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Abstract. In this paper, we consider the continuous Hopfield model with a weak inter-
action of network neurons. This model is described by a system of differential equations
with linear boundary conditions. Also, we consider the questions of finding necessary
and sufficient conditions of solvability and constructive construction of solutions of
the given problem, which turn into solutions of the linear generating problem, as the
parameter ε tends to zero. An iterative algorithm for finding solutions has been con-
structed. The problem of finding the extremum of the target functions on the given
problem solution is considered. To minimize a functional, an accelerated method of
conjugate gradients is used. Results are illustrated with examples for the case of three
neurons.
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1 Introduction

The study of various natural and social phenomena is carried out today by building and
investigating their mathematical models. Practical applications contributed to the birth and
development of many mathematical disciplines. Among them, there is a theory of dynamic
neural networks, which are used to solve various optimization problems, control theory and
mathematical modelling. The variety of tasks to be solved led to the existence of several mod-
els of such networks. An important place among them takes Hopfield model (see [22,25,43]), a
single layer neural network with general non-linear and additional internal linear connections
among neurons. Hopfield nets have a large number of publications. Both models with discrete
and continuous time are considered. In particular, such questions as stability (see [47]), abso-
lute stability of neural nets (see [15]), modelling of closed control systems, asymptotics and
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stability of relaxation self-oscillations in Hopfield nets with delay (see [19,20]) are considered.
The vital phenomenon is flow invariance for such systems (see [34]). Ill-posed problems with
fractional derivative (see [46]), optimization problems (see [17, 26, 45]), deep neural networks
(see [35]), relativistic Hopfield model (see [1]), quantum generalization of Hopfield model (see
[40]), as well as its discrete analogue (see [2]) are studied. Chaos is explored in the correspond-
ing models (see [14]). The Hopfield model is considered as a model of memory (see [23]). The
impulsive Hopfield model with boundary conditions is studied in [38]. In this work, the case
of weak interaction of network neurons is considered, to the study of which for other models,
for example, the papers are devoted [27,29]. Using the theory of pseudo-inverse matrices (see
[3–8,41]), an approach allows establishing necessary and sufficient conditions for the solvabil-
ity of boundary-value problem for a system of differential equations that describe Hopfield
network for n neurons with weak interaction. We use hyperbolic tangent as the increasing
activation function and symmetric matrix of weights as in [22, p. 690]). The application of the
accelerated method of conjugate gradients (see [31,32]) for solving the problem of finding the
extremum (minimum) of the loss function is explored on the solutions of the given problem
in the form of a quadratic functional of synaptic communication scales.

2 Formulation of the problem

We consider a continuous Hopfield model with a weak interaction of the network neurons,
the evolution in time of which is described by a system of n non-linear differential equations
(see [22, p. 690], [43, p. 140])

x′j(t) = −
xj(t)

Rj
+ ε

(
Îj(t) +

n

∑
i=1

wij tanh
(

aixi(t)
2

))
+ Ij(t), j = 1, n, (2.1)

where xj(t) ∈ C1[0, T] is the potential of the jth neuron; the real parameters aj are gain
coefficients of the jth neuron, and wij are the elements of a symmetric matrix W:

W =


0 w12 . . . w1n

w12 0 . . . w2n
...

...
. . .

...
w1n w2n . . . 0

 ,

which consists of synaptic weights of the connection of the ith neuron with the jth neuron,
Rj are the leakage resistances, Îj(t) ∈ C1[0, T], Ij(t) ∈ C1[0, T] are external signals, ε � 1 is a
small parameter characterizing the strength of the interaction of network neurons.

As is known (see [22, p. 693], [43, p. 144]), in practice the property of a monotonic increas-
ing of the activation function (in our case this is hyperbolic tangent) of the considered matrix
W (wij = wji, wii = 0) and the asynchronous mode of network operation are often used. It
provides the global asymptotic stability of the Hopfield network. These features persist in
the case of a weak interaction of network neurons described by equation (2.1) and provide
both practical and theoretical interest in Hopfield networks. For the convenience of further
reasoning, we rewrite the equation (2.1) in the following form

x′(t, w, ε) = Ax(t, w, ε) + ε
(

Î(t) + WZ(x(t, w, ε))
)
+ I(t), (2.2)

where
x(t, w, ε) = col

(
x1(t, w, ε), x2(t, w, ε), . . . , xn(t, w, ε)

)
,
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A = −diag
{

1
R1

, 1
R2

, . . . , 1
Rn

}
,

Z(x(t, w, ε)) = col
(

tanh
(

a1x1(t,w,ε)
2

)
, tanh

(
a2x2(t,w,ε)

2

)
, . . . , tanh

(
anxn(t,w,ε)

2

) )
,

Î(t) = col
(

Î1(t), Î2(t), . . . , În(t)
)

, I(t) = col
(

I1(t), I2(t), . . . , In(t)
)

,

w is a vector of dimension M = n(n− 1)/2 formed from the elements of the matrix W in the
following way:

w = col
(

w12, w22, . . . , w1n, w23, w24, . . . , w2n, . . . , w(n−1)n

)
.

