sup>27</sup>.

#### Capacidad Portante

La capacidad portante de una determinada área es el dominio del suelo para soportar cargas solidificadas a su vez denominadas también como la extensión de carga, puesto que soporta la presión cúspide de la correlación entre la cimentación y el terreno. De tal manera que no ocasione conflictos en la cortante del área o acumulación en exceso del material<sup>28</sup>.

La resistencia al cortante es el esfuerzo cortante máximo que el suelo puede soportar<sup>28</sup>.

La resistencia al corte es la propiedad del terreno, el cual gracias a ello resiste desplazamiento entre las partículas, a través de una fuerza externa<sup>28</sup>.

#### III. METODOLOGÍA

#### 3.1 Tipo y diseño de investigación

El tipo de investigación es aplicado porque se quiere determinar como el aditivo TerraZyme y el caucho granulado influye en el material de afirmado tanto en resistencia al esfuerzo, porcentaje de expansión, etc.

El tipo de investigación aplicada se refiere que a través de aportes teóricos y descubrimientos los problemas se podrán dar soluciones, y esto llevaría a generar bienestar a la sociedad<sup>29</sup>.

El nivel de investigación es explicativo ya que se utilizará las variables para determinar si el material de afirmado mejora sus propiedades agregándole el aditivo TerraZyme y el caucho granulado.

Los estudios explicativos son aquellos que se basan en responder a las causas de eventos, también por qué se este fenómeno y las condiciones en la que se da, o el porqué de la relación entre dos o más<sup>30</sup>.

El enfoque de la investigación es cuantitativo ya que se va a comprobar a través de la experimentación las hipótesis que fueron planteadas y también las dos variable tanto dependiente e independiente guardan relación.

El enfoque cuantitativo es una serie de procesos en el cual no se puede eludir los pasos ya que cada etapa procede a la otra y tiene un orden riguroso. Parte de una idea en la cual una vez definida se pueden originar los objetivos y preguntas de la investigación<sup>31</sup>.

El diseño de la investigación es cuasiexperimental, se va a comparar los resultados que se harán en laboratorio de nuestra muestra patrón con las muestras en el cual se le adicionara el aditivo TerraZyme y el caucho granulado.

El diseño experimental es aquel que podrá ser manipulado por el investigador para

así poder verificar las hipótesis que se plantea en la investigación.

El diseño cuasiexperimental, manipulan adrede al menos una variable independiente para poder ver su efecto y relación con una o varias variables dependientes<sup>32</sup>.

#### 3.2 Variables y operacionalización

Variable independiente 1: Aditivo TerraZyme

Definición conceptual

Para Rojas y Barreda (2015), "la estabilización química se refiere a la inclusión de algunas sustancias químicas patentadas que se utiliza comúnmente en la estructura del pavimento para mejorar sus propiedades brindando mayor resistencia, impermeabilidad y prologar su vida útil." (p.15)<sup>33</sup>

Definición operacional

Proceso realizado con el aditivo TerraZyme en conjunto de la subrasante para evaluar las mejoras que nos da en comparativa a las del caucho granulado, empleando la dosificación brindada por el laboratorio que nos indica desde el 0.20ml por kilo de material, 0.25ml por kilo de material y 0.30ml por kilo de material.

Variable independiente 2: Caucho granulado

Definición conceptual

El caucho reciclado puede ser utilizado como componente de pavimentos y concretos para la construcción de vías y edificaciones. Emplear residuos de caucho en este tipo de aplicaciones representa, además de las importantes ventajas ambientales y económicas. Debido a lo anterior, el uso de caucho reciclado en concretos y pavimentos presenta retos económicos, ecológicos y técnicos que actualmente son tema de interés. (Peláez et. al, 2017)<sup>34</sup>.

Definición operacional

A través de los antecedentes recopilados se realizará la estabilización de la subrasante con el caucho reciclado aplicando la dosificación 4.5%, 6.5% y 8.5% por peso del material.

Variable dependiente: Mejoramiento de la Subrasante

Definición conceptual

Es la base directa de la estructura del pavimento y forma parte del prisma de la carretera que se construye entre el terreno natural explanado y la estructura del pavimento. (Montalvo, 2017)<sup>35</sup>.

Definición operacional: Luego de agregar el aditivo TerraZyme y el caucho granulado reciclado en la subrasante, se realzará los ensayos correspondientes con la finalidad de obtener cambios favorables, teniendo como evidencia las fichas de los ensayos con cada material añadido.

#### 3.3 Población, Muestra y muestreo

La población es la agrupación de todas las observaciones posibles que caracterizan al objeto<sup>36</sup>.

Para nuestra investigación la población fueron todas las calicatas obtenidas de la Subrasante en el AA. HH Las Lomas, AA. HH Ventanilla Alta, distrito de Ventanilla-Callao.

La muestra es un subgrupo de la población del que se recolectara datos, y que tiene que delimitar de antemano con precisión, debe ser representativo de la población<sup>37</sup>.

La muestra viene a ser la herramienta del investigador con la cual elige elementos típicos de la investigación, de los cuales conseguiremos resultados que nos accederá a tener deducciones de la población a trabajar<sup>38</sup>.

La muestra fueron 3 calicatas obtenidas de la subrasante en ampliación Las Lomas, de Ventanilla Alta 0+000-1+000, distrito de Ventanilla-Callao.

Cabe resaltar que Ampliación las Lomas de Ventanilla alta está considerada una Carretera de tercera clase Se realizará 2 calicatas como mínimo para efectos de muestreo cumpliendo los parámetros mínimos de los numero de calicatas a realizar según la MTC como se puede detallar en la figura N°1 Imagen de números de calicatas. Las calicatas tendrán un área considerable con la finalidad de extraer el material para realizar los ensayos o pruebas correspondientes en un laboratorio de suelos<sup>39</sup>.

| Tipo de Carretera (m)                                                                                                                          |                                                          | Número mínimo de Calicatas                                                                                                                                                                           | Observación                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Autopistas: carreteras de IMDA mayor<br>de 6000 veh/día, de calzadas<br>separadas, cada una con dos o más<br>carriles                          | 1.50m respecto al nivel<br>de subrasante del<br>proyecto | Calzada 2 carriles por sentido:     4 calicatas x km x sentido     Calzada 3 carriles por sentido:     4 calicatas x km x sentido     Calzada 4 carriles por sentido:     6 calicatas x km x sentido | Las calicatas se<br>ubicarán<br>longitudinalmente |
| Carreteras Duales o Multicarril:<br>carreteras de IMDA entre 6000 y 4001<br>veh/dia, de calzadas separadas, cada<br>una con dos o más carriles | 1,50m respecto al nivel<br>de subrasante del<br>proyecto | Calzada 2 carriles por sentido: 4 calicatas x km x sentido Calzada 3 carriles por sentido: 4 calicatas x km x sentido Calzada 4 carriles por sentido: 6 calicatas x km x sentido                     | y en forma<br>alternada                           |
| Carreteras de Primera Clase:<br>carreteras con un IMDA entre 4000-<br>2001 veh/dia, de una calzada de dos<br>carriles.                         | 1.50m respecto al nivel<br>de subrasante del<br>proyecto | 4 calicatas x km                                                                                                                                                                                     |                                                   |
| Carreteras de Segunda Clase:<br>carreteras con un IMDA entre 2000-401<br>veh/dia, de una calzada de dos carriles.                              | 1,50m respecto al nivel<br>de subrasante del<br>proyecto | 3 calicatas x km                                                                                                                                                                                     | Las calicatas se<br>ubicarán<br>longitudinalmente |
| Carreteras de Tercera Clase: carreteras<br>con un IMDA entre 400-201 veh/dia, de<br>una calzada de dos carriles.                               | 1.50m respecto al nivel<br>de subrasante del<br>proyecto | 2 calicatas x km                                                                                                                                                                                     | y en forma<br>alternada                           |
| Carreteras de Bajo Volumen de<br>Tránsito: carreteras con un IMDA ≤ 200<br>veh/día, de una calzada.                                            | 1.50m respecto al nivel<br>de subrasante del<br>proyecto | 1 calicata x km                                                                                                                                                                                      |                                                   |

Figura N°1: Cuadro de especificación de calicatas

Fuente: Manual de Carreteras – Sección de Suelos y Pavimentos

De las calitas obtenidas del terreno, se elegirá la que presente mayores problemas por la clasificación del terreno a partir de la clasificación de suelos por medio del tamizado, con esa muestra de terreno se trabajara, se le añadirá el aditivo TerraZyme y el caucho granulado, con los datos obtenidos se compraran los productos estabilizantes y se verán cual ayudo o estabilizo más o si tuvieron similares efectos<sup>40</sup>.

Con respecto al C.B.R la norma indicó realizar para factores de ensayo lo siguiente, según el tipo de carretera presente tomada para la investigación, un (01) Ensayo CBR como mínimo por cada 1.5km, según el Manual de Carreteras se detalla – en la figura N°2 Imagen de números de ensayos de CBR.

| Tipo de Carretera                                                                                                                           | N° Mr y CBR                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Autopistas: carreteras de IMDA mayor de 6000 veh/día, de calzadas separadas, cada una con dos o más carriles                                | Calzada 2 carriles por sentido: 1 Mr cada 3 km x sentido y 1 CBR cada 1 km x sentido     Calzada 3 carriles por sentido: 1 Mr cada 2 km x sentido y 1 CBR cada 1 km x sentido     Calzada 4 carriles por sentido: 1 Mr cada 1 km y 1 CBR cada 1 km x sentido |
| Carreteras Duales o Multicarril: carreteras de IMDA entre<br>6000 y 4001 veh/dia, de calzadas separadas, cada una con<br>dos o más carriles | Calzada 2 carriles por sentido: 1 Mr cada 3 km x sentido y 1 CBR cada 1 km x sentido     Calzada 3 carriles por sentido: 1 Mr cada 2 km x sentido y 1 CBR cada 1 km x sentido     Calzada 4 carriles por sentido: 1 Mr cada 1 km y 1 CBR cada 1 km x sentido |
| Carreteras de Primera Clase: carreteras con un IMDA entre<br>4000 - 2001 veh/día, de una calzada de dos carriles.                           | Cada 1 km se realizará un CBR                                                                                                                                                                                                                                |
| Carreteras de Segunda Clase: carreteras con un IMDA entre 2000 - 401 veh/día, de una calzada de dos carriles.                               | Cada 1.5 km se realizará un CBR                                                                                                                                                                                                                              |
| Carreteras de Tercera Clase: carreteras con un IMDA entre<br>400 - 201 veh/dia, de una calzada de dos carriles.                             | Cada 2 km se realizará un CBR                                                                                                                                                                                                                                |
| Carreteras de Bajo Volumen de Tránsito: carreteras con un IMDA ≤ 200 veh/día, de una calzada.                                               | Cada 3 km se realizará un CBR                                                                                                                                                                                                                                |

Figura N°2: Imagen de Número de Ensayos CBR

Fuente: Manual de Carreteras – Sección de Suelos y Pavimentos

Para la presente investigación se utilizaron 1 C.B.R de la muestra patrón y 06 C.B.R de los estabilizantes (03 con el aditivo TerraZyme y 03 con el caucho granulado), por lo cual se empleó 07 ensayos de C.B.R en total.

#### 3.4 Técnicas e instrumentos de recolección de datos

La técnica para reunir los datos fue mediante la observación directa, puesto que a través de ello nos permitió visualizar cada prueba, ensayado en laboratorio y tomamos las notas correspondientes necesarios para nuestros resultados y comparar con la hipótesis<sup>41</sup>.

La observación directa se sobrepone a través del investigador que se coloca en contacto con el fenómeno que se va a investigar<sup>42</sup>.

Los instrumentos para recopilar los datos que se utilizó para la investigación fueron los formatos de los ensayos que se realizaran en laboratorio, y cada instrumento

que se utilizara en los ensayos estará normado<sup>43</sup>.

El instrumento es cualquier recurso que el investigador puede utilizar para así aproximarse al fenómeno y así podrá obtener información necesaria que servirá para la investigación<sup>44</sup>.

Tabla 1 : Ensayos realizados Laboratorio

|         | Ensayo                               | Instrumento                          |
|---------|--------------------------------------|--------------------------------------|
| Ensayos | Ensayo de Clasificación<br>de Suelos | Ficha de resultado de<br>laboratorio |
| ,       | Ensayo de Proctor<br>Modificado      | Ficha de resultado de<br>laboratorio |
|         | Ensayo de C.B. R                     | Ficha de resultado de<br>laboratorio |

Fuente: Propia

La validez es la imposición de que el instrumento mida verdaderamente lo que debe medir<sup>41</sup>.

Esta investigación fue sometida a juicio de expertos para poder hallar el nivel de valides del instrumento, donde tres ingenieros civiles expertos lo evaluaron. La confiabilidad se puede definir como la razón de las varianzas de la puntuación observada con la verdadera<sup>45</sup>.

La confiabilidad se refiere al repetir el ensayo con el fin de evaluar el objeto de análisis, dando como resultado la similitud de valores entre los ensayos, brindando confianza de los resultados obtenidos, así mismo la certificación de calibración de los instrumentos y la firma de los especialistas en el ensayo<sup>46</sup>.

#### 3.5 Procedimientos

Los pasos que se siguieron para realizar el presente trabajo de investigación fueron los siguientes:

- 1. Para la adquisición del Aditivo TerraZyme, se fue hasta la empresa Stasoil en la CALLE CRISTÓBAL LOZADA Y PUGA N°103 URB. PANDO 1ERA ETAPA SAN MIGUEL LIMA PERÚ y del Caucho granulado de la empresa Líder Grass ubicada en Jr. Jorge Chávez N° 977 Dpto: 808 Breña Lima Perú.
- 2. Se realizo 3 calicatas en Las lomas de Ventanilla Alta, las calicatas tuvieron una profundidad de 1.50 m, después de ello se llevó el material al laboratorio JJ Geotecnia ubicado en el Jr. La Madrid N° 264, Asoc. Los Olivos San Martín de Porres

15314.

- 3. Una vez en el laboratorio se realizará los ensayos en el suelo patrón y añadiendo el aditivo TerraZyme aplicando una dosificación de 0.20ml x Kg, 0.25ml x Kg y 0.30ml x Kg (de aditivo de TerraZyme por kilo de material usado), así mismo se usará el caucho granulado con la dosificación de 4.5%, 6.5% y 8.5% los ensayos a realizarse son las siguientes:
- Ensayo de Análisis Granulométrico de suelos por Tamizado (ASTM D 422-63)
- Ensayo Proctor Modificado (ASTM-D1557)
- Ensayo CBR (ASTM-D1883)
- 4. Finalmente, lo que se obtenga en laboratorio se añadirán en los formatos correspondientes que se utilizaron en el proyecto de investigación.

#### 3.6 Método de análisis de datos

Se basa en clasificar las cualidades esenciales de indagación e investigarlas con la finalidad de contestar a las diferentes controversias propuestas en la indagación. El análisis de datos es el procedimiento a través del cual se logra descubrir un alcance más extenso de la indagación práctica<sup>47</sup>.

La obtención de datos fue gracias a la observación directa, así mismo con la ayuda de los datos procesados en laboratorio debido a que fue una indagación de carácter cualitativo permitiéndonos visualizar cada ensayo realizado, y a la vez de tomar apuntes respectivos consiguiendo los resultados y contrastarlos con la hipótesis.

#### 3.7 Aspectos éticos

Como estudiante proveniente de la carrera de ingeniería civil, esta investigación se ha realizado tomando en cuenta la honestidad y honradez durante el proceso, como también el no haber plagiado de otros autores y venerar sus aportes, siguiendo la norma ISO-690-2010. Los instrumentos y manuales que se utilizaron para realizar los ensayos de esta investigación han estado calibrados y certificados según correspondan, siendo verdaderos, fueron firmados por ingenieros con la finalidad respaldar su veracidad<sup>48</sup>.

#### IV. RESULTADOS

#### Tema proyectado

Influencia del aditivo TerraZyme y del Caucho granulado en la subrasante de Ampliación Las Lomas – Ventanilla, Lima 2021

Ubicación:

Departamento : Lima
Provincia : Callao
Distrito : Ventanilla

Ubicación : Ampliación Las Lomas de Ventanilla - Alta



Figura N°3: Localización del A.H. Las lomas de ventanilla alta

Fuente: Google Earth

#### Trabajo de laboratorio

Se realizó 3 calicatas en Ampliación Lomas de Ventanilla Alta con una profundidad de 1.50m, al material extraído se le realizo ensayos en un Laboratorio, los cuales fueron los siguientes: Análisis granulométrico, Proctor Modificado y CBR.

Para ejecutar los ensayos que se mencionaron se empleó los suelos de las calicatas C-1, C-2 y C-3, se utilizó el más desfavorable los cuales también fueron mezclados junto con el aditivo TerraZyme según la dosificación previamente

coordinada con STASOIL al 0.20 ml de TerraZyme x kg de material, 0.25 ml de TerraZyme x kg de material y 0.30 ml de TerraZyme x kg de material, así mismo para el caucho granulado se empelo la misma muestra patrón con la dosificación de 4.5% de caucho granulado por peso de material, 6.5% de caucho granulado por peso de material y 8.5% de caucho granulado por peso de material, se empleó una balanza calibrada para pesar el porcentaje a adicionar.

Análisis Granulométrico (ASTM D422)

Dicho ensayo de granulometría por tamizado nos brindó la información del tamaño de cada partícula del suelo que pasan por diferentes tamices de diferentes tamaños, se tuvo como finalidad determinar el porcentaje de material que es retenido en cada malla.

Tabla 2: Tamizado obtenido de la calicata (C-1)

| TAMIZ  | AASHTO T-27 | PORCENTAJE | ESPECIFICACION |                                             | DESCRIPCION DE LA MUESTRA |           |  |  |  |
|--------|-------------|------------|----------------|---------------------------------------------|---------------------------|-----------|--|--|--|
|        | (mm)        | QUE PASA   |                |                                             |                           |           |  |  |  |
| 3"     | 76.200      | 100.00     | /              | CONTEN                                      | DO DE HUMEDAD (AS         | TM D2216) |  |  |  |
| 2 1/2" | 63.500      | 100.00     |                | Centenide Uni                               | maded (0/)                | 1.0       |  |  |  |
| 2"     | 50.800      | 100.00     |                | Contenido Hui                               | medad (%)                 | 1.0       |  |  |  |
| 1 1/2" | 38.100      | 84.62      | /              | LIMITES DE CONSISTENCIA (ASTM D4318)        |                           |           |  |  |  |
| 1"     | 25.400      | 73.49      |                | Límite Líquido (LL)                         | N.P                       |           |  |  |  |
| 3/4"   | 19.050      | 70.17      |                | Límite Plástico (LP)                        |                           | N.P       |  |  |  |
| 1/2"   | 12.700      | 63.59      |                | Indice Plástico (IP) N.P                    |                           |           |  |  |  |
| 3/8"   | 9.530       | 59.76      |                | ANÁLISIS GRANULOMÉTRICO (ASTM D422)         |                           |           |  |  |  |
| N° 4   | 4.750       | 51.16      |                | Grava (%)                                   | Arena (%)                 | Finos (%) |  |  |  |
| N° 10  | 2.000       | 38.90      |                | 48.8                                        | 36.9                      | 14.2      |  |  |  |
| N° 20  | 0.850       | 31.86      |                | CLASIFICACIÓN DE SUELOS                     |                           |           |  |  |  |
| N° 40  | 0.430       | 28.29      |                | Clasificación SUCS (ASTM D2487) GM          |                           | GM        |  |  |  |
| N° 60  | 0.250       | 25.25      |                | Clasificación AASHTO (ASTM D3282) A-1-a (0) |                           |           |  |  |  |
| N° 100 | 0.150       | 20.84      |                | Nombre del Grupo                            |                           |           |  |  |  |
| N° 200 | 0.075       | 14.22      |                |                                             | Grava limosa con arena    | 3         |  |  |  |

Fuente: JJ Geotecnia

Tabla 3: Tamizado obtenido de la calicata (C-2)

| TAMIZ  | AASHTO T-27 | PORCENTAJE | ESPECIFICACIÓN          | DESCRIPCION DE LA MUESTI                    |                        | ΓRΔ       |  |  |
|--------|-------------|------------|-------------------------|---------------------------------------------|------------------------|-----------|--|--|
| TAMIL  | (mm)        | QUE PASA   | ESPECIFICACION          | BESSAII SISIA BE EA MISESTIA                |                        |           |  |  |
| 3"     | 76.200      | 100.00     | /                       | CONTEN                                      | IDO DE HUMEDAD (AST    | M D2216)  |  |  |
| 2 1/2" | 63.500      | 100.00     |                         | Contonido III                               | dad (0/)               | 1.4       |  |  |
| 2"     | 50.800      | 100.00     |                         | Contenido At                                | Contenido Humedad (%)  |           |  |  |
| 1 1/2" | 38.100      | 87.31      |                         | LIMITES DE CONSISTENCIA (ASTM D4318)        |                        |           |  |  |
| 1"     | 25.400      | 76.92      |                         | Límite Líquido (LL)                         | N.P                    |           |  |  |
| 3/4"   | 19.050      | 73.05      | 05 Límite Plástico (LP) |                                             | Límite Plástico (LP)   |           |  |  |
| 1/2"   | 12.700      | 66.25      |                         | Indice Plástico (IP) N.P                    |                        |           |  |  |
| 3/8"   | 9.530       | 62.09      |                         | ANÁLISIS GRANULOMÉTRICO (ASTM D422)         |                        |           |  |  |
| N° 4   | 4.750       | 54.68      |                         | Grava (%)                                   | Arena (%)              | Finos (%) |  |  |
| N° 10  | 2.000       | 41.95      |                         | 45.3                                        | 39.4                   | 15.3      |  |  |
| N° 20  | 0.850       | 35.39      |                         | CLASIFICACIÓN DE SUELOS                     |                        |           |  |  |
| N° 40  | 0.430       | 31.33      |                         | Clasificación SUCS (ASTM D2487) GM          |                        |           |  |  |
| N° 60  | 0.250       | 27.11      |                         | Clasificación AASHTO (ASTM D3282) A-1-b (0) |                        |           |  |  |
| N° 100 | 0.150       | 22.14      |                         | Nombre del Grupo                            |                        |           |  |  |
| N° 200 | 0.075       | 15.32      |                         |                                             | Grava limosa con arena |           |  |  |

Fuente: JJ Geotecnia

**Tabla 4** Tamizado obtenido de la calicata (C-3)

| TAMIZ    | AASHTO T-27 | PORCENTAJE | ESPECIFICACIÓN<br>BASE | DESCRIPCIÓN DE LA MUESTRA                                  |                          |                        |  |  |
|----------|-------------|------------|------------------------|------------------------------------------------------------|--------------------------|------------------------|--|--|
|          | (mm)        | QUE PASA   | GRADACIÓN              |                                                            |                          |                        |  |  |
| 5"       | 127.000     | 100.0      | /                      | CONTE                                                      | ENIDO DE HUMEDAD (A      | STM D2216)             |  |  |
| 4"       | 101.600     | 100.0      | /                      | Contenido Hui                                              | moded (%)                | 8.0                    |  |  |
| 3"       | 76.200      | 100.0      | /                      | Contenido Hui                                              | medad (%)                | 6.0                    |  |  |
| 2 1/2"   | 63.300      | 100.0      |                        | LIMITES                                                    | S DE CONSISTENCIA (A     | STM D4318)             |  |  |
| 2"       | 50.800      | 100.0      | /                      | Límite Líquido (LL)                                        | Límite Líquido (LL)      |                        |  |  |
| 1 1/2"   | 38.100      | 100.0      |                        | Límite Plástico (LP)                                       | 21                       |                        |  |  |
| 1"       | 25.400      | 100.0      |                        | Indice Plástico (IP)                                       | 15                       |                        |  |  |
| 3/4"     | 19.000      | 92.6       |                        | Grava (%) Arena (%)                                        |                          | Finos (%)              |  |  |
| 1/2"     | 12.500      | 91.5       |                        | 11.1                                                       | 22.2                     | 66.6                   |  |  |
| 3/8"     | 9.500       | 91.2       |                        |                                                            | CLASIFICACIÓN DE SU      | LOS                    |  |  |
| N° 4     | 4.750       | 88.9       |                        | Clasificación SUCS (ASTM                                   | D2487)                   | CL                     |  |  |
| N° 10    | 2.000       | 87.5       |                        | Clasificación AASHTO (D32                                  | 182)                     | A-6 (8)                |  |  |
| N° 20    | 0.840       | 85.3       |                        | Nambra dal Coma                                            | A: !!                    | and hair plasticided   |  |  |
| N° 40    | 0.425       | 85.2       |                        | Nombre del Grupo                                           | Arcilia areno            | sa de baja plasticidad |  |  |
| Nº 60    | 0.250       | 84.1       |                        | INDICACIONES:                                              | •                        |                        |  |  |
| N° 80    | 0.177       | 84.1       |                        | El método de secado para el ensayo de contenido de humedad |                          |                        |  |  |
| N° 100   | 0.150       | 75.0       |                        | fue en horno de laboratorio d                              | controlado a 110±5°C has | sta masa               |  |  |
| N° 200   | 0.075       | 66.6       | /                      | constante.                                                 |                          |                        |  |  |
| < Nº 200 | FONDO       |            | /                      |                                                            |                          |                        |  |  |

Fuente: JJ Geotecnia

Las Tablas 1, 2 y 3, consiste en los datos obtenidos a partir del tamizado de las calicatas C-1, C-2 y C-3, en el cual detalla las condiciones para la clasificación de suelos mediante el SUCS, el cual consiste que si más del 50% del material pasa por el tamiz N°4, entonces en suelo de material fino, también que si el porcentaje del material que pasa por el tamiz N°200 es menor o como máximo 5% entonces estamos hablando de GW (grava bien graduado) o GP (grava pobremente graduado), si es que fuera material grueso, para material fino SW (arena bien graduado) o SP (arena pobremente graduado), cuando el porcentaje de finos es

mayor al 12%, vendría a hacer GC (grava arcillosa), GM (grava limosa) o para materiales finos SC (arena arcillosa) y SM (arena Limosa), para este caso también se empleara Los datos obtenidos de los Limites de Atterberg o Limites de consistencia.

