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CKM mixings from mass matrices with five texture zeros
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In this work we carry out an exhaustive study to find quark mass matrices in the Standard
Model (SM), with the maximum number of texture zeros consistent with the experimental data.
We found four viable configurations of five texture zeros that adjust the quark masses, the mixing
angles and the CP violation phase, with deviations below 1σ level respect to the current SM best fit
values. One of the most important aspects of this work is an economic procedure to find the texture
zeros: we resort to the weak basis transformation method, which, as we will show, exhaustively
search every possible configuration. We report various leading order relations between the mixing
angles and the quark masses for each case.

I. INTRODUCTION

In the Standard Model (SM), the quark mass matrices
come from the interaction between the Higgs boson and
the SM fermions. After the spontaneous breaking of the
SM gauge symmetry we obtain

− LM = ūRMuuL + d̄RMddL + h.c., (1.1)

where Mu and Md are arbitrary, 3 × 3 quark mass ma-
trices containing thirty-six (36) real parameters, which
cannot be fully determined from the ten (10) physical
observables that they must account for: six (6) quark
masses, three (3) flavor mixing angles, and one (1)
charge-parity (CP) violating phase. However, in mod-
els like the SM (or its extensions) where the right fields
are singlets under the gauge group, it is always possible
to choose a suitable basis for the right quarks, such that
by using the the polar decomposition theorem of the ma-
trix algebra, the mass matrices of type “up” and “down”
became hermitian [14, 17, 20, 25, 28, 40].

M †
u = Mu, and M †

d = Md. (1.2)

Additionally, for Hermitian quark mass matrices, you can
make a unitary transformation acting simultaneously on
the up-type and down-type quark mass matrices, leav-
ing the gauge currents invariant, and the mass matrices
transform to new equivalent Hermitian matrices

Mu → M ′
u = U †MuU, Md → M ′

d = U †MdU, (1.3)

where U is an arbitrary unitary matrix that preserves
the hermiticity of the mass matrices and leaving the
physical quantities invariant, in particular, the Cabibbo-
Kobayashi-Maskawa (CKM) mixing matrix. This com-
mon unitary transformation applied to Mu and Md, in
Eq. (1.3), is known as a “Weak Basis” (WB) transfor-
mation [1, 14, 36, 41, 42]. As it was shown in [20, 22],
for a given set of quark masses, mixing angles and the
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CP-violating phase, all the mass matrices consistent with
these experimental values are unitarily equivalent. This
result can be used to calculate the maximum number of
texture zeros, since it guarantees that by using WB trans-
formations it is possible to reach all physical and non-
physical zeros consistent with the data [1, 20]. Through
a WB transformation, it is possible to rewrite the quark
mass matrices as follows [1, 20–22]:

Mu = Du =





λ1u 0 0
0 λ2u 0
0 0 λ3u



 ,

Md = V DdV
†,

(1.4a)

or

Mu = V †DuV,

Md = Dd =





λ1d 0 0
0 λ2d 0
0 0 λ3d



 ,
(1.4b)

where V = U †
uUd is the CKM mixing matrix, Uu and

Ud are the diagonalization matrices for the mass ma-
trices Mu and Md, respectively. The parameters λiq

(i = 1, 2, 3) are the quark mass matrix eigenvalues for
up-type (q = u) and down-type (q = d) quarks, which
are related to the quark masses

|λ1u| = mu, |λ2u| = mc, |λ3u| = mt,

|λ1d| = md, |λ2d| = ms, |λ3d| = mb.
(1.5)

So λiq can be positive or negative and obey the hierarchy

|λ1q| ≪ |λ2q | ≪ |λ3q|. (1.6)

In the basis (1.4) can be easily verified that the mass ma-
trices are consistent with the CKM mixing matrix V and
the quark masses, and the 3 non-physical texture zeros
can be effortlessly identified [1]. The hermiticity of the
quark mass matrices Mu and Md reduces the number of
free parameters from 36 to 18, which, however, is still a
large value compared to the number of observables. In
order to reduce the number of free parameters, Weinberg
and Fritzsch [9–11, 38] introduced texture-zeros into the
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mass matrices with a dual purpose, first of all, to obtain
self-consistent relationships between the quark masses
and the flavor mixing parameters that can be experi-
mentally verified [14, 15]. On the other hand, the dis-
crete (or continuous) flavor symmetries hidden in such
textures may finally provide clues on the origin of the
energy scales in the quark sector of the SM as residual
symmetries of a more fundamental symmetry at high en-
ergies. Hermitian quark mass matrices with six texture
zeros were introduced in what is currently known as the
Fritzsch type [10, 15], where the mass matrices, Mu, and
Md, have the same texture (“up-down” parallel) each
with three zeros. This type of ansatz was ruled out due
to the large value of the mass of the top quark, since that
for this case the CKM element |Vcb| is in tension with the
experimental data [7, 15, 25]. Furthermore, for reason-
able values of the current quark masses mu and mc, the
expected magnitude for |Vub/Vcb| =

√

mu/mc ≈ 0.05 [39]
is too small in comparison with the experimental value
(|Vub/Vcb|exp. ≈ 0.09 [5, 24, 35]). In this sense, one of
the difficulties of working with texture zeros is keeping
the predictions for Vus and Vcd right, and simultaneously
reproducing the ratios Vub/Vcb and Vtd/Vts, i.e.,

∣

∣

∣

∣

Vub

Vcb

∣

∣

∣

∣

exp.