In some cases, the solutions of systems of equations describing the functioning of neural nets
satisfy additional conditions due to particular properties of the modelled process. Various
types of boundary-value problems are explored for such systems (see [12,38,44]). In our paper,
we investigate the questions of finding conditions for the existence and effective construction
of equation (2.2) solutions with m boundary conditions

lx(·, w, ε) = α, (2.3)

l = col
(
l1, l2, . . . , lm

)
: C1[0, T] → Rm is bounded linear vector functional, lν : C1[0, T] →

R, ν = 1, m, α = col
(
α1, α2, . . . , αm

)
∈ Rm, which for ε = 0 turns into the solution of the

generating problem

x′(t) = Ax(t) + I(t), (2.4)

lx(·) = α. (2.5)

These solutions will be called generating solutions of the boundary-value problem (2.2), (2.3).
Note that the boundary-value problem (2.2), (2.3) includes both underdetermined (m < n) and
overdetermined (m > n) boundary-value problems, the study of which for Hopfield models
is not given enough attention, in our opinion.

3 Necessary condition for the solvability of the problem (2.2), (2.3)

Let us first consider the question of solution existence to the problem (2.2), (2.3). For this
purpose, we use the general scheme for the exploration of boundary-value problems studied
in detail in [7], which allows finding effective coefficients which are necessary and sufficient
for the solvability of problem (2.2), (2.3). In particular, for the generating problem (2.4), (2.5),
the following criterion holds (see [7]).

Theorem 3.1. The homogeneous problem (2.4), (2.5) (I(t) = 0, α = 0) has an r-parametric (r ≤ n)
family of solutions x(t, cr) ∈ C1[0, T]

x(t, cr) = U(t)PQr cr ∀cr ∈ Rr.

The inhomogeneous problem (2.4), (2.5) is solvable if and only if g satisfies d (d ≤ m) linearly indepen-
dent conditions:

PQ∗d g = 0. (3.1)

In this case, the inhomogeneous problem (2.4), (2.5) has an r-parameter family of solutions x(t, cr) ∈
C1[0, T] of the following form:

x(t, cr) = U(t)PQr cr + (G[I, α])(t) ∀cr ∈ Rr, (3.2)
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where

(G[I, α]) (t) := U(t)
(

Q+g +
∫ t

0
U−1(τ)I(τ)dτ

)
is the generalized Green operator.

Here
U(t) = diag

{
e−

t
R1 , e−

t
R2 , . . . , e−

t
Rn

}
is a fundamental decision matrix of the linear homogeneous system (2.4),

g = α− l
∫ ·

0
U(·)U−1(τ)I(τ)dτ,

Q = lU(·) is a matrix of dimension (m × n), PQr

(
PQ∗d

)
is the matrix which consists of the

complete system r (d) of linearly independent columns (rows) of the projector matrix PQ

(PQ∗), where PQ (PQ∗) is projector onto the kernel (cokernel) of the matrix Q, Q+ is the
Moore–Penrose pseudo-inverse (see [37]) to the Q matrix.

Let us find necessary conditions for the existence of a solution x(t, w, ε) to the problem
(2.2), (2.3), which for ε = 0 turns into one of the solutions x(t, cr) of the generating problem
(2.4), (2.5). According to Theorem 3.1, boundary-value problem (2.2), (2.3) is solvable if and
only if d linearly independent conditions are satisfied

PQ∗d

(
g− εl

∫ ·
0

U(·)U−1(τ)
(

Î(τ) + WZ(x(τ, w, ε))
)

dτ

)
= 0. (3.3)

Taking into account (3.1), we obtain that condition (3.3) is equivalent to the following

PQ∗d l
∫ ·

0
U(·)U−1(τ)

(
Î(τ) + WZ(x(τ, w, ε))

)
dτ = 0. (3.4)

Considering the limit for (3.4) as ε → 0 and also taking into account that x(t, w, ε) → x(t, cr)

in this case, we obtain the following solvability condition

F(cr) := PQ∗d l
∫ ·

0
U(·)U−1(τ)

(
Î(τ) + WZ(x(τ, cr))

)
dτ = 0. (3.5)

Note that in the case of the periodic boundary-value problem (2.2), (2.3) (lx(·, w, ε) =

x(0, w, ε)− x(T, w, ε) = α = 0) equation (3.5) corresponds to that known in the theory of non-
linear oscillations of the equation for the generating amplitudes (see [21, 33]). Therefore, we
will call the equation (3.5) the equation for the generating vectors of boundary-value problem
(2.2), (2.3). If equation (3.5) has a solution cr = c0

r ∈ Rr, then c0
r defines the solution

x
(
t, c0

r
)
= col

(
x1
(
t, c0

r
)

, x2
(
t, c0

r
)

, . . . , xn
(
t, c0

r
))

of the generating problem (2.4), (2.5), which may correspond to the solution x(t, w, ε) of the
problem (2.2), (2.3). If the equation (3.5) has no solutions, then problem (2.2), (2.3) also does
not have the desired solution. Note that since we are considering the original problem in real
form, we are only talking about real solutions of equation (3.5).

Thus, the following statement is true.

Theorem 3.2 (Necessary condition). If the boundary-value problem (2.2), (2.3) has a solution, which
for ε = 0 turns into one of the solutions x

(
t, c0

r
)

generating boundary-value problem (2.4), (2.5), then
the vector c0

r ∈ Rr must be a real solution to the equation for the generating vectors (3.5).
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4 Optimization of the objective function

One of the important research questions of exploring neural networks is finding the extremum
(minimum) or the objective function by solving the considered model. In particular, the such
problems, arising in medicine, neurobiology, machine learning, were studied in [11–13, 36, 42,
44]. In this paper, we consider the problem of finding the minimum of the objective function
L(x(t, w, ε), w):

L(x(t, w, ε), w)→ min
w∈RM

,

L(·, w) ∈ C [‖x− x0‖ ≤ q] , L(x, ·) ∈ C
(

RM
)

on the solutions of boundary-value problem (2.2), (2.3), which at ε = 0 turn into generating
solution of (2.4), (2.5). Here, x0 is the generating solution and q is a small parameter.