Para la Calicata C-1, es de material granular grueso, tiene mayor porcentaje de gravas siendo de 45.3%, de arena 39.4% y el porcentaje de fino es mayor al 12% (14.2%), sus límites de consistencia es N.P (no plástico), por ende, está clasificado como GM (arena limosa) con arena.

Para la Calicata C-2 es de material granular grueso, tiene mayor porcentaje de gravas siendo de 48.8%, de arena 36.9% y el porcentaje de fino es mayor al 12% (15.3%), sus límites de consistencia es N.P (no plástico), por ende, está clasificado como GM (arena limosa) con arena.

Para la Calicata C-3 es de material granular fino, teniendo mayores porcentajes de finos siendo del 66.6%, arena 22.2% y de gravas 11.1%, sus límites de consistencia son los siguientes, LL=36, LP=21 y IP=15, se utiliza la carta de plasticidad para poder clasificar el suelo.

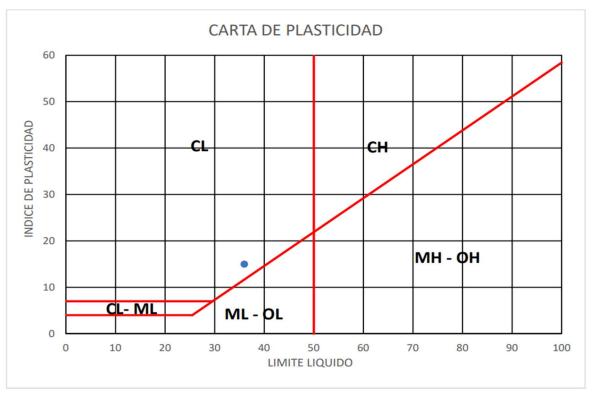



Figura N°4: Carta de plasticidad

Fuente: Elaboración Propia

Como se llega apreciar en la Figura N°4, se relacionará el limite liquido con el índice de plasticidad para poder clasificar el suelo, el cual se encuentra en el grupo de CL, el cual arcilla arenosa de baja plasticidad.

 Tabla 5
 : Tabla de Clasificación AASHTO

| Clasificación general                                     |         | 35% máx                                 |                 | elos granula<br>a por tamiz |         | n (N° 200)             |         | Suelos finos<br>más de 35% pasa por el tamiz de 0.075 mm (N° 200 |              |         |                |                        |
|-----------------------------------------------------------|---------|-----------------------------------------|-----------------|-----------------------------|---------|------------------------|---------|------------------------------------------------------------------|--------------|---------|----------------|------------------------|
| Clasificación de Grupo                                    | А       | -1                                      | A-3             | A-                          |         | A-2                    |         | A-4                                                              | A-5          | A-6     | A-7            |                        |
|                                                           | A-1-a   | A-1-b                                   | A-3             | A-2-4                       | A-2-5   | A-2-6                  | A-2-7   | A-4                                                              | A-0          | A-0     | A-7-5          | A-7-6                  |
| Análisis granulométrico                                   |         |                                         |                 |                             |         |                        |         |                                                                  |              |         |                |                        |
| % que pasa por el tamiz de:                               |         |                                         |                 |                             |         |                        |         |                                                                  |              |         |                |                        |
| 2 mm (N° 10)                                              | máx. 50 |                                         |                 |                             |         |                        |         |                                                                  |              |         |                |                        |
| 0.425 mm (N° 40)                                          | máx. 30 | máx. 50                                 | mín. 51         |                             |         |                        |         |                                                                  |              |         |                |                        |
| F: 0.075 mm (N° 200)                                      | máx. 15 | máx. 25                                 | máx.10          | Máx. 35                     | máx. 35 | máx. 35                | máx. 35 | mín. 36                                                          | mín. 36      | mín. 36 | mín. 36        | mín. 36                |
| Características de la fracción que pasa el 0.425 (N° 40)  |         |                                         |                 |                             |         |                        |         |                                                                  |              |         |                |                        |
| Caracteristicas de la fracción que pasa del tamiz (N° 40) |         |                                         |                 |                             |         |                        |         |                                                                  |              |         |                |                        |
| LL: Límite de Líquido                                     |         |                                         |                 | máx. 40                     | mín. 41 | máx. 40                | mín. 41 | máx. 40                                                          | Mín. 41      | máx. 40 | mín. 41        | mín. 41                |
| IP: Índice de Plasticidad                                 | máx. 6  | máx. 6                                  | NP              | máx. 10                     | máx. 10 | mín. 11                | mín. 11 | máx. 10                                                          | máx. 10      | mín. 11 | mín. 11 (a)    | mín. 11 <sup>(b)</sup> |
| Tipo de material                                          |         | , gravas<br>enas                        | Arenas<br>Finas |                             |         | y arenas<br>arcillosas |         |                                                                  | elos<br>osos | S       | uelos arcillos | iOS                    |
| Estimación general del suelo como sub rasante             |         | Exelente a bueno Regular a insuficiente |                 |                             |         |                        |         |                                                                  |              |         |                |                        |

Fuente: MTC (Manual de Carreteras)

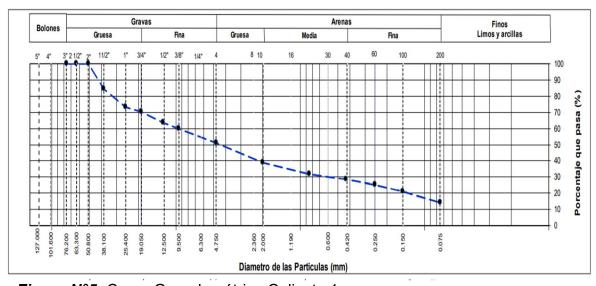



Figura N°5: Curva Granulométrica Calicata 1

Fuente: JJ Geotecnia

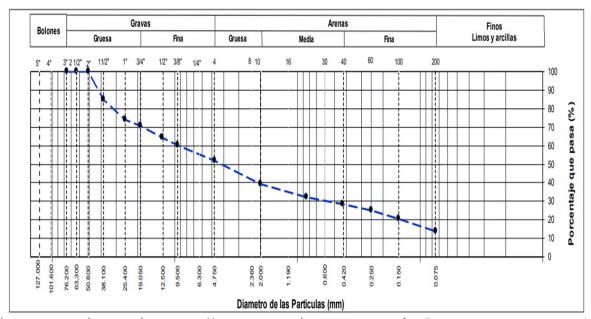



Figura N°6: Curva Granulométrica Calicata 2

Fuente: JJ Geotecnia

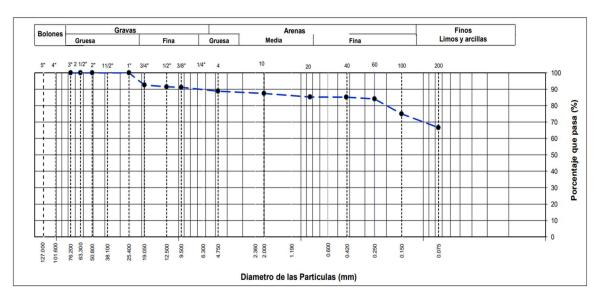



Figura N°7: Curva Granulométrica Calicata 1

Fuente: JJ Geotecnia

Las Tablas 4 es la Clasificación de los suelos por el AASHTO, donde nos indica la clasificación general del suelo como también sus grupos, los cuales son materiales granulares que son aquellos que el 35% o menos pasa por la malla o tamiz N°200 y los Materiales Limos Arcillosos aquellos que pasan más del 35% por el tamiz o malla N°200, así mismo para cada grupo tienen condiciones de porcentaje que pasa por determinados tamices (N°10, N°40 y N°200).

Para la calicata C-1 el 38.90% pasa el tamiz N°10, 28.29% pasa el tamiz N°40 y 14.22% pasa el tamiz N°200, tiene como límites de consistencia el valor de N.P, siendo clasificado entre el grupo A-1-a (0) (piedras, gravas y arenas).

Para la calicata C-2 el 41.95% pasa el tamiz N°10, 31.33% pasa el tamiz N°40 y 15.32% pasa el tamiz N°200, tiene como límites de consistencia el valor de N.P, siendo clasificado entre el grupo A-1-b(0) (piedras, gravas y arenas).

Para la calicata C-3 el 87.5% pasa el tamiz N°10, 85.2% pasa el tamiz N°40 y 66.6% pasa el tamiz N°200, tiene como límites de consistencia los siguientes valores LL=36, LP=21 e IP=15, siendo clasificado entre el grupo A-6-(8) (suelos arcillosos).

Una vez clasificado los suelos de las calicatas procedemos a escoger el más crítico, realizando los ensayos de Proctor Modificado y en el ensayo de Relación de Soporte de California, añadiendo TerraZyme y caucho granulado según las dosificaciones para realizar su comparativa entre ambos productos y ver que tanto mejora el suelo, como también el costo y eficiencia de los productos según especificaciones técnicas de subrasante de algunos expedientes en ventanilla.

Proctor modificado (ASTM D-1557)

El ensayo Proctor modificado se realizó con respecto al método C, en el cual se empleó un molde de 6 pulg (152.4 mm) de diámetro, se usó el material que paso por el tamiz ¾" (19mm), consta de 5 capas y se realizar 56 golpes por cada capa, este método se realiza siempre y cuando más del 20% del material es retenido en el tamiz 3/8" y menos del 30% retenido por el tamiz ¾ ". Gracias a este ensayo se obtuvo el contenido de humedad máximo y la densidad seca máxima.

 Tabla 6
 : Datos de Ensayo de Proctor modificado de muestra patrón

| NUMERO DE ENSAYOS   Peso Suelo + Molde   gr.                                                          | 1<br>10,138<br>3,625<br>1.713 | 6513<br>2<br>10,749<br>4,236<br>2.002 | gr.  3 11,117 4,604 2,176 | <b>4</b><br>10,667<br>4,154 | 5 |
|-------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------|---------------------------|-----------------------------|---|
| Peso Suelo + Molde gr. Peso Suelo Humedo Compactado gr. Peso Volumetrico Humedo gr. Recipiente Numero | 3,625<br>1.713                | 10,749<br>4,236                       | 11,117<br>4,604           | 10,667<br>4,154             | 5 |
| Peso Suelo Humedo Compactado gr. Peso Volumetrico Humedo gr. Recipiente Numero                        | 3,625<br>1.713                | 4,236                                 | 4,604                     | 4,154                       |   |
| Peso Volumetrico Humedo gr. Recipiente Numero                                                         | 1.713                         |                                       |                           |                             | / |
| Recipiente Numero                                                                                     |                               | 2.002                                 | 2.176                     |                             |   |
|                                                                                                       | Α                             |                                       |                           | 1.963                       |   |
| Peso Suelo Humedo + Tara gr                                                                           | 7.3                           | В                                     | С                         | D                           |   |
| g                                                                                                     | 612.6                         | 635.1                                 | 589.6                     | 658.1                       |   |
| Peso Suelo Seco + Tara gr.                                                                            | 573.6                         | 586.4                                 | 530.7                     | 586.5                       |   |
| Peso de la Tara gr.                                                                                   |                               |                                       |                           |                             |   |
| Peso del agua gr.                                                                                     | 39.0                          | 48.7                                  | 58.9                      | 71.6                        |   |
| Peso del suelo seco gr.                                                                               | 574                           | 586                                   | 531                       | 587                         |   |
| Contenido de agua %                                                                                   | 6.8                           | 8.3                                   | 11.1                      | 12.2                        |   |
| Densidad Seca gr/cc                                                                                   | 1.604                         | 1.849                                 | 1.959                     | 1.750                       | / |

Fuente: JJ Geotecnia

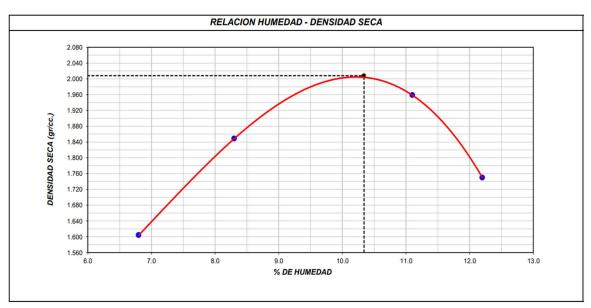



Figura N°8: Grafica de relación % de humedad y densidad seca de la muestra patrón

Fuente: JJ Geotecnia

Con respecto a la tabla 5 y la figura N°8 se puede apreciar tanto los datos obtenidos por el ensayo de Proctor estándar modificado, como también su grafico en el cual detallara el contenido óptimo de humedad el cual fue 10.3% y su densidad seca máxima el cual fue de 2.008 gr/cm3.

**Tabla 7** : Datos de Ensayo de Proctor modificado de muestra patrón con 0.20ml x Kg de TerraZyme

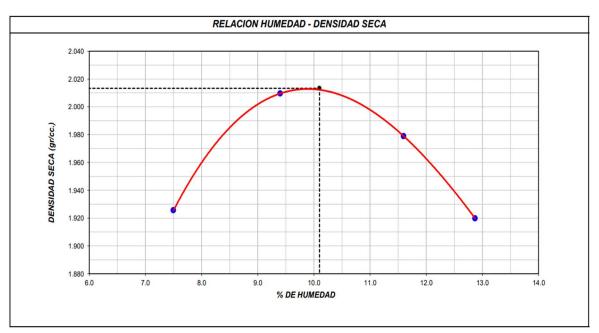
|                              | 1     | Volumen Molde<br>Peso Molde | 2116<br>6513 | cm <sup>3</sup><br>gr. |        |   |
|------------------------------|-------|-----------------------------|--------------|------------------------|--------|---|
| NUMERO DE ENSAYOS            |       | 1                           | 2            | 3                      | 4      | 5 |
| Peso Suelo + Molde           | gr.   | 10,847                      | 11,010       | 11,155                 | 11,125 |   |
| Peso Suelo Humedo Compactado | gr.   | 4,334                       | 4,497        | 4,642                  | 4,612  | / |
| Peso Volumetrico Humedo      | gr.   | 2.048                       | 2.125        | 2.194                  | 2.180  |   |
| Recipiente Numero            |       | Α                           | В            | С                      | D      |   |
| Peso Suelo Humedo + Tara     | gr.   | 612.3                       | 578.9        | 632.5                  | 645.2  |   |
| Peso Suelo Seco + Tara       | gr.   | 574.9                       | 533.1        | 572.4                  | 575.6  |   |
| Peso de la Tara              | gr.   |                             |              |                        |        |   |
| Peso del agua                | gr.   | 37.4                        | 45.8         | 60.1                   | 69.6   |   |
| Peso del suelo seco          | gr.   | 575                         | 533          | 572                    | 576    |   |
| Contenido de agua            | %     | 6.5                         | 8.6          | 10.5                   | 12.1   |   |
| Densidad Seca                | gr/cc | 1.923                       | 1.957        | 1.985                  | 1.944  | / |

Densidad Máxima Seca: 1.986 gr/cm<sup>3</sup>. Contenido Humedad Optima: 10.6 %

Fuente: JJ Geotecnia



**Figura N°9**: Grafica de relación % de humedad y densidad seca de la muestra patrón con 0.20ml x Kg de TerraZyme


Fuente: JJ Geotecnia

Con respecto a la tabla 6 y la figura N° 9 se puede apreciar tanto los datos obtenidos por el ensayo de Proctor estándar modificado, como también su grafico en el cual detallara el contenido óptimo de humedad el cual fue 10.6% y su densidad seca máxima el cual fue de 1.986 gr/cm3.

**Tabla 8** : Datos de Ensayo de Proctor modificado de muestra patrón con 0.25ml x Kg de TerraZyme

|                              |       | Volumen Molde<br>Peso Molde | 2116<br>6513 | cm <sup>3</sup><br>gr. |        |    |
|------------------------------|-------|-----------------------------|--------------|------------------------|--------|----|
| NUMERO DE ENSAYOS            |       | 1                           | 2            | 3                      | 4      | 5  |
| Peso Suelo + Molde           | gr.   | 10,893                      | 11,165       | 11,186                 | 11,098 |    |
| Peso Suelo Humedo Compactado | gr.   | 4,380                       | 4,652        | 4,673                  | 4,585  |    |
| Peso Volumetrico Humedo      | gr.   | 2.070                       | 2.198        | 2.208                  | 2.167  |    |
| Recipiente Numero            |       | Α                           | В            | С                      | D      |    |
| Peso Suelo Humedo + Tara     | gr.   | 512.3                       | 612.2        | 625.1                  | 589.3  |    |
| Peso Suelo Seco + Tara       | gr.   | 476.6                       | 559.6        | 560.1                  | 522.1  |    |
| Peso de la Tara              | gr.   |                             |              |                        |        |    |
| Peso del agua                | gr.   | 35.7                        | 52.6         | 65.0                   | 67.2   |    |
| Peso del suelo seco          | gr.   | 477                         | 560          | 560                    | 522    |    |
| Contenido de agua            | %     | 7.5                         | 9.4          | 11.6                   | 12.9   | 1/ |
| Densidad Seca                | gr/cc | 1.926                       | 2.010        | 1.979                  | 1.920  | 1/ |

Fuente: JJ Geotecnia



**Figura N°10:** Grafica de relación de % humedad y densidad seca de la muestra patrón 0.25ml x kg de TerraZyme

Fuente: JJ Geotecnia

Con respecto a la tabla 7 y la figura N° 10 se puede apreciar tanto los datos obtenidos por el ensayo de Proctor estándar modificado, como también su grafico en el cual detallara el contenido óptimo de humedad el cual fue 10.1% y su densidad seca máxima el cual fue de 2.013 gr/cm3.

**Tabla 9** : Datos de Ensayo de Proctor modificado de muestra patrón con 0.30ml x Kg de TerraZyme

|                              |       | Volumen Molde | 2116                    | cm <sup>3</sup>  |        |        |
|------------------------------|-------|---------------|-------------------------|------------------|--------|--------|
|                              |       | Peso Molde    | 6513                    | gr.              |        |        |
| NUMERO DE ENSAYOS            |       | 1             | 2                       | 3                | 4      | 5      |
| Peso Suelo + Molde           | gr.   | 10,813        | 11,072                  | 11,175           | 11,121 |        |
| Peso Suelo Humedo Compactado | gr.   | 4,300         | 4,559                   | 4,662            | 4,608  |        |
| Peso Volumetrico Humedo      | gr.   | 2.032         | 2.155                   | 2.203            | 2.178  |        |
| Recipiente Numero            |       | Α             | В                       | С                | D      |        |
| Peso Suelo Humedo + Tara     | gr.   | 578.3         | 565.2                   | 592.1            | 603.4  |        |
| Peso Suelo Seco + Tara       | gr.   | 542.0         | 519.5                   | 534.9            | 537.3  |        |
| Peso de la Tara              | gr.   |               |                         |                  |        |        |
| Peso del agua                | gr.   | 36.3          | 45.7                    | 57.2             | 66.1   |        |
| Peso del suelo seco          | gr.   | 542           | 519                     | 535              | 537    |        |
| Contenido de agua            | %     | 6.7           | 8.8                     | 10.7             | 12.3   |        |
| Densidad Seca                | gr/cc | 1.905         | 1.980                   | 1.990            | 1.939  | /      |
|                              |       | -             | '                       | -                | 1      | '      |
| Densidad Máxima Sec          | a:    | 1.995 gr      | /cm <sup>3</sup> . Cont | enido Humedad Op | tima:  | 10.2 % |

Fuente: JJ Geotecnia

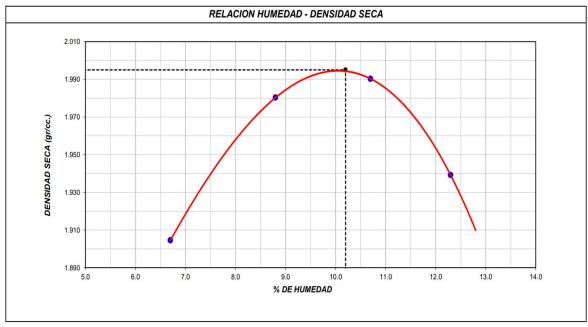



Figura N°11: Grafica de relación de % humedad y densidad seca de la muestra patrón 0.30ml x kg de TerraZyme

Fuente: JJ Geotecnia


Con respecto a la tabla 8 y la figura N° 11 se puede apreciar tanto los datos obtenidos por el ensayo de Proctor estándar modificado, como también su grafico en el cual detallara el contenido óptimo de humedad el cual fue 10.2% y su densidad seca máxima el cual fue de 1.995 gr/cm3.

**Tabla 10** : Datos de Ensayo de Proctor modificado de muestra patrón con 4.5% de caucho granulado

|                              |       | Volumen Molde<br>Peso Molde | 2116<br>6513 | cm <sup>3</sup><br>gr. |        |    |
|------------------------------|-------|-----------------------------|--------------|------------------------|--------|----|
| NUMERO DE ENSAYOS            |       | 1                           | 2            | 3                      | 4      | 5  |
| Peso Suelo + Molde           | gr.   | 10,927                      | 11,238       | 11,344                 | 11,189 |    |
| Peso Suelo Humedo Compactado | gr.   | 4,414                       | 4,725        | 4,831                  | 4,676  |    |
| Peso Volumetrico Humedo      | gr.   | 2.086                       | 2.233        | 2.283                  | 2.210  |    |
| Recipiente Numero            |       | Α                           | В            | С                      | D      |    |
| Peso Suelo Humedo + Tara     | gr.   | 598.6                       | 588.3        | 676.2                  | 604.3  |    |
| Peso Suelo Seco + Tara       | gr.   | 564.2                       | 543.7        | 613.1                  | 542.0  |    |
| Peso de la Tara              | gr.   |                             |              |                        |        |    |
| Peso del agua                | gr.   | 34.4                        | 44.6         | 63.1                   | 62.3   |    |
| Peso del suelo seco          | gr.   | 564                         | 544          | 613                    | 542    | 1/ |
| Contenido de agua            | %     | 6.1                         | 8.2          | 10.3                   | 11.5   |    |
| Densidad Seca                | gr/cc | 1.966                       | 2.064        | 2.070                  | 1.982  | 1/ |

Densidad Máxima Seca: 2.088 gr/cm³. Contenido Humedad Optima: 9.5 %

Fuente: JJ Geotecnia



*Figura N°12:* Grafica de relación de % humedad y densidad seca de la muestra patrón con 4.5% de caucho granulado

Fuente: JJ Geotecnia

Con respecto a la tabla 9 y la figura N° 12 se puede apreciar tanto los datos obtenidos por el ensayo de Proctor estándar modificado, como también su grafico en el cual detallara el contenido óptimo de humedad el cual fue 9.5% y su densidad seca máxima el cual fue de 2.008 gr/cm3.

**Tabla 11** : Datos de Ensayo de Proctor modificado de muestra patrón con 6.5% de caucho granulado

|                              |       | Volumen Molde | 2116   | cm <sup>3</sup> |        |    |
|------------------------------|-------|---------------|--------|-----------------|--------|----|
|                              |       | Peso Molde    | 6513   | gr.             |        |    |
| NUMERO DE ENSAYOS            |       | 1             | 2      | 3               | 4      | 5  |
| Peso Suelo + Molde           | gr.   | 10,324        | 10,668 | 10,863          | 10,698 |    |
| Peso Suelo Humedo Compactado | gr.   | 3,811         | 4,155  | 4,350           | 4,185  |    |
| Peso Volumetrico Humedo      | gr.   | 1.801         | 1.964  | 2.056           | 1.978  |    |
| Recipiente Numero            |       | Α             | В      | С               | D      |    |
| Peso Suelo Humedo + Tara     | gr.   | 647.6         | 583.2  | 625.1           | 598.6  |    |
| Peso Suelo Seco + Tara       | gr.   | 605.8         | 535.5  | 563.7           | 534.0  |    |
| Peso de la Tara              | gr.   |               |        |                 |        |    |
| Peso del agua                | gr.   | 41.8          | 47.7   | 61.4            | 64.6   |    |
| Peso del suelo seco          | gr.   | 606           | 536    | 564             | 534    |    |
| Contenido de agua            | %     | 6.9           | 8.9    | 10.9            | 12.1   | 1/ |
| Densidad Seca                | gr/cc | 1.685         | 1.803  | 1.854           | 1.764  | /  |

Densidad Máxima Seca: 1.861 gr/cm³. Contenido Humedad Optima: 10.6 %

Fuente: JJ Geotecnia



*Figura N°13:* Grafica de relación % de humedad y densidad seca de la muestra patrón con 6.5% de caucho granulado

Fuente: JJ Geotecnia

Con respecto a la tabla 10 y la figura N°13 se puede apreciar tanto los datos obtenidos por el ensayo de Proctor estándar modificado, como también su grafico en el cual detallara el contenido óptimo de humedad el cual fue 10.6% y su densidad seca máxima el cual fue de 1.861 gr/cm3.

