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Z ′ SEARCHES: FROM TEVATRON TO LHC
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The CDF collaboration has set lower limits on the masses of the Z′ bosons occurring in a
range of E6 GUT based models. We revisit their analysis and extend it to certain other
E6 scenarios as well as to some general classes of models satisfying the anomaly cancellation
conditions, which are not included in the CDF analysis. We also suggest a Bayesian statistical
method for finding exclusion limits on the Z′ mass, which allows one to explore a wide range
of the U(1)′ gauge coupling parameter. This method also takes into account the effects of
interference between the Z′ and the SM gauge bosons.

1 Introduction

A neutral Z ′ gauge boson appears in numerous models containing the SM gauge symmetry group
along with an additional U(1) symmetry (for a review, see 1). Grand Unified Theories (GUTs)

larger than the original SU(5) model, such as SO(10) 2 or E6
3,4, break down to the SM as:

E6 → SO(10) × U(1)ψ , with in turn SO(10) → SU(5) × U(1)χ → SM × U(1)χ
5. The Z ′

thus surviving at the electroweak (EW) scale can be written as the linear combination,

Z ′ = cosα cos βZχ + sinα cos βZY + sin βZψ. (1)

If kinetic mixing 6,7,8 with the hypercharge group U(1)Y is neglected by setting α = 0 in
eq. (1), one obtains some well–known Z ′ bosons by adjusting β. These include Zχ (β = 0◦), Zψ
(β = 90◦), Zη (β ≈ −52.2◦)9, ZI (β ≈ 37.8◦)3, ZS (β ≈ 23.3◦)10,11 and ZN (β ≈ 75.5◦)12. The
inclusion of kinetic mixing results in certain other phenomenologically interesting cases, such as
Zdph (α, β ≈ −78.5◦, 37.8◦) which does not couple to the d–type quarks, ZR (α, β ≈ 50.8◦, 0◦)13

which couples to the right–handed fermions only and ZB−L (α, β ≈ −39.2◦, 0◦)14, where B is the
baryon number and L the lepton number of an ordinary fermion. The ZLR which exists in models
with left–right symmetry 15 is equivalent to the linear combination:

√

3/5 (ᾱ ZR − ZB−L/2ᾱ),

where ᾱ ≡
√

g2R/g
2
L cot2 θW − 1, with θW being the weak mixing angle and gL,R being the

SU(2)L,R coupling strengths, respectively. The ZLR studied here corresponds to the specific
case of gL = gR. In addition to these E6 based models, a Zstring from a specific superstring

model 16 and a sequential ZSM are also included in this analysis.
A number of other classes of one or more–parameter models have been discussed 17,18,1.

Without the assumption of unification at the GUT scale, but assuming nullification of anomalies
using three families of exotics (which is not the case in some supersymmetric models), there are
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Table 1: E6 fermion charges, ǫf , in terms of zf , their values in the corresponding x–parameter models. Also given
are the angles α and β yielding these models.

q + xu 10 + x5̄ d− xu

ǫf
3

2
√
7−2x+x2

zf − 3
2
√
4+x+x2

zf
3

2
√
1−x+x2

zf

tan β 0 −
√

3
5(3+x1−x)

√
3(1−x)sign(5−x)√

5−2x+5x2

tanα
√

3
2(1+xx−4 ) 0 2

√
6( x

5−x)

four ‘one-parameter’ models 18, with fermion charges B − xL, d− xu, q + xu and 10 + x5̄, with
x arbitrary. The last three of these correspond to the generalized E6 charges in eq. (1). (q +xu
corresponds to arbitrary superpositions of Y and B − L, while 10 + x5̄ corresponds to the E6

models without kinetic mixing.) We have, therefore, normalized the fermions charges, zf , in the
x–parameter models to their E6 values, ǫf . These charges are given in Table 1.

2 Z ′ production at CDF and limits on its mass

The total cross–section for the Drell–Yan (DY) process at a hadron collider, with a neutral

gauge boson B as the mediator and µ+µ− as the outgoing particles, is given as 20

σ =
2

s

∫

√
s

0
MdMσdiff , (2)

where M is the invariant mass of the muon pair,
√
s is the center–of–mass (CM) energy, and

σdiff =

∫ 1

M2/s
dx1

1

x1

∑

q

σ̂(M2)
K

Nc

{

fAq (x1,M
2)fBq̄ (x2,M

2) + fAq̄ (x1,M
2)fBq (x2,M

2)
}

, (3)

where Nc = 3 is the quark color factor. x1 and x2(≡ M2

x1s
) above are the momentum fractions

of the ingoing partons having parton distribution functions (PDFs) f
A/B
q/q̄ for hadrons A and B.

αs is the strong coupling constant and K = KC + KE , with KC being the QCD K–factor and
KE being the multiplicative factor due to QED corrections. σ̂(M2) is equal to

∫ 1

−1
d cos θ∗

1

128πM2

[

(

|ALL|2 + |ARR|2
)

(1 + cos θ∗)2 +
(

|ALR|2 + |ARL|2
)

(1 − cos θ∗)2
]

, (4)

with θ∗ being the polar angle defined in the CM frame and the individual amplitudes given as

Aij = −Qe2 +
M2

M2 −M2
Z + iMZΓZ

CZ
i (q)CZ

j (l) +
M2

M2 −M2
Z′ + iMZ′ΓZ′

CZ′

i (q)CZ′

j (l), (5)

where i, j are run over L,R. Q and e are the electric charges of the contributing quark and the

muon, respectively. CZ,Z′

L,R (f) ≡ g1,2ǫ
Z,Z′

L,R (f), with g1 = e/ sin θw cos θw being the gauge coupling

strength of the Z boson, g2 the Z ′ coupling and ǫZ,Z
′

L,R the EW and U(1)′ charges of the fermion
f . ΓZ,Z′ are the total decay widths of the Z and Z ′ bosons having masses MZ,Z′.