= 0.0861± 0.0027,

∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

exp.

= 0.2107± 0.0044.

(1.7)

The original literature on five-zero textures has been
widely studied, but these initial ansatzes are not cur-
rently favored by experimental data [1, 6, 8, 25, 29, 32–
34]. Recent studies show that other five-zero textures
are viable, some analytical and numerical examples were
reported in [20, 28, 30, 31, 37], these textures reproduce
the quark masses and the CKM mixing matrix with devi-
ations respect to the experimental values below 1σ level.
There are several approaches to obtain the texture zeros,
in some cases, the analytic approximations take advan-
tage of the strong hierarchy in quark masses and mixing
angles to motivate a certain texture [12, 15], alternatively,
some techniques prefer to assume a texture for the quark
mass matrices to make physical predictions [3, 25, 30, 37].
A very elegant way is to apply WB transformations in or-
der to get texture zeros in the mass matrices [1, 20], our
work points in this direction and it can be considered as
a continuation of the work presented by one of us in [20].
This work is organized as follows: In Section II we classify
all possible ways to put three texture-zeros in the “up” or
“down” quark mass matrices. This analysis is important
since from these textures we can obtain five texture zeros
for the mass matrices by using the WB transformation
method. We will carry out a first analytical study for
five-zero textures in Section III, and the conclusions are
summarized in Section IV.

II. FIVE-ZERO TEXTURES

In order to maintain the determinant different from
zero the mass matrix for up quarks (or down quarks) has
at most three texture-zeros 1. Also, we only have two
types of realistic patterns depending on how the three
texture zeros are distributed in the inputs of the mass
matrix. In the first case we have a matrix with two tex-
ture zeros on the diagonal, and in the other case the ma-
trix only contains a texture-zero on the diagonal, as it is
pointed out in each column of Table I; where it is shown
that by doing WB transformations with the permutation
matrices pi, with i = 1, · · · , 6, we obtain all possible vi-
able cases for each pattern. Table I summarizes all the
viable three-zero textures (via permutations) for the up
and down quark mass matrices. Without loss of gener-
ality, as we will see later, we can write these patterns
without including phases. An equivalence transforma-

Permutation

matrices

Pattern with two ze-

ros on the diagonal

(pi Mq pTi )

Pattern with one

zero on the diagonal

(pi Mq pTi )

p1 =





1
1

1









0 |ξq| 0
|ξq| 0 |βq|
0 |βq| αq









0 |ξq| 0
|ξq| γq 0
0 0 αq





p2 =





1
1

1









0 0 |ξq|
0 αq |βq|

|ξq| |βq| 0









0 0 |ξq|
0 αq 0

|ξq| 0 γq





p3 =





1
1

1









αq |βq| 0
|βq| 0 |ξq|
0 |ξq| 0









αq 0 0
0 γq |ξq|
0 |ξq| 0





p4 =





1
1

1









0 |ξq| |βq|
|ξq| 0 0
|βq| 0 αq









|γq| |ξq| 0
|ξq| 0 0
0 0 αq





p5 =





1
1

1









αq 0 |βq|
0 0 |ξq|

|βq| |ξq| 0









αq 0 0
0 0 |ξq|
0 |ξq| γq





p6 =





1
1

1









0 |βq| |ξq|
|βq| αq 0
|ξq| 0 0









γq 0 |ξq|
0 αq 0

|ξq| 0 0





TABLE I: Mass matrix patterns with three texture-zeros. We are
considering two cases, depending on the number of zeros in the
diagonal (one or two texture zeros). It is not necessary to include
phases.

tion through a permutation is a type of WB transforma-
tion, indeed, this fact allows us to find equivalent textures

1 More than three texture zeros implies that at least one quark
mass is equal to zero or two of the quark masses must be
equal [20, 30].
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through permutations, for example

M ′
u =





0 × 0
× × ×
0 × ×



 = p2 ·





0 0 ×
0 × ×
× × ×



 · pT2 ,

M ′
d =





0 0 ×
0 × ×
× × 0



 = p2 ·





0 × 0
× 0 ×
0 × ×



 · pT2 ,

(2.1)

where “×” stands for the non-zero entries. It is impor-
tant to mention that the permutations do not change the
number of zeros on the diagonal.
We will work with five-zero textures for the quark

mass matrices. Six-zero textures have already been ruled
out [20, 26, 29, 32].

A. Texture-zero patterns

The patterns shown in Table I can be analytically di-
agonalized. To accomplish this, we consider the most
general case of a symmetric mass matrix with two tex-
ture zeros

Mq =





0 |ξq| 0
|ξq| γq |βq|
0 |βq| αq



 , (2.2)

where the phases of the off-diagonal parameters can be
absorbed (or included) in only one of the mass matrices
(the down-type or the up-type) through a WB transfor-
mation. γq and αq are real numbers due to the hemiticity
of Mq. According to the Table I, the pattern with two
zeros on the diagonal is achieved by making γq = 0, and
to obtain the pattern with a zero on the diagonal we set

|βq| = 0. The mass matrix Mq can be diagonalized using
the transformation

U †
qMqUq = Dq =





λ1q

λ2q

λ3q



 , (2.3)

where the λiq (i = 1, 2, 3) are defined in (1.5). Note that
γq, |βq| and |ξq| can be expressed in terms of αq and the
λiq’s. By using the invariants under a basis transforma-
tion, trMq, trM