**Tabla 12** : Datos de Ensayo de Proctor modificado de muestra patrón con 8.5% de caucho granulado

|                              |       | Volumen Molde | 2116   | cm <sup>3</sup> |        |    |
|------------------------------|-------|---------------|--------|-----------------|--------|----|
|                              |       | Peso Molde    | 6513   | gr.             |        |    |
| NUMERO DE ENSAYOS            |       | 1             | 2      | 3               | 4      | 5  |
| Peso Suelo + Molde           | gr.   | 10,286        | 10,637 | 10,739          | 10,571 |    |
| Peso Suelo Humedo Compactado | gr.   | 3,773         | 4,124  | 4,226           | 4,058  | /  |
| Peso Volumetrico Humedo      | gr.   | 1.783         | 1.949  | 1.997           | 1.918  |    |
| Recipiente Numero            |       | Α             | В      | С               | D      |    |
| Peso Suelo Humedo + Tara     | gr.   | 578.6         | 618.9  | 589.6           | 515.3  |    |
| Peso Suelo Seco + Tara       | gr.   | 539.7         | 567.3  | 531.2           | 458.0  |    |
| Peso de la Tara              | gr.   |               |        |                 |        |    |
| Peso del agua                | gr.   | 38.9          | 51.6   | 58.4            | 57.3   |    |
| Peso del suelo seco          | gr.   | 540           | 567    | 531             | 458    |    |
| Contenido de agua            | %     | 7.2           | 9.1    | 11.0            | 12.5   | 1/ |
| Densidad Seca                | gr/cc | 1.663         | 1.786  | 1.799           | 1.705  | /  |

Fuente: JJ Geotecnia



**Figura N°14:** Grafica de relación % de humedad y densidad seca de la muestra patrón con 8.5% de caucho granulado

Fuente: JJ Geotecnia

Con respecto a la tabla 11 y la figura N°14 se puede apreciar tanto los datos obtenidos por el ensayo de Proctor estándar modificado, como también su grafico en el cual detallara el contenido óptimo de humedad el cual fue 10.4% y su densidad seca máxima el cual fue de 1.811 gr/cm3.

## California Bearing Ratio (CBR) ASTM D 1883

Se realizaron los ensayos de CBR a la muestra de la calicata C3 en estado natural con la finalidad de determinar la capacidad portante sin intervención alguna tomándola como referencia comparativa con las otras pruebas a realizar agregando el aditivo TerraZyme con la dosificación de 0.20ml x kg, 0.25ml x kg, 0.30ml x kg, también se le añadió caucho granulado con la dosificación de 4.5%,6.5% y 8.5% se preparó la muestra con el óptimo contenido de humedad resultante en los ensayos de Proctor modificado. La muestra fue compactada en 03 moldes y 03 capas por molde (cada capa tuvo un numero de golpes los cuales fueron 12,25 y 56 respectivamente).

 Tabla 13
 : Datos del ensayo de CBR de la muestra patrón

|              |                             |     |                     | PEN                 | NETRACI | ÓN  |                     |                     |       |     |                     |                     |        |
|--------------|-----------------------------|-----|---------------------|---------------------|---------|-----|---------------------|---------------------|-------|-----|---------------------|---------------------|--------|
| Penetración  | Oanna Otamaland             |     |                     | E                   |         |     | F                   |                     |       |     | G                   | 6                   |        |
| Pelletracion | Carga Standard<br>(kg./cm²) | Ca  | irga                | Corre               | ección  | Ca  | irga                | Corre               | cción | Ca  | rga                 | Corre               | ección |
| (pulg.)      | (kg./ciii )                 | kg. | kg./cm <sup>2</sup> | kg./cm <sup>2</sup> | CBR %   | kg. | kg./cm <sup>2</sup> | kg./cm <sup>2</sup> | CBR % | kg. | kg./cm <sup>2</sup> | kg./cm <sup>2</sup> | CBR %  |
| 0.025        |                             | 12  | 0.6                 |                     |         | 9   | 0.4                 |                     |       | 4   | 0.2                 |                     |        |
| 0.050        |                             | 25  | 1.3                 |                     |         | 19  | 0.9                 |                     |       | 9   | 0.4                 |                     |        |
| 0.075        |                             | 39  | 2.0                 |                     |         | 29  | 1.5                 |                     |       | 14  | 0.7                 |                     |        |
| 0.100        | 70.307                      | 48  | 2.4                 | 3.1                 | 4.4     | 36  | 1.8                 | 2.3                 | 3.3   | 17  | 0.9                 | 1.1                 | 1.5    |
| 0.150        |                             | 78  | 4.0                 |                     |         | 59  | 3.0                 |                     |       | 27  | 1.4                 |                     |        |
| 0.200        | 105.460                     | 104 | 5.3                 | 5.9                 | 5.6     | 78  | 4.0                 | 4.5                 | 4.2   | 36  | 1.8                 | 2.1                 | 2.0    |
| 0.300        |                             | 166 | 8.5                 |                     |         | 125 | 6.3                 |                     |       | 58  | 3.0                 |                     |        |
| 0.400        |                             | 213 | 10.8                |                     |         | 160 | 8.1                 |                     |       | 75  | 3.8                 |                     |        |
| 0.500        |                             | 265 | 13.5                |                     |         | 199 | 10.1                |                     |       | 93  | 4.7                 |                     |        |

Fuente: JJ Geotecnia

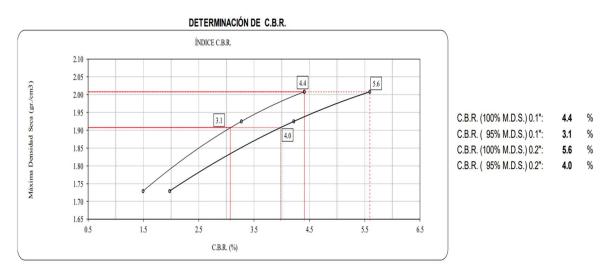
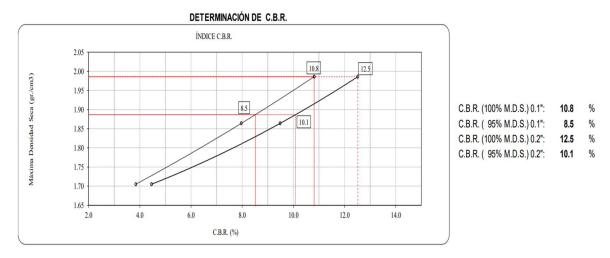



Figura N°15: Grafica de C.B.R de muestra patrón


Fuente: JJ Geotecnia

En la tabla 12 se observa los resultados del ensayo de CBR el cual detalla la penetración que se toma a 0.1" y 0.2" y la lectura de la presión del pistón en cada muestra. En el molde E se aprecia como resultado una carga ejercida de 48 kg a 0.1" de penetración, siendo su lectura de la presión de pistón 2.4 kg/cm2 y para la carga ejercida de 104 kg a 0.2" de penetración, siendo su lectura de la presión de pistón 5.3 kg/cm2, en el molde F se aprecia como resultado una carga ejercida de 36 kg a 0.1" de penetración, siendo lectura de la presión de pistón 1.8 kg/cm2 y para la carga ejercida de 78 kg a 0.2" de penetración, siendo su lectura de la presión de pistón 4.0 kg/cm2, en el molde G se aprecia como resultado una carga ejercida de 17 kg a 0.1" de penetración, siendo su lectura de la presión pistón 0.9 kg/cm2 y para la carga ejercida de 36 kg a 0.2" de penetración, siendo su lectura de la presión de pistón 1.8 kg/cm2. En la figura N° 15, se observa la curva CBR consiste en la relación entre la densidad seca vs el C.B.R y el resultado del ensayo, el C.B.R obtenido de una penetración de 0.1" con el 100% de la M.D.S es de 4.4% y con el 95% de la M.D.S es 3.1%, para una penetración de 0.2" con el 100% de la M.D.S es de 5.6%y con el 95% de la M.D.S es 4.0%.

**Tabla 14** : Datos del ensayo de CBR de la muestra patrón con 0.20ml x kg de TerraZyme

| •           |                             |     |                     | PEN                 | IETRACI | ÓN  |                     |                     |       |     |                     |                     |        |
|-------------|-----------------------------|-----|---------------------|---------------------|---------|-----|---------------------|---------------------|-------|-----|---------------------|---------------------|--------|
| Penetración | Corne Standard              |     | [                   | )                   |         |     | E                   |                     |       |     | F                   |                     |        |
| renetracion | Carga Standard<br>(kg./cm²) | Ca  | ırga                | Corre               | cción   | Ca  | rga                 | Corre               | cción | Ca  | rga                 | Corre               | ección |
| (pulg.)     | (kg./om/)                   | kg. | kg./cm <sup>2</sup> | kg./cm <sup>2</sup> | CBR %   | kg. | kg./cm <sup>2</sup> | kg./cm <sup>2</sup> | CBR % | kg. | kg./cm <sup>2</sup> | kg./cm <sup>2</sup> | CBR %  |
| 0.025       |                             | 32  | 1.6                 |                     |         | 24  | 1.2                 |                     |       | 11  | 0.6                 |                     |        |
| 0.050       |                             | 76  | 3.9                 |                     |         | 57  | 2.9                 |                     |       | 27  | 1.4                 |                     |        |
| 0.075       |                             | 119 | 6.1                 |                     |         | 89  | 4.5                 |                     |       | 42  | 2.1                 |                     |        |
| 0.100       | 70.307                      | 151 | 7.7                 | 7.6                 | 10.8    | 113 | 5.8                 | 5.6                 | 8.0   | 53  | 2.7                 | 2.7                 | 3.8    |
| 0.150       |                             | 212 | 10.8                |                     |         | 159 | 8.1                 |                     |       | 74  | 3.8                 |                     |        |
| 0.200       | 105.460                     | 259 | 13.2                | 13.2                | 12.5    | 194 | 9.9                 | 10.0                | 9.5   | 91  | 4.6                 | 4.7                 | 4.5    |
| 0.300       |                             | 356 | 18.1                |                     |         | 267 | 13.6                |                     |       | 125 | 6.3                 |                     |        |
| 0.400       |                             | 434 | 22.0                |                     |         | 325 | 16.5                |                     |       | 152 | 7.7                 |                     |        |
| 0.500       |                             | 517 | 26.2                |                     |         | 387 | 19.7                |                     |       | 181 | 9.2                 |                     |        |

Fuente: JJ Geotecnia



**Figura N°16:** Grafica de C.B.R de muestra patrón con 0.20ml x kg de TerraZyme Fuente: JJ Geotecnia

En la tabla 13 se observa los resultados del ensayo de CBR el cual detalla la penetración que se toma a 0.1" y 0.2" y la lectura de la presión del pistón en cada muestra. En el molde D se aprecia como resultado una carga ejercida de 151 kg a 0.1" de penetración, siendo su lectura de la presión de pistón 7.7 kg/cm2 y para la carga ejercida de 259 kg a 0.2" de penetración, siendo su lectura de la presión de pistón 13.2 kg/cm2, en el molde E se aprecia como resultado una carga ejercida de 113 kg a 0.1" de penetración, siendo lectura de la presión de pistón 5.8 kg/cm2 y para la carga ejercida de 194 kg a 0.2" de penetración, siendo su lectura de la presión de pistón 9.9 kg/cm2, en el molde F se aprecia como resultado una carga ejercida de 53 kg a 0.1" de penetración, siendo su lectura de la presión pistón 2.7 kg/cm2 y para la carga ejercida de 91 kg a 0.2" de penetración, siendo su lectura de la presión de pistón 4.6 kg/cm2. En la figura N° 16, se observa la curva CBR consiste en la relación entre la densidad seca vs el C.B.R y el resultado del ensayo, el C.B.R obtenido de una penetración de 0.1" con el 100% de la M.D.S es de 10.8% y con el 95% de la M.D.S es 8.5%, para una penetración de 0.2" con el 100% de la M.D.S es de 12.5%y con el 95% de la M.D.S es 10.1%.

**Tabla 15** : Datos del ensayo de CBR de la muestra patrón con 0.25ml x kg de TerraZyme

|             |                                          |      |                     | PEN                 | IETRACI | ÓN  |                     |                     |       |       |                     |                     |       |
|-------------|------------------------------------------|------|---------------------|---------------------|---------|-----|---------------------|---------------------|-------|-------|---------------------|---------------------|-------|
| Penetración | 0 0111                                   |      | Molde               | N° 10               |         |     | Molde               | N° 11               |       |       | Molde               | N° 12               |       |
| Penetración | Carga Standard<br>(kg./cm <sup>2</sup> ) | Ca   | ırga                | Corre               | ección  | Ca  | ırga                | Corrección          |       | Carga |                     | Corrección          |       |
| (pulg.)     | (kg./oiii)                               | kg.  | kg./cm <sup>2</sup> | kg./cm <sup>2</sup> | CBR %   | kg. | kg./cm <sup>2</sup> | kg./cm <sup>2</sup> | CBR % | kg.   | kg./cm <sup>2</sup> | kg./cm <sup>2</sup> | CBR % |
| 0.025       |                                          | 95   | 4.8                 |                     |         | 72  | 3.6                 |                     |       | 49    | 2.5                 |                     |       |
| 0.050       |                                          | 223  | 11.3                |                     |         | 167 | 8.5                 |                     |       | 61    | 3.1                 |                     |       |
| 0.075       |                                          | 319  | 16.2                |                     |         | 239 | 12.1                |                     |       | 80    | 4.0                 |                     |       |
| 0.100       | 70.307                                   | 397  | 20.2                | 19.1                | 27.2    | 298 | 15.1                | 14.6                | 20.8  | 93    | 4.7                 | 4.9                 | 7.0   |
| 0.150       |                                          | 519  | 26.3                |                     |         | 389 | 19.8                |                     |       | 128   | 6.5                 |                     |       |
| 0.200       | 105.460                                  | 621  | 31.5                | 32.0                | 30.3    | 466 | 23.7                | 24.1                | 22.9  | 175   | 8.9                 | 9.0                 | 8.5   |
| 0.300       |                                          | 790  | 40.1                |                     |         | 592 | 30.1                |                     |       | 262   | 13.3                |                     |       |
| 0.400       |                                          | 974  | 49.5                |                     |         | 730 | 37.1                |                     |       | 343   | 17.4                |                     |       |
| 0.500       |                                          | 1138 | 57.8                |                     |         | 807 | 41.0                |                     |       | 425   | 21.6                |                     |       |

Fuente: JJ Geotecnia

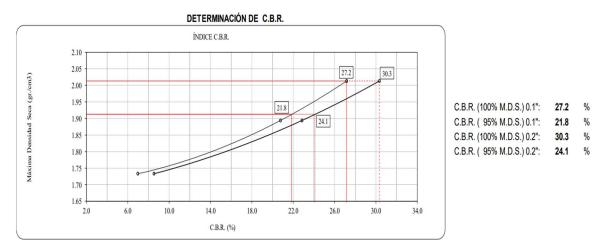
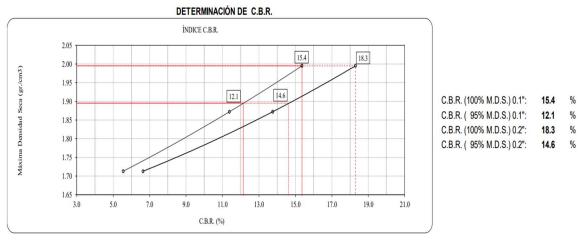



Figura N°17: Grafica de C.B.R de muestra patrón con 0.25ml x kg de TerraZyme Fuente: JJ Geotecnia

En la tabla 14 se observa los resultados del ensayo de CBR el cual detalla la penetración que se toma a 0.1" y 0.2" y la lectura de la presión del pistón en cada muestra. En el molde 10 se aprecia como resultado una carga ejercida de 397 kg a 0.1" de penetración, siendo su lectura de la presión de pistón 20.2 kg/cm2 y para la carga ejercida de 621 kg a 0.2" de penetración, siendo su lectura de la presión de pistón 31.5 kg/cm2, en el molde 11 se aprecia como resultado una carga ejercida de 298 kg a 0.1" de penetración, siendo lectura de la presión de pistón 15.1 kg/cm2 y para la carga ejercida de 466 kg a 0.2" de penetración, siendo su lectura de la presión de pistón 23.7 kg/cm2, en el


molde 12 se aprecia como resultado una carga ejercida de 93 kg a 0.1" de penetración, siendo su lectura de la presión pistón 4.7 kg/cm2 y para la carga ejercida de 175 kg a 0.2" de penetración, siendo su lectura de la presión de pistón 8.9 kg/cm2.

En la figura N° 17, se observa la curva CBR consiste en la relación entre la densidad seca vs el C.B.R y el resultado del ensayo, el C.B.R obtenido de una penetración de 0.1" con el 100% de la M.D.S es de 27.2%y con el 95% de la M.D.S es 21.8%, para una penetración de 0.2" con el 100% de la M.D.S es de 30.3%y con el 95% de la M.D.S es 24.1% .

**Tabla 16** : Datos del ensayo de CBR de la muestra patrón con 0.30ml x kg de TerraZyme

| <b>,</b>    |                                          |     |                     | PEN                 | IETRACI | ÓN  |                     |                     |       |     |                     |                     |        |
|-------------|------------------------------------------|-----|---------------------|---------------------|---------|-----|---------------------|---------------------|-------|-----|---------------------|---------------------|--------|
| Penetración | Come Otomdond                            |     | Molde               | N° 13               |         |     | Molde               | N° 14               |       |     | Molde               | N° 15               |        |
| Penetracion | Carga Standard<br>(kg./cm <sup>2</sup> ) | Ca  | ırga                | Corre               | cción   | Ca  | rga                 | Corre               | cción | Ca  | rga                 | Corre               | ección |
| (pulg.)     | (kg./oiii )                              | kg. | kg./cm <sup>2</sup> | kg./cm <sup>2</sup> | CBR %   | kg. | kg./cm <sup>2</sup> | kg./cm <sup>2</sup> | CBR % | kg. | kg./cm <sup>2</sup> | kg./cm <sup>2</sup> | CBR %  |
| 0.025       |                                          | 79  | 4.0                 |                     |         | 59  | 3.0                 |                     |       | 22  | 1.1                 |                     |        |
| 0.050       |                                          | 129 | 6.6                 |                     |         | 97  | 4.9                 |                     |       | 47  | 2.4                 |                     |        |
| 0.075       |                                          | 173 | 8.8                 |                     |         | 129 | 6.6                 |                     |       | 64  | 3.3                 |                     |        |
| 0.100       | 70.307                                   | 214 | 10.9                | 10.8                | 15.4    | 161 | 8.2                 | 8.0                 | 11.4  | 78  | 4.0                 | 3.9                 | 5.5    |
| 0.150       |                                          | 297 | 15.1                |                     |         | 223 | 11.3                |                     |       | 110 | 5.6                 |                     |        |
| 0.200       | 105.460                                  | 376 | 19.1                | 19.3                | 18.3    | 282 | 14.3                | 14.5                | 13.7  | 135 | 6.8                 | 7.0                 | 6.6    |
| 0.300       |                                          | 531 | 27.0                |                     |         | 398 | 20.2                |                     |       | 189 | 9.6                 |                     |        |
| 0.400       |                                          | 710 | 36.0                |                     |         | 532 | 27.0                |                     |       | 246 | 12.5                |                     |        |
| 0.500       |                                          | 875 | 44.5                |                     |         | 656 | 33.3                |                     |       | 306 | 15.5                |                     |        |

Fuente: JJ Geotecnia



*Figura N°18:* Grafica de C.B.R de muestra patrón con 0.30ml x kg de TerraZyme Fuente: JJ Geotecnia

En la tabla 15 se observa los resultados del ensayo de CBR el cual detalla la penetración que se toma a 0.1" y 0.2" y la lectura de la presión del pistón en cada muestra. En el molde 13 se aprecia como resultado una carga ejercida de 214 kg a 0.1" de penetración, siendo su lectura de la presión de pistón 10.9 kg/cm2 y para la carga ejercida de 376 kg a 0.2" de penetración, siendo su lectura de la presión de pistón 19.1 kg/cm2, en el molde 14 se aprecia como resultado una carga ejercida de 161 kg a 0.1" de penetración, siendo lectura de la presión de pistón 8.2 kg/cm2 y para la carga ejercida de 282 kg a 0.2" de penetración, siendo su lectura de la presión de pistón 14.3 kg/cm2, en el molde 15 se aprecia como resultado una carga ejercida de 78 kg a 0.1" de penetración, siendo su lectura de la presión pistón 4.0 kg/cm2 y para la carga ejercida de 135 kg a 0.2" de penetración, siendo su lectura de la presión siendo su lectura de la presión de pistón 6.8 kg/cm2.

En la figura N° 18, se observa la curva CBR consiste en la relación entre la densidad seca vs el C.B.R y el resultado del ensayo, el C.B.R obtenido de una penetración de 0.1" con el 100% de la M.D.S es de 15.4%y con el 95% de la M.D.S es 12.1%, para una penetración de 0.2" con el 100% de la M.D.S es de 18.3%y con el 95% de la M.D.S es 14.6%.

**Tabla 17** : Datos del ensayo de CBR de la muestra patrón con 4.5% de caucho granulado

|             |                             |     |                     | PEN                 | NETRACI | ÓN  |                     |                     |       |     |                     |                     |        |
|-------------|-----------------------------|-----|---------------------|---------------------|---------|-----|---------------------|---------------------|-------|-----|---------------------|---------------------|--------|
| Penetración | O Otdd                      |     | Molde               | N° 10               |         |     | Molde               | N° 11               |       |     | Molde               | N° 12               |        |
| Penetración | Carga Standard<br>(kg./cm²) | Ca  | irga                | Corre               | cción   | Ca  | ırga                | Corre               | cción | Ca  | rga                 | Corre               | ección |
| (pulg.)     | (kg./cm/)                   | kg. | kg./cm <sup>2</sup> | kg./cm <sup>2</sup> | CBR %   | kg. | kg./cm <sup>2</sup> | kg./cm <sup>2</sup> | CBR % | kg. | kg./cm <sup>2</sup> | kg./cm <sup>2</sup> | CBR %  |
| 0.025       |                             | 35  | 1.8                 |                     |         | 27  | 1.4                 |                     |       | 19  | 1.0                 |                     |        |
| 0.050       |                             | 69  | 3.5                 |                     |         | 54  | 2.7                 |                     |       | 38  | 2.0                 |                     |        |
| 0.075       |                             | 104 | 5.3                 |                     |         | 81  | 4.1                 |                     |       | 58  | 2.9                 |                     |        |
| 0.100       | 70.307                      | 140 | 7.1                 | 7.2                 | 10.2    | 109 | 5.5                 | 5.7                 | 8.1   | 78  | 4.0                 | 4.0                 | 5.7    |
| 0.150       |                             | 210 | 10.6                |                     |         | 163 | 8.3                 |                     |       | 116 | 5.9                 |                     |        |
| 0.200       | 105.460                     | 264 | 13.4                | 13.1                | 12.4    | 205 | 10.4                | 10.1                | 9.6   | 146 | 7.4                 | 7.2                 | 6.8    |
| 0.300       |                             | 343 | 17.4                |                     |         | 267 | 13.6                |                     |       | 191 | 9.7                 |                     |        |
| 0.400       |                             | 397 | 20.2                |                     |         | 309 | 15.7                |                     |       | 221 | 11.2                |                     |        |
| 0.500       |                             | 454 | 23.0                |                     |         | 353 | 17.9                |                     |       | 252 | 12.8                |                     |        |

Fuente: JJ Geotecnia

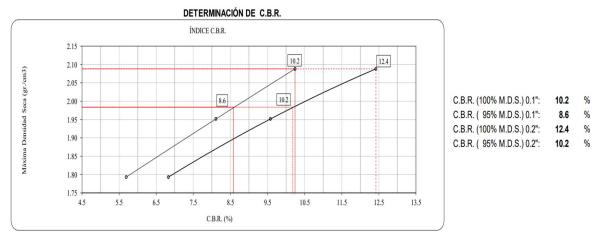
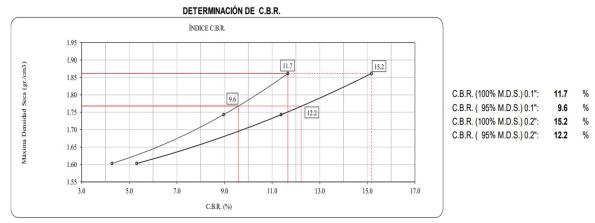



Figura N°19: Grafica de C.B.R de muestra patrón con 4.5% de caucho granulado Fuente: JJ Geotecnia


En la tabla 16 se observa los resultados del ensayo de CBR el cual detalla la penetración que se toma a 0.1" y 0.2" y la lectura de la presión del pistón en cada muestra. En el molde 10 se aprecia como resultado una carga ejercida de 140 kg a 0.1" de penetración, siendo su lectura de la presión de pistón 7.1 kg/cm2 y para la carga ejercida de 264 kg a 0.2" de penetración, siendo su lectura de la presión de pistón 13.4 kg/cm2, en el molde 11 se aprecia como resultado una carga ejercida de 109 kg a 0.1" de penetración, siendo lectura de la presión de pistón 5.5 kg/cm2 y para la carga ejercida de 205 kg a 0.2" de penetración, siendo su lectura de la presión de pistón 10.4 kg/cm2, en el molde 12 se aprecia como resultado una carga ejercida de 78 kg a 0.1" de penetración, siendo su lectura de la presión pistón 4.0 kg/cm2 y para la carga ejercida de 146 kg a 0.2" de penetración, siendo su lectura de la presión siendo su lectura de la presión de pistón 7.4 kg/cm2

En la figura N° 19, se observa la curva CBR consiste en la relación entre la densidad seca vs el C.B.R y el resultado del ensayo, el C.B.R obtenido de una penetración de 0.1" con el 100% de la M.D.S es de 10.2%y con el 95% de la M.D.S es 8.6%, para una penetración de 0.2" con el 100% de la M.D.S es de 12.4%y con el 95% de la M.D.S es 10.2%.