Suppose that when ε tends to 0 function L(x(t, w, ε), w) takes the form of quadratic func-
tional by vector of parameters w ∈ RM, that is

L
(

x
(
t, c0

r
)

, w
)
= Φ(w) = (Sw, w)− 2( f , w)→ min

w∈RM
, (4.1)

where x
(
t, c0

r
)

is a solution of the generating problem (2.4), (2.5) and S : RM → RM is the
linear self-adjoint bounded positive operator (positive definite quadratic form), that is

γ1‖u‖2 ≤ (Su, u) ≤ γ2‖u‖2, γ2 > γ1 > 0, ∀u ∈ RM, (4.2)

f ∈ RM. Restriction (4.1), as known from [30], is equivalent to finding solutions w of the
following equation

Sw = f . (4.3)

To minimize functional (4.1) we use the accelerated method of conjugate gradients, which,
as known from [31, 32], improves the convergence of the method of steepest descent and the
conjugate gradient method, expands their scope and is more robust to rounding errors. Since
S satisfies condition (4.2), the functional (4.1) has a unique minimum w∗ (equation (4.3) has a
unique solution for any f ) (see [30]).

Let us take a closer look at the accelerated method of conjugate gradients. Its essence for
the minimization of functional (4.1) is, that based on some initial value approximation w = w0,
the following approximate solutions are determined according to the formulas

wk+1 = wk + αkrk + βkδk + σk, (4.4)

rk = f − Swk, δk = wk − wk−1, σk =
n0

∑
i=1

ak
i ϕi, (4.5)

where ϕi, i = 1, n0, n0 ≤ M is a system of linearly independent elements and the unknown
parameters αk, βk and ak

i we will determine from the system of linear algebraic equations

∂Φ
(
wk+1)

∂αk
= 0,

∂Φ
(
wk+1)

∂βk
= 0,

∂Φ
(
wk+1)

∂ak
i

= 0. (4.6)

Note that in [31], using the form of functional (4.1) and the rule of differentiation of scalar
product, a convenient for practical application computational scheme of the method (4.4)–(4.6)
is given.



6 O. Boichuk, O. Pokutnyi, V. Feruk and D. Bihun

Remark 4.1. As known (see [31]), the use of the method (4.4)–(4.6) in the space RM allows to
obtain an exact solution to equation (4.3) in k ≤ M iterations.

Remark 4.2. For σk = 0, the accelerated method of conjugate gradients (4.4)–(4.6) transforms
into the conjugate gradient method, and for δk = 0, σk = 0 – into the method of steepest
descent (see [31, 32]).

Let us formulate, using the results of [31], an estimate for the rate of convergence of the
corresponding conjugate gradient method (4.4)–(4.6) for our optimization problem. Let Hn0 ,
n0 ≤ M be the subspace spanned on a system of linearly independent elements {ϕi}n0

i=1. We
introduce into consideration a self-adjoint mapping in the space Vn0 ,

RM = Hn0 ⊕Vn0 ,

operator K = SZ which satisfies the condition

η1‖v‖2 ≤ (Kv, v) ≤ η2‖v‖2, γ1 ≤ η1 ≤ η2 ≤ γ2, ∀v ∈ Vn0 .

Here the operator Z is linear and is defined by the formula

Zg = g + h,

where g ∈ RM is an arbitrary element and h ∈ Hn0 is a solution of equation

PS(g + h) = 0,

where P is the operator of orthogonal projection RM onto Hn0 .
The following statement is true (see [31]).

Theorem 4.3. Let the operator S satisfy condition (4.2). Then, the accelerated method of conjugate
gradients (4.4)–(4.6) converges and the rate of its convergence is characterized by estimate∥∥∥w∗ − wk

∥∥∥ ≤ qk√
γ1η1

∥∥ f − Sw0∥∥ ,

where

qk =
2ρk

1 + ρ2k , ρ =

√
η2 −

√
η1√

η2 +
√

η1
.

5 A sufficient condition for the solvability of problem (2.2), (2.3)

For the further investigation of the problem (2.2), (2.3), let us fix the value of the vector of
parameters w = w∗, which is found using the accelerated method of conjugate gradients (4.4)–
(4.6). To obtain a sufficient condition for the existence of a solution, we make the following
change in variables in the boundary-value problem (2.2), (2.3):

x(t, w∗, ε) = x
(
t, c0

r
)
+ y(t, w∗, ε), (5.1)

where x
(
t, c0

r
)

is a solution of the generating boundary-value problem (2.4), (2.5),

y(t, w, ε) = col
(
y1(t, w, ε), y2(t, w, ε), . . . , yn(t, w, ε)

)
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and c0
r ∈ Rr is a solution to the equation for the generating vectors (3.5). By replacing the

variables in (5.1), the study of the existence of a solution to problem (2.2), (2.3) is reduced to
the corresponding question for the boundary-value problem

y′(t, w∗, ε) = Ay(t, w∗, ε) + ε
(

Î(t) + W∗Z
(
x
(
t, c0

r
)
+ y(t, w∗, ε)

))
, (5.2)

ly(·, w∗, ε) = 0. (5.3)

As follows from the vector-function Z(x(t, w∗, ε)), it is differentiable in the neighbourhood of
the generating solution x

(
t, c0

r
)
, therefore, the following representation holds:

Z
(

x
(
t, c0

r
)
+ y(t, w∗, ε)

)
= Z

(
x
(
t, c0

r
))

+ A1(t)y(t, w∗, ε) +R(y(t, w∗, ε)),

where

Z
(
x
(
t, c0

r
))

= col
(

tanh
(

a1x1(t,c0
r)

2

)
, tanh

(
a2x2(t,c0

r)
2

)
, . . . , tanh

(
anxn(t,c0

r)
2

) )
is a limit to which the function Z(x(t, w∗, ε)) tends under ε tends towards 0 and c = c0

r ,

A1(t) = Z′x(v)|v=x(t,c0
r )

=
1
2

diag

{ a1

cosh2
(

a1x1(t,c0
r )

2

) ,
a2

cosh2
(

a2x2(t,c0
r )

2

) , . . . ,
an

cosh2
(

anxn(t,c0
r )

2

)}

is derivative in the sense of Fréchet, and R(y(t, w∗, ε)) are higher-order members

R(y(t, w∗, ε)) = Z
(
x
(
t, c0

r
)
+ y(t, w∗, ε)

)
− Z

(
x
(
t, c0

r
))
− A1(t)y(t, w∗, ε)

=



tanh
(

a1(x1(t,c0
r)+y1(t,w∗,ε))

2

)
− tanh

(
a1x1(t,c0

r)
2

)
− a1y1(t,w∗,ε)

2 cosh2

(
a1x1(t,c0

r)
2

)

tanh
(

a2(x2(t,c0
r)+y2(t,w∗,ε))

2

)
− tanh

(
a2x2(t,c0

r)
2

)
− a2y2(t,w∗,ε)

2 cosh2

(
a2x2(t,c0

r)
2

)
...

tanh
(

an(xn(t,c0
r)+yn(t,w∗,ε))

2

)
− tanh

(
anxn(t,c0

r)
2

)
− anyn(t,w∗,ε)

2 cosh2
(

an xn(t,c0
r )

2

)


.

Thus, the boundary-value problem (5.2), (5.3) takes the following form

y′(t, w∗, ε) = Ay(t, w∗, ε)

+ ε
(

Î(t) + W∗
(
Z
(
x
(
t, c0

r
))

+ A1(t)y(t, w∗, ε) +R(y(t, w∗, ε))
))

, (5.4)

ly(·, w∗, ε) = 0. (5.5)

According to the Theorem 3.1, under d conditions

PQ∗d l
∫ ·

0
U(·)U−1(τ)W∗

(
Z
(
x
(
τ, c0

r
))

+ A1(τ)y(τ, w∗, ε) +R(y(τ, w∗, ε))
)

dτ

= −PQ∗d l
∫ ·

0
U(·)U−1(τ) Î(τ)dτ,

(5.6)
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boundary-value problem (5.4), (5.5) has an r-parametric family of solutions of the following
form

y(t, w∗, ε) = U(t)PQr cr + y(t, w∗, ε) ∀cr ∈ Rr, (5.7)

y(t, w∗, ε) = ε
(
G
[
Î(t) + W∗Z

(
x
(
t, c0

r
)
+ y(t, w∗, ε)

)
, 0
])

(t, ε).

Using condition (3.5), relation (5.6) can be rewritten as

PQ∗d l
∫ ·

0
U(·)U−1(τ)W∗(A1(τ)y(τ, w∗, ε) +R(y(τ, w∗, ε)))dτ = 0. (5.8)

Substituting (5.7) into (5.8), we obtain the following equation for cr:

Bcr = −PQ∗d l
∫ ·

0
U(·)U−1(τ)W∗H (τ, y(τ, w∗, ε), y(τ, w∗, ε)) dτ, (5.9)

H (t, y(t, w∗, ε), y(t, w∗, ε)) = A1(t)y(t, w∗, ε) +R (y(t, w∗, ε)) ,

where matrix B (d× r) has the following form

B = PQ∗d l
∫ ·

0
U(·)U−1(τ)W∗A1(τ)U(τ)PQr dτ. (5.10)

The algebraic system (5.9) is solvable if and only if d1 conditions hold

PB∗d1
PQ∗d l

∫ ·
0

U(·)U−1(τ)W∗H (τ, y(τ, w∗, ε), y(τ, w∗, ε)) dτ = 0. (5.11)

If, for example,
PB∗d1

PQ∗d = 0, (5.12)

then the condition (5.11) is always valid, and system (5.9) has r1-parametric solution

cr = PBr1
ĉr1 + c̄r ∀ĉr1 ∈ Rr1 ,

c̄r = −B+PQ∗d l
∫ ·

0
U(·)U−1(τ)W∗H (τ, y(τ, w∗, ε), y(τ, w∗, ε)) dτ.

Here PBr1

(
PB∗d1

)
is a matrix that consists of the complete system r1 (d1) of linearly independent

columns (rows) of the projector matrix PB (PB∗), where PB (PB∗) is the projector on kernel
(cokernel) of the matrix B, B+ is the Moore–Penrose pseudo-inverse to the matrix B.

From now on we will restrict ourselves to the particular solution cr = c̄ of the system (5.9).
So, for defining the solution of the problem (5.2), (5.3) we come to the system of equations

y(t, w∗, ε) = U(t)PQr cr + y(t, w∗, ε),

cr = −B+PQ∗d l
∫ ·

0
U(·)U−1(τ)W∗H (τ, y(τ, w∗, ε), y(τ, w∗, ε)) dτ,

y(t, w∗, ε) = ε
(
G
[
Î(t) + W∗Z

(
x
(
t, c0

r
)
+ y(t, w∗, ε)

)
, 0
])

(t, ε),

which can be solved using a convergent iterative process explained in detail in [7]. The fol-
lowing statement is true.