2
q and detMq, it follows that

γq = λ1q + λ2q + λ3q − αq, (2.4a)

|βq| =
√

(αq − λ1q)(αq − λ2q)(λ3q − αq)

αq

, (2.4b)

|ξq| =
√

−λ1qλ2qλ3q

αq

. (2.4c)

According to [1, 20, 23] and the relation (2.4c) (which is
real), αq > 0; and from (2.4b), it must be found in one
of the following intervals:

If λ1q < 0, λ2q > 0 and λ3q > 0 =⇒ |λ2q| ≤ αq ≤ |λ3q |
(2.5a)

If λ1q > 0, λ2q < 0 and λ3q > 0 =⇒ |λ1q | ≤ αq ≤ |λ3q|.
(2.5b)

If λ1q > 0, λ2q > 0 and λ3q < 0 =⇒ |λ1q | ≤ αq ≤ |λ2q|.
(2.5c)

In the previous analysis, the (1.6) hierarchy was taken
into account, and we only considered a negative eigen-
value according to the justification given in papers [20,
23] 2.
The exact analytical matrix Uq, which diagonalizes the

mass matrix (2.2), is given by [16, 20, 41]

Uq =















eiθ1
|λ3q|
λ3q

√

λ2qλ3q(αq−λ1q)
αq(λ2q−λ1q)(λ3q−λ1q)

eiθ2
|λ2q |
λ2q

√

λ1qλ3q(λ2q−αq)
αq(λ2q−λ1q)(λ3q−λ2q)

√

λ1qλ2q(αq−λ3q)
αq(λ3q−λ1q)(λ3q−λ2q)

−eiθ1
|λ2q|
λ2q

√

λ1q(λ1q−αq)
(λ2q−λ1q)(λ3q−λ1q)

eiθ2
√

λ2q(αq−λ2q)
(λ2q−λ1q)(λ3q−λ2q)

|λ3q |
λ3q

√

λ3q(λ3q−αq)
(λ3q−λ1q)(λ3q−λ2q)

eiθ1
|λ2q|
λ2q

√

λ1q(αq−λ2q)(αq−λ3q)
αq(λ2q−λ1q)(λ3q−λ1q)

−eiθ2
|λ3q |
λ3q

√

λ2q(αq−λ1q)(λ3q−αq)
αq(λ2q−λ1q)(λ3q−λ2q)

√

λ3q(αq−λ1q)(αq−λ2q)
αq(λ3q−λ1q)(λ3q−λ2q)















, (2.6)

where we have included additional phases (non-physical)
to adjust the CKM mixing matrix to the usual conven-
tion (A2), as shown in the reference [21]. It is not neces-

2

The WB transformations allow us to use the basis (1.4a) (or
the basis in (1.4b)) as the “starting point” matrices to generate
any viable representation of quark mass matrices [20, 22]. If
there are texture zeros in mass matrices these can be found by a
WB transformation. Texture zeros on the diagonal of the mass
matrices imply that at least one of the proper values must be
negative [1, 16, 20, 41].

sary to include a phase in the third column, as it can be
absorbed by the remaining phases.
The diagonalization matrix (2.6) can be seen as the

unitary matrix of a WB transformation on the initial
mass representations (1.4). For the case (1.4a):

M ′
u = Uu(Du)U

†
u =





0 |ξu| 0
|ξu| γu |βu|
0 |βu| αu



 , (2.7a)

M ′
d = Uu (V DdV

†)U †
u , (2.7b)

where Eq. (2.3) was considered. As we have already men-
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tioned, if we want a pattern of three zeros in the mass
matrix M ′

u, with two zeros on the diagonal, that is, with
γu = 0, it is necessary to make αu = λ1u + λ2u + λ3u

according to (2.4a). From (2.5) this configuration is only
possible for λ1u, λ3u > 0 and λ2u < 0. To find two
additional texture zeros in the inputs of the mass ma-
trix (2.7b), we adjust the free parameters θ1 and θ2 of the
diagonalization matrix (2.6). On the other hand, if we
want three zeros for the mass matrix M ′

u, but with a sin-
gle zero on the diagonal, it is necessary to set |βu| = 0. To
achieve this we have three possibilities (from Eq. (2.4b)):
αu = λ1u, or αu = λ2u, or αu = λ3u. In each of these
cases, one of the remaining λiu’s must be negative, which

gives a total of six different possibilities. A similar exer-
cise can be carried out in the case (1.4b).

M ′
u = Ud (V

†DuV )U †
d , (2.8a)

M ′
d = Ud(Dd)U

†
d =





0 |ξd| 0
|ξd| γd |βd|
0 |βd| αd



 . (2.8b)

where we have used the relation (2.3) for the special case
q = d. Table II summarizes the numerical results of our
study, in the next section we will see these results in more
detail from an analytical point of view.

Case Five-zero textures Best fit values (MeV)
Negative

Pulls:

eigenvalues

Wolfenstein parameters: Pλ PA Pρ Pη

Up-type quark masses: Pmu Pmc Pmt −
Down-type quark masses: Pmd

Pms Pmb
−

I

MIu =





0 0 ξu
0 αu βu

ξ∗u β∗
u γu





a.

ξu = −85.47 + 157.0i,
βu = 29580 + 5435i,
αu = 6054, γu = 167200,
|ξd| = 14.53, |βd| = 442.5,
αd = 2904

λ1u < 0

λ2d < 0

−0.54 0.79 0.44 −0.81

0.98 0.13 0.43 −

0.36 0.60 0.55 −

MId =





0 |ξd| 0
|ξd| 0 |βd|
0 |βd| αd





b.