**Tabla 18** : Datos del ensayo de CBR de la muestra patrón con 6.5% de caucho granulado

| _           |                                          |     |                     | PEN                 | IETRACI | ÓN  |                     |                     |       |     |                     |                     |        |
|-------------|------------------------------------------|-----|---------------------|---------------------|---------|-----|---------------------|---------------------|-------|-----|---------------------|---------------------|--------|
| Penetración | O Otde-d                                 |     | Molde               | N° 13               |         |     | Molde               | N° 14               |       |     | Molde               | N° 15               |        |
| Penetracion | Carga Standard<br>(kg./cm <sup>2</sup> ) | Ca  | arga                | Corre               | cción   | Ca  | rga                 | Corre               | cción | Car | rga                 | Corre               | ección |
| (pulg.)     | (kg./cm/)                                | kg. | kg./cm <sup>2</sup> | kg./cm <sup>2</sup> | CBR %   | kg. | kg./cm <sup>2</sup> | kg./cm <sup>2</sup> | CBR % | kg. | kg./cm <sup>2</sup> | kg./cm <sup>2</sup> | CBR 9  |
| 0.025       |                                          | 41  | 2.1                 |                     |         | 31  | 1.6                 |                     |       | 14  | 0.7                 |                     |        |
| 0.050       |                                          | 73  | 3.7                 |                     |         | 55  | 2.8                 |                     |       | 26  | 1.3                 |                     |        |
| 0.075       |                                          | 112 | 5.7                 |                     |         | 84  | 4.2                 |                     |       | 39  | 2.0                 |                     |        |
| 0.100       | 70.307                                   | 152 | 7.7                 | 8.2                 | 11.7    | 114 | 5.8                 | 6.3                 | 9.0   | 53  | 2.7                 | 3.0                 | 4.3    |
| 0.150       |                                          | 249 | 12.6                |                     |         | 187 | 9.5                 |                     |       | 87  | 4.4                 |                     |        |
| 0.200       | 105.460                                  | 333 | 16.9                | 16.0                | 15.2    | 249 | 12.7                | 12.0                | 11.4  | 116 | 5.9                 | 5.6                 | 5.3    |
| 0.300       |                                          | 440 | 22.3                |                     |         | 330 | 16.8                |                     |       | 154 | 7.8                 |                     |        |
| 0.400       |                                          | 514 | 26.1                |                     |         | 386 | 19.6                |                     |       | 180 | 9.1                 |                     |        |
| 0.500       |                                          | 592 | 30.1                |                     |         | 444 | 22.5                |                     |       | 207 | 10.5                |                     |        |

Fuente: JJ Geotecnia



**Figura N°20**: Grafica de C.B.R de muestra patrón con 6.5% de caucho granulado Fuente: JJ Geotecnia

En la tabla 17 se observa los resultados del ensayo de CBR el cual detalla la penetración que se toma a 0.1" y 0.2" y la lectura de la presión del pistón en cada muestra. En el molde 13 se aprecia como resultado una carga ejercida de 152 kg a 0.1" de penetración, siendo su lectura de la presión de pistón 7.7 kg/cm2 y para la carga ejercida de 333 kg a 0.2" de penetración, siendo su lectura de la presión de pistón 16.9 kg/cm2, en el molde 14 se aprecia como resultado una carga ejercida de 114 kg a 0.1" de penetración, siendo lectura de la presión de pistón 5.8 kg/cm2 y para la carga ejercida de 249 kg a 0.2" de penetración, siendo su lectura de la presión de pistón 12.7 kg/cm2, en el molde 15 se aprecia como resultado una carga ejercida de 53 kg a 0.1" de penetración, siendo su lectura de la presión pistón 2.7 kg/cm2 y para la carga ejercida de 116 kg a 0.2" de penetración, siendo su lectura de la presión su lectura de la presión de la presión de la presión de

pistón 5.9 kg/cm2.

En la figura N° 20, se observa la curva CBR consiste en la relación entre la densidad seca vs el C.B.R y el resultado del ensayo, el C.B.R obtenido de una penetración de 0.1" con el 100% de la M.D.S es de 11.7%y con el 95% de la M.D.S es 9.6%, para una penetración de 0.2" con el 100% de la M.D.S es de 15.2%y con el 95% de la M.D.S es 12.2%.

**Tabla 19** : Datos del ensayo de CBR de la muestra patrón con 8.5% de caucho granulado

|             |                                          |     |                     | PEN                 | IETRACI | ÓN    |                     |                     |       |       |                     |                     |       |
|-------------|------------------------------------------|-----|---------------------|---------------------|---------|-------|---------------------|---------------------|-------|-------|---------------------|---------------------|-------|
| Penetración | Ones Othersday                           |     | Molde               | N° 16               |         |       | Molde               | N° 17               |       |       | Molde               | N° 18               |       |
| renetiación | Carga Standard<br>(kg./cm <sup>2</sup> ) | Ca  | Carga Corr          |                     |         | Carga |                     | Corrección          |       | Carga |                     | Corrección          |       |
| (pulg.)     | (lig./oiii )                             | kg. | kg./cm <sup>2</sup> | kg./cm <sup>2</sup> | CBR %   | kg.   | kg./cm <sup>2</sup> | kg./cm <sup>2</sup> | CBR % | kg.   | kg./cm <sup>2</sup> | kg./cm <sup>2</sup> | CBR % |
| 0.025       |                                          | 21  | 1.1                 |                     |         | 11    | 0.6                 |                     |       | 5     | 0.3                 |                     |       |
| 0.050       |                                          | 36  | 1.8                 |                     |         | 20    | 1.0                 |                     |       | 9     | 0.5                 |                     |       |
| 0.075       |                                          | 55  | 2.8                 |                     |         | 29    | 1.5                 |                     |       | 14    | 0.7                 |                     |       |
| 0.100       | 70.307                                   | 76  | 3.8                 | 3.9                 | 5.5     | 41    | 2.1                 | 2.1                 | 3.0   | 19    | 1.0                 | 1.0                 | 1.4   |
| 0.150       |                                          | 117 | 5.9                 |                     |         | 63    | 3.2                 |                     |       | 29    | 1.5                 |                     |       |
| 0.200       | 105.460                                  | 154 | 7.8                 | 7.6                 | 7.2     | 83    | 4.2                 | 4.1                 | 3.9   | 39    | 2.0                 | 1.9                 | 1.8   |
| 0.300       |                                          | 213 | 10.8                |                     |         | 114   | 5.8                 |                     |       | 53    | 2.7                 |                     |       |
| 0.400       |                                          | 260 | 13.2                |                     |         | 140   | 7.1                 |                     |       | 65    | 3.3                 |                     |       |
| 0.500       |                                          | 298 | 15.1                |                     |         | 160   | 8.1                 |                     |       | 75    | 3.8                 |                     |       |

Fuente: JJ Geotecnia

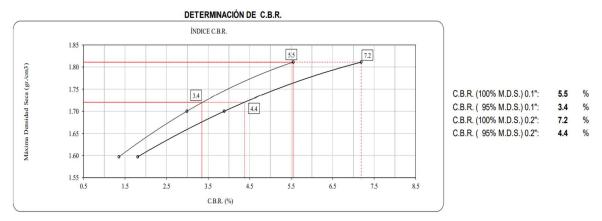


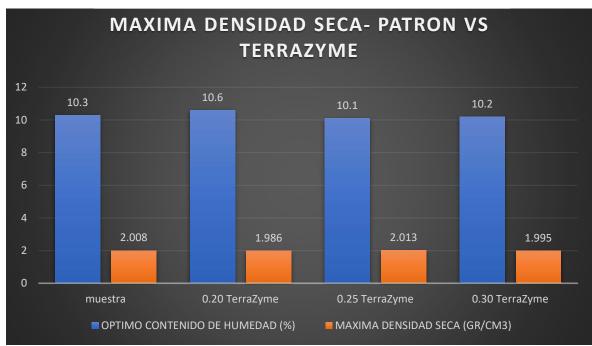

Figura N°21: Grafica de C.B.R de muestra patrón con 8.5% de caucho granulado Fuente: JJ Geotecnia

En la tabla 18 se observa los resultados del ensayo de CBR el cual detalla la penetración que se toma a 0.1" y 0.2" y la lectura de la presión del pistón en cada muestra, En el molde 13 se aprecia como resultado una carga ejercida de 76 kg a 0.1" de penetración, siendo su lectura de la presión de pistón 3.8

kg/cm2 y para la carga ejercida de 154 kg a 0.2" de penetración, siendo su lectura de la presión de pistón 7.8 kg/cm2, en el molde 14 se aprecia como resultado una carga ejercida de 41 kg a 0.1" de penetración, siendo lectura de la presión de pistón 2.1 kg/cm2 y para la carga ejercida de 83 kg a 0.2" de penetración, siendo su lectura de la presión de pistón 4.2 kg/cm2, en el molde 15 se aprecia como resultado una carga ejercida de 19 kg a 0.1" de penetración, siendo su lectura de la presión pistón 1.0 kg/cm2 y para la carga ejercida de 39 kg a 0.2" de penetración, siendo su lectura de la presión de pistón 2.0 kg/cm2

En la figura N° 21, se observa la curva CBR consiste en la relación entre la densidad seca vs el C.B.R y el resultado del ensayo, el C.B.R obtenido de una penetración de 0.1" con el 100% de la M.D.S es de 5.5%y con el 95% de la M.D.S es 3.4%, para una penetración de 0.2" con el 100% de la M.D.S es de 7.2%y con el 95% de la M.D.S es 4.4%

### Objetivo 1:


Precisar la densidad seca máxima aplicando el aditivo TerraZyme en la subrasante en Ampliación Las Lomas –Ventanilla 2021.

#### Proctor modificado MTC E 115 ASTM D 1557

Se realizaron los ensayos de Proctor modificado, dándonos la relación entre el contenido de humedad y la densidad seca de la muestra teniéndola como base y así mismo también la muestra adicionada con el TerraZyme según la dosificación correspondiente de 0.20 ml x kg, 0.25ml x kg y 0.30 ml x kg.

**Tabla 20** : Datos del ensayo de Proctor Modificado Muestra patrón-TerraZyme

|                                 | Muestra | 0.20      | 0.25      | 0.30      |
|---------------------------------|---------|-----------|-----------|-----------|
| PROCTOR MODIFICADO              | patrón  | TerraZyme | TerraZyme | TerraZyme |
| OPTIMO CONTENIDO DE HUMEDAD (%) | 10.3    | 10.6      | 10.1      | 10.2      |
| MAXIMA DENSIDAD SECA (GR/CM3)   | 2.008   | 1.986     | 2.013     | 1.995     |



**Figura N°22:** Grafica comparativa de resultados de máxima densidad seca entre la muestra patrón y añadida con TerraZyme

En la figura N°22 y tabla 19 se aprecia la máxima densidad seca que llega a tener a la hora de adicionar TerraZyme, teniendo desde el patrón 2.008 gr/cm3 con un contenido de humedad de 10.3%, para la muestra adicionada 0.20ml de TerraZyme x kg su M.D.S es de 1.986 con 10.6% de O.C.H, para la muestra adicionada 0.25ml de TerraZyme x kg su M.D.S es de 2.013 con 10.1% de O.C.H, para la muestra adicionada 0.30ml de TerraZyme x kg su M.D.S es de 1.995 con 10.2% de O.C.H.

### Objetivo 2:

Precisar la densidad seca máxima aplicando el Caucho granulado en la subrasante en Ampliación Las Lomas –Ventanilla 2021.

## Proctor modificado MTC E 115 ASTM D 1557

Se realizaron los ensayos de Proctor modificado, dándonos la relación entre el contenido de humedad y la densidad seca de la muestra teniéndola como base y así mismo también la muestra adicionada con el Caucho granulado según la dosificación correspondiente de 4.5%, 6.5% y 8.5%.

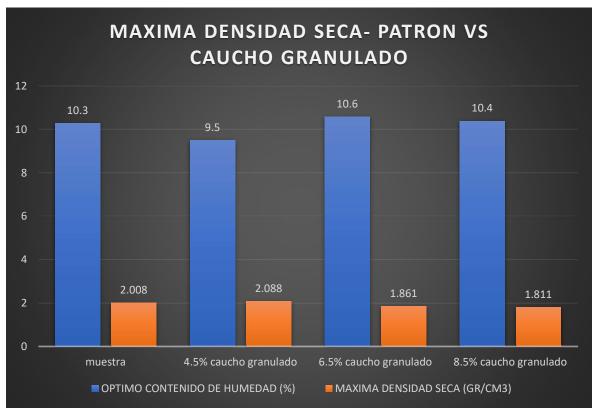
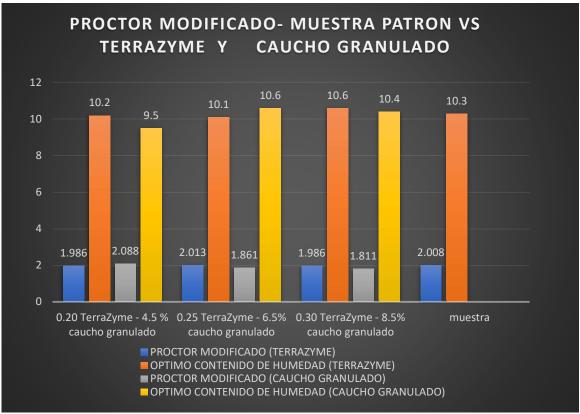



Figura N°23: Grafica comparativa de resultados de máxima densidad seca entre la muestra patrón y añadida con Caucho granulado

 Tabla 21
 : Datos del ensayo de Proctor Modificado Muestra patrón- Caucho

granulado


|                                 | Muestra | 4.5% caucho | 6.5% caucho | 8.5% caucho |
|---------------------------------|---------|-------------|-------------|-------------|
| PROCTOR MODIFICADO              | patrón  | granulado   | granulado   | granulado   |
| OPTIMO CONTENIDO DE HUMEDAD (%) | 10.3    | 9.5         | 10.6        | 10.4        |
| MAXIMA DENSIDAD SECA (GR/CM3)   | 2.008   | 2.088       | 1.861       | 1.811       |

Fuente: Elaboración propia

En la figura N°23 y tabla 20 se aprecia la máxima densidad seca que llega a tener a la hora de adicionar Caucho Granulado, teniendo desde el patrón 2.008 gr/cm3 con un contenido de humedad de 10.3%, para la muestra adicionada 4.5% de Caucho granulado su M.D.S es de 2.088 con 9.5 % de O.C.H, para la muestra adicionada 6.5% de Caucho granulado su M.D.S es de 1.861 con 10.6% de O.C.H, para la muestra adicionada 8.5% de Caucho granulado su M.D.S es de 1.995 con 10.2% de O.C.H.

**Tabla 22** : Datos de Ensayo de Proctor modificado de muestra patrón, patrón con TerraZyme, patrón con caucho granulado

|                                              | MAXIMA DENSIDAD SECA<br>(gr/cm3) | OPTIMO CONTENIDO DE<br>HUMEDAD % |
|----------------------------------------------|----------------------------------|----------------------------------|
| MUESTRA PATRON                               | 2.008                            | 10.3                             |
| MUESTRA PATRON +<br>0.30 TERRAZYME           | 1.995                            | 10.2                             |
| MUESTRA PATRON +<br>0.25 TERRAZYME           | 2.013                            | 10.1                             |
| MUESTRA PATRON +<br>0.20 TERRAZYME           | 1.986                            | 10.6                             |
| MUESTRA PATRON +<br>4.5% CAUCHO<br>GRANULADO | 2.088                            | 9.5                              |
| MUESTRA PATRON +<br>6.5% CAUCHO<br>GRANULADO | 1.861                            | 10.6                             |
| MUESTRA PATRON +<br>8.5% CAUCHO<br>GRANULADO | 1.811                            | 10.4                             |



**Figura N°24:** Grafica comparativa de resultados de máxima densidad seca entre la muestra patrón y añadida con Caucho granulado

Se aprecia en la Tabla 21 y en la figura N°24, las máximas densidades secas de los productos utilizados es decir TerraZyme - caucho granulado y la muestra patrón, se aprecia que el valor máximo que toma la densidad seca es añadiendo el 0.25ml de TerraZyme x kg dando un valor de 2.013 gr/cm3, para el caso del caucho granulado el valor máximo que toma de la densidad seca es aplicando el 4.5% de caucho granulado obteniendo como resultado 2.088 gr/cm3, se aprecia que con ambos productos mejora la máxima densidad seca patrón que es de 2.008 gr/cm3.

# Evidencias Fotográficas



Figura N°25: Muestra patrón y herramientas para ensayo de Proctor modificado



Figura N°26: Muestra patrón con caucho granulado y herramientas para ensayo de Proctor modificado



Figura N°27: Muestra patrón con TerraZyme y herramientas para ensayo de

Proctor modificado

# Objetivo 3:

Determinar la resistencia al esfuerzo incluyendo el aditivo TerraZyme en la subrasante en Ampliación Las Lomas –Ventanilla 2021.

Ensayo de California Bearing Ratio (C.B.R.) MTC E 132 ASTM D 1883 Se realizaron los ensayos de CBR, dándonos la medida de la resistencia al esfuerzo cortante del suelo, así mismo se le adiciona ala muestra con el TerraZyme según la dosificación correspondiente de 0.20 ml x kg, 0.25ml x kg y 0.30 ml x kg.

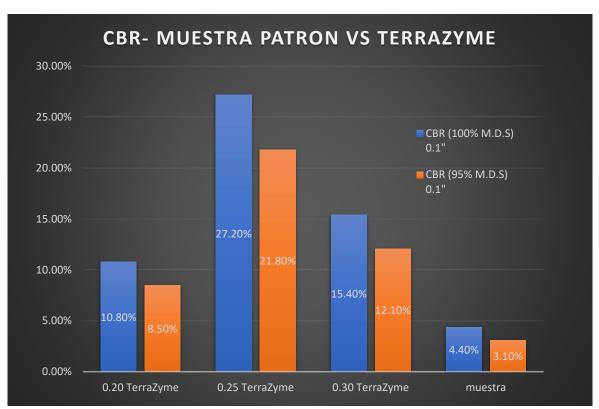



Figura N°28: Grafica de C.B.R de muestra patrón y TerraZyme

Fuente: Elaboración propia

Tabla 23 : Datos del ensayo de CBR de la muestra patrón y TerraZyme

|                       | 0.20 TerraZyme | 0.25 TerraZyme | 0.30 TerraZyme | muestra |
|-----------------------|----------------|----------------|----------------|---------|
| CBR (100% M.D.S) 0.1" | 10.80%         | 27.20%         | 15.40%         | 4.40%   |
| CBR (95% M.D.S) 0.1"  | 8.50%          | 21.80%         | 12.10%         | 3.10%   |

En la figura N°28 y tabla 22 se aprecia la gráfica de los C.B.R de la muestra patrón y del TerraZyme, , en el cual se obtiene como resultado que el TerraZyme aumentan la capacidad portante del terreno el cual es para CBR al 100% de la M.D.S con penetración a 0.1" el valor de 4.40%, para la muestra con el TerraZyme se obtiene los siguientes valores, CBR al 100% de la M.D.S con penetración a 0.1"; 10.80 % para 0.20ml x kg de TerraZyme, 27.20 % para 0.25ml x kg de TerraZyme, 15.40 % para 0.30ml x kg de TerraZyme y para el CBR al 100% de la M.D.S con penetración a 0.2"; 8.50 % para 0.20ml x kg de TerraZyme, 21.80 % para 0.25ml x kg de TerraZyme, 12.10 % para 0.30ml x kg de TerraZyme y para la muestra patrón es de 3.10%.

Se demuestra la determinación a partir de la aplicación del aditivo TerraZyme al suelo aumentando su capacidad portante, como resultado optimo se obtuvo con la dosificación de 0.25ml x Kg dando un C.B.R de 27.20%. Es posible clasificar de forma cualitativa el suelo a partir de su C.B.R, según la tabla 25, al añadirlo con el aditivo TerraZyme pasa de una clasificación muy mala a excelente.

## Objetivo 4:

Determinar la resistencia al esfuerzo incluyendo el Caucho granulado en la subrasante en Ampliación Las Lomas –Ventanilla 2021.

Ensayo de California Bearing Ratio (C.B.R.) MTC E 132 ASTM D 1883 Se realizaron los ensayos de CBR, dándonos la medida de la resistencia al esfuerzo cortante del suelo, así mismo se le adiciona ala muestra con el caucho granulado según la dosificación correspondiente de 4.5% 6.5% y 8.5%.

**Tabla 24** : Datos del ensayo de CBR de la muestra patrón y caucho granulado

|                       | 4.5% caucho<br>granulado | 6.5% caucho<br>granulado | 8.5% caucho<br>granulado | muestra |
|-----------------------|--------------------------|--------------------------|--------------------------|---------|
| CBR (100% M.D.S) 0.1" | 10.20%                   | 11.70%                   | 5.50%                    | 4.40%   |
| CBR (95% M.D.S) 0.1"  | 8.60%                    | 9.60%                    | 3.40%                    | 3.10%   |

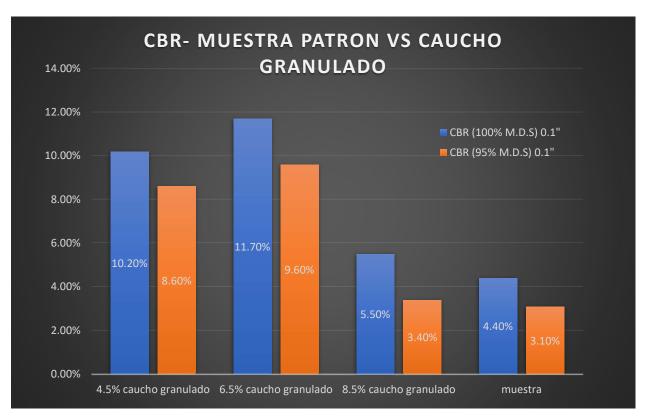
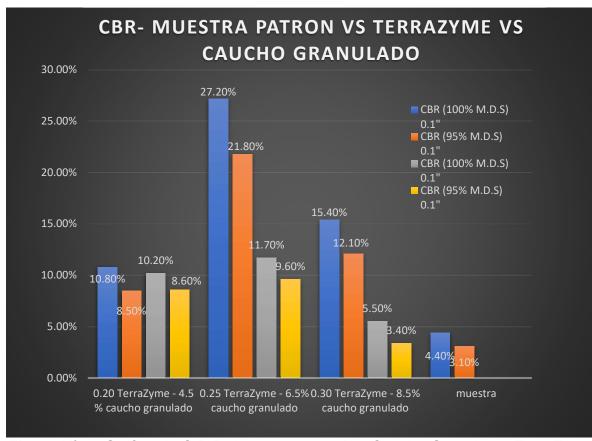




Figura N°29: Grafica de C.B.R de muestra patrón y Caucho Granulado

En la figura N°29 y tabla 23 se aprecia la gráfica de los C.B.R de la muestra patrón y del caucho granulado , en el cual se obtiene como resultado que el caucho granulado aumentan la capacidad portante del terreno el cual es para CBR al 100% de la M.D.S con penetración a 0.1" el valor de 4.40%, para la muestra con el TerraZyme se obtiene los siguientes valores, CBR al 100% de la M.D.S con penetración a 0.1"; 10.20 % para 4.5% de caucho granulado, 11.70 % para 6.5% de caucho granulado, 5.50 % para 8.5% de caucho granulado y para el CBR al 100% de la M.D.S con penetración a 0.2"; 8.60 % para 4.5% de caucho granulado, 9.60% para 6.5% de caucho granulado, 3.40 % para 8.5% de caucho granulado y para la muestra patrón es de 3.10%.

Se demuestra la determinación a partir de la aplicación del caucho granulado al suelo aumentando su capacidad portante, como resultado optimo se obtuvo con la dosificación de 6.5% de caucho granulado dando un C.B.R de 11.7%. Es posible clasificar de forma cualitativa el suelo a partir de su C.B.R, según la tabla 25, al añadirlo con el caucho granulado pasa de una clasificación muy mala a regular-buena.



**Figura N°30**: Grafica de C.B.R de muestra patrón - Caucho Granulado- TerraZyme Fuente: Elaboración propia

**Tabla 25** : Datos del ensayo de CBR de la muestra patrón- caucho granulado-TerraZyme

| CBR                    |                       |                      |  |  |
|------------------------|-----------------------|----------------------|--|--|
| MUESTRA                | CBR (100% M.D.S) 0.1" | CBR (95% M.D.S) 0.1" |  |  |
| PATRON                 | 4.4                   | 3.1                  |  |  |
| 0.20 ml x kg TerraZyme | 10.8                  | 8.5                  |  |  |
| 0.25 ml x kg TerraZyme | 27.2                  | 21.8                 |  |  |
| 0.30 ml x kg TerraZyme | 15.4                  | 12.1                 |  |  |
| 4.5% caucho granulado  | 10.2                  | 8.6                  |  |  |
| 6.5% caucho granulado  | 11.7                  | 9.6                  |  |  |
| 8.5% caucho granulado  | 5.5                   | 3.4                  |  |  |

 Tabla 26
 : Clasificación y uso de suelos según el valor obtenido del CBR

| CBR      | Clasificación cualitativa del suelo | Uso         |
|----------|-------------------------------------|-------------|
| 2 - 5    | Muy mala                            | Sub-rasante |
| 5 - 8    | Mala                                | Sub-rasante |
| 8 - 20   | Regular - Buena                     | Sub-rasante |
| 20 - 30  | Excelente                           | Sub-rasante |
| 30 - 60  | Buena                               | Sub-base    |
| 60 - 80  | Buena                               | Base        |
| 80 - 100 | Excelente                           | Base        |

En la figura N°30 y tabla 24 se aprecia la gráfica de los C.B.R de la muestra patrón, del caucho granulado y del TerraZyme, en el cual se obtiene como resultado que estos productos aumentan la capacidad portante del terreno, el CBR máximo para el TerraZyme es el de dosificación de 0.25ml x kg de material y su valor es de 27.2% al 0.1" de penetración con el 100% de la M.D.S y para el 95% de la M.D.S es valor obtenido es de 21.8% y para el caucho granulado con dosificación de 6.5% el CBR máximo es de 11.7% al 0.1" de penetración con el 100% de la M.D.S y para el 95% de la M.D.S es valor obtenido es de 9.6%.

# V.DISCUSIÓN

### Objetivo 1:

Precisar la densidad seca máxima aplicando el aditivo TerraZyme en la subrasante en Ampliación Las Lomas –Ventanilla 2021

Antecedente: Chambi (2016) en su investigación adiciono porcentajes de aditivo Perma-Zyme 22x ala subrasante, con las dosificaciones 0.9Ltr/30m3, 1 Ltr/30m3 y 1.1 Ltr/30m3, se logró obtener la máxima densidad seca que fue de 2.13 gr/cm3 al 1.1 Ltr/30 m3 de Perma-Zyme, se llegó aumentar la densidad seca a comparación de la muestra que tuvo como valor 2.05 gr/cm3.