Theorem 5.1 (Sufficient condition). Let the generating problem for (2.2), (2.3) problem (2.4), (2.5),
subject to the conditions of d linearly independent conditions (3.1), have an r-parametric family of
solutions x

(
t, c0

r
)

(3.2) and the operator S satisfy condition (4.2). Then for every real value of the
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vector c0
r ∈ Rr, which satisfies the equation for the generating vectors (3.5), for the value of the

parameter vector w∗ ∈ RM minimizing the quadratic functional (4.1), and when conditions (5.12)
hold, the boundary-value problem (2.2), (2.3) has a solution that can be found using the following
iterative process

ck
r = −B+PQ∗d l

∫ ·
0

U(·)U−1(τ)W∗H
(

τ, yk(τ, w∗, ε), yk(τ, w∗, ε)
)

dτ,

yk+1(t, w∗, ε) = ε
(

G
[

Î(t) + W∗
(

Z
(
x
(
t, c0

r
))

+ A1(t)U(t)PQr c
k
r

+ H
(

t, yk(t, w∗, ε), yk(t, w∗, ε)
))

, 0
])

(t, ε),

yk+1(t, w∗, ε) = U(t)PQr c
k
r + yk+1(t, w∗, ε),

xk(t, w∗, ε) = yk(t, w∗, ε) + x
(
t, c0

r
)

, x(t, w∗, ε) = lim
k→∞

xk(t, w∗, ε),

y0(t, w∗, ε) = y0(t, w∗, ε) = 0.

Corollary 5.2. Let r = d and nonlinearity F (cr) has the inverse to F′
(
c0

r
)

for the vector c0
r , that

satisfies the equation (3.5). Then F′
(
c0

r
)
= B, and for such each c0

r , the boundary-value problem (2.2),
(2.3) has a unique solution.

Proof. Consider the difference

F(cr + h)− F(cr) = PQ∗d l
∫ ·

0
U(·)U−1(τ)W∗Z(x(τ, cr + h))dτ

− PQ∗d l
∫ ·

0
U(·)U−1(τ)W∗Z(x(τ, cr))dτ.

Based on the representation (3.2), that is x(τ, cr) = U(τ)PQr cr + (G[I, α])(τ), we obtain that

Z(x(τ, cr + h)) = Z (x(τ, cr) + U(t)PQr h) = Z(x(τ, cr)) + A1(τ)U(τ)PQr h +R (U(τ)PQr h) ,

where R (U(τ)PQr h) contains terms higher than the first order in h. Substituting the received
equality in the difference F(cr + h)− F(cr), we get the following:

F(cr + h)− F(cr) = PQ∗d l
∫ ·

0
U(·)U−1(τ)W∗ (Z(x(τ, cr)) + A1(τ)U(τ)PQr h +R (U(τ)PQr h)) dτ

− PQ∗d l
∫ ·

0
U(·)U−1(τ)W∗Z(x(τ, cr))dτ

= Bh + PQ∗d l
∫ ·

0
U(·)U−1(τ)W∗R (U(t)PQr h) dτ.

From the equation above we obtain that F′
(
c0

r
)
= B. Thus, reversibility of F′

(
c0

r
)

implies the
invertibility of the matrix B. From this follows, that r1 = d1 = 0, PBr1

= PB∗d1
= 0, condition

(5.12) is satisfied, and non-linear boundary-value problem (2.2), (2.3) has a unique solution for
each such c0

r .

Remark 5.3. To calculate the projectors and the Moore–Penrose pseudo-inverse matrices, one
can use the well-known formulas (see [7, p. 48], [28, p. 454]).
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6 Examples

Example 6.1. Consider the underdetermined boundary-value problem (2.2), (2.3) for three
equations in case when boundary condition (2.3) is T-periodic in part of the coordinates and
has the form

l

 x1(·, w, ε)

x2(·, w, ε)

x3(·, w, ε)

 =

(
x1(T, w, ε)− x1(0, w, ε)

x2(T, w, ε)− x2(0, w, ε)

)
=

(
α1

α2

)
=

(
0
0

)
.

In this case, the matrix Q is defined by the equality

Q =

(
e−

T
R1 − 1 0 0

0 e−
T

R2 − 1 0

)
.

The Moore–Penrose pseudo-inverse matrix Q+ and vector g have the following form:

Q+ =


e

T
R1

1−e
T

R1

0

0 e
T

R2

1−e
T

R2

0 0

 , g = −
∫ T

0

(
e

τ−T
R1 I1(τ)

e
τ−T
R2 I2(τ)

)
dτ,

and orthoprojectors PQ, PQ∗ look as follows

PQ = E3 −Q+Q = diag
{

0, 0, 1
}

, PQ∗ = E2 −QQ+ = O2,

where E2, E3 identity matrices of dimensions 2 and 3, respectively, O2 is zero matrix of di-
mension 2. That is, r = 1, d = 0 and the condition of solvability (3.1) holds, and the linear
boundary-value problem (2.4), (2.5) has a one-parameter set of solutions of the following form:

x(t, cr) =



−1

1− e
T

R1

∫ T

0
e

τ−t
R1 I1(τ)dτ +

∫ t

0
e

τ−t
R1 I1(τ)dτ

−1

1− e
T

R2

∫ T

0
e

τ−t
R2 I2(τ)dτ +

∫ t

0
e

τ−t
R2 I2(τ)dτ

e−
t

R3 c3 +
∫ t

0
e

τ−t
R3 I3(τ)dτ

 .