ξu = 21.04− 284.5i,
βu = 18950 + 5890i,
αu = 1690, γu = 169000,
|ξd| = 13.41, |βd| = 392.6,
αd = 2857

λ2u < 0

λ2d < 0

−0.58 −0.99 −0.53 −0.73

−0.28 0.25 −0.69 −

0.68 −0.26 0.000098 −

II

MIIu =





0 0 |ξu|
0 αu |βu|

|ξu| |βu| γu



 a.

|ξu| = 431.5, |βu| = 7251,
αu = 957.9, γu = 171200,
ξd = 4.316 + 14.26i,
γd = 64.13, αd = 2969

λ1u < 0

λ1d < 0

0.12 0.86 0.37 0.89

0.52 0.51 −0.47 −

0.98 0.49 0.53 −

MIId =





0 ξd 0
ξ∗d γd 0
0 0 αd





b.

|ξu| = 426.3, |βu| = 7336,
αu = 868.1, γu = 172500,
ξd = −4.152 − 13.81i,
γd = −62.50, αd = 2916

λ1u < 0

λ2d < 0

0.55 0.81 0.85 0.96

0.62 −0.97 0.63 −

0.72 0.38 0.052 −

TABLE II: Patterns for quark mass matrices with five texture zeros. The Wolfenstein parameters for the CKM mixing matrix and the

quark masses are reproduced with deviations below 1σ level. In the last column PA = AWB−APDG

∆A
, where AWB and APDG are the values

for A from the WB transformation and the PDG best fit, respectively. ∆A is the uncertainty for A reported in the PDG.

III. MASS MATRICES WITH FIVE TEXTURE

ZEROS

As it is well known in the literature, for a given tex-
ture it is possible to establish relations between the quark
masses, the mixing angles and the CP violation phase of
the CKM matrix, so that, a study of these relations is
important to shed light on the underlying symmetries of
the flavor physics. The five-zero textures for the quark
mass matrices given in Table II are viable models accord-
ing to the latest data for the current quark masses and
the CKM mixing matrix parameters at the Z scale. In
what follows we will consider various cases to implement
quark mass matrices with five texture-zeros.

A. Case I

In this configuration, the down-type quark mass ma-
trix contains three texture zeros, two of them on the di-
agonal, corresponding to the case I in Table II, which has
the following analytical structure for quark mass matrices

MIu = P †





0 0 |ξu|
0 αu |βu|

|ξu| |βu| γu



P,

MId =





0 |ξd| 0
|ξd| 0 |βd|
0 |βd| αd



 ,

(3.1)

where all the phases are reduced to those contained in
the diagonal matrix P = diag(e−iφξu , e−iφβu , 1) (with
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φβu
≡ arg(βu) and φξu ≡ arg(ξu)) which comes from do-

ing a WB transformation, in such a way that the phases
of MId are absorbed in P . So we have 7 real parame-
ters and 2 phases, to reproduce 10 physical quantities: 6
quark masses, 3 mixing angles and the CP violating phase
of the CKM mixing matrix, which implies that relations
between masses and mixing angles can be established in
the quark sector. The five-zero texture deduced in (3.1)
is not a Fritzsch texture of those studied in [14]. Even
though they are not identical, the mass matrices (3.1) can
be diagonalized with the help of the matrix (2.6). Let’s

use the permutation matrix P2 = [(1, 0, 0), (0, 0, 1), (0, 1, 0)],
to bring the up-type quark mass matrix to the form

Mu = P †P2





0 |ξu| 0
|ξu| γu |βu|
0 |βu| αu



P2P , in such a way that the

internal matrix corresponds to that in (2.2). Therefore,
the diagonalization matrix is the unitary matrix P †P2Uu,
where Uu is defined in (2.6), for the case q = u. Accord-
ing to (2.4a) the other mass matrix in (3.1), MId, can be
diagonalized if we make αd = λ1d + λ2d + λ3d.

From (2.4) the mass matrix parameters are:

γu = ∓mu ±mc +mt − αu, (3.2a)

|βu| =
√

(αu ±mu)(αu ∓mc)(mt − αu)

αu

, (3.2b)

|ξu| =
√

mu mc mt

αu

, (3.2c)

αd = md −ms +mb, (3.2d)

|βd| =
√

(mb −ms)(md +mb)(ms −md)

md −ms +mb

, (3.2e)

|ξd| =
√

mdms mb

md −ms +mb

, (3.2f)

where for the eigenvalues of MIu we have considered two possible cases λ1u < 0 (upper sign) and λ2u < 0 (lower sign).
αu is a free parameter which, according to the equations (2.5), takes values in the intervals:

mc ≤ αu ≤ mt for λ1u < 0, (3.3a)

mu ≤ αu ≤ mt for λ2u < 0. (3.3b)

The diagonalization matrices for MIu and MId in (3.1) are

UIu =











ei(φξu
+θ1u)

√

mcmt(αu±mu)
αu(mc+mu)(mt±mu)

±ei(φξu
+θ2u)

√

(αu∓mc)mtmu

αu(mt∓mc)(mc+mu)
ei(φξu

+θ3u)
√

mc(mt−αu)mu

αu(mt∓mc)(mt±mu)

±ei(φβu
+θ1u)

