COMPUTATIONAL MODELING OF DISTRIBUTION COEFFICIENT OF TRIAZINE DERIVATIVES AND ITS INFLUENCE ON THEIR CHROMATOGRAPHIC BEHAVIOR IN RP-UHPLC SYSTEM

<u>Benjamin Salaković</u>¹, Strahinja Kovačević¹, Milica Karadžić Banjac¹, Jasmina Anojčić², Lidija Jevrić¹, Sanja Podunavac-Kuzmanović¹, Slobodan Gadžurić², Dušan Antonović³

 ¹University of Novi Sad, Faculty of Technology Novi Sad, Department of Applied and Engineering Chemistry, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
²University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
³University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
e-mail: benjamin.salakovic@uns.ac.rs

Abstract

In the present study, the distribution coefficient (log*D*) of a series of *s*-triazine derivatives with acyclic and cyclic substituents was modelled by using MarvinSketch software. The calculation of log*D* was done by Viswanadhan and Ghose (VG), Klopman's (KLOP) and PHYSPROP[©] (PHYS) methods. During the calculations, the tautomerization and resonance were taken into account. The pH-log*D* dependences were obtained for each molecule. The log*D* data determined at various pH values were further correlated with retention parameter (log*k*) of studied compounds. The log*k* values were determined by using revered-phase ultra-high performance liquid chromatography (RP-UHPLC) with C₁₈ stationary phase and mobile phase as a mixture of methanol and water. The volume fraction of methanol in the mobile phase varied from 50 to 85 (v/v). Based on the retention time and dead time, log*k* parameters were obtained. Considering the fact that log*D* parameter is in most cases a better descriptor of the lipophilicity of a compound than partition coefficient (log*P*), it can better describe the retention behavior in reversed-phase liquid chromatography that strongly depends on the compound's lipophilicity.

Acknowledgements

The present research is financed in the framework of the project of the Ministry of Education, Science and Technological Development of the Republic of Serbia (Project No. 451-03-9/2021-14/200134).