The equation for the generating vectors (3.5) takes the form of the identity F(cr) ≡ 0 for
any vector cr.

Example 6.2. Consider the original problem for three equations with the boundary condition
(2.3) of this form

l

 x1(·, w, ε)

x2(·, w, ε)

x3(·, w, ε)

 =

 x1(T, w, ε)− x1(0, w, ε)

x2(T, w, ε)− x2(0, w, ε)

x3(T, w, ε)− x3(0, w, ε)

 =

 α1

α2

α3

 . (6.1)

In this case
Q = diag

{
e−

T
R1 − 1, e−

T
R2 − 1, e−

T
R3 − 1

}



Minimizing of the quadratic functional on Hopfield networks 11

and the Moore–Penrose pseudo-inverse matrix Q+ coincides with matrix Q−1

Q+ = Q−1 = diag
{

e
T

R1

1−e
T

R1

, e
T

R2

1−e
T

R2

, e
T

R3

1−e
T

R3

}
,

the vector g has the form

g =

 α1

α2

α3

− ∫ T

0

 e
τ−T
R1 I1(τ)

e
τ−T
R2 I2(τ)

e
τ−T
R3 I2(τ)

 dτ.

The orthoprojectors PQ, PQ∗ are given by the relations

PQ = E3 −Q+Q = PQ∗ = E3 −QQ+ = O3,

where O3 is the zero matrix of dimension 3. The condition of solvability (3.1) is fulfilled
automatically, and the linear boundary-value problem (2.4), (2.5) has only one solution of the
following form:

x(t, cr) = x(t) =



e
T−t
R1

1− e
T

R1

α1 −
1

1− e
T

R1

∫ T

0
e

τ−t
R1 I1(τ)dτ +

∫ t

0
e

τ−t
R1 I1(τ)dτ

e
T−t
R2

1− e
T

R2

α2 −
1

1− e
T

R2

∫ T

0
e

τ−t
R2 I2(τ)dτ +

∫ t

0
e

τ−t
R2 I2(τ)dτ

e
T−t
R3

1− e
T

R3

α3 −
1

1− e
T

R3

∫ T

0
e

τ−t
R3 I3(τ)dτ +

∫ t

0
e

τ−t
R3 I3(τ)dτ


.

Any vector cr satisfies the equation for generating vectors (3.5) since PQ∗ = O3. From (5.10)
follows that matrix B = O3. Thus, the boundary-value problem (2.2), (6.1) has a solution
which, according to Theorem 5.1, can be found using the iterative process

xk+1(t, w, ε) = yk+1(t, w, ε) + x(t),

yk+1(t, w, ε) = yk+1(t, w, ε)

= ε
(

Î(t) + G
[
W
(

Z(x(t)) + A1(t)yk(t, w, ε) +R
(

yk(t, w, ε)
))

, 0
])

(t, ε).

If we rewrite this componentwise, then we obtain the following iterative procedure for finding
the solutions of the boundary-value problem (2.2), (6.1):

yk+1
1 (t, w, ε) = ε

∫ t

0
e

τ−t
R1

(
Î1(τ) + w12 tanh

(
a2
(
x2(τ) + yk

2(τ, w, ε)
)

2

))
dτ

+ εw13

∫ t

0
e

τ−t
R1 tanh

(
a3
(
x1(τ) + yk

3(τ, w, ε)
)

2

)
dτ

− ε
∫ T

0

e
τ−t
R1

1− e
T

R1

(
Î1(τ) + w12 tanh

(
a2
(
x2(τ) + yk

2(τ, w, ε)
)

2

))
dτ

− εw13

∫ T

0

e
τ−t
R1

1− e
T

R1

tanh

(
a3
(
x1(τ) + yk

3(τ, w, ε)
)

2

)
dτ,
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yk+1
2 (t, w, ε) = ε

∫ t

0
e

τ−t
R2

(
Î2(τ) + w12 tanh

(
a1
(
x1(τ) + yk

1(τ, w, ε)
)

2

))
dτ

+ εw23

∫ t

0
e

τ−t
R2 tanh

(
a3
(
x3(τ) + yk

3(τ, w, ε)
)

2

)
dτ

− ε
∫ T

0

e
τ−t
R2

1− e
T

R2

(
Î2(τ) + w12 tanh

(
a1
(
x1(τ) + yk

1(τ, w, ε)
)

2

))
dτ

− εw23

∫ T

0

e
τ−t
R2

1− e
T

R2

tanh

(
a3
(
x3(τ) + yk

3(τ, w, ε)
)

2

)
dτ,

yk+1
3 (t, w, ε) = ε

∫ t

0
e

τ−t
R3

(
Î3(τ) + w13 tanh

(
a1
(
x1(τ) + yk

1(τ, w, ε)
)

2

))
dτ

+ εw23

∫ t

0
e

τ−t
R3 tanh

(
a2
(
x2(τ) + yk

2(τ, w, ε)
)

2

)
dτ

− ε
∫ T

0

e
τ−t
R3

1− e
T

R3

(
Î3(τ) + w13 tanh

(
a1
(
x1(τ) + yk

1(τ, w, ε)
)

2

))
dτ

− εw23

∫ T

0

e
τ−t
R3

1− e
T

R3

tanh

(
a2
(
x2(τ) + yk

2(τ, w, ε)
)

2

)
dτ.

