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Abstract. Diacritics restoration became a ubiquitous task in the Latin-
alphabet-based English-dominated Internet language environment. In
this article, we describe a small footprint 1D convolution-based approach,
which works on character-level. The model even runs locally in a web
browser, and surpasses the performance of similarly sized models. We
evaluate our model on the languages of the Visegrád Group, with em-
phasis on Hungarian.
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1 Introduction

Many languages have alphabets in which some characters are derived from other
characters using diacritical marks. For example, most European languages have
alphabets which are derived from the Latin alphabet in this way. The goal of
diacritics restoration is to restore diacritical marks, given an input text which
does not contain (or only partially contains) the proper diacritical marks. Dia-
critics restoration is a practical task on the Internet, where it is still apparent
that computers were built initially with the base Latin alphabet in mind.

Diacritics restoration is a useful preprocessing tool for many NLP tasks,
e.g. question answering (Abdelnasser et al., 2014). On the other hand, diacritic
restoration is an important tool for language revitalization (Galla, 2009), thus
contributing to linguistic diversity, the literacy of endangered languages, and
the maintenance of their digital presence (Kornai, 2013). This can be effectively
supported by language-independent diacritic restoration tools. Nevertheless, we
consider only living languages where large corpora based on the Latin alpha-
bet are available (omitting such exciting cases as Celtic languages or poetry
marking). Diacritical marks appear in certain Slavic languages (Czech, Slovak,
Polish), some Finno-Ugric languages (Finnish, Hungarian, Latvian), Romanian,
Turkish, and, most intensively, in Vietnamese.

Approaches to diacritics restoration have evolved from rule-based and statis-
tical solutions to the application of machine learning models (Yarowsky, 1999).
The latter approach can be broken down into solutions using fixed or learned
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representations. All solutions with learned representations seem to be based on
neural networks connected to the models used in NLP, lately recurrent neu-
ral networks models (Hucko and Lacko, 2018) being replaced by transformers
(Laki and Yang, 2020; Náplava et al., 2021). In such cases, models used for
machine translation are often used to correct diacritical marks (Novák and Sik-
lósi, 2015). Another approach is to consider diacritics restoration as a sequence
labeling problem where convolutional neural networks and recurrent neural net-
works such as BiLSTM-s (Náplava et al., 2018) can be applied. We apply a
fast language-independent method with small footprint for automatic diacritic
restoration using a neural architecture based on 1D convolutions, the so called
Acausal Temporal Convolutional Networks (A-TCN). Models based on A-TCN
have a comparable performance to BiLSTM-s (Alqahtani et al., 2019).

We focus on the languages of the Visegrád Group (V4), with emphasis on
Hungarian. In Hungarian the characters which can receive diacritical marks are
exactly the vowels (e.g. u 7→ {u,ú,ü,ű}). For Hungarian, the current state of
the art is reported by Laki and Yang (2020) and is achieved by neural machine
translation. Our main contribution is a lightweight model, which can even be
run locally in web browsers, allowing client-side inference. We compared our
model with Hunaccent (Ács and Halmi, 2016); both models have a similar size
of around 10MB. Our approach outperformed Hunaccent by a large margin.

2 Methods

We approached the diacritics restoration problem as a character-sequence label-
ing task. We chose the output labels as the set of characters in each alphabet.
An alternative way to model the restoration task could have been to produce
the possible diacritical marks (including the empty mark) on the output side.
Our choice is motivated by the expectation that the model’s scope could be ex-
panded, and it might be able to correct other local errors in the text, not only
missing diacritical marks.

The neural network architecture we considered for sequence labeling are Tem-
poral Convolutional Networks (TCNs). TCNs are a generic family of models,
with notable examples including WaveNet (Oord et al., 2016). TCNs are 1D
fully convolutional networks, where the convolutions are causal, and at time t
output is produced in each layer by the convolution of input elements from time
t − 1 and earlier (Bai et al., 2018). To increase the effective size of the convo-
lutional windows, dilated convolutions can be used (Yu and Koltun, 2015). The
network is built with dilation factors which increase exponentially by the depth
of the network (Fig. 1). This ensures that the window on the input sequence,
which the network can utilize for the inference of a given label, also increases
exponentially.

TCNs also contain residual connections (He et al., 2016). A residual block
involves a series of transformations, the result of which are then added to the
input. The transformation consists of a dilated convolution followed by a normal-
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Fig. 1: TCN architecture (kernel size: 3, dilation factors: 1,3,9). Red dashed:
without dilation.

ization layer, activation function, and dropout. This is repeated b times (typically
b = 2).