√

(αu∓mc)(mt−αu)mu

αu(mc+mu)(mt±mu)
−ei(φβu

+θ2u)
√

mc(mt−αu)(αu±mu)
αu(mt∓mc)(mc+mu)

ei(φβu
+θ3u)

√

(αu∓mc)mt(αu±mu)
αu(mt∓mc)(mt±mu)

∓eiθ1u
√

mu(αu±mu)
(mc+mu)(mt±mu)

eiθ2u
√

mc(αu∓mc)
(mt∓mc)(mc+mu)

eiθ3u
√

mt(mt−αu)
(mt∓mc)(mt±mu)











, (3.4)

UId =











eiθ1d
√

mb(mb−ms)ms

(mb−md)(md+ms)(mb+md−ms)
−eiθ2d

√

mb(mb+md)md

(md+ms)(mb+md−ms)(mb+ms)

√

md(ms−md)ms

(mb−md)(mb+md−ms)(mb+ms)

eiθ1d
√

md(mb−ms)
(mb−md)(md+ms)

eiθ2d
√

(mb+md)ms

(md+ms)(mb+ms)

√

mb(ms−md)
(mb−md)(mb+ms)

−eiθ1d
√

md(mb+md)(ms−md)
(mb−md)(md+ms)(mb+md−ms)

−eiθ2d
√

(mb−ms)ms(ms−md)
(md+ms)(mb+md−ms)(mb+ms)

√

mb(mb+md)(mb−ms)
(mb−md)(mb+md−ms)(mb+ms)











(3.5)

where the non-physical phases θ1u, θ2u, θ3u, θ1d and θ2d
are necessary in order to adjust our theoretical predic-
tion for the CKM to the established convention. To ob-
tain the leading order (LO) terms that contribute to the

CKM mixing matrix V = U †
IuUId we use the hierarchy

of the quark masses (1.6). The analytical results for the
LO CKM entries are summarized in Table V. There are
several aspects to highlight about the case I:

• In the SM the inputs |Vcs| ≈ |Vtb| ≈ 1 then the free
parameter must satisfy αu ≪ mt, hence αu/mt ≪
1. Also, due to the condition (3.3a), we have αu ≫
mu.

• The free parameter αu/mt is only relevant for the
real parts of the matrix elements Vtb (although
αu/mt ≪ 1 this matrix element is very precisely
determined) and Vub. For the matrix elements Vts,
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Case I Case II

λ1u < 0
λ2d < 0

λ2u < 0
λ2d < 0

λ1u < 0
λ1d < 0

λ1u < 0
λ2d < 0

θ1u −1.423 −2.844 −1.975 −1.991
θ2u 0.6701 1.856 0 0
θ3u −0.004737 −0.004617 0 0
θ1d 0.6360 1.930 3.025 −0.1351
θ2d −2.285 −0.9766 3.148 3.148
φξu 2.069 −1.497 - -
φβu 0.1817 0.3015 - -
φξd - - 1.277 −1.863

αu (MeV) 6054 1690 957.9 868.1
mu (MeV) 1.792 1.268 1.599 1.642
mc (MeV) 625.5 633.2 650.2 555.7
mt (MeV) 172600 171300 171500 172900
md (MeV) 2.993 3.148 3.292 3.166
ms (MeV) 68.93 56.12 67.42 65.66
mb (MeV) 2970 2910 2969 2916

TABLE III: Fit parameters.

Vcb, Vub and Vtd, αu/mt is relevang for adjusting
the CP violating phase. For the remaining matrix
elements, by neglecting linear terms in αu/mt and
mc/mt, the dominant contributions only depend on
ratios between down-type quark masses.

• Relations can be established between the elements
of the mixing matrix whose LO terms only involve
quark masses as shown in Table IV. Some of these
relations are well-known, for example the Gatto-
Sartori-Tonin (GST) (Eq. 2, in Table IV) [18]:

tan θ12 = |Vus/Vud| =
√

md/ms, which is approx-
imately fulfilled. Another important relation that
we can find and that is successfully verified, ac-
cording to the experimental result (1.7), is given

by the expression: |Vtd/Vts| ≈
√

md/ms [13]. On
the other hand, our analysis also allows us to sta-
blish that the relation |Vub/Vcb| does not coincide

with the result
√

mu/mc, in accordance with the
experimental data (1.7).

• The best fit for the mass matrix parameters (3.1)
are shown in Table III.

B. Case II

Another viable analytical texture in Table II is the
case II, with quark mass matrices given by

MIIu =





0 0 |ξu|
0 αu |βu|

|ξu| |βu| γu



 ,

MIId =





0 |ξd| eiφξd 0
|ξd| e−iφξd γd 0

0 0 αd



 .