Resultados: En la presente investigación se obtuvo como resultado de las calicatas realizadas la muestra patrón más desfavorable el cual fue clasificado según SUCS un suelo CL esto nos quiere decir un suelo arcilloso de baja plasticidad y según AASHTO un suelo A-6(8) dando referencia a un suelo que contiene partículas arcillosas. La muestra patrón tuvo una densidad seca de 2.008 gr/cm3 con y un óptimo contenido de humedad de 10.3%, adicionándole el TerraZyme a 0.20ml x kg de material se obtuvo una densidad seca de 1.986 gr/cm3 con y un óptimo contenido de humedad de 10.6%, con 0.25ml x kg de material se obtuvo tuvo una densidad seca de 2.013 gr/cm3 con y un óptimo contenido de humedad de 10.1%, con 0.30ml x kg de material se obtuvo tuvo una densidad seca de 1.995 gr/cm3 con y un óptimo contenido de humedad de 10.2%, se tiene como resultado que la mejor dosificación fue de 0.25ml x Kg de material ya que obtuvo mayor aumento de la máxima densidad seca.

Comparación: Según los antecedentes analizados se determinó que el aditivo TerraZyme aumento la densidad seca máxima de la subrasante. En la presente investigación mediante el ensayo del Proctor modificado que se realizó, se evidencio que al adicionarle el aditivo TerraZyme a la muestra se logró aumentar la máxima densidad seca en comparación a la muestra patrón, dando como resultado 2.013 gr/cm3 al añadirle 0.25ml de TerraZyme x kg de material, obteniendo resultados relacionados a los antecedentes los cuales detallan que logró influenciar positivamente ala subrasante

### Objetivo 2:

Precisar la densidad seca máxima aplicando el Caucho granulado en la subrasante en Ampliación Las Lomas –Ventanilla 2021.

Antecedente: Benavente (2020) en su investigación adiciono porcentajes de caucho rallado ala subrasante, con las dosificaciones 10%, 15% y 20%, las máximas densidades secas que se obtuvieron fueron de, 1.825 gr/cm3 al 10%, 1.713 gr/cm3 al 15% y 1.596 gr/cm3 al 20%, se obtuvo una curva decreciente y se concluyó que la máxima densidad seca con el caucho rallado se obtiene empleando el 5%.

Resultados: En la presente investigación se obtuvo como resultado de las calicatas realizadas la muestra patrón más desfavorable el cual fue clasificado según SUCS un suelo CL esto nos quiere decir un suelo arcilloso de baja plasticidad y según AASHTO un suelo A-6(8) dando referencia a un suelo que contiene partículas arcillosas. La muestra patrón tuvo una densidad seca de 2.008 gr/cm3 con y un óptimo contenido de humedad de 10.3%, adicionándole el Caucho Granulado al 4.5% obtuvo una densidad seca de 2.088 gr/cm3 con y un óptimo contenido de humedad de 9.5%, con 6.5% se obtuvo tuvo una densidad seca de 1.861 gr/cm3 con y un óptimo contenido de humedad de 10.6%, con 8.5% se obtuvo tuvo una densidad seca de 1.811 gr/cm3 con y un óptimo contenido de humedad de 10.4%, se tiene como resultado que la mejor dosificación fue de 4.5% de caucho granulado ya que obtuvo mayor aumento de la máxima densidad seca.

Comparación: Según los antecedentes analizados se determinó que el caucho granulado aumento la densidad seca máxima de la subrasante. En la presente investigación mediante el ensayo del Proctor modificado que se realizó, se evidencio que al adicionarle el caucho granulado a la muestra se logró aumentar la máxima densidad seca teniendo como resultado 2.088 gr/cm3 con una dosificación de 4.5% de caucho granulado, obteniendo resultados relacionados a los antecedentes los cuales detallan que logró influenciar positivamente ala subrasante.

Comparación de objetivo 1 y objetivo 2: Según lo detallado en los antecedentes como también en los resultados obtenido en laboratorio se llega apreciar que tanto como el aditivo TerraZyme y caucho granulado llegan a subir la máxima

densidad seca de la subrasante, tomando como punto de partida el valor de la muestra patrón obtenida el cual fue de 2.008 gr/cm3, al añadirle el aditivo TerraZyme aumento a 2.013 gr/cm3 y al aplicarle caucho granulado aumento a 2.088 gr/cm3, a partir de ese dato se entiende que empleando el caucho granulado se obtiene un aumento de la M.D.S, siendo mayor que al aplicarlo con el aditivo TerraZyme

## Objetivo 3:

Determinar la resistencia al esfuerzo incluyendo el aditivo TerraZyme en la subrasante en Ampliación Las Lomas –Ventanilla 2021.

Antecedente: Gallegos (2021) en su investigación se empleó el Aditivito Terra-Zyme aplicándolo en cantidades de 38ml/m3, 57ml/m3 y 61ml/m3, teniendo un C.B.R de la muestra patrón de 40.1 % al 100% de su M.D.S con 0.1" de penetración, y llego aumentar a 45.8 % para 38 ml/m3, 55.9 % para 57 ml/m3 y 67.9% para 61 ml/m3. Logrando así elevar su capacidad portante del suelo Resultados: En la presente investigación se obtuvo como resultado de las calicatas realizadas la muestra patrón más desfavorable el cual fue clasificado según SUCS un suelo CL esto nos quiere decir un suelo arcilloso de baja plasticidad y según AASHTO un suelo A-6(8) dando referencia a un suelo que contiene partículas arcillosas. La muestra patrón tuvo un C.B.R al 95% con 0.1" de penetración de 3.1%, y un C.B.R al 100% con 0.1" de penetración de 4.4%, se le adiciono el aditivo TerraZyme y fue mejorando, teniendo así con la dosificación de 0.20ml/ kg de material un C.B.R al 95% con 0.1" de penetración de 8.5%, y un C.B.R al 100% con 0.1" de penetración de 10.8%, con 0.25ml/ kg de material un C.B.R al 95% con 0.1" de penetración de 21.8%, y un C.B.R al 100% con 0.1" de penetración de 27.2%, con 0.30ml/ kg de material un C.B.R al 95% con 0.1" de penetración de 12.1%, y un C.B.R al 100% con 0.1" de penetración de 15.4%, siendo la mejor dosificación 0.25ml de TerraZyme x kg de material ya que dio como el mayor resultado al ensayo de CBR pasando de ser una subrasante mala a una subrasante muy buena ya que el CBR fue mayor al 20%.

Comparación: Según los antecedentes analizados se pudo determinar que el aditivo TerraZyme en sus diferentes dosificaciones mejoran favorablemente las

propiedades mecánicas del suelo logrando incrementar la capacidad portante de la subrasante puesto que al adicionar el aditivo se elevó el CBR de la muestra en estado natural. Asimismo, se demostró en la presente investigación al adicionar diferentes porcentajes de TerraZyme aumento el CBR al 95% y al 100%, pero siendo su óptimo de 0.25 ml se TerraZyme x kg de material, se obtuvo aumento en el C.B.R con respecto al suelo natural, teniendo resultados de mejoras similares a los antecedentes.

### Objetivo 4:

Determinar la resistencia al esfuerzo incluyendo el Caucho granulado en la subrasante en Ampliación Las Lomas –Ventanilla 2021.

Antecedente: Alvares (2020) en su investigación se empleó el caucho pulverizado aplicándolo en cantidades de 1.5%, 2.5% y 3.5%, teniendo un C.B.R de la muestra patrón de 48.2 % al 100% de su M.D.S con 01" de penetración, y llego aumentar a 56% para 1.5% de caucho pulverizado, 172 % para 2.5% de caucho pulverizado y 194% para 3.5% de caucho pulverizado. Logrando así elevar su capacidad portante del suelo

Resultados: En la presente investigación se obtuvo como resultado de las calicatas realizadas la muestra patrón más desfavorable el cual fue clasificado según SUCS un suelo CL esto nos quiere decir un suelo arcilloso de baja plasticidad y según AASHTO un suelo A-6(8) dando referencia a un suelo que contiene partículas arcillosas. La muestra patrón tuvo un C.B.R al 95% con 0.1" de penetración de 3.1%, y un C.B.R al 100% con 0.1" de penetración de 4.4%, se le adiciono el caucho granulado y fue mejorando, teniendo así con la dosificación de 4.5% un C.B.R al 95% con 0.1" de penetración de 8.6%, y un C.B.R al 100% con 0.1" de penetración de 10.2%, con 6.5% un C.B.R al 95% con 0.1" de penetración de 9.6%, y un C.B.R al 100% con 0.1" de penetración de 11.7%, con 8.5% un C.B.R al 95% con 0.1" de penetración de 3.4%, y un C.B.R al 100% con 0.1" de penetración de 5.5%, siendo la mejor dosificación fue de 6.5% de caucho granulado añadido al suelo ya que dio como el mayor resultado al ensayo de CBR pasando de ser una subrasante mala a una subrasante regular- buena.

Comparación: Según lo detallado en los antecedentes como también en los resultados obtenido en laboratorio se lleva apreciar que tanto como el aditivo TerraZyme y caucho granulado llegan a subir la máxima densidad seca de la subrasante, tomando como punto de partida el valor de la muestra patrón obtenida el cual fue de 2.008 gr/cm3, al añadirle el aditivo TerraZyme aumento a 2.013 gr/cm3 y al aplicarle caucho granulado aumento a 2.088 gr/cm3, a partir de ese dato se entiende que empleando el caucho granulado se obtiene un aumento de la M.D.S, siendo mayor que al aplicarlo con el aditivo TerraZyme Comparación de objetivo 3 y 4: Según lo detallado en los antecedentes como también en los resultados obtenido en laboratorio se llega apreciar que tanto como el aditivo TerraZyme y caucho granulado llegan a aumentar el C.B.R de la subrasante, tomando como punto de partida el valor de la muestra patrón el cual fue de 4.4%, al añadirle el aditivo TerraZyme aumento su C.B.R hasta un 21.8 % y al aplicarle caucho granulado aumento hasta un 11.7% a partir de ese dato se entiende que empleando el aditivo TerraZyme se obtiene un aumento del CBR, siendo mayor que al aplicarlo con el caucho granulado.

#### VI. CONCLUSIONES

Determinar la influencia del aditivo TerraZyme y el Caucho granulado en el mejoramiento de la subrasante en Ampliación Las Lomas –Ventanilla 2021.

Objetivo general, Se determinó que el aditivo TerraZyme y el caucho granulado aporto mejoras en la subrasante localizado en Ampliación Las Lomas – Ventanilla dichas mejoras fueron en las propiedades mecánicas y físicas: 1) aumentando la densidad seca máxima con el uso del TerraZyme 2) aumentando la densidad seca máxima con el uso del caucho granulado 3) aumentando la resistencia al esfuerzo de la subrasante con el uso del TerraZyme y 4) aumentando la resistencia al esfuerzo de la subrasante con el uso del caucho granulado.

# 1) Proctor Modificado - TerraZyme

Patrón: 2.008 gr/cm3 – M.D.S ,10.3% - O.C.H; TerraZyme 0.20 ml (1.986 gr/cm3 - M.D. S , 10.6% - O.C.H); TerraZyme 0.25 ml (2.013 gr/cm3 - M.D.S, 10.1% - O.C.H); TerraZyme 0.30 ml (1.9954 gr/cm3 – M.D.S, 10.2% - O.C.H)

Objetivo Especifico 1, La dosificación del aditivo TerraZyme aplicado en el terreno para obtener la máxima densidad seca fue desde 0.20 ml, 0.25ml y 0.30 ml por kilo de material ya que al usar el aditivo se evidencio un aumento en la M.D.S. El terreno natural tuvo valor de 2.008 gr/cm3, y logro aumentar al valor más alto 2.013 gr/cm3. y su O.C.H bajo de 10.3% a 10.1 % mediante la aplicación de TerraZyme con una dosificación de 0.25ml x Kg de material Por ende el aditivo TerraZyme influenció positivamente en la mejora de la máxima densidad seca, el cual quedo constatado en los ensayos.

## 2) Proctor Modificado - Caucho Granulado

cual quedo constatado en los ensayos

Patrón: 2.008 gr/cm3 – M.D.S ,10.3% - O.C.H; Caucho Granulado 4.5% (2.088 gr/cm3 - M.D. S, 9.5% - O.C.H); Caucho Granulado 6.5% (1.861 gr/cm3 - M.D. S, 10.6% - O.C.H); Caucho Granulado 8.5% (1.811gr/cm3 – M.D.S, 10.4 - O.C.H) Objetivo Especifico 2, Se evidencio un aumento en la M.D.S, teniendo del terreno natural un valor de 2.008 gr/cm3, pasando al valor de 2.088 gr/cm3 y de un O.C.H de 10.3% a 9.5% mediante la adición del caucho granulado de 4.5% respecto al peso del material, dicha dosificación obtuvo el mejor resultado, por ende, el caucho granulado influenció positivamente en la mejora de la máxima densidad seca, el

### 3) Resistencia al esfuerzo - TerraZyme

-Patrón: 4.40% al 100% de M.D.S a 0.1", 3.1% al 95% de M.D.S a 0.1"; TerraZyme 0.20 ml (10.80% al 100% de M.D.S a 0.1", 8.5% al 95% de M.D.S a 0.1"); TerraZyme 0.25 ml (27.20% al 100% de M.D.S a 0.1", 21.8% al 95% M.D.S a 0.1"); TerraZyme 0.30 ml (15.40% al 100% M.D.S a 0.1", 12.1% al 95% M.D.S a 0.1")

Objetivo Especifico 3, La dosificación del aditivo TerraZyme aplicado en el terreno influencio positivamente en el CBR, ya que al usar el aditivo se evidencio un aumento en su CBR, teniendo como valor del CBR terreno natural 4.40 % al 100% de M.D.S a 1" y 3.1% al 95% M.D.S a 1", pasando al valor de 27.20 % al 100% de M.D.S a 1" y 21.8% al 95% M.D.S a 1". Mediante los resultados, el mejor valor fue con una dosificación de 0.25ml x Kg de material. Por lo tanto, la resistencia al esfuerzo mejoro al aplicar el estabilizador y quedo comprobado con los ensayos.

#### 4) Resistencia al Esfuerzo - Caucho Granulado

-Patrón: 4.40% al 100% de M.D.S a 0.1", 3.1% al 95% de M.D.S a 0.1"; Caucho granulado 4.5% (10.20% al 100% de M.D.S a 0.1", 8.6% al 95% de M.D.S a 0.1"); Caucho granulado 6.5% (11.70% al 100% de M.D.S a 0.1", 9.6% al 95% M.D.S a 0.1"); Caucho granulado 8.5% (5.5% al 100% M.D.S a 0.1", 3.4% al 95% M.D.S a 0.1")

Objetivo Especifico 4, La mejor dosificación del caucho granulado aplicado en el terreno para obtener una mejora en el CBR fue del 4.5% con respecto al peso del material, ya que al usar el caucho granulado se evidencio un aumento en su CBR, teniendo como valor del terreno natural 4.40 % al 100% de M.D.S a 1" y 3.1% al 95% M.D.S a 1" pasando al valor de 11.70 % al 100% de M.D.S a 1" y 9.6 % al 95% M.D.S a 1". De manera que se concluye que la aplicación de dicho material influenció positivamente en la mejora de su C.B.R, el cual quedo constatado en los ensayos.

#### VII. RECOMENDACIONES

### 1) Proctor Modificado - TerraZyme

Patrón: 2.008 gr/cm3 – M.D.S ,10.3% - O.C.H; TerraZyme 0.20 ml (1.986 gr/cm3 - M.D.S , 10.6% - O.C.H); TerraZyme 0.25 ml (2.013 gr/cm3 - M.D.S, 10.1% - O.C.H); TerraZyme 0.30 ml (1.9954 gr/cm3 – M.D.S, 10.2% - O.C.H)

Objetivo Especifico 1, En la presente investigación se le adiciono TerraZyme con la dosificación de 0.20 ml, 025ml y 0.30 ml por kilo de material, en todas las muestras realizadas se logró aumentar la máxima densidad seca ofreciendo mejoras para la consistencia del suelo, para futuras investigaciones se recomienda emplear la cantidad de 0.25ml de TerraZyme por kilo de material, ya que este valor ofrece el valor más alto de la máxima densidad seca para la subrasante.

### 2) Proctor Modificado - Caucho Granulado

Patrón: 2.008 gr/cm3 – M.D.S ,10.3% - O.C.H; Caucho Granulado 4.5% (2.088 gr/cm3 - M.D. S, 9.5% - O.C.H); Caucho Granulado 6.5% (1.861 gr/cm3 - M.D. S, 10.6% - O.C.H); Caucho Granulado 8.5% (1.811gr/cm3 – M.D.S, 10.4 - O.C.H) Objetivo Especifico 2, En la presente investigación se le adiciono el Caucho Granulado ala subrasante con la dosificación de 4.5%, 6.5% y 8.5% respecto al peso del material, en todas las muestras realizadas se logró aumentar la máxima densidad seca ofreciendo mejoras para la consistencia del suelo, se recomienda emplear la cantidad de 4.5% de Caucho Granulado por kilo de material, ya que con este valor se obtuvo el valor más alto de la MDS del suelo.

#### 3) Resistencia al Esfuerzo - TerraZyme

-Patrón: 4.40% al 100% de M.D.S a 1", 3.1% al 95% de M.D.S a 1"; TerraZyme 0.20 ml (10.80% al 100% de M.D.S a 1", 8.5% al 95% de M.D.S a 1"); TerraZyme 0.25 ml (27.20% al 100% de M.D.S a 1", 21.8% al 95% M.D.S a 1"); TerraZyme 0.30 ml (15.40% al 100% M.D.S a 1", 12.1% al 95% M.D.S a 1")

Objetivo Especifico 3, En la presente investigación al elegirse diferentes cantidades de TerraZyme, con la dosificación de 0.20ml, 0.25ml y 0.30ml por kilo de material se logró así aumentar su CBR original, pero al adicionar un 0.25 ml se obtuvo el valor más alto de CBR aumento considerablemente siendo considerado una subrasante excelente, se recomienda emplear el valor de 0.25ml de TerraZyme por kilo de material, ya que este valor ofrece el valor más alto de C.B.R para el suelo.

### 4) Resistencia al Esfuerzo - Caucho Granulado

Patrón: 4.40% al 100% de M.D.S a 1", 3.1% al 95% de M.D.S a 1"; Caucho granulado 4.5% (10.20% al 100% de M.D.S a 1", 8.6% al 95% de M.D.S a 1"); Caucho granulado 6.5% (11.70% al 100% de M.D.S a 1", 9.6% al 95% M.D.S a 1"); Caucho granulado 8.5% (5.5% al 100% M.D.S a 1", 3.4% al 95% M.D.S a 1")

Objetivo Especifico 4, En la presente investigación al elegirse porcentajes del caucho granulado, con la dosificación de 4.5%, 6.5% y 8.5% respecto al peso del material, al adicionar un 6.5% de este producto mejoro con respecto al terreno natural, siendo considerado una subrasante regular-buena se recomienda utilizar el valor de 6.5% de caucho granulado, ya que este ofrece el valor más alto de C.B.R para la subrasante

El C.B.R máximo del caucho granulado que fue de 6.5%, vendría a ser de TerraZyme la dosificación de 0.2027ml x kg de material, dicho resultado se obtuvo interpolando los valores obtenidos, el valor que tendríamos con el TerraZyme sería de 11.7% a 0.1" de penetración con el 100% de la M.D.S y 9.6" a 0.1" de penetración con el 9.5% de la M.D.S. Podemos identificar que a partir la tabla de clasificación cualitativa de suelos que el C.B.R entre 8%-20% se considera una subrasante regular-buena en el cual se encuentra el caucho granulado con 11.7% y a partir del 20% hasta 30% se considera como una subrasante excelente donde se encontró el TerraZyme con su valor de 27.2%, se concluye que los dos productos mejoran el CBR del suelo. Sin embargo, el C.B.R del caucho granulado no mejoro tanto como con el TerraZyme. Por ende, se recomiendo utilizar el caucho granulado ya sean trochas carrozables o vías de bajo tránsito y TerraZyme para vías con alto transito u alta demanda de tránsito

Por otro lado, con respecto al costo del material TerraZyme fue de S/. 300.00 (trescientos nuevos soles) por una botella de 1 litro que es lo mínimo que se puede comprar u obtener del laboratorio, mientras que para la compra del caucho granulado por 10 kg costo S/. 30.00, es por ello por lo que el caucho granulado vendría a ser una propuesta más económica.

#### **REFERENCIAS**

- 1. FERNÁNDEZ, G. y WILBERT, H. Efecto del Aditivo TerraZyme en la Estabilización de Suelos Arcillosos de Subrasantes en la Zona de Expansión de la Ciudad de Cajamarca. [en línea]. Universidad Nacional de Cajamarca. Perú, 2017. [Consultado 15 de Julio 2021]. Disponible en: <a href="https://repositorio.unc.edu.pe/bitstream/handle/UNC/1140/T016">https://repositorio.unc.edu.pe/bitstream/handle/UNC/1140/T016</a> 42379696 M.pdf ?sequence=1&isAllowed=y
- 2. SANCHEZ, CASTRO, UREÑA, y AZAÑON. *Ensayo Límite Plástico*. [en línea]. Universidad de Alicante. España, 2014. [Consultado 15 de Julio 2021]. Disponible en: file:///D:/Mis%20Descargas/TEMA5-Limite%20plastico.pdf
- 3. TOMAS, CANO, GARCIA, SANTAMARTA y HERNANDEZ. *Ensayo de resistencia a carga puntual o Point Load Test (PLT)*. [en línea]. Universidad de Alicante. España, 2012. [Consultado 15 de Julio 2021]. Disponible en: <a href="mailto:file:///D:/Mis%20Descargas/TEMA19-Carga%20puntual%20final.pdf">file:///D:/Mis%20Descargas/TEMA19-Carga%20puntual%20final.pdf</a>
- 4. MINISTERIO DE ECONOMÍA Y FINANZAS. Pautas metodológicas para el desarrollo de alternativas de pavimentos en la formulación y evaluación social de proyectos de inversión pública de carreteras [en línea]. Servicios Gráficos JMD S.R.L, 2015, pp. 12. [Consultado 26 junio 2021]. Disponible en: <a href="https://www.mef.gob.pe/es/contenidos/inv-publica/docs/normas/normasv/2015/RD">https://www.mef.gob.pe/es/contenidos/inv-publica/docs/normas/normasv/2015/RD</a> %20003-2015/Pautas Pavimentos.pdf
- 5. TERRAGESTIÓN S.A. *Terrazyme Estabilizador de Suelos*. [en línea]. Colombia, 2017. [Consultado: 31 de Julio 2021]. Disponible en : <a href="https://doi.org/10.1007/journal.com/">TerraZyme Estabilizador De Suelos Informe de Libros MCR1971 (clubensayos.com)</a>
- 6. LAICA M. y JUAN G. *Influencia de la Inclusión de Polímero Reciclado (CAUCHO) en las propiedades mecánicas de una sub base.* [en línea]. Ecuador, Ambato, 2016. [Consultado 15 de Julio 2021]. Disponible en: <a href="https://repositorio.uta.edu.ec/bitstream/123456789/24440/1/Tesis%201074%20-%20Laica%20Mopocita%20Gabriel.pdf">https://repositorio.uta.edu.ec/bitstream/123456789/24440/1/Tesis%201074%20-%20Laica%20Mopocita%20Gabriel.pdf</a>
- 7. STACOIL S.A.C. Catalizador Natural Líquido para la Construcción, Mantenimiento, Rehabilitación de carreteras y Caminos en general. [en línea]. Perú, 2010. [Consultado 15 de Julio 2021]. Disponible en: <a href="http://stasoil.com/">http://stasoil.com/</a>

- MINISTERIO DE TRANSPORTE Y COMUNICACIONES. Manual carreteras, suelos, geología, geotecnia y pavimentos. [en línea]. Viceministerio de transporte, Perú, 2013, p. 23. [Consultado 10 octubre 2020]. Disponible en: http://transparencia.mtc.gob.pe/idm\_docs/P\_recientes/4515.pdf
- 9. INEI. Estado de la Situación y Gestión Ambiental en el Perú. [en línea]. Perú, 2013. [Consultado 15 de Julio 2021]. Disponible en: https://www.usmp.edu.pe/contabilidadyeconomia/images/pdf/investigacion/Estado. pdf
- 10. BENAVENTE, Eduardo y NAVARRO, Mauricio. Estudio experimental del comportamiento mecánico-geotécnico de un suelo granular con adición de caucho reciclado proveniente de neumáticos inservibles. [en línea]. Universidad Peruana de Ciencias Aplicadas. Perú, 2020, pp. 32-59. [Consultado 10 octubre 2020]. Disponible https://repositorioacademico.upc.edu.pe/bitstream/handle/10757/650334/Benavent

e HE.pdf?sequence=1&isAllowed=

- 11. CHAMBI, A. Incidencia de la adición de aditivo perma-zyme 22x en suelos con alto contenido de finos para la construcción de carreteras de tipo afirmado. [en línea]. Universidad andina, Juliaca – Perú, 2015, pp. 55-92. [Consultado 10 octubre 2020]. Disponible en: http://repositorio.uancv.edu.pe/handle/UANCV/427
- 12. GALLEGOS, N. y PALOMINO, R. Estabilización química mediante Terra-Zyme, en el incremento del valor del CBR en el afirmado, tramo Huanta - Luricocha, Ayacucho 2021. [en línea]. Universidad cesar vallejo, Lima – Perú, 2021, pp. 20-99. [Consultado 10 agosto 2020]. Disponible https://www.google.com/search?q=Gallegos+Nuria+y+Palomino+Roberto+(2021) %2C+en+su+investigaci%C3%B3n+titulada+Estabilizaci%C3%B3n+qu%C3%AD mica+mediante+Terra-