TCNs work well for applications where information flow from the future is not
permitted. For diacritics restoration it is essential to incorporate future context
as well as past context. To achieve this, we have to slightly modify the base TCN
architecture as seen in Fig. 2. The modified TCN architecture is called acausal
TCN, or A-TCN for short (Alqahtani et al., 2019).

Fig. 2: A-TCN architecture (kernel size: 3, dilation factors: 1,3,9).

3 ONNX.js compatibility

Our model can be converted to ONNX (Bai et al., 2017), a cross-platform neural
network format. ONNX.js (Wang et al., 2018) is a JavaScript library, which can
run models in ONNX format, which in turn makes it possible to run our model
in the browser. Inference happens on the clients device, making use of the clients
graphical processor with the help of WebGL.

Converting a model to work with ONNX.js requires some care. For example
LSTMs are not supported yet, and even 1D convolutions had to be simulated
with 2D convolutions. Although they are mathematically equivalent, we found
that training the model in PyTorch is much more effective if we reduce a spatial
dimension to 1 in the 2D convolution (instead reducing the feature size to 1).

Another difficulty is that the model allows arbitrary input lengths, but in
ONNX.js the first inference fixes the input sequence length. The solution is to
dynamically reload the model. If the input is longer than the current limit, the
model is reloaded with double length.
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Our demonstration web page with diacritics restoration for the V4 languages
is available at https://web.cs.elte.hu/∼csbalint/diacritics/demo.html.

4 Datasets

4.1 LINDAT

We can generate the data for diacritics restoration in a self-supervised fashion.
Grammatically correct sentences from the target language provide the annotated
data, which means that the removal of the diacritical marks provide the input.

For training on the V4 languages, we used the datasets provided by Náplava
et al. (2018). We will refer to these as LINDAT1. We cleaned up the datasets by
removing the sentences containing exotic characters (if the length of the character
was more than 1 after applying the unidecode Python function, we considered
the character exotic). We also cut off all the sentences to a maximum length of
500.

Train Dev
Language Sequences Avg.seq.len. Characters Sequences Avg.seq.len. Characters

Cze 946 k 107.6 101.8 M 14.5 k 114.4 1.66 M
Hun 1 287 k 108.3 139.3 M 14.7 k 120.7 1.77 M
Pol 1 063 k 116.2 123.6 M 14.8 k 121.3 1.80 M
Svk 609 k 106.7 65.1 M 14.9 k 114.7 1.71 M

Table 1: Statistics of the datasets by Náplava et al. (2018) we used for training.

4.2 Hungarian Webcorpora

We also considered two additional corpora for Hungarian. We trained a model
on the dataset built from Hungarian Webcorpus 2.0 (HunWeb2)2 by Nemeskey
(2020), and evaluated the models on the dataset built from Hungarian Webcor-
pus (HunWeb1)3 by Halácsy et al. (2004). Each corpus contains a large collection
of Hungarian text documents. To prepare the data, we extracted sentences from
each document until we reached a length limit of 500. After extracting the se-
quences, we random sampled them, and created the train-dev cuts (Table 2).
In the case of HunWeb2, we used the "2017-2018" part of the Common Crawl
subcorpus. Not splitting up the documents ensures that the train and dev data
do not correlate too much, as we have found that there can be a lot of repeated
sentences within one document.
1 https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2607
2 https://hlt.bme.hu/en/resources/webcorpus2
3 http://mokk.bme.hu/resources/webcorpus/

XVIII. Magyar Számítógépes Nyelvészeti Konferencia Szeged, 2022. január 27–28.

552



Train Dev
Corpus Sequences Avg. seq. len. Characters Sequences Avg. seq. len. Characters

HunWeb1 96.1 k 405.5 39.0 M 12.0 k 406.8 4.89 M
HunWeb2 73.7 k 498.7 36.8 M 9.2 k 498.4 4.59 M

Table 2: Statistics of the Hungarian Webcorpus based datasets used for training.

We analyzed the datasets in terms of word ambiguity. We first cleaned up the
train data by removing all sequences not containing enough diacritical marks.
Let us call the base of a word the word we get, after removing the diacritical
marks from it. We categorized a base unambiguous, if the data contained only
one diacritized version of it. Similarly, a word was categorized ambiguous, if
multiple diacritized forms existed in the data. The ambiguity of a word may
be due to grammar, or to an error in the corpus, even after the cleanup step
performed to decrease the number of such false positives. Unambiguous words
can be diacritized with a dictionary-based approach.