(3.6)

Relations Case I Case II

1
∣

∣

∣

Vcs

Vud Vtb

∣

∣

∣
1 + · · · 1 + · · ·

2
∣

∣

∣

Vus

Vud

∣

∣

∣

√

md

ms
+ · · ·

√

md

ms
+ · · ·

3
∣

∣

∣

Vcd

Vud Vtb

∣

∣

∣

√

md

ms
+ · · ·

√

md

ms
+ · · ·

4
∣

∣

∣

Vts

Vud Vcb

∣

∣

∣
1 + · · · 1 + · · ·

5
∣

∣

∣

Vtd

Vud Vcb

∣

∣

∣

√

md

ms
+ · · · -

6
∣

∣

∣

Vcs

Vtb

∣

∣

∣

√

ms

ms+md
+ · · ·

√

ms

ms+md
+ · · ·

7
∣

∣

∣

Vcs

Vus Vtb

∣

∣

∣

√

ms

md
+ · · ·

√

ms

md
+ · · ·

8
∣

∣

∣

Vcs

Vcd

∣

∣

∣

√

ms

md
+ · · ·

√

ms

md
+ · · ·

9
∣

∣

∣

Vts Vtb

Vcs Vcb

∣

∣

∣ 1 + · · · 1 + · · ·

10
∣

∣

∣

Vtd Vtb

Vcs Vcb

∣

∣

∣

√

md

ms
+ · · · -

11
∣

∣

∣

Vcd

Vtb

∣

∣

∣

√

md

ms+md
+ · · ·

√

md

ms+md
+ · · ·

12
∣

∣

∣

Vcd

Vus Vtb

∣

∣

∣
1 + · · · 1 + · · ·

13
∣

∣

∣

Vts

Vus Vcb

∣

∣

∣

√

ms

md
+ · · ·

√

ms

md
+ · · ·

14
∣

∣

∣

Vtd

Vus Vcb

∣

∣

∣
1 + · · · -

15
∣

∣

∣

Vts Vtb

Vcd Vcb

∣

∣

∣

√

ms

md
+ · · ·

√

ms

md
+ · · ·

16
∣

∣

∣

Vtd Vtb

Vcd Vcb

∣

∣

∣
1 + · · · -

17
∣

∣

∣

Vts

Vcb

∣

∣

∣

√

ms

ms+md
+ · · ·

√

ms

ms+md
+ · · ·

18
∣

∣

∣

Vtd

Vts

∣

∣

∣

√

md

ms
+ · · · -

19
∣

∣

∣

Vtd

Vcb

∣

∣

∣

√

md

ms+md
+ · · · -

TABLE IV: Leading order relations between the CKM matrix ele-
ments.

In this case we have only one phase, φξd , responsible for
the CP violation. And there are 7 real parameters. This
texture is a Fritzsch-type [14].

As in the previous case we can obtain relations be-
tween the elements of the CKM and the quark masses.
The structure of the matrix MIIu is similar to the one
given in Eq. (3.1), without including phases, so it can
be inferred that the diagonalization matrix for this case
is: P2 Uu with P2 = [(1, 0, 0), (0, 0, 1), (0, 1, 0)] and Uu

defined in (2.6) for q = u.

The matrix MIId in (3.6) has a zero structure like
the one given in (2.2) with |βq| = 0, so that, there are
several possibilities to be considered: αd = λ1d > 0,
|ξd| =

√
−λ2d λ3d and γd = λ2d + λ3d; or αd = λ2d > 0,

|ξd| =
√
−λ1d λ3d and γd = λ1d + λ3d; or αd = λ3d > 0,

|ξd| =
√
−λ1d λ2d and γd = λ1d + λ2d [20]. From the last

option we obtain the two cases with the best agreement
with the data, as reported in Table II. Here the diagonal-

ization matrix for MIId is P †
d Ud with Ud as given in (2.6)

for q = d and Pd = diag(e−iφξd , 1, 1). The parameters of
the mass matrices (3.6), according to the relations (2.4)
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are given by:

γu = −mu +mc +mt − αu, (3.7a)

|βu| =
√

(αu +mu)(αu −mc)(mt − αu)

αu

, (3.7b)

|ξu| =
√

mu mcmt

αu

, (3.7c)

αd = mb, (3.7d)

|ξd| =
√
mdms, (3.7e)

γd = ∓md ±ms, (3.7f)

where λ1u < 0; the upper sign, for λ1d < 0 and the lower
sign, for λ2d < 0; and αu > 0 is a free parameter in the
range:

mc ≤ αu ≤ mt. (3.8)

In this case, the diagonalization matrices of the mass
operators (3.6), are:

UIIu =











eiθ1u
√

mcmt(αu+mu)
αu(mc+mu)(mt+mu)

eiθ2u
√

(αu−mc)mtmu

αu(mt−mc)(mc+mu)
eiθ3u

√

mc(mt−αu)mu

αu(mt−mc)(mt+mu)

eiθ1u
√

(αu−mc)(mt−αu)mu

αu(mc+mu)(mt+mu)
−eiθ2u

√

mc(mt−αu)(αu+mu)
αu(mt−mc)(mc+mu)

eiθ3u
√

(αu−mc)mt(αu+mu)
αu(mt−mc)(mt+mu)

−eiθ1u
√

mu(αu+mu)
(mc+mu)(mt+mu)

eiθ2u
√

mc(αu−mc)
(mt−mc)(mc+mu)

eiθ3u
√

mt(mt−αu)
(mt−mc)(mt+mu)











, (3.9)

UIId =









ei(φξd
+θ1d)

√

ms

md+ms
±ei(φξd

+θ2d)
√

md

md+ms
0

∓eiθ1d
√

md

md+ms
eiθ2d

√

ms

md+ms
0

0 0 1









. (3.10)

The best fit parameters are shown in Table III.
Taking into account the hierarchy of the quark masses,

Eq. (1.6), and the interval for the parameter αu,
Eq. (3.8), to LO the entries of the CKM, V = U †

uUd,
are summarized in Table V, case II; from these results
we conclude that:

• As in the case I, |Vcs| ≈ |Vtb| ≈ 1, such that
αu ≪ mt. Also, due to (3.8), αu ≫ mu. Again

we verify that the relation |Vub/Vcb| 6=
√

mu/mc is
not satisfied. Although the relationship |Vtd/Vts| ≈
√

md/ms is not verified in principle for this case;
we can see from Table V, for the case II, that if we
omit the second term of the approximation for Vtd,
it is enough to reproduce this relationship. As it is
shown numerically, for this case high order contri-
butions are neglegible.