Zyme%2C+en+el+incremento+del+valor+del+CBR+en+el+afirmado%2C+tramo+ Huanta+-

+Luricocha%2C+Ayacucho+2021&rlz=1C1CHZN esPE948PE948&oq=Gallegos+ Nuria+y+Palomino+Roberto+(2021)%2C+en+su+investigaci%C3%B3n+titulada+E stabilizaci%C3%B3n+qu%C3%ADmica+mediante+Terra-

Zyme%2C+en+el+incremento+del+valor+del+CBR+en+el+afirmado%2C+tramo+ Huanta+-

- <u>+Luricocha%2C+Ayacucho+2021&aqs=chrome..69i57.514j0j4&sourceid=chrome&ie=UTF-8</u>
- 13. BOCANEGRA, E., RUIZ, J. Y ALFONSO, J. *Análisis del mejoramiento de un suelo de subrasante con un aditivo orgánico*. [en línea]. Universidad Católica de Colombia, Bogotá Colombia, 2015, pp. 26-44. [fecha de consulta 18 agosto 2020]. Disponible en: https://repository.ucatolica.edu.co/handle/10983/2977
- 14. RODRIGUEZ VINCES, Israel. *Análisis comparativo de la compactación y humedad de la subrasante natural y la subrasante utilizando productos químicos biodegradables (terrasil), de la vía ecológica del cantón Quevedo, provincia de los ríos.* [en línea]. Universidad técnica de Ambato Ecuador, 2016, pp. 10-128. [fecha de consulta 22 Julio 2020]. Disponible en: https://repositorio.uta.edu.ec/handle/123456789/23558
- 15. ÁLVAREZ S. Utilización de granulo de caucho pulverizado proveniente de llantas usadas como solución para reforzar los suelos blandos de subrasante en la sabana de bogota. [en línea]. Universidad de los Antonio Nariño, Bogotá Colombia, 2020, pp. 39-100. [Consultado 31 Julio 2020]. Disponible en: <a href="http://repositorio.uan.edu.co/handle/123456789/2256">http://repositorio.uan.edu.co/handle/123456789/2256</a>
- 16. KUMAR, M. Analysis of index properties and CBR values of typical soil used in subgrade construction under influence of Terrazyme and waste plastic cement bag strips. [en línea]. Bophal-India, 2020. Bophal: NITTTR. Disponible en: <a href="https://www.irjet.net/archives/V7/i1/IRJET-V7I115.pdf">https://www.irjet.net/archives/V7/i1/IRJET-V7I115.pdf</a>
- 17. FAROOQ, T. and SUKHDEEP, E. Stabilization of black cotton soil by using bioenzymes for pavement construction. [en línea]. CT University, Ludhiana India, 2020. [fecha de consulta 18 agosto 2020]. Disponible en: https://www.ijsdr.org/papers/IJSDR2007099.pdf
- 18. GERARD, B. *Investigation into the use of waste tyre shreds for reinforcement of sandy soils in South Africa*. [en línea]. University of Cape Town. South Africa, 2014. [Consultado 18 agosto 2020]. Disponible en: <a href="http://dr.ur.ac.rw/bitstream/handle/123456789/155/Gerard%20Banzibaganye.pdf?s">http://dr.ur.ac.rw/bitstream/handle/123456789/155/Gerard%20Banzibaganye.pdf?s</a> <a href="equence=1&isAllowed=y">equence=1&isAllowed=y</a>
- 19. RAJENDRAN, J. and JAISANKAR, V. *A study on stabilization of expansive soil using Terrazym.* [en línea]. Associated Asia Research Foundation (AARF), 2017. [fecha de consulta 18 agosto 2020]. Disponible en:

# http://www.internationaljournalssrg.org/IJCE/2018/Volume5-Issue8/IJCE-V5I8P103.pdf

20. SRAVAN, M. y NAGARAJ, H. *Preliminary study on use of Terrazyme as a bio stabilizer along with cement and lime in compressed stabilized earth blocks*. First International Conference on Bio-based Building Materials (ICBBM). [en línea]. Clermont-Ferrand – France, 2015. [fecha de consulta 18 agosto 2020]. Disponible en:

https://www.researchgate.net/publication/277014074 Preliminary study on use of TerraZyme as a Bio Stabilizer along with Cement and Lime in Compress ed Stabilized Earth Blocks

- 21. TASALLOTI, A., CHIARO, G., MURALI, A Y BANASIAK, L. *Physical and Mechanical Properties of Granulated Rubber Mixed with Granular Soils*. [en línea]. Universidad de Canterbury. New Zealand, 2021. [Consultado 18 agosto 2020]. Disponible en: https://www.mdpi.com/2071-1050/13/8/4309/htm
- 22. DIEFENDERFER, BOWERS and APEAGYEI. *Initial Performance of Virginia's Interstate 81 In- Place Pavement Recycling Project*. In Transportation Research Record: Journal of the Transportation Research Board, No. 2524, Transportation Research Board of National Academies, Washington, D.C., 2015, pp. 152-159.
- 23. ATO, Deiby y ACELI, Leyla. Evaluación de usos de caucho granulado para estabilizar la subrasante del pavimento de la Av. José Carlos Mariategui [0+880 1 + 880], Pampas de hospital –Tumbes 2018. [en línea]. Universidad Cesar Vallejo. Piura, 2019, pp. 17-30. [Consultado 22 Julio 2021]. Disponible en: <a href="https://repositorio.ucv.edu.pe/handle/20.500.12692/668387">https://repositorio.ucv.edu.pe/handle/20.500.12692/668387</a>
- 24. TERRAGESTIÓN S.A. *Terrazyme Estabilizador de Suelos*. [en línea]. Colombia, 2017. [Consultado: 01 de Agosto 2021]. Disponible en : <a href="https://doi.org/10.1001/journal.com/">TerraZyme Estabilizador De Suelos Informe de Libros MCR1971 (clubensayos.com)</a>
- 25. ASTM D1557-07. Standard Test Methods for Laboratory Compaction Characteristics of soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)). [en línea]. ASTM International West Conshohocken,2007. [Consultado 01 julio 2021]. Disponible en: <a href="https://ggcity.org/pdf/pw/engineering/a.s.t.m%20d1557.pdf">https://ggcity.org/pdf/pw/engineering/a.s.t.m%20d1557.pdf</a>
- 26. JANSEN, R. *Advanced dam engineering for design, construction, and rehabilitation*. [en linea]. Nueva York: Van Nostrand Renhold,1968. [Consultado 10

octubre 2020]. ISBN: 978-0-442-24397-5. Disponible en: <a href="https://books.google.com.pe/books?id=xdZ5BgAAQBAJ&printsec=frontcover&dq=ADVANCED+DAM+ENGINEERING+FOR+DESIGN,+CONSTRUCTION,+AND+REHABILITATION&hl=es&sa=X&redir\_esc=y#v=onepage&q=ADVANCED%20DAM%20ENGINEERING%20FOR%20DESIGN%2C%20CONSTRUCTION%2C%20AND%20REHABILITATION&f=false</a>

- 27. BACKUS, E. (2021). California *Bearing Ratio Test: CBR Values & Why They Matter*. https://www.globalgilson.com/blog/cbr-testing
- 28. ORTIZ, R. Influencia del nivel freático en la determinación de capacidad portante de suelos, en cimentaciones superficiales, Distrito de Pilcomayo en 2017. [en línea]. Universidad Nacional del Centro del Perú, 2017. [Consultado 10 de octubre 2020]. Disponible en: https://alicia.concytec.gob.pe/vufind/Record/UNCP 0c8ed8a5c22438ca08fc4fb
- 29. DAVIS, B. (2021). What is application research definition. https://www.mvorganizing.org/what-is-application-research-definition/
- 30. HERNÁNDEZ, R., FERNÁNDEZ, C. y BAPTISTA, P. *Metodología de la investigación*. [en línea]. 5ta ed. México: Editorial Mc Graw Hill, 2010, pp. 83-90. [Consultado 02 de agosto del 2020]. ISBN:978-607-15-0291-9. Disponible en: <a href="https://www.icmujeres.gob.mx/wpcontent/uploads/2020/05/Sampieri.Met.Inv.pdf">https://www.icmujeres.gob.mx/wpcontent/uploads/2020/05/Sampieri.Met.Inv.pdf</a>
- 31. HERNÁNDEZ, R., FERNÁNDEZ C. y BAPTISTA P. *Metodología de la investigación*. [en línea]. 5ta ed. México: Editorial Mc Graw Hill, 2010, p. 4. [Consultado 20 agosto de 2020]. ISBN: 978-607-15-0291-9. Disponible en: <a href="https://www.icmujeres.gob.mx/wpcontent/uploads/2020/05/Sampieri.Met.Inv.pdf">https://www.icmujeres.gob.mx/wpcontent/uploads/2020/05/Sampieri.Met.Inv.pdf</a>
- 32. HERNÁNDEZ, R., FERNÁNDEZ, C. y BAPTISTA, P. *Metodología de la Investigación* [en línea]. 6ta ed. México: Editorial Mc Graw Hill, 2014, pp. 151-155. [Consultado 15 septiembre de 2020]. ISBN 978-1-4562-2396-0. Disponible en: <a href="http://observatorio.epacartagena.gov.co/wpcontent/uploads/2017/08/metodologia-de-la-investigacion-sexta-edicion.compressed.pdf">http://observatorio.epacartagena.gov.co/wpcontent/uploads/2017/08/metodologia-de-la-investigacion-sexta-edicion.compressed.pdf</a>
- 33. ROJAS y BARREDA. Análisis comparativo de la estabilización de una base granular, a través de dos elementos químicos como el multienzematico perma zyme 11x, y cemento en un suelo de Bogotá D.C. [en línea]. Universidad de La Salle, 2015, p. 15. [Consultado 15 septiembre de 2020]. Disponible en: <a href="https://docplayer.es/212398844-Facultad-de-ingenieria-y-arquitectura.html">https://docplayer.es/212398844-Facultad-de-ingenieria-y-arquitectura.html</a>

- 34. PELÁEZ, G., VELÁSQUEZ, S. and GIRALDO, D. *Applications of reclycled rubber: A literature review*, 2017. [en línea]. Universidad Militar Nueva Granada, vol. 27 (2), pp. 20-36. [Consultado 15 septiembre de 2020]. Disponible en: https://revistas.unimilitar.edu.co/index.php/rcin/article/view/2143
- 35. MONTALVO, M. *Diseño estructural de pavimentos hidráulico y asfaltico.* [en línea]. Universidad Ricardo Palma, Lima Perú, 2015, p. 29. [Consultado 15 septiembre de 2020]. Disponible en: <a href="mailto:file:///D:/Mis%20Descargas/VIAL\_T030\_46621276\_M%20%20%20ADAUTO%20">file:///D:/Mis%20Descargas/VIAL\_T030\_46621276\_M%20%20%20ADAUTO%20</a> ORELLANA%20ROSARIO%20EVELYN.pdf
- 36. HERNÁNDEZ, R., FERNÁNDEZ, C. y BAPTISTA, P. *Metodología de la investigación*. [en línea]. 6ta ed. México: Editorial Mc GRAW-HILL, 2014, pp. 174-175. [Consultado 15 septiembre 2021]. ISBN 978-1-4562-2396-0. Disponible en: <a href="http://observatorio.epacartagena.gov.co/wpcontent/uploads/2017/08/metodologia-de-la-investigacion-sexta-edicion.compressed.pdf">http://observatorio.epacartagena.gov.co/wpcontent/uploads/2017/08/metodologia-de-la-investigacion-sexta-edicion.compressed.pdf</a>
- 37. TAMAYO, M. *El Proceso de la investigación científica*. [en línea]. 4ta ed. México: LIMUSA Noriega Editores, 2012. [Consultado 11 junio 2021]. ISBN: 968-18-5872-7. Disponible en: <a href="https://books.google.com.pe/books?id=BhymmEqkkJwC&pg=PA4&dq=ISBN:+9">https://books.google.com.pe/books?id=BhymmEqkkJwC&pg=PA4&dq=ISBN:+9</a> 68-18-5872-
- 7&hl=es&sa=X&ved=2ahUKEwj7uKHxrN\_xAhUhqpUCHZauBmcQ6AEwAHoE CAMQAg#v=onepage&q=ISBN%3A%20968-18-5872-7&f=false
- 38. HERNÁNDEZ, R., FERNÁNDEZ, C. y BAPTISTA, P. *Metodología de la Investigación*. [en línea]. 5ta ed. México: McGRAW-HILL, 2010, p. 146. [Consultado 10 junio 2021]. ISBN: 978-607-15-0291-9. Disponible en: <a href="https://www.icmujeres.gob.mx/wpcontent/uploads/2020/05/Sampieri.Met.Inv.pd">https://www.icmujeres.gob.mx/wpcontent/uploads/2020/05/Sampieri.Met.Inv.pd</a>
- 39. HERNÁNDEZ, R., FERNÁNDEZ, C. y BAPTISTA, P. *Metodología de la Investigación*. [en línea]. 5ta ed. México: McGRAW-HILL, 2010, p. 262. [Consultado 10 junio 2021]. ISBN: 978-607-15-0291-9. Disponible en: https://www.icmujeres.gob.mx/wpcontent/uploads/2020/05/Sampieri.Met.Inv.pdf
- 40. HERNÁNDEZ, R., FERNÁNDEZ, C. y BAPTISTA, P. *Metodología de la Investigación*. [en línea]. 6ta ed. México: Editorial McGRAW-HILL, 2014, p. 200. [Consultado 20 junio 2021]. ISBN: 978-1-4562-2396-0. Disponible en:

- http://observatorio.epacartagena.gov.co/wpcontent/uploads/2017/08/metodologi a-de-la-investigacion-sexta-edicion.compressed.pdf
- 41. ROJAS, R. *Guía para realizar investigaciones sociales*. [en línea]. 38va ed. México, D. F: Plaza y Váldes Editores, 2013. [Consultado: 11 junio 2021]. ISBN: 968-856-262-5. Disponible en:
- https://books.google.com.pe/books?id=INHY5YetxQC&pg=PA6&dq=ISBN:+968-856-
- 2625&hl=es&sa=X&ved=2ahUKEwiLoZ2\_rd\_xAhUiq5UCHbDmA7wQ6AEwAHoE C\_AgQAg#v=onepage&q=ISBN%3A%20968-856-262-5&f=false
- 42. ROLLINS, K. (1998). Effect of Terrazyme on CBR and shear strength of expensive soil. [en línea]. Vol. 4 (4). Sainathapuram. [Consultado 20 de Agosto del 2021]. Disponible en: <a href="https://medcraveonline.com/MOJCE/effect-of-terrazyme-on-cbr-and-shear-strength-of-expensive-soil.html">https://medcraveonline.com/MOJCE/effect-of-terrazyme-on-cbr-and-shear-strength-of-expensive-soil.html</a>
- 43. SECO, R., RAMIREZ, F., MIQUELEIZ, L., GARCÌA, B. Y PRIETO, E. (2010). The use of nom conventional in marls stabilization. [en línea]. Revista Science Direct. Vol. 51, Irlanda [Consultado 23 de Agosto del 2021]. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0169131711000032
- 44. JEYAPRIYA, R. (2009). Study on Effect of Waste Tyres in Study on Effect of Waste Tyres in. [en línea]. Indian Geotechnical Society Chennai Chapter. [consultado 23 de Agosto del 2021]. Disponible en: <a href="https://gndec.ac.in/~igs/ldh/conf/2009/articles/T04\_05.pdf">https://gndec.ac.in/~igs/ldh/conf/2009/articles/T04\_05.pdf</a>
- 45. Seco, R., Ramìrez, F., Miqueleiz, L., Garcìa, B., & Prieto, E. (2010). The use of nom conventional in marls stabilization. [en línea]. Revista Science Direct. Vol. 51, Irlanda [consultado 23 de Agosto del 2021]. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0169131711000032
- 46. Jeyapriya, R. M. (2009). Study on Effect of Waste Tyres in Study on Effect of Waste Tyres in. [en línea]. INDIAN GEOTECHNICAL SOCIETY CHENNAI CHAPTER. [consultado 23 de Agosto del 2021]. Disponible en: <a href="https://gndec.ac.in/~igs/ldh/conf/2009/articles/T04\_05.pdf">https://gndec.ac.in/~igs/ldh/conf/2009/articles/T04\_05.pdf</a>
- 47. Umar Jan, V. K. (Dec-2015). Soil Stabilization Using Shredded Rubber Tyre. International Research Journal of Engineering and Technology (IRJET). [en línea]. (s.f.). [consultado 01 de Setiembre del 2021]. Disponible en: <a href="https://www.irjet.net/archives/V6/i4/IRJET-V6I4927.pdf">https://www.irjet.net/archives/V6/i4/IRJET-V6I4927.pdf</a>

48. Meena, R. A. (2011). IMPROVEMENT OF SUBGRADE SOIL WITH SHREDDED WASTE TYRE CHIPS. [en línea]. Proceedings of Indian Geotechnical Conference. [consultado 01 de Setiembre del 2021]. Disponible en: <a href="https://www.semanticscholar.org/paper/IMPROVEMENT-OF-SUBGRADE-SOIL-WITH-SHREDDED-WASTE">https://www.semanticscholar.org/paper/IMPROVEMENT-OF-SUBGRADE-SOIL-WITH-SHREDDED-WASTE</a>

<u>Student/209eb52636a283cd8da81f34fc0d4904c4331ffd</u>

## **ANEXOS**

## ANEXO Nº 1: Matriz de Operacionalización

| TITULO           | Influencia del aditivo TerraZyn                                                                                                                                                                                                                          | ne y del Caucho granulado en la si                                                                                                                                                 | ubrasante de la A                    | Ampliación La                      | s Lomas – Vent | tanilla, Lima 2021                                                                  |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------|----------------|-------------------------------------------------------------------------------------|--|
| VARIABLES        | Decomposition conservation                                                                                                                                                                                                                               | archicon archicon.                                                                                                                                                                 | 0.11.151.151.01.15                   |                                    |                |                                                                                     |  |
| INDEPENDIENTE    | DEFINICION CONCEPTUAL                                                                                                                                                                                                                                    | DEFINICION OPERACIONAL                                                                                                                                                             | DIMENSIONES                          | INDICADORES                        | ESCALA         | METODOLOGIA                                                                         |  |
|                  | Para Rojas y Barreda (2015), "la estabilización<br>química se refiere a la inclusión de algunas                                                                                                                                                          | Proceso realizado con el aditivo TerraZyme<br>en conjunto de la subrasante para evaluar                                                                                            |                                      | 0.20ml                             |                | Método: Científico                                                                  |  |
| TERRAZYME        | sustancias químicas patentadas que se utiliza<br>comúnmente en la estructura del pavimento para<br>mejorar sus propiedades brindando mayor                                                                                                               | las mejoras que nos da en comparativa a las<br>del caucho granulado, empleando la<br>dosificación brindada por el laboratorio que<br>nos indica desde el 0.20ml por killo de       | DOSIFICACIÓN<br>por kilo de material | 0.25ml                             | RAZON          | Tipo de Investigación:<br>Tipo Aplicada                                             |  |
|                  | resistencia, impermeabilidad y prolongar su vida<br>útil." (p.15)                                                                                                                                                                                        | material, 0.25ml por kilo de material y 0.30ml<br>por kilo de material                                                                                                             |                                      | 0.30ml                             |                | Nivel de Investigación:  Explicativo                                                |  |
|                  | El caucho reciciado puede ser utilizado como                                                                                                                                                                                                             |                                                                                                                                                                                    |                                      | 4.50%                              |                | Diseño de Investigación:  Experimental (Cuasi)                                      |  |
| CAUCHO GRANULADO | componente de pavimentos y concretos para la<br>construcción de vías y edificaciones. Emplear<br>residuos de caucho en este tipo de aplicaciones<br>representa, además de las importantes ventajas<br>ambientales y económicas. Debido a lo anterior, el | A través de los antecedentes recopilados se<br>realizará la estabilización de la subrasante<br>con el caucho reciclado aplicando la<br>dosificación 4.5%, 6.5% y 8.5% por peso del | DOSIFICACIÓN<br>por kilo de material | 6.50% RAZON                        |                | Enfoque: Cuantitativo                                                               |  |
|                  | uso de caucho reciciado en concretos y pavimentos<br>presenta retos económicos, ecológicos y técnicos<br>que actualmente son tema de interés. (Peláez et. al,<br>2017).                                                                                  | material, con el objetivo de mejorar la<br>subrasante.                                                                                                                             |                                      | 8.50%                              |                | Población:<br>Todas las calicatas de la<br>Subrasante en la Ampliacion Las<br>Lomas |  |
| DEPENDIENTE      |                                                                                                                                                                                                                                                          |                                                                                                                                                                                    |                                      |                                    |                | Muestra:                                                                            |  |
|                  |                                                                                                                                                                                                                                                          |                                                                                                                                                                                    | PROPIEDAD                            | Ensayo de<br>Proctor<br>Modificado |                | 3 calicatas de la subrasante en la<br>Ampliacion Las Lomas                          |  |
|                  |                                                                                                                                                                                                                                                          | Luego de agregar el aditivo TerraZyme y el                                                                                                                                         | FISICA                               | (gr/cm3)                           | RAZON          | Muestreo: No Probabilistico                                                         |  |
| SUBRASANTE       | Es la base directa de la estructura del pavimento y<br>forma parte del prisma de la carretera que se<br>construye entre el terreno natural explanado y la                                                                                                | caucho granulado reciclado en la<br>subrasante, se realizará los ensayos<br>correspondientes con la finalidad de obtener<br>cambios favorables, teriendo como                      | PROPIEDAD                            |                                    |                | Técnica:<br>Observación Directa                                                     |  |
|                  | estructura del pavimento. (Montalvo, 2017                                                                                                                                                                                                                | evidencia las fichas de los ensayos con cada<br>material añadido                                                                                                                   | MECANICA                             | Ensayo California<br>Bearing Ratio |                | Ficha Resultados<br>de Laboratorio                                                  |  |
|                  |                                                                                                                                                                                                                                                          |                                                                                                                                                                                    |                                      |                                    | RAZON          | Según ASTM Instrumentos de la investigación:                                        |  |
|                  |                                                                                                                                                                                                                                                          |                                                                                                                                                                                    |                                      | (%)                                |                | Ficha Recolección<br>de Datos                                                       |  |

### ANEXO Nº 2: Matriz de Consistencia

| TITULO                                                                                                                                  | Influencia del ad                                                                                                                      | itivo TerraZyme y del Ca                                                                                                                   | aucho granulado en | la subrasante de la   | Ampliación Las Lom | as – Ventanilla, Lima 2021                   |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------|--------------------|----------------------------------------------|
| ROBLEMA                                                                                                                                 | OBJETIVOS                                                                                                                              | HIPOTESIS                                                                                                                                  | VARIABLES          | DIMENSIONES           | INDICADORES        | INSTRUMENTOS                                 |
| General                                                                                                                                 | O. General                                                                                                                             | H. General                                                                                                                                 | INDEPENDIENTE      |                       |                    |                                              |
|                                                                                                                                         |                                                                                                                                        | La aplicación del aditivo<br>TerraZyme y el Caucho                                                                                         |                    |                       | 0.20ml             | Ficha Recolección<br>de Datos<br>Anexo 3     |
|                                                                                                                                         |                                                                                                                                        |                                                                                                                                            | TerraZyme          | DOSIFICACIÓN          | 0.25ml             | Ficha Recolección<br>de Datos<br>Anexo 3     |
| errazyme y Caucho granulado aditivo TerraZyme y e granulado en el mejor de la subrasante en Ampliación Las                              | Determinar la influencia del                                                                                                           |                                                                                                                                            |                    | por kilo de material  | 0.30ml             | Ficha Recolección<br>de Datos<br>Anexo 3     |
|                                                                                                                                         | granulado en el mejoramiento<br>de la subrasante en Ampliación<br>Las Lomas –Ventanilla 2021.                                          | la subrasante en Ampliación estabilización de la                                                                                           |                    |                       | 4.50%              | Ficha Recolección<br>de Datos<br>Anexo 3     |
|                                                                                                                                         |                                                                                                                                        |                                                                                                                                            | Caucho granulado   | DOSIFICACIÓN          | 6.50%              | Ficha Recolección<br>de Datos<br>Anexo 3     |
|                                                                                                                                         |                                                                                                                                        |                                                                                                                                            |                    | por kilo de material  | 8.50%              | Ficha Recolección<br>de Datos<br>Anexo 3     |
| . Especifico                                                                                                                            | O. Especifico                                                                                                                          | H. Especifico                                                                                                                              | DEPENDIENTE        |                       |                    |                                              |
| De qué manera el aditivo<br>errazyme influye en la máxima<br>ensidad seca de la subrasante en<br>mpliación Las Lomas –Ventanilla<br>021 | Precisar la densidad seca<br>máxima aplicando el aditivo<br>TerraZyme en la subrasante en<br>Ampliación Las Lomas<br>–Ventanilla 2021. | La aplicación del aditivo<br>TerraZyme aumenta la<br>máxima densidad seca de la<br>subrasante en Ampliación Las<br>Lomas –Ventanilla 2021. |                    | PROPIEDAD<br>FISICA   | Proctor Modificado | Ficha Resultado<br>de Laboratorio            |
| De qué manera el Caucho<br>anulado influye en la máxima<br>ensidad seca de la subrasante en                                             | Precisar la densidad seca<br>máxima aplicando el Caucho<br>granulado en la subrasante en                                               | La aplicación del Caucho<br>granulado aumenta la máxima<br>densidad seca de la                                                             | Subrasante         |                       | (gr/cm3)           | Según (ASTM-D1557)<br>Anexo 4-D<br>Anexo 4-E |
| mpliación Las Lomas –Ventanilla<br>121?                                                                                                 | Ampliación Las Lomas<br>–Ventanilla 2021.                                                                                              | subrasante en Ampliación Las<br>Lomas –Ventanilla 2021.                                                                                    | 5401434110         |                       | Ensayo California  | Ficha Resultado                              |
| De qué manera el aditivo<br>errazyme influye en la resistencia                                                                          | Determinar la resistencia al esfuerzo incluyendo el aditivo                                                                            | La inclusión del aditivo<br>TerraZyme aumenta la                                                                                           |                    | PROPIEDAD<br>MECANICA | Bearing Ratio      | de Laboratorio                               |
| esfuerzo de la subrasante en<br>mpliación Las LomasVentanilla<br>021?                                                                   | TerraZyme en la subrasante en<br>Ampliación Las Lomas<br>–Ventanilla 2021.                                                             | resistencia al esfuerzo de la<br>subrasante en Ampliación Las<br>Lomas –Ventanilla 2021.                                                   |                    |                       | (%)                | Según (ASTM-D1883)<br>Anexo 4-F<br>Anexo 4-G |