We first follow the CDF analysis 21 and use the LO expression given in eq. (2) to calculate
the cross–section due to the Z ′ alone, neglecting the γ and Z contributions to the amplitudes in
eq. (5). We employ LO CTEQ6L PDFs 22 and mass–dependent NNLO KC

18 and NLO KE
23

values, and assume that the Z ′ decays into SM fermions only, which are taken to be massless.
We achieve up to 99.8% agreement on the 95% confidence level (C.L.) MZ′ lower limits with
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Figure 1: Contours in MZ′ limits mentioned on/beside them. x shows the location of a particular E6 model
within a contour. The dotted, dashed and dot–dashed lines correspond to the three x–parameter models. Zη∗ is

a leptophobic boson which will not be observable in the di–lepton channels.

Table 2: Numerical limits in GeV on the mass of the Z′ boson in various models.

Zχ Zψ Zη ZN ZS ZI ZB−L ZR ZLR Zdph Zstring ZSM
895 883 910 865 823 790 1012 1006 959 1079 710 1030

Table 3: Limits on MZ′ in the Zχ model from the LHC.

L (fb−1)/
√
s (TeV) 3.5 7 14 28

3 1.0 1.85 3.0 4.65

30 1.5 2.5 4.1 6.7

300 2.2 3.3 5.4 9.7

3000 3.9 5.55 7.9 12.2

the CDF analysis, for the E6 models included therein, and obtain new limits for the rest of the
models. The numerical values of the limits are given in Table 2 and the α, β parametrization of
the models with contours in MZ′ is plotted in Fig. 1. In Table 3 we give limits obtained for the
LHC with a similar approach for some expected integrated luminosity and CM energy values.

3 Bayesian statistical method

The CDF analysis uses signal templates generated with a fixed resonance pole width, Γ =
2.8% × MZ′ . However, there is no fundamental reason to only look for such a narrow Z ′. A
wide Z ′ resonance, implying a strongly coupling boson, could well be scattered over a few bins
and no significant enhancement above the background will be visible. Besides, the effects of
interference between the various bosonic contributions to the propagator, i.e., between γ, Z and
Z ′ (see eq. (5)), are lost in their approach. These effects could in principle cause a considerable
enhancement or dip in the number of events in several accompanying low M−1 bins, e.g., in the
case of a strongly interacting Z ′ boson with mass just beyond the kinematic reach of the CDF.
Finally, the CDF limits assume a fixed GUT–based g2 and it is not straightforward to extend
the limits to other g2 values, particularly in the strong coupling regime (see, however 24).

Therefore, we propose a Bayesian statistical method which allows one to vary g2 in order to



obtain the corresponding limit on MZ′ . It is based on the likelihood function  L, written as

 L(~µ|~n) = ΠB
i P (ni|µi), (6)

where P is the Poisson probability of finding ni events given µi expected events in the ith bin
with B total bins.  L in eq. (6) is then evaluated using two hypotheses: the null hypothesis,

 L( ~µb|~n), assumes that the DY process occurs only via γ and Z, and the signal hypothesis,

 L(~µt|~n), with ~µt = ~µb+ ~µ′, wherein the Z ′ boson also contributes to the cross–section along with
the SM gauge bosons. The SM events, µb, expected in an invariant mass bin are calculated as

µb = LσSM =
2EL
s

∫

bin
AdM−1

p

∫

√
s

0
MdMp(M−1

p |M−1)σdiff + nBG, (7)

where L = 2.3 fb−1 is the integrated luminosity at the CDF, E = 0.982 is the detector efficiency

and A is the CDF acceptance, which is a mass–dependent multiplicative factor. Mp in the above
equation is the muon–pair mass measured by the detector, nBG refers to the non–DY events and
the probability density is given as

p(M−1
p |M−1) = Mpb

ae−b/Γ(a), (8)

with a = (M−1/∆)2, b = M−1M−1
p /∆2, where ∆ = 0.17 TeV−1 is the variance. The purpose of

the above probability function is to smear over the DY background before distributing it into
bins, hence accounting for the mis–identification of an event in a bin where it does not actually
belong. For µ′, a χ2 function is constructed as

χ2
µ′ = −2LLR = −2 ln(

 L(~µt|~n)

 L( ~µb|~n)
) = −2

B
∑

i

(µbi − µti + ni ln(
µti
µbi

), (9)

and is minimized to obtain the best–fit values in the given range of g2 and MZ′ , which correspond
to a Z ′ boson with cross–section µ′ best favored by the data. The contours in g2 and MZ′ ,
for a certain C.L. value specified by the allowed number of standard deviations, ∆χ2, from
the minimum, can then also be drawn, giving the exclusion limits on these parameters. Our
preliminary contours are given in Fig. 2 for Zχ as a representative model. The numerical value of
the 95% C.L. limit is 913 GeV for g2 = 0.461, which is about 21 GeV higher than the CDF value.
We next plan to undertake a global analysis including constraints from electroweak precision
data 13. Eventually, a similar statistical analysis of the LHC data, as soon as it is released, will
also be performed.
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Figure 2: Exclusion contours for the Zχ boson. The dotted, dot–dashed and double–dot–dashed curves correspond
to the C.L. values given and the solid curve represents the CDF limits generalized to other g2 values.
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