• The CKM matrix elements, Vts, Vcb, Vub, Vtd de-
pend heavily on the αu parameter, the remain-
ing elements depend on ratios between down quark
masses. Only the Vtd matrix element has informa-
tion about the phase, which in turn depends on the

ratio αu/mt, which is a noticeable difference with
respect to case I.

• As in the case I, the LO relations between the CKM
elements involving only quark masses are shown in
Table IV.

• Although, the results are similar to the expressions
given in Table IV for the case I, for the case II the
relations 5, 10, 14, 16, 18 and 19 are absent (the
corresponding expressions are cumbersome).

IV. CONCLUSIONS

Using the WB transformation method [20, 22], we
found configurations for the quark mass matrices with
the maximum number of possible texture zeros. To ac-
complish this, we start from the general basis (1.4a)
and (1.4b), from which the expressions (2.7) and (2.8)
can be obtained, respectively. Modulo permutations,
only the configurations shown in Table I, for mass ma-
trices with one or two zeros in the diagonal, are possible.
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From these patterns we obtained the cases I and II in Ta-
ble II, corresponding to the five-zero textures in Eq. (3.1)
and Eq. (3.6), respectively, which reproduce the quark
masses, mixing angles and the CP violation phase, with
deviations from the experimental values below 1σ level.

The first case has nine free parameters: 7 real and
2 phases, while the second case has eight free parame-
ters: 7 real and 1 phase. In both cases, it is necessary
to reproduce ten physical quantities: 6 quark masses, 3
mixing angles and the CP violation phase, the lack of
balance between the number of free parameters and the
physical quantities implies physical relations between the
quark masses and the CKM mixing angles, which are re-
ported in Table V. Additionally, the relation GST [18] is
maintained and we can adjust the CP violation phase of
the SM. Additionally, our five-zero texture models repro-
duce the experimental quantities (1.7) deviating from the
experimental central value by at most 1 σ level. First,
for both cases I and II, we can verify that the rela-
tion |Vtd/Vts| ≈

√

md/ms is satisfied, while the relation

|Vub/Vcb| 6=
√

mu/mc is not, as already indicated in pre-
vious works [5, 24, 35]. In some cases, even with the LO
approximations given in Table V we can reproduce the
results (1.7). We have several free parameters to adjust
the physical quantities: the CP-violating phases, the cal-
ibration phases θqi with q = u, d, in the diagonalization
matrices, and the real parameter αu. In our analysis the
analytical LO expressions for the case I, with λ1u < 0
and for the case II, with λ1d < 0, are enough to keep all
the observables inside of the error bars. For the other
cases, λ2u < 0 and λ2d < 0, satisfactory results were not
achieved with the LO approximations provided in Ta-
ble V. In these cases, the complete expressions must be
taken into account in order to get a good fit.

The case I is an original proposal which was not con-
sidered in the Fritzsch original work [14] nor in later
studies. Case II has been widely considered in the lit-
erature [6, 14, 28, 29, 31, 37], but in our approach, we
take a negative eigenvalue (which has not been consid-
ered previously) for the mass of the lightest down quark,
that is, λ1d < 0. Here, it should be mentioned that,
without losing generality, only one negative eigenvalue is

necessary for each mass matrix [20, 22]. Also, it is impor-
tant to say that the relations in Table V are comparable
to the results reported in [16, 19, 26, 31, 37].
The purpose of the texture zeros for quark mass ma-

trices is to find relations between quark masses and the
flavor mixing parameters in consistency with the experi-
mental data [14]. For the textures deduced in this work,
the quark mass ratios contribute significantly to the fla-
vor mixing parameters as shown in Table IV; In Table V,
it is possible to observe additional contributions (not ex-
clusively dependent on the quark masses) which also de-
pend on the free parameter αµ and on the phases re-
sponsible for the CP violation. It is important to high-
light that the LO contributions to the relations involving
the CKM matrix elements mainly depend on ratios of
down-type quark masses. The relations reported in this
manuscript, could be useful to disentangle the underlying
symmetries under the mass scales in the SM.
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Appendix A: Quark mass matrices and the CKM

mixing matrix

The parameters of the CKM are reported at the Z pole
scale µ = MZ , hence the same scale is used to evaluate
the current quark masses (in MeV) [39]., i.e.,

mu = 1.38+0.42
−0.41 , mc = 638+43

−84 , mt = 172100 ± 1200 ,

md = 2.82 ± 0.48 , ms = 57+18
−12 , mb = 2860+160

−60 .
(A1)

The CKM unitary matrix [2, 27, 35] can be param-
eterized by three mixing angles and the CP violation
phase [27]. The form of this matrix in the standard
parametrization is given by [4].