### ANEXO N.º 3: Instrumento de recolección de datos



### **FACULTAD DE INGENIERÍA Y ARQUITECTURA**

#### ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Ficha de recolección de datos: Dosificación del Aditivo TerraZyme y del Caucho granulado

"Influencia del aditivo TerraZyme y del Caucho granulado en la subrasante de la Ampliación Las Lomas –

Ventanilla, Lima 2021"

### Parte A: Datos generales

Tesista 01: Moreno Marroquin, Carolina Vanesa

Tesista 02: Portocarrero Escalante, Rodrigo Enrique

Fecha: Lima, 27 de agosto del 2021

### Parte B: Dosificación del Aditivo TerraZyme

| 0.20ml | ок |
|--------|----|
| 0.25ml | ок |
| 0.30ml | ок |

Tesis: Gallegos N. y Palomino R. (2021), TerraZyme: 38ml, 57ml, 61ml

### Parte C: Dosificación del Caucho granulado

| 4.5% | ок |
|------|----|
| 6.5% | ок |
| 8.5% | ок |

Tesis: Álvarez Sergio (2020), Caucho Granular: 1.5%, 2.5%, 3.5%

### VALIDACIÓN DE INSTRUMENTO

Apellidos: Velásquez Correa

Nombres: María Teresa

Título: Ingeniero de

**Transportes** 

Grado:

N° Reg. CIP: 119770

Firma:



Apellidos: Orihuela Carpio

Nombres: Luis Antonio

Título: Ingeniero Civil y

Sanitario

Grado:

N° Reg. CIP: 40564

Firma:



Apellidos: Vargas

Chacaltana

Nombres: Luis Alberto

Título: Ingeniero Civil

Grado:

N° Reg. CIP: 194542

Firma:



### ANEXO Nº 4-A: Fichas de resultados de Laboratorio: Ensayo de Clasificación de Suelos C3

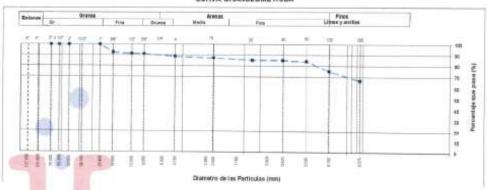


Telf.: (01) 632-9183 Cet: 980703014 / 947280585 Av. A, Mz.48, Lt. 17. Asoc. Armando Villanueva Alt. Universitaria cdra 59. Villaed - Los Olivis - Lima informes@igeotecniasac.com

www.jjgeotecniasac.com

LABORATORIO DE ENSAYO DE MATERIALES

CERTIFICADO DE ENSAYO CLASIFICACIÓN DE SUELOS


| Códgo.   | FOR-LAB-MB-001 |  |
|----------|----------------|--|
| Revisión | 2              |  |
| Aprehado | ecma           |  |
| Pesitor  | 1791/0021      |  |
| Pestin   | 1/91/0021      |  |

### LABORATORIO DE MECANICA DE SUELOS Y ROCAS ASTM D6913 / MTG E - 3/M

| TESIS : Mejor                        | amiento de la subrasante mediante el uso del addivo TerraZyme en Ampliación Lo    | as Lomas - Ventanilla 2021   |
|--------------------------------------|-----------------------------------------------------------------------------------|------------------------------|
| SOLICITANTE :<br>CÓBIGO<br>UBICACIÓN | Rodrigo Portocarrero Escalanta/ Moneno Mannogul Carolina  Las Lorres - Ventanilla |                              |
| Cellcata                             | C-3                                                                               | Wuestreads por WILL          |
| Myestra                              | 9.5                                                                               | Ensayado por CURY            |
| Profundidad                          | 0.50-1.60 m                                                                       | Festio de ensaye: 17.09.0001 |

| TAME   | AASHTO T-27<br>(mm) | PORCENTAJE<br>QUE PASA | EBPECIFICACIÓN<br>BABE<br>GRADACIÓN | DESCRIPCIÓN (                        |                          | LA MUESTRA                                                                                                     |  |  |  |
|--------|---------------------|------------------------|-------------------------------------|--------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|
| 2      | 127.000             | 155.0                  | - 7                                 | CONTENISO DE HUMEDAD JANTM 022HG     |                          |                                                                                                                |  |  |  |
| 4"     | 101.000             | 100.0                  | - /                                 | Contents to the                      | eded (SE)                | 8.0                                                                                                            |  |  |  |
| 2      | 78 300              | 100.0                  | 1                                   | Contenido Humedad (%)                |                          | 8.0                                                                                                            |  |  |  |
| 2100   | 85.550              | 100.0                  |                                     | LIMITES DE CONSISTENCIA (ASTW 04318) |                          |                                                                                                                |  |  |  |
| 2      | 30,600              | 100.0                  |                                     | Limbs Liquido (LL)                   |                          | 38                                                                                                             |  |  |  |
| 1/2"   | 38.100              | 500.0                  | 1                                   | Limbe Plastico (LP)                  |                          | 21                                                                                                             |  |  |  |
| 17     | 25.400              | 100.0                  | 7                                   | Indee Philips (IP)                   |                          | 15                                                                                                             |  |  |  |
| 34"    | 19.000              | 92.6                   |                                     | Brava (%)                            | Arena (%)                | Finos (%)                                                                                                      |  |  |  |
| 1/2"   | 12.500              | 01.5                   | 1                                   | 71.1                                 | 22.2                     | 0.00                                                                                                           |  |  |  |
| 3/6"   | 8.500               | 91.2                   | /                                   |                                      | CLASIFICACIÓN            |                                                                                                                |  |  |  |
| Nº 4   | 4.750               | 60.5                   |                                     | Clearforcion SUCS (ASTMIC            | (3487)                   | CL                                                                                                             |  |  |  |
| Nº 19. | 2.500               | 67.5                   | 1                                   | Clauricación AASHTO (DOZS            | 2)                       | 56(5)                                                                                                          |  |  |  |
| V° 20  | 0.840               | 65.3                   |                                     | Nambre del Grupo                     | 20                       | 4.0000000000000000000000000000000000000                                                                        |  |  |  |
| V° 40  | 0.425               | 65.2                   | 1                                   | resmore del talapo                   | ,Ayu                     | lla orenose de bajo piesticidasi                                                                               |  |  |  |
| Nº 80  | 0.250               | 64.1                   | 1                                   | INDICACIONES:                        | STANTAN KAROMET          | 25 A. C. |  |  |  |
| Nº 80  | 0.177               | 84.1                   | 1                                   | El método de secado para el          | entreyo de contendo de h | surrendad                                                                                                      |  |  |  |
| VP 100 | 0.150               | 75.0                   | 1                                   | fue an nomo de laboratorio co        | steni D'6±011 a obelotin | z mase                                                                                                         |  |  |  |
| V 200  | 0.075               | 66.8                   | 1                                   | constante                            |                          | 51788                                                                                                          |  |  |  |
| Nº 200 | FONDO               |                        | /                                   |                                      |                          |                                                                                                                |  |  |  |

#### CURVA GRANULOMETRICA



OBSERVACIONES:

• Miserios provisto e identificada por el sobilitarde

• Miserios provisto e identificada por el sobilitarde

• Miserios provisto e identificada por el sobilitarde

• Conferiodo e humendo reportado assesamentes e la Nercodad registrada a la Republica de la revestra el aborezona de JUDECTECHIA

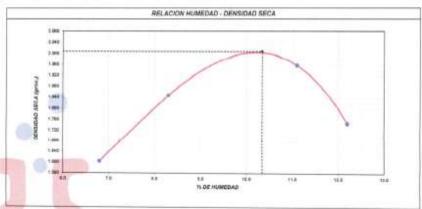
• Provibida la reproducción gardial o fotal de este documento als la adorezoción escrita del orea de Calidad de JUDECTECHIA

Control de Caligan MESSEDTECNIA

### ANEXO Nº 4-B: Fichas de resultados de Laboratorio: Ensayo de Proctor Modificado- C3 (Patrón)



Telf. (01) 632-9183 Cel: 960703014 / 947280585 Av. A, Mz.48, L1. 17, Asoc Armando Villanueva Alt. Universitaria cdra 58, Villasol - Los Olivos - Lima informes@ijgeotecniasec.com


www.jjgeotecniasac.com

|                                        |           |                                                        | Cédige          | FOR LAB-MS-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|----------------------------------------|-----------|--------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| LABORATORIO DE ENSAYO<br>DE MATERIALES | DE ENSAYO | CERTIFICADO DE ENSAYO                                  | Revisión        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                        | IALES     | COMPACTACIÓN PRÓCTOR MODIFICADO                        | Aprobado        | 00-336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                        |           |                                                        | Fecha           | 1/01/2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                        | LAE       | SORATORIO DE MECANICA DE SUELOS                        | verti Aterianea | 1 110/1202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                        | LAE       | BORATORIO DE MECANICA DE SUELOS ASTM DISST / MTC.E-118 | verti Aterianea | THE PARTY OF THE P |  |

UBICACIÓN CALICATA MUESTRA : Les Lomas - Ventanile : C-3 : Fatron Fecha de encayo: 05/09/2021

|                              |       | rumen Molde<br>Paso Molde | 2110   | gr.    |        |    |
|------------------------------|-------|---------------------------|--------|--------|--------|----|
| NUMERO DE ENSAYOS            |       | 1                         | 2      | 3      | 4      | 5  |
| Peso Suelo + Molde           | gr:   | 10,138                    | 10,749 | 11,117 | 10,667 |    |
| Peso Suelo Humedo Compactado | dr.   | 3,625                     | 4,238  | 4.804  | 4,154  |    |
| Peso Volumetrico Humedo      | gr.   | 1.753                     | 2.002  | 2.176  | 1.803  |    |
| Recipienta Numero            | 1000  | . A. S.                   | 8      | 0.0    | D .    | 1  |
| Peso Sueio Humedo + Tara     | gr.   | 612.6                     | 635.1  | 589.6  | 1958,1 |    |
| Peso Sueto Seco + Tara       | gr.   | 573.6                     | 588.4  | 530.7  | 588.5  | 1  |
| Peso de la Tara              | gr.   |                           |        |        |        |    |
| Peso del agua                | gr.   | 39.0                      | 48.7   | 58.9   | 71.6   | 1  |
| Peso del suelo seco          | 91    | 574                       | 588    | 531    | 587    | 1  |
| Contenido de egua            | %     | 5.5                       | 83     | 11.1   | 12.2   | 1/ |
| Densided Secs                | grito | 1.604                     | 1.849  | 1.959  | 1,750  | // |

Densided Mäxima Seca: 2.000 gelant. Contenido Humedad Optima:



| orado por: | Revisado por: | Aprobado por: |
|------------|---------------|---------------|
| 1          | JU GEOREG     | ALC ALC       |
| 1-11       | 1 Tues        | (XX           |

### ANEXO Nº 4-C: Fichas de resultados de Laboratorio: Ensayo de Relación de Soporte de California- C3 (Patrón)



Telf.: (01) 632-9183 Cel: 980703034 / 947280585 Av. A, Mz.48, Lt. 17, Appr. Armando Villanueva Alt. Universitaria cdra 59, Villasol - Los Olivos - Lima informes@jjgeotecniasac.com

www.jjgeotecniasac.com

|                    | ABORATORIO DE ENSAYO CERTIFICADO DE ENSAYO              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Código             | FOR-      | AB-MS-015  |
|--------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------|------------|
| LABORATORIO D      | E ENSAYO                                                | Revisión                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | 2         |            |
| DE MATERI          | LABORATORIO DE MECANICA DE SL  ASTRIDIBAS / MTC E - 132 | RELACIÓN DE SOPORTE DE CALIFORNIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Aprobado           |           | ma         |
|                    |                                                         | SOUTH COMMENT OF STATE OF STAT | Fechs              | 1         | 01/2021    |
| REFERENCIA         | : Datos de int                                          | tradició.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |           |            |
|                    |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |           |            |
| SOLICITANTE        | : Pladrigo Par                                          | tocerrero Escalaritar Moreno Marrogo/ Cerolina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |           |            |
| TESIS<br>UBICACIÓN | Las Comas                                               | el addivo TerraZyme y del Caucho granulado en la subresante de le Am<br>L'entamila                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | prisción Las Lomes | vectorste | Lime 2021  |
| CALICATA           | C-3                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fecha de es        | mayon.    | 809/2021   |
| MUESTRA            | Plateton                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | and a     | March 2007 |

|                         |                       | CAL              | CULO                | DE LA RE | LACION   | DE SOF      | ORTE ( | LALIFOR            | NIA (C.B | #1     |        |           |        |         |
|-------------------------|-----------------------|------------------|---------------------|----------|----------|-------------|--------|--------------------|----------|--------|--------|-----------|--------|---------|
| Molan M*                |                       | - 1              |                     |          | N.       |             |        |                    |          |        |        |           |        |         |
| Número de dapas         |                       |                  |                     |          | ri n     |             |        |                    |          | -      |        |           |        |         |
| Nimero de golpes        | rrero de golpes       |                  |                     | 98       |          |             | - 2    | 6                  |          |        | -      | 2         |        |         |
| Condición de la muestr  | diction de la muestra |                  | NO SATURADO SATURAD |          | MADO     | NO SATURADO |        | SATU               | MADIO .  | NO SA  | TURADO | SATU      | RADO   |         |
| Peso suelo + molde (gr  | molde (gr.)           |                  | 12,883              |          |          |             | 12,588 |                    |          |        | tt.    | 809       |        |         |
| Peso molde (gr.)        | gr.)                  |                  | 4,                  | 4,170    |          |             | 8,089  |                    |          |        | 2.3    | 786       |        |         |
| Petro quello compactadi | uelo compentado (gr.) |                  | 4.7                 | ran e    |          |             | 4.6    | 100                |          |        |        | 122       |        |         |
| Whaten the mide por     | 1                     |                  | 2.                  | 123      |          |             | 2,3    | 198                |          |        | 2.     | 106       |        |         |
| Densidat himata (gr.)   | m/)                   |                  | 20                  | 290      |          |             | 2.1    | 21                 |          |        | 13     | 111       |        |         |
| Humedad (%)             |                       |                  | :11                 | 0.4      |          |             | 10.3   |                    |          |        | tt     | 1.0       |        |         |
| Denotat Secs (gr /or    | 1                     |                  | 21                  | 2.011    |          |             | 1,025  |                    |          | 1.729  |        |           |        |         |
|                         | 10.                   |                  |                     |          | CONTENI  | DO DE H     | UMEDA  | D                  |          |        |        |           |        |         |
| Tara-suelo humedo (gr.) |                       |                  | 53                  | 5.0      | C. C.    | 300-000     | 542.5  |                    |          |        | 546.3  |           |        |         |
| Taransusic seco (gr.)   | eueit seco (gr.)      |                  | 48                  | 6.1      |          |             | 507.B  |                    |          |        | 40     | 4.4       |        |         |
| Pero de agua (gr.)      | ero de agua (gr.)     |                  | 19                  | 0.6      |          |             | 94     | 54.4               |          |        | 81.0   |           |        |         |
| Paso de tara (gr.)      |                       |                  |                     |          |          |             |        |                    |          |        |        |           |        |         |
| Peso de suelo seno igr  | ō.                    |                  | 42                  | 5.1      |          |             | 80     | 7.8                |          |        | 40     | 4.4       |        |         |
| Humedad (N.)            | ted (N)               |                  | 10.4                |          |          | _           | 10.3   |                    |          |        | 10.0   |           |        |         |
|                         |                       | - 1              |                     |          | TD.      | (PANSIÓ     |        | -1-                | -        |        |        |           |        |         |
| Festiva                 | Hors                  | Tierpo           | Clini Est           |          | residen. | Date        |        | Expe               | reside   | Diel   |        | Expension |        |         |
|                         | 1000                  | He               | - 8                 |          | 1919     | %           |        |                    | mr.      | . 56   |        | Na.       | 285    | 196     |
| G-Sel                   | 19,37.00              | - 24             |                     | 36       | 0.91     | 11.79       |        | 46                 | 1.14     | 0.98   | -U     | 56        | 1.42   | 1.22    |
| P-Sel                   | 19:21:01              | 48               |                     | 40       | 1.17     | 1.00        | - 1    | 51                 | 1.30     | 1.11   |        | 60        | 1.00   | 1.43    |
| 8-Sei                   | 98,3100               | 72               |                     | 56.      | 1,47     | 1.27        | - 0    | 46.                | 1.60     | 1.42   | - 8    | 78        | 1.00   | 1.70    |
| 8-Set                   | 38,70.00              | 96               |                     | 01       | 1.85     | 1.33        | 13     | TH                 | 1.00     | 1.66   |        | 63        | 2.36   | 2.03    |
|                         |                       |                  |                     |          | PE       | VETRACI     | ÓN     |                    |          |        |        |           | -      |         |
| di marina               | 111400000             | and the second   |                     |          | 5        |             | N15.   | - 1                |          |        |        | - 1       | 1      |         |
| Perenaution:            |                       | Cargo Standard - |                     | arpa     | Cen      | emplóts :   | C)     | erga:              | Come     | esi in | 0      | erge      | Com    | ncición |
| (help)                  | 1761                  | Sally.           | No.                 | 'egricu' | Nation?  | CON No.     | Ng.    | kg/am <sup>2</sup> | hg /pm²  | C88 %  | 10.    | ten men'  | hg.hom | CORY    |
| 0.025                   |                       |                  | 12                  | 0.0      | -        |             | 0.1    | 0.4                | -        |        | 4      | 0.2       | 1900   | -       |
| 0.050                   |                       |                  | 26                  | 1.3      |          |             | 19     | 0.0                |          |        |        | 0.4       |        |         |
| 0.010                   |                       |                  | 39                  | 2.0      |          |             | 29     | 1.5                |          |        | 14     | 0.7       | _      |         |
| 0.100                   | 79.1                  | 907              | 46                  | 2.4      | 3.1      | 4.4         | 36     | 1.8                | 2.2      | 3.3    | 17     | 0.9       | 1.1    | 1.5     |
| 0.190                   |                       |                  | 76                  | 4.0      |          | 1000        | 50     | 0.0                | -        | 1      | 27     | 1.4       |        |         |
| 0.300                   | 100.                  | 460              | 104                 | 6.3      | 5.0      | 3.6         | 78     | 4.0                | 4.5      | 4.2    | 36     | 1.8       | 2:1    | 2.0     |
| 0.000                   |                       |                  | 186                 | 0.0      |          |             | 125    | 0.3                |          |        | 98     | 3.0       |        | 2.0     |
| 0.400                   |                       |                  | 213                 | 10.0     |          |             | 160    | 8.1                |          |        | 76     | 3.8       |        |         |
| 0.500                   |                       |                  | 266                 | 13.5     |          |             | 199    | 10.5               |          |        | 93     | 4.7       |        |         |

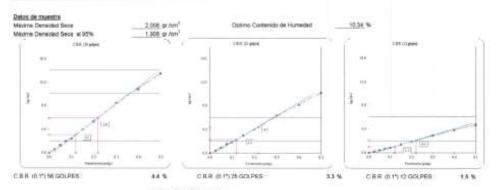
OBSERVACIONES.

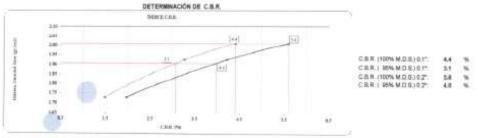
\* Muestra provista e siertificada por el solicitante.

\* Prohibida la reproducción parcial o total de este documento sin la autorización escrita del área de Calidad de JJ GEOTECNIA.

| Elaborado por                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Revisado por:                    | Aprobado por:                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|
| ( Vela                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | JJ GEOTECHIA S A C               | - Long                          |
| The state of the s | INDE EDOCHT                      | GO                              |
| Jefe de Laboratorio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ingeniero de Suelos y Pavimentos | Control de Calidad JJ GEOTECNIA |

Teit: (01) 632-9183 Cel. 980703014 / 947280585 Av. A. Mz.48, Lt. 17. Asoc. Armando Villanueva Alt. Universitaria cdra 59, Villasol - Los Olivos - Lima informes@jjgeotecniasac.com


LABORATORIO DE ENSAYO DE MATERIALES


#### CERTIFICADO DE ENSAYO RELACIÓN DE SOPORTE DE CALIFORNIA

| Código   | FOR-LAB-MS-015 |
|----------|----------------|
| Revisión | 1              |
| Aprobado | CC-718         |
| Fecha    | 101/2021       |

#### LABORATORIO DE MECANICA DE SUELOS Y ROCAS ASTM D1883 / MTC E - 132

| REFERENCIA         | Delos de laboratorio                                                                |                                                                   |           |
|--------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------|
| BOLICITANTE        | : Rodrigo Portocamero Escalante/ Moreno Memogul Carolini                            |                                                                   |           |
| TESIS<br>UBICACIÓN | Influencia del editivo TerreZyme y del Caucho granulado e<br>Las Lomas - Ventantila | en la subrassimie de la Amphacido Las Lomas - Ventenilla, Lima 20 | 121       |
| CALICATA           | G-8                                                                                 | Fecha de ensayo :                                                 | B/09/2021 |
| MUESTRA            | Petrón                                                                              |                                                                   |           |
| PRODUKINOMAN       | 1.00 m                                                                              |                                                                   |           |





#### OBSERVACIONES:

- Mestre projeto e dertificada por el apicitante.
   Prohibida se recroducción parcial o total de este documento cin la autorización escrita del ârea de Calidad de JJ OEOTECNIA.

| E MIDONALO POT.     | Hevisado por:                    | Aprobado por:                   |
|---------------------|----------------------------------|---------------------------------|
| A tura              | JJ GEOTECHICS A C                | A.                              |
| VB                  | ELMER MOSENO HUAMAN              | (Polar)                         |
| Jefe de Laboratorio | Ingeniero de Suelos y Pavimentos | Control de Calidad 30 GEOTECNIA |

### ANEXO Nº 4-D: Fichas de resultados – Proctor modificado (0.25ml TerraZyme)



Telf.: (01) 632-9183 Cer 980703014 / 947280585 Av. A. Mz.48, Lt. 17, Asoc. Armando Villanueva Alt, Universitaria cdra 58, Villasoi - Los Olives - Lima informes@jigeotecniasac.com

www.jjgeotecniasac.com

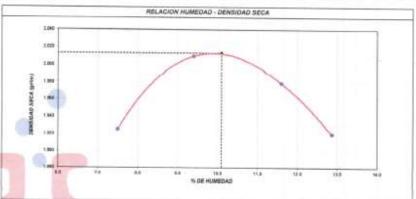
LABORATORIO DE ENSAYO

CERTIFICADO DE ENSAYO COMPACTACIÓN PRÓCTOR MODIFICADO Código FOR-LAB-MS-011 Revisión Aprobado 00-110 Fecha 1/01/2021

#### LABORATORIO DE MECANICA DE SUELOS Y ROCAS ASTM D1557 / MTC E - 115

REFERENCIA SOLICITANTE

TESIS


Rodrigo Portocerrero Escalante/ Morano Marroqui Carolina Influencia del Addino TarreZyme y del Casotro granulado en la svicrasante de la Ampliación Las Lomas - Vestanilla, Lima 2021 Les Lomes - Vertanille

CALICATA MUESTRA PROFUNDIDAD

15m

|                               |        | zkirmen Molde<br>Peso Molde | 2118<br>8813 | em <sup>1</sup> |        |     |
|-------------------------------|--------|-----------------------------|--------------|-----------------|--------|-----|
| NUMERO DE ENSAYOS             |        | 1                           | 2            | 3               | 4      |     |
| Peso Suelo + Molda            | gr.    | 10,895                      | 11,185       | 11,186          | 11.098 | 1   |
| Peso Suelo Humedo Comparitado | gr.    | 4,380                       | 4,652        | 4,673           | 4,585  | _   |
| Peso Volumetrico Humedo       | gt     | 2.070                       | 2.166        | 2.208           | 2.167  | 7   |
| Recipiente Numero             | 1      | A                           | . 0          | . E.            | D.     | /   |
| Peso Suelo Humedo + Yara      | gr.    | 5123                        | 612.2        | 825.†           | 589.3  | 1 / |
| Peso Suelo Seco + Tara        | gr.    | 476.6                       | 559.6        | 560.1           | 522.1  | 1   |
| Peso de la Tara               | gr.    | 1120757                     |              | 7500.7          | OLE 1  | 1 / |
| Peso dat agua                 | gr.    | 55.7                        | 52.6         | 65.0            | 67.2   | 1   |
| Peso del suelo seco           | Q1     | 477                         | 560          | 560             | 522    | 1   |
| Contenido de agua             | *      | 7.5                         | 9.4          | 11.8            | 12.9   | 1/  |
| Densidad Sece                 | gr/oc. | 1.926                       | 2.010        | 1.979           | 1 920  | 1   |

|                       |       |          | JOSEPH STREET, MINERAL PROPERTY CONTROL OF THE PROPERTY OF THE | 5-43 Fa-13 | _ |
|-----------------------|-------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---|
| Densided Maxime Secs. | 2.013 | gritin . | Contenido Humedad Optima-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.1 W     |   |

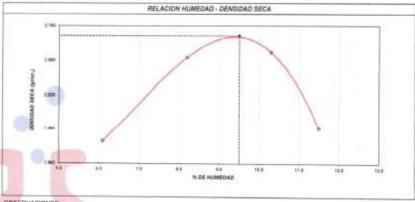


#### OBSERVACIONES:

reactivi acustrata e identificada por el soloctante. Prohibida la reproducción percial o total de este documento sin la autorización escrita del área de Calidad de JJ GEOTECNIA.