Example 6.3. Let us consider the Hopfield model for three neurons described by the bounda-
ry-value problem (2.2), (2.3) of the form

x′1(t, w, ε) = ε (w12 tanh (x2(t, w, ε)) + w13 tanh (x3(t, w, ε))) ,

x′2(t, w, ε) = ε (w12 tanh (x1(t, w, ε)) + w23 tanh (x3(t, w, ε))) ,

x′3(t, w, ε) = ε (2 + w13 tanh (x1(t, w, ε)) + w23 tanh (x2(t, w, ε))) ,

(6.2)

x1(1, w, ε)− x1(0, w, ε) = 0,∫ 1

0
x1(t, w, ε)dt = 1

(6.3)

and the generating problem for it

x′j(t) = 0, j = 1, 2, 3, (6.4)

x1(1)− x1(0) = 0,∫ 1

0
x1(t)dt = 1.

(6.5)

That is, in our case R1 = R2 = R3 = ∞, a1 = a2 = a3 = 2, I1(t) = I2(t) = I3(t) = 0,
Î1(t) = Î2(t) = 0, Î3(t) = 2, l = col

(
l1, l2

)
, α = col

(
0, 1

)
.

Let us investigate the problem of finding the extremum (minimum) of the loss function

L(x(t, w, ε), w) = 2
(
2w2

12 + w2
13 + 2w2

23 − 2w12w13 + w13w23
)

x1(0, w, ε)

− 2 coth(1)(6w12 − 4w13 − w23)x1(1, w, ε)→ min
w∈R3

, (6.6)

on the solutions of the boundary-value problem (6.2), (6.3), which at ε = 0 turn into solutions
of the generating problem (6.4), (6.5), by the vector of parameters w = col

(
w12, w13, w23

)
∈

R3.
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Using the well-known formulas (see [7, p. 48], [28, p. 501]), we get r = 2, d = 1,

Q =

(
0 0 0
1 0 0

)
, Q+ =

0 1
0 0
0 0

 , PQ2 =

0 0
1 0
0 1

 , PQ∗1 =
(
1 0

)
(6.7)

and the vector g has the following form

g =

(
0
1

)
.

The solvability condition (3.1), in our case, is satisfied and due to Theorem 3.1, the solution
of the generating problem (6.4), (6.5) takes the form

x(t, cr) =

 1
c2

c3

 . (6.8)

The necessary condition for the existence of a solution x(t, w, ε) of the problem (6.2), (6.3),
which by ε = 0 turns into one of the solutions x(t, cr) (6.8) of the generating problem (6.4),
(6.5), in our case has the following representation:

F(cr) =
∫ 1

0
(w12 tanh(c2) + w13 tanh(c3)) dt = 0 (6.9)

or

c2 = − tanh−1
(

w13

w12
tanh(c3)

)
.

The values of the parameters c2 = c3 = 0, which are the solution of the system of equations
(6.9), determine the generating solution

x
(
t, c0

r
)
=

 1
0
0

 , (6.10)

to which corresponds the solution x(t, w, ε) of the problem (6.2), (6.3).
Let us return to the problem of finding the minimum of functional (6.6). When ε tends

to 0, taking into consideration x(t, w, ε) → x
(
t, c0

r
)
, where x

(
t, c0

r
)

taking into consideration
(6.10), we obtain the quadratic functional for the vector of parameters w

Φ(w) = 4w2
12 + 2w2

13 + 4w2
23 − 4w12w13 + 2w13w23

− coth(1)(12w12 − 8w13 − 2w23)→ min
w∈R3

. (6.11)

The problem of finding the minimum of the quadratic functional (6.11) is equivalent to the
solution of the following equation

Sw =

 4 −2 0
−2 2 1
0 1 4

 w12

w13

w23

 = coth(1)

 6
−4
−1

 = f . (6.12)

To find the solution of the equation (6.12), or, which is the same, find the minimum of the
quadratic functional (6.11), we use the accelerated method of conjugate gradients (4.4)–(4.6)
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and compare it with the method of steepest descent and the conjugate gradient method. Now
let us consider the case where

w0 =
3
2

coth(1)

 1
0
0

 , σk = ak ϕ, ϕ =

 1
0
0

 .

If the system ϕi, i = 1, n, n ≤ 3 consists of more than one linearly independent element, then
the rate of convergence of the accelerated method of conjugate gradients increases. Without
cluttering the example above with calculations that can be made following the computational
scheme from [31], we present successive approximations to the minimum of functional (6.11)
obtained by the accelerated method of conjugate gradients

w1 =
coth(1)

14

 19
−4
−4

 , w2 = coth(1)

 1
−1
0

 ,

and the conjugate gradient method

w1 =
coth(1)

4

 6
−1
−1

 , w2 =
coth(1)

10

 11
−6
−2

 , w3 = coth(1)

 1
−1
0

 .

Therefore, as can be proved by substituting the obtained approximations into the equation
(6.12), the minimum of functional (6.11) is achieved by the accelerated method of conjugate
gradients in the second approximation w2, and by the conjugate gradient method in the third
approximation w3, and is equal to

w∗12 = coth(1), w∗13 = − coth(1), w∗23 = 0. (6.13)

Note that the rate of convergence of the method of steepest descent, in our case, is considerably
slower and even the approximation w5 is far away from the value (6.13)

w1 =
coth(1)

4

 6
−1
−1

 , w3 =
coth(1)

32

 42
−17
−5

 , w5 ≈ coth(1)

 1, 206881
−0, 683004
−0, 103441

 .