V =





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



 =





c12 c13 s12 c13 s13 e
−iδ

−s12 c23 − c12 s23 s13 e
iδ c12 c23 − s12 s23 s13 e

iδ s23 c13
s12 s23 − c12 c23 s13 e

iδ −c12 s23 − s12 c23 s13 e
iδ c23 c13



 , (A2)

where sij = sin θij , cij = cos θij , the angles θij are said to lie in the first quadrant, such that sin θij , cos θij ≥ 0.
The phase δ is responsible for all the CP violation phenomena in the flavor changing processes in SM. For various
applications it is useful to use the Wolfenstein parameterization [35]

λ = sin θ12, A =
sin θ23

sin2 θ12
, ρ =

sin θ13 cos δ

sin θ12 sin θ23
, η =

sin θ13 sin δ

sin θ12 sin θ23
. (A3)

The CKMfitter and UTfit Collaborations [5, 24] provide updated fits for the Wolfenstein parameters,

λ = 0.22500+0.00100
−0.00100, A = 0.826+0.012

−0.012, ρ = 0.152+0.014
−0.014, η = 0.357+0.010

−0.010. (A4)
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The best fit values for CKM matrix elements are

V =







(0.97431 ± 0.00012) (0.22514 ± 0.00055) (0.00365 ± 0.00010)ei(−66.8±2.0)◦

(−0.22500 ± 0.00054)ei(0.0351±0.0010)◦ (0.97344 ± 0.00012)ei(−0.001880±0.000052)◦ (0.04241 ± 0.00065)

(0.00869 ± 0.00014)ei(−22.23±0.63)◦ (−0.04124 ± 0.00056)ei(1.056±0.032)◦ (0.999112 ± 0.000024)






. (A5)

Case Five-zero textures. LO predictions for the CKM mixing matrix elements VCKM:

I

Mu = P †





0 0 |ξu|
0 αu |βu|

|ξu| |βu| γu



P,

Md =





0 |ξd| 0
|ξd| 0 |βd|
0 |βd| αd



 ,

where P = diag(e−iφξu , e−iφβu , 1).
Besides mc < αu ≪ mt.

With the upper sign (“−”) for the
case (Ia), Table II:
λ1u < 0 and λ2d < 0.

With the lower sign (“+”) for the
case (Ib), Table II:
λ2u < 0 and λ2d < 0.

|Vud| =

√

ms

ms +md

+ · · · ,

|Vcs| =

√

ms

ms +md

(

1−
αu

mt

)

+ · · · ,

|Vtb| =

√

1−
αu

mt
+ · · · ,

|Vus| =

∣

∣

∣

∣

√

md

ms +md

+ · · ·

∣

∣

∣

∣

,

|Vcd| =

∣

∣

∣

∣

∣

√

md

ms +md

(

1−
αu

mt

)

+ · · ·

∣

∣

∣

∣

∣

,

|Vts| =

∣

∣

∣

∣

∣

√

ms

ms +md

[
√

ms −md

mb

(

1−
αu

mt

)

− e−iφβu

√

αu

mt

∓
mc

mt

]

+ · · ·

∣

∣

∣

∣

∣

,

|Vcb| =

∣

∣

∣

∣

∣

√

ms −md

mb

(

1−
αu

mt

)

− eiφβu

√

αu

mt

∓
mc

mt

+ · · ·

∣

∣

∣

∣

∣

,

|Vub| =

∣

∣

∣

∣

∣

√

mu

mc

αu

mt

− e−iφβu

√

mu(ms −md)

mb

(

1

mc

∓
1

αu

)(

1−
αu

mt

)

∓e−iφξu

√

md ms(ms −md)

m3
b

+ · · ·

∣

∣

∣

∣

∣

,

|Vtd| =

∣

∣

∣

∣

∣

√

md

ms +md

[
√

ms −md

mb

(

1−
αu

mt

)

− e−iφβu

√

αu

mt

∓
mc

mt

]

+ · · ·

∣

∣

∣

∣

∣

.

II

Mu =





0 0 |ξu|
0 αu |βu|

|ξu| |βu| γu



 ,

Md =





0 |ξd|e
iφξd 0

|ξd|e
−iφξd γd 0
0 0 αd



 ,

where mc < αu ≪ mt, and

Upper sign (−): for λ1u < 0 and λ1d < 0.

Lower sign (+): for λ1u < 0 and λ2d < 0.

|Vud| =

√

ms

ms +md

+ · · · ,

|Vcs| =

√

ms

ms +md

(

1−
αu

mt

)

+ · · · ,

|Vtb| =

√

1−
αu

mt

+ · · · ,

|Vus| =

∣

∣

∣

∣

√

md

ms +md

+ · · ·

∣

∣

∣

∣

,

|Vcd| =

∣

∣

∣

∣

∣

√

md

ms +md

(

1−
αu

mt

)

+ · · ·

∣

∣

∣

∣

∣

,

|Vts| =

∣

∣

∣

∣

∣

√

ms

ms +md

(

αu

mt

−
mc

mt

)

+ · · ·

∣

∣

∣

∣

∣

,

|Vcb| =

∣

∣

∣

∣

√

αu

mt

−
mc

mt

+ · · ·

∣

∣

∣

∣

,

|Vub| =

∣

∣

∣

∣

√

mu

mc

αu

mt
+ · · ·

∣

∣

∣

∣

,

|Vtd| =

∣

∣

∣

∣

∣

√

md

ms +md

(

αu

mt

−
mc

mt

)

∓ e
iφξd

√

ms mc mu

ms +md

1

mt

(

1

αu

−
1

mt

)

+ · · ·

∣

∣

∣

∣

∣

.

TABLE V: Cases I and II for the quark mass matrices with five texture-zeros. And their corresponding LO predictions for the CKM
elements.
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