In Table 3 we see the statistics related to ambiguous and unambiguous words
in the datasets. We see that there are similar amounts of ambiguous and unam-
biguous words in the data, but the ambiguous words come from a much smaller
set of bases. We considered the metric of ambiguous word accuracy versus word
accuracy, and we saw that at the beginning of the training ambiguous word ac-
curacy was higher, but as the model improved the two metrics switched places.
This can be explained by Table 3.

Unambiguous Ambiguous Ratio
Corpus Sequences Words Words Bases Words Bases Words Bases

HunWeb1 73.3 k 13.0 M 7.50 M 635 k 5.51 M 16.6 k 1.36 38.2
HunWeb2 69.8 k 14.0 M 7.87 M 746 k 6.08 M 20.2 k 1.29 36.9

Table 3: Word statistics of the filtered Webcorpus based datasets for Hungarian.

5 Experimental Setup

In terms of model architecture we used the following hyperparameters. The char-
acter embedding dimension was set to 50. After the embedding, the vectors are
upsampled to dimension 250, which is the channel size. The network contains 4
residual block layers with dilation factors of 1,2,4, and 8, respectively. Each block
contains 2 convolutional layers, each followed by batch normalization, ReLU, and
spatial dropout layers with a rate of 0.2, respectively. The convolutions have a
kernel size of 5. In the convolutions, zero padding is used to ensure that the
output is the same length as the input.
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We augmented the training data before each epoch in the training. If a char-
acter had a diacritical mark, we removed it with a probability of 80%. In real
world use, the absence of diacritical marks might only be partial.

The model implemented in PyTorch was trained on 4 Nvidia RTX 2080 Ti
graphics cards. Training took approximately one day per model. Our model is
available at https://github.com/aielte-research/Diacritics_restoration.

6 Results

We calibrated our model lightweight enough to be converted to HTML. For
Hungarian we took Hunaccent (Ács and Halmi, 2016) as a direct comparison.
Hunaccent is decision tree based, and it shares our goal to implement a small
footprint restorator. Moreover, it also can be run locally in a browser. To ensure
a fair comparison, we set up our model to have a size similar to the 12.1 MB of
the trained model of Hunaccent. The raw ONNX file of our trained model is 9.65
MB and our demo HTML file is 12.88 MB. The HTML file contains the ONNX
file as a Base64 encoded string.

Model Train data Eval data Character Vowel Alpha-word Sequence

Hunaccent HunWeb1
HunWeb1 0.9874 0.9619 0.9129 0.0868
HunWeb2 0.9838 0.9511 0.8942 0.0055
LINDAT 0.9834 0.9509 0.8934 0.2732

A-TCN HunWeb2
HunWeb1 0.9968 0.9903 0.9778 0.4223
HunWeb2 0.9965 0.9893 0.9764 0.3246
LINDAT 0.9952 0.9876 0.9715 0.6596

A-TCN LINDAT
HunWeb1 0.9945 0.9834 0.9617 0.2724
HunWeb2 0.9940 0.9819 0.9596 0.1352
LINDAT 0.9975 0.9925 0.9824 0.7890

Table 4: Accuracy comparison for Hungarian diacritic restoration between the
baseline (Hunaccent) and our model (A-TCN). We used the pretrained Hunac-
cent model provided by the authors. The numbers indicate the results on non-
augmented, fully dediacritized input.

Compared to the baseline, our model achieved significantly better results in
all of the metrics we considered (Table 4). Character accuracy measures the
ratio of the correct characters in the output. Important character accuracy is
measured on characters for which diacritical marks are applicable. In the case
of the Hungarian language, these characters are the vowels. Alpha-word accu-
racy is measured by the ratio of the correct words in the output, where only
the words are considered which contain at least one alphabetical character. Se-
quence accuracy is measured by the ratio of flawless sequences, which is inversely
proportional to the average length of the sequences.
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In Table 5 we can see the effect of the augmentation. Hunaccent performs
better on data where all of the diacritics are missing, while our model performs
slightly better, but almost the same when we leave about 20% of the diacritical
marks.

Hunaccent A-TCN
Eval. type Vowel Alpha-word Vowel Alpha-word
Augmented 0.9400 0.8705 0.9908 0.9795

Non-augmented 0.9511 0.8942 0.9893 0.9764

Table 5: Performance comparison of Hunaccent and A-TCN (augmented train-
ing) on the augmented and the non-augmented task (HunWeb2).