Aprobado por: Jefe de Laboratorio Ingeniero de Suelos y Pavimentos Control de Calidad dJ GEOTECNIA




Telf.: (01) 632-9183 Cel: 990703014 / 947290585 Av. A. Mz.48, Lt. 17, Asoc. Armando Villanueva Alt. Universitario cdra 59. Villasol - Los Olivos - Lima informes@igeotecniasac.com

www.jjgeotecniasac.com

| LABORATORIO DE EM<br>DE MATERIALES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | COMPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.500.00000000000000000000000000000000 | N PRÓCI       | TOR I    | MODIFI      |                 | Revisión<br>Aprobado<br>Fecial<br>Y ROCAS |           | 3<br>DC-JJG<br>1/01/2021 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------|----------|-------------|-----------------|-------------------------------------------|-----------|--------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RIO DE I                                | MECAN         | VICA     |             |                 | Pecna                                     |           |                          |
| 5150230000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LAB            | ORATOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.500.00000000000000000000000000000000 | 7.1           |          | DE SI       | IFI OS          | NAS commercial                            |           | 1/01/2021                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LAB            | ORATOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.500.00000000000000000000000000000000 | 7.1           |          | DE SI       | IFI OS          | YROCAS                                    |           |                          |
| The state of the s | de laborato    | nio<br>nvo Escalante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | / Normo Mac                             | rocul Carolin | in .     |             |                 |                                           |           |                          |
| TESIS Influen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | racin the mate | λю ТенняΣупте                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         | gywysiadath a | en de av | Dyssiente a | Ir ir Anynas    | xin Lau Lumes + Vent                      | anife, 44 | roe 2021                 |
| CALICATA C-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | contat - i/en  | DATE OF THE PARTY |                                         |               |          |             |                 | Fecha de ero                              | 10489     | 05/06/2021               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | de Caucho      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |               |          |             |                 | 10-2017, 851503                           |           |                          |
| PROFUNDIDAD 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | in:            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |               |          |             |                 |                                           |           |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Volumer                                 | Molde         |          | Tite        | cm <sup>8</sup> |                                           |           |                          |

| MUMERO DE ENSAYOS            |       | 4      | 2      | . 3    | 4      | 5   |
|------------------------------|-------|--------|--------|--------|--------|-----|
| Peso Suelo + Molde           | gr.   | 10,827 | 11,236 | 71,344 | 11,189 |     |
| Peso Suelo Humedo Compactado | gr.   | 4,414  | 4,725  | 4,831  | 4,676  |     |
| Pesa Volumetrico Humedo      | gr.   | 2.088  | 2 233  | 2.283  | 2.210  | 1   |
| Recipiente Numero            |       |        | .0.    | - 5    |        | 1   |
| Peso Suelo Humedo + Tára     | gr.   | 598.6  | 588.3  | 575.2  | 904.3  | 1   |
| Peso Suelo Seco + Tara       | gr.   | 564.2  | 543.7  | 613.1  | 542.0  |     |
| Peso de la Tara              | gr.   |        |        |        |        | 1   |
| Peso del agua                | gr.   | 34.4   | 44.6   | 63.1   | 62.3   | 1   |
| Peso del suelo seco          | gr.   | 564    | 544    | 613    | 542    |     |
| Contenido de agua            | 56    | 0.1    | 8.2    | 10.5   | 11.5   | 1   |
| Densidad Seca                | gr/cc | 1.966  | 2,084  | 2.070  | 1.982  | 17: |

Densided Maxima Secs: Contenido Humedad Optima:



OBSERVACIONES

\* Muestra provista e identificade por el adicitante

\* Prohibida la reproducción parciel o total de este do





Teff.; (01) 632-9183 Cer 98/7/03014 / 94/7280585 Av. A. Mz.48, Lt. 17, Asoc. Armando Villanueva Alf. Universitaria odra 59, Villasot - Los Olivos - Lima informes@iigeotecniasac.com

www.jjgeotecniasac.com

Código FOR-LAB-MS-015 LABORATORIO DE ENSAVO DE MATERIALES CERTIFICADO DE ENSAYO Revisión 2 RELACIÓN DE SOPORTE DE CALIFORNIA Aprobado Fecha 1/01/2021 LABORATORIO DE MECANICA DE SUELOS Y ROCAS ASTM D1883 / MTC E - 132 Justice de abdivistario
Rodrigo Portocereno Excelente/Moreco Merroqui Cercitire
Intriuncia del addivis TerraZyme y del Caucho granulado en la subrauarre de la Ampliación Las Loreas - Ventanilla, Lime 2021
Las Comas - Ventanilla
Co-3 SOLICITANTE TESIS UBICACIÓN CALICATA Fecha de ensayo : 24/08/2021 MUESTRA PROFUNDIDAD

| Carried Control         |                                      | CA                            | rcuro  | DE LA RE  | LACIÓN | DE SOF     | ORTE ( | CALIFOR    | NIA [C.B   | R.J        |       |        |          |        |
|-------------------------|--------------------------------------|-------------------------------|--------|-----------|--------|------------|--------|------------|------------|------------|-------|--------|----------|--------|
| Motor M*                |                                      |                               |        |           | 10     |            | 11     |            |            |            | 12    |        |          |        |
| Nomero de capes         |                                      |                               |        |           |        |            |        |            |            |            | 1     |        |          |        |
| Número de gripes        |                                      |                               |        |           | 50     |            |        |            | 5          |            |       | - 1    | 2        |        |
| Condición de la muestro | 1                                    |                               | NO SA  | TURADO    | SATU   | JRADO :    | NO SA  | TURADO     | SATU       | RADO       | NO SA | TURADO | BATS     | RADO   |
| Peso suelo + morde (gr  | so suelo + morde (gr.)               |                               | 13.    | 0/3       |        |            | 12     | 960        |            |            | 12,   | 901    |          |        |
| Peso mote og y          | eso moste ogra                       |                               | 8.     | 530       |        |            | 0.5    | nor.       |            |            | 16.5  | 910    |          |        |
| Pean suely compacted.   | 0.(gr.)                              |                               | 4.3    | rár       |        |            | 4      | 400        |            |            | 4.0   | 100    |          |        |
| Volumen dat motte com   | olymen del motte (cer <sup>3</sup> ) |                               | - 2    | 136       |        |            | 2.     | 138        |            |            | 2.5   | 140    |          |        |
| Densided Nameda (gr.ii) | print)                               |                               | 23     | 219       |        |            | 2.0    | 087        |            |            | 7.5   | mt.    |          |        |
| Plumeded (%)            |                                      |                               | - 31   | 1:0       |        |            | - 31   | 0.2        |            |            | 10    | 1.3    |          |        |
| Densided Secs (gr.lon)  | 5                                    |                               | 21     | 016       |        |            |        | 694        |            |            | 1.3   | (33)   |          |        |
| T- DECEMBER             | 133                                  |                               | 111 74 |           | ONTEN  | DO DE H    | UMEDA  | (D)        |            |            |       | 550    |          |        |
| Tarantuski himedo (gr   | a:                                   |                               | 56     | 9.6       |        |            | 55     | H.3        | 1          |            | 52    | 7.8    |          |        |
| Taransuelo seco (gr.)   |                                      |                               | 53     | 6.5       |        |            | 563.0  |            |            |            | 47    | 8.0    |          |        |
| Frenche agus (gr.)      | epine (pr.)                          |                               |        | 6.1       |        |            | 9      | 1.3        |            |            | 45    | 13     |          |        |
| Peso de tara (gr.)      |                                      |                               |        |           |        |            | -      |            |            |            |       |        |          |        |
| Peco de suelo seco (gr  | ti-                                  |                               | 67     | 5.5       |        |            | - 90   | 13.0       |            |            | 47    | 8.5    |          |        |
| Plumeded (%)            |                                      |                               |        | 0.1       |        |            | - 1    | 0.2        |            |            | 10    | 13     |          |        |
|                         |                                      |                               |        |           | E      | XPANSIÓ    | N:     |            |            |            |       |        |          |        |
| Pachs                   | Here                                 | Tiertus                       |        | Dist      | Dies   | entalist . | Diet   | Esperality |            | Otal       |       | - Do   | entitie. |        |
|                         | 7.000                                | 10.                           |        | 77        | THE    | . %        | - 8    | L/Max      | ree        | %          | Dia   |        | mm       | *      |
| 21-Ago                  | 9-3:8                                | 24                            |        | 16        | 0.41   | 17.36      | - 1    | 19         | 0.48       | 0.41       |       | 23     | 0.58     | 0.50   |
| 22-Ago                  | 9.8.0                                | 48                            |        | 25        | 0.04   | 0.55       | - 5    | 24         | 0.61       | 0.62       |       | 31     | 0.78     | 0.68   |
| 15-Ago                  | 94.01.01                             | 72                            |        | 55        | 8.64   | 9.72       |        | 30         | 0.89       | 0.7e       |       | 42     | 1.07     | 0.02   |
| 24-Ago                  | 80,0000                              | 96                            |        | 34        | 0.86   | 0.74       |        | 28         | 0.67       | 0.83       |       | 55     | 1.40     | 1.20   |
|                         |                                      |                               |        |           | PE     | VETRACE    | ÔN     |            | -          | THE PERSON |       |        |          | -      |
| Penetrasion             | 9,500                                | ARRES I                       |        | Morae     | NT. 10 |            | -      | Mokile     | NC-11      |            |       | Molde  | N° 12    |        |
| Personal Control        | Cargo S                              | tanders<br>rer <sup>1</sup> ) | .0     | arga.     | Oune   | 10008      | - 0    | erga       | Com        | nation     | - 0   | erge   | -        | rottin |
| \$M\$1                  | 049.4                                |                               | to.    | Agr. Armi | Ng/m²  | CRR W      | 14     | ng toer!   | has Assort | 088%       | 144   | -      | kg./cm²  |        |
| 0.025                   |                                      |                               | 95     | 4.8       |        |            | 72     | 3.6        |            |            | 40    | 2.5    | - Server | 3411.4 |
| 0.050                   |                                      |                               | 223    | 11.3      |        |            | 167    | 4.5        |            |            | 01    | 3.1    |          |        |
| 0.076                   |                                      |                               | 319    | 16.2      |        |            | 239    | 12.1       |            |            | 80    | 4.0    |          |        |
| 6.100                   | 79.5                                 | NET .                         | 997    | 22.7      | 361    | 37.4       | 266    | 19,1       | 14.8       | 20.8       | WI    | 4.7    | 4.9      | 7.0    |
| 0.150                   | -                                    |                               | 9/10   | 39.3      |        |            | 300    | 19.8       | 1          |            | 128   | 4.5    | 100      | 1.0    |
| 0.200                   | 101                                  | 660:                          | 821    | 21.0      | 32.0   | 36.3       | 460    | 23.7       | 24.1       | 22.0       | 176   | 8.0    | 9.0      | 8.5    |
| 0.300                   |                                      |                               | 790    | 40.1      |        |            | 600    | 30.1       |            |            | 260   | 13.3   | -        | -      |
| 0,400                   |                                      |                               | 674    | 46.5      |        |            | 730    | 37.1       |            |            | 343   | 17.4   |          |        |
| 0.500                   | 76                                   |                               | 1134   | 57.6      |        |            | 807    | 41.0       |            |            | 429   | 21.6   |          |        |

1.5 m

OBSERVACIONES:

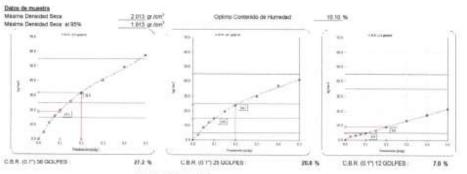
\* Muestra provista e identificada por al solicitante

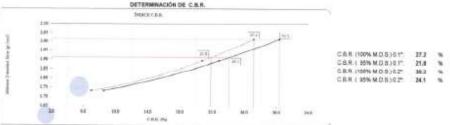
\* Proviosta la reproducción parciar o timal de este documento sin la autorización escrita del área de Calidad de JJ GEOTECNIA

| lisborado por       | Revisado por:                    | Aprobado por:                   |
|---------------------|----------------------------------|---------------------------------|
| 100 mm              | IJ GEOTECHIAS                    | AC                              |
| A KI V              | (Dolu E)                         | VI GEOTE AASA                   |
| 國人                  | EV MER MY SENO HU                |                                 |
|                     | HELE LIE OF THOSE                | " CHE                           |
| Jefe de Caboratorio | Ingeniero de Suelos y Pavimentos | Centrel de Calidas JJ GEOTECNIA |



Telf.: (01) 632-9183 Cel: 980703014 / 947260585 Av. A, Mz.48, Lt. 17, Asoc. Armendo Villanueva Alt. Universitaria cdra 59, Villasol - Los Osvos - Lima informes@)jjgeotecniasac.com


LABORATORIO DE ENSAVO DE MATERIALES


#### CERTIFICADO DE ENSAYO RELACIÓN DE SOPORTE DE CALIFORNIA

| Código   | FOR-LAB-MS-015 |
|----------|----------------|
| Revisión | 1              |
| Aprobado | CC-118         |
| Pecha    | 1/01/2021      |

### LABORATORIO DE MECANICA DE SUELOS Y ROCAS

| REFERENCIA  | Datos de reboratorio                                                      |                                                 |            |
|-------------|---------------------------------------------------------------------------|-------------------------------------------------|------------|
| SOLICITANTE | Rodrigo Portocerrero Escelante/ Moreno Marroqui Carolina                  |                                                 |            |
| TESIS       | . Influencie del addivo TerraZyme y del Gaucho granulado en la subrasante | de la Amphisción (las comas - Ventanida, Lima 2 | OUTY       |
| UBICACIÓN   | Les Lorres - Ventanine                                                    |                                                 |            |
| CALICATA    | C-3                                                                       | Fechs de ensayo :                               | 24/08/2021 |
| MUESTRA     | 0.25 % de Terrazyone                                                      |                                                 |            |
| PROFUNDIDAD | 1.5 m                                                                     |                                                 |            |





- OBSERVACIONES:

  \* Muietra provista e identificada por el solicitame.

  \* Prohibida la reproducción perser o total de este ón parcer o tutal de esse documento sin la autórización escrita del área de Calidad de JJ GEOTECNIA.

| Elaborado por:       | Revisado por:                    | Aprobado por:                   |
|----------------------|----------------------------------|---------------------------------|
|                      | FI MER IN SEND HUAMAN            | (Del)                           |
| Jefe de Lateoratorio | Ingeniero de Suelos y Pavimentos | Control de Calidad JJ GEOTECNIA |

### ANEXO Nº 4-G: Fichas de resultados – C.B.R (6.5% caucho granulado)



Teif.: (01) 632-9183 Cel: 880703014 / 847280585 Av. A, Mz.48, Lt. 17, Asoc. Armando Vitanueva Alt. Universitaria odra 59, Villasol - Los Olivos - Lima informes@igeotecniasac.com

www.jjgeotecniasac.com

LABORATORIO DE ENSAYO DE MATERIALES

#### CERTIFICADO DE ENSAYO RELACIÓN DE SOPORTE DE CALIFORNIA

| Código   | FOR-LAB-MS-015 |
|----------|----------------|
| Revisión | 2              |
| Aprobado | na na          |
| Fecha    | 1/01/2021      |

## LABORATORIO DE MECANICA DE SUELOS Y ROCAS

REFERENCIA SOLICITANTE TESIS UBICACIÓN CALICATA Jecting Padocerrent Escalarital Morrant Merroqui Carolina
Technicol del addino Terrazione y del Cascho granulado en la autorasente de la Ampliación Las Lorras - Ventanilla, Lima 2021
Las Lorras - Ventanilla
C-3
Richards MUUSTRA 8.8 % de Caucho PROFUNDIDAD ± 50 m

|                             |            | CA                                    | ronro | DELAR          | EI, ACIÓN   | DE SOF        | PORTE                | CALIFOR   | NIA (C.B   | RA.         |       |        |            |       |
|-----------------------------|------------|---------------------------------------|-------|----------------|-------------|---------------|----------------------|-----------|------------|-------------|-------|--------|------------|-------|
| Molde Nº                    |            |                                       |       |                | 13          |               |                      |           |            |             |       |        | 18.        |       |
| Numero de paper             |            |                                       |       |                | 8           |               |                      | 5         |            |             |       |        |            |       |
| Namero de goipes            |            |                                       | 10    |                |             |               | 23                   |           |            |             | 12    |        |            |       |
| Condición de la muestr      |            |                                       | NO a  | OCAMATA        | SATI        | JRADO .       | NO SATURADO SATURADO |           | MADO       | NO SATURADO |       | 1      | JRADO      |       |
| Perso susta + mobile (g     | .1.        |                                       | 19    | LDtt           |             |               | 12.663               |           |            | 311010100   |       | 11,025 |            | -     |
| Perso molde (gr.)           |            |                                       |       | 607            |             |               | E.449                |           |            | 8,129       |       |        |            |       |
| Pass suelo compactad        | in (gr.)   |                                       | 4     | 404            |             |               | 4.104                |           |            |             |       | 790    |            |       |
| Volumen det molde (om       | à          | 1124                                  | 2     | 137            |             |               | 2.129                |           |            |             |       | 141    |            |       |
| Denoted harrests (gr./      | m)         |                                       | 2     | D61            |             |               | 1.028                |           |            |             | _     | rra    |            |       |
| Summer (No.                 |            |                                       | 3     | 0.6            |             |               | 10.6                 |           |            |             | 10.8  |        |            |       |
| Denotolad Secting Jgr. York | 5          |                                       | 1.    | 886            |             |               | 93                   | 743       |            |             |       | 000    |            |       |
|                             |            |                                       |       |                | CONTEN      | DO DE H       |                      |           |            |             |       |        |            |       |
| Tanansyels himsels (gr      | 01         |                                       | - 47  | 70.0           | STORY TO SE | 10000         |                      | 10 Y      |            |             | 53    | 1.0    |            |       |
| Terrensielo seco (gr.)      |            | - /                                   | 40    | 13.4           |             |               | 474.0                |           |            | 490.7       |       |        |            |       |
| Feso de agua (gr.)          |            |                                       | 4     | 5.5            |             |               | - 10                 | 0.3       |            |             | -     | 0.9    |            |       |
| Perc de tara (gr.)          |            |                                       |       |                |             |               | _                    |           |            |             | -     |        |            |       |
| Pass de sumo seco (gr       | rd .       |                                       | 43    | 13.4           |             |               | 67                   | 4.8       |            |             | 40    | 0.7    |            | _     |
| Martedad (%)                |            |                                       | 10.6  |                |             |               | 10.4                 |           |            |             | 10.0  |        |            |       |
| 111-10-00-                  |            |                                       |       |                | E)          | KPANSIÓ       |                      |           |            |             |       |        |            |       |
| Fects                       | Hora       | Tiempo                                | 1     | Die            | Expe        | meion         |                      |           | Expansion  |             |       |        | Expensión  |       |
|                             | 1.00       | 10                                    |       |                | 700         | *             |                      | Dier      | State      | 14          |       | Digit  | ma         | 16    |
| 5-Set                       | 09:29:00   | . 24                                  |       | 14             | 0.38        | 0.31          |                      | 16        | 0.41       | 0.36        |       | 10     | 0.48       | 0.41  |
| 7-Set                       | 100 (100)  | 48                                    |       | 25             | 0.56        | 0.60          |                      | 27        | 0.60       | 0.50        |       | 31     | 0.79       | 0.66  |
| 0-Set                       | ==0        | 12                                    |       | 26             | 0.64        | 0.98          | - 8                  | 30        | 8.81       | 0.70        |       | 16     | 0.09       | 0.78  |
| 9-Set                       | (0.D.0)    | 240                                   |       | 29             | 0.74        | 0.69          |                      | 56        | 0.91       | 0.76        |       | 38     | 0.00       | 0.76  |
|                             |            |                                       |       |                | per         | WETRACI       | ne.                  |           | 0.01       | 0.74        | -     |        | 0.99       | 0.85  |
|                             | Townson or | Day of P                              |       | More           | Nº 13       | THE PROPERTY. | 211                  | Morage    | NF: 1A     | -           |       | Molte  | 10.16      |       |
| Panetraction                |            | Cerge Standard (Rg.com <sup>2</sup> ) |       | Carga Correcci |             | ección        | Carps                |           | Corrección |             | Cargo |        | Correction |       |
| (pvig.)                     | 940        | 100                                   | 40    | kg/ber         | ing Abers 1 | C85 %         | 10                   | log fore? | ig tore!   | CRR %       | No.   |        | ing /cm²   |       |
| 0.029                       |            |                                       | 41    | 21             | - Maryer    |               | 31                   | 1.6       | of the     | Jan S       | 34    | 0.7    | ell'your.  | CBN 4 |
| 0.560                       |            |                                       | 73    | 5.7            |             |               | 26                   | 2.8       |            |             | 26    | 1.5    |            |       |
| 6.076                       |            |                                       | 112   | 3.7            |             |               | 34                   | 4.1       |            |             | 30    | 2.0    |            |       |
| 0.100                       | 70.3       | 107                                   | 162   | 7.7            | 8.2         | 41.7          | 114                  | 5.8       | 6.3        | 9.0         | 50    | 2.7    | 3.0        | 4.3   |
| 0.150                       | 1          |                                       | 249   | 12.6           |             | 1271          | 187                  | 0.6       | 200        | -10         | 27    | 4.4    | 2,0        | 4,2   |
| 0.200                       | 996.       | 193                                   | 333   | 10.0           | 10.6        | 15.2          | 249                  | 127       | 12.0       | 11.4        | 116   | 5.9    | 5.6        |       |
| 0.300                       |            |                                       | 640   | 72.3           | - Are       |               | 330                  | 16.8      | 12.0       | 11/4        | 154   | 7.8    | 0.6        | 5.3   |
| 0.400                       |            |                                       | 814   | 20.1           |             |               | 385                  | 19.6      |            |             | 180   | 9.1    |            |       |
| D.800                       |            |                                       | 502   | 36.1           |             |               | 866                  | 22.6      |            |             | 207   | 10.5   |            | -     |

#### CREEKVACIONES.

Classer vacuories.

Muestra provincia e idendificada por al solicitante.

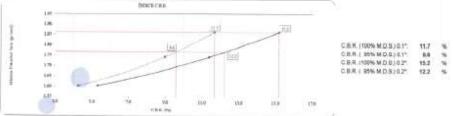
Prohibida la reproducción parcial o total de este documento sin la autorización escrita del área de Calistad de JJ GEOTECNIA.

| Elaborado por       | Revisado por:                    | Aprobado por:                   |
|---------------------|----------------------------------|---------------------------------|
|                     | SI CECTEGNIA E A                 | ac All                          |
| Jefe de Laberatorio | Ingeniero de Suelos y Pavimentos | Control de Calidad Jo GEOTECNIA |



Telf.; (01) 632-9163 Cel: 980703014 / 947280585 Av. A. Mz.48, Lt. 17, Asoc. Armando Villanueva Alt. Universitaria cora 59. Villasoi - Los Olivos - Lima informes@ygeotecniasac.com

LABORATORIO DE ENSAYO DE MATERIALES


#### CERTIFICADO DE ENSAYO RELACIÓN DE SOPORTE DE CALIFORNIA

| Código   | FOR-LAB-MS-015 |  |
|----------|----------------|--|
| Revisión | 3              |  |
| Aprobado | 00-110         |  |
| Pecha    | 1/01/2021      |  |

## LABORATORIO DE MECANICA DE SUELOS Y ROCAS ASTM D1883 /MTC E - 1/2

| REFERENCIA Datio de leboratorio SOLICITANTE Riodrigo Portocerrero Escalanter Moreno Marroqui Carsona |                                                                                                   |                                                     |           |  |  |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------|--|--|
| TESIS<br>UBICACIÓN                                                                                   | influencia del aditivo TorraZyme y del Gaucho granuledo en la subrasar<br>Las Lomas - Ventantille | rte de la Ampliación Las Lómas - Ventanilla, Lima 2 | 021       |  |  |
| CALICATA                                                                                             | C-3                                                                                               | Fecha de ensayo :                                   | 9/09/2021 |  |  |
| MUESTRA                                                                                              | 6.5 % de Caucho                                                                                   |                                                     |           |  |  |
| PROFUNDIDAD                                                                                          | 1.50 m                                                                                            |                                                     |           |  |  |





#### OBSERVACIONES:

- Meetins provista e identificada por el solicitante.
   Prohibida la reproducción parcial o total de este documento sin la autorización escrita del área de Celidad de JJ GEOTECNIA.

| Elaborado por:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Revisado por:                                            | Aprobado por:                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------|
| The state of the s | NCESTERNES)                                              | AC WELDTES ASJ                  |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EL MER MORENO HUM<br>INGLE / EPO CA NI<br>PEG CIP & MONE | a go                            |
| Jefe de Laboratorio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ingeniero de Suelos y Pavimentos                         | Control de Calidad JJ GEOTECNIA |

## ANEXO N°5: Panel Fotográfico



Realización de calicata



Realización de calicata



Caucho granulado




obtención de estabilizador TerraZyme



Tamizado en Laboratorio JJ Geotecnia SAC



Tamizado en Laboratorio JJ Geotecnia SAC



Rellenando Molde de 6" con material de la subrasante



Empleando el estabilizante TerraZyme

### **ANEXO N°6:** Turniting