For Hungarian we compared the datasets in terms of performance of the
trained models (Table 4). Our tests indicate that our HunWeb2-based dataset
yields better results. This is partly due to the fact that as shown in Table 6, the
model seems to overfit when trained on the dataset provided by Náplava et al.
(2018). The train and dev data are likely not independent enough.

Train Dev
Dataset Vowel Alpha-word Vowel Alpha-word

HunWeb2 0.9924 0.9828 0.9893 0.9764
LINDAT 0.9922 0.9816 0.9925 0.9824

Table 6: Train and dev accuracies of the same model trained on HunWeb2 and
LINDAT. The model seems to overfit on LINDAT.

Language Character Important Character Alpha-word Sentence
Cze 0.9966 0.9944 0.9783 0.7344
Hun 0.9975 0.9925 0.9824 0.7890
Pol 0.9987 0.9970 0.9903 0.8810
Svk 0.9966 0.9947 0.9784 0.7420

Table 7: Accuracies on V4 languages trained on the dataset provided by Náplava
et al. (2018).

The performance of our model on the V4 languages can be seen in Table
7. The results indicate that our model is language-agnostic and works well for

XVIII. Magyar Számítógépes Nyelvészeti Konferencia Szeged, 2022. január 27–28.

555



its size for multiple different languages. The alpha-word accuracies are slightly
below the ones reported by Náplava et al. (2018).

7 Error Analysis

The confusion matrix of the A-TCN model (trained and evaluated on HunWeb2)
can be seen in Table 9. Even though our model can output every character in
the vocabulary at each position, the only confused characters were vowels with
the same base. We included precision (PPV) an recall (TPR) in the table. The
overall weighted F1 score for vowels is 0.990.

Actual Vowel

P
re

di
ct

ed
V

ow
el

o ó ö ő PPV u ú ü ű PPV
o 151k 686 523 251 0.990 u 42.3k 180 188 55 0.990
ó 849 39.1k 58 201 0.973 ú 253 11.6k 18 29 0.975
ö 399 32 38.2k 118 0.986 ü 170 12 22.1k 19 0.991
ő 397 145 123 35.1k 0.981 ű 93 26 65 7618 0.976

TPR 0.982 0.978 0.982 0.984 TPR 0.988 0.982 0.988 0.987

a á PPV e é PPV i í PPV
a 337k 2452 0.993 e 376k 3386 0.991 i 164k 286 0.998
á 2146 131k 0.984 é 2264 125k 0.982 í 478 23.7k 0.980

TPR 0.994 0.982 TPR 0.994 0.974 TPR 0.997 0.988

Table 8: Vowel confusion matrix

We performed a small-scale manual evaluation of the A-TCN model. After
inference on the evaluation dataset, we selected 100 random errors to be manually
classified in the following categories.

1. The error is false positive due to a corpus error, the model output is the
correct form.

2. The input is ambiguous at word level, but the model output does not fit
grammatically in the sentence.

3. The output is not wrong grammatically, but does not agree with the wider
context of the text.

4. Though the model output and the ground truth are different, they both are
adequate.

5. The error occurred in a named entity.
6. None of the above, true error.

According to the manual evaluation (Table 9) around 50% of the errors be-
long to categories 2 and 6. We can reasonably expect to reduce these errors by
increasing the size of the model, both to increase the perceived vocabulary of the
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Error class Ratio
1. Corrected Input 0.11

2. Word Ambiguous Input 0.27
3. Grammar Ambiguous Input 0.11

4. Context Ambiguous Input 0.12
5. Named Entity 0.17

6. Incorrect Output 0.22

Table 9: Error classes of the Hungarian A-TCN model.

model, and also to enable a larger context window to draw information from, as
some of the grammatical context is likely too far away for the model with the
current hyperparameters. Named entity errors are a bit harder to reduce, since
they are often less frequent or more ambiguous in the corpus. Errors due to am-
biguous input in terms of grammar could be harder to reduce as they sometimes
require more insight.

8 Conclusion

We presented a model of small size based on 1D convolutional neural network for
diacritic restoration. Furthermore, the model is ONNX.js compatible, so it can
even be used in a web browser. The model was evaluated for V4 languages and
it performed similarly well compared to other larger models and outperformed
models of similar size. In the case of the Hungarian language, we considered
three data sets and studied the generalizing power of the model between data
sets.

Further research is needed to expand the applicability of the model to cor-
recting general errors in texts, including spelling. We plan to try a larger, but
still browser-compatible model, and at least in the case of Hungarian, on a larger
training data set.
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