Let us fix the value of the vector of parameters w = w∗ (6.13). Let us now find the
sufficient condition for the existence of solutions of the problem (6.2), (6.3). For this we make
the substitution

x(t, w∗, ε) = x
(
t, c0

r
)
+ y(t, w∗, ε),

where x
(
t, c0

r
)

has the form (6.10). After such a substitution we obtain the following boundary-
value problem

y′1(t, w∗, ε) = ε coth(1) (tanh (y2(t, w∗, ε))− tanh (y3(t, w∗, ε))) ,

y′2(t, w∗, ε) = ε coth(1) tanh (1 + y1(t, w∗, ε)) ,

y′3(t, w∗, ε) = ε (2− coth(1) tanh (1 + y1(t, w∗, ε))) ,

y1(1, w∗, ε)− y1(0, w∗, ε) = 0,∫ 1

0
y1(t, w∗, ε)dt = 0.
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For the vector-function Z
(

x
(
t, c0

r
)
+ y(t, w∗, ε)

)
, in the neighbourhood of the generating solu-

tion x
(
t, c0

r
)

(6.10), the following representation holds

Z(x(t, c0
r ) + y(t, w∗, ε)) = Z(x(t, c0

r )) + A1(t)y(t, w∗, ε) +R(y(t, w∗, ε)),

where

Z
(
x
(
t, c0

r
))

= col
(
tanh(1), 0, 0

)
,

A1(t) = diag
{

cosh−2(1), 1, 1
}

,

R(y(t, w∗, ε)) =

 R1(y(t, w∗, ε))

R2(y(t, w∗, ε))

R3(y(t, w∗, ε))



=

 tanh (1 + y1(t, w∗, ε))− tanh(1)− y1(t, w∗, ε)

cosh2(1)
tanh (y2(t, w∗, ε))− y2(t, w∗, ε)

tanh (y3(t, w∗, ε))− y3(t, w∗, ε)

 .

The function H (t, y(t, w∗, ε), y(t, w∗, ε)) has the form:

H (t, y(t, w∗, ε), y(t, w∗, ε)) =

 H1 (t, y(t, w∗, ε), y(t, w∗, ε))
H2 (t, y(t, w∗, ε), y(t, w∗, ε))
H3 (t, y(t, w∗, ε), y(t, w∗, ε))



=


y1(t, w∗, ε)

cosh2(1)
+R1(y(t, w∗, ε))

y2(t, w∗, ε) +R2(y(t, w∗, ε))

y3(t, w∗, ε) +R3(y(t, w∗, ε))

 .

Matrices B, B+, PBr1
, PB∗d1

in our case takes the following view

B = coth(1)
(
1 −1

)
, B+ =

tanh(1)
2

(
1
−1

)
, PB1 =

1
2

(
1
1

)
, PB∗ = 0. (6.14)

Using (6.7), (6.14), we verify the validity of condition (5.12). Following Theorem 5.1, we can
find an approximate solution of (6.2), (6.3), which under ε = 0 turns into x

(
t, c0) (6.10) of the

generating problem (6.4), (6.5), following this algorithm

ck
3(w

∗, ε) = −ck
2(w

∗, ε) =
1
2

∫ 1

0
H2

(
τ, yk(τ, w∗, ε), yk(τ, w∗, ε)

)
dτ

− 1
2

∫ 1

0
H3

(
τ, yk(τ, w∗, ε), yk(τ, w∗, ε)

)
dτ,

(6.15)

yk+1
1 (t, w∗, ε) = ε coth(1)

∫ t

0

(
2ck

2(w
∗, ε) + H2

(
τ, yk(τ, w∗, ε), yk(τ, w∗, ε)

))
dτ

− ε coth(1)
∫ t

0
H3

(
τ, yk(τ, w∗, ε), yk(τ, w∗, ε)

)
dτ

− ε coth(1)
∫ 1

0

∫ t

0

(
2ck

2(w
∗, ε) + H2

(
τ, yk(τ, w∗, ε), yk(τ, w∗, ε)

))
dτdt

+ ε coth(1)
∫ 1

0

∫ t

0
H3

(
τ, yk(τ, w∗, ε), yk(τ, w∗, ε)

)
dτdt,

(6.16)
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yk+1
2 (t, w∗, ε) = ε coth(1)

∫ t

0
tanh

(
1 + yk

1(τ, w∗, ε)
)

dτ

+
2ε

sinh(2)

∫ t

0

(
yk

1(τ, w∗, ε)− yk
1(τ, w∗, ε)

)
dτ,

(6.17)

yk+1
3 (t, w∗, ε) = 2εt− yk+1

2 (t, w∗, ε), (6.18)

yk+1
1 (t, w∗, ε) = yk+1

1 (t, w∗, ε), yk+1
2 (t, w∗, ε) = ck

2(w
∗, ε) + yk+1

2 (t, w∗, ε), (6.19)

yk+1
3 (t, w∗, ε) = ck

3(w
∗, ε) + yk+1

3 (t, w∗, ε), (6.20)

xk
1(t, w∗, ε) = 1 + yk

1(t, w∗, ε), xk
2(t, w∗, ε) = yk

2(t, w∗, ε), xk
3(t, w∗, ε) = yk

3(t, w∗, ε), (6.21)

xi(t, w∗, ε) = lim
k→∞

xk
i (t, w∗, ε), y0

i (t, w∗, ε) = y0
i (t, w∗, ε) = 0, i = 1, 3. (6.22)

Let us construct the first approximation x1(t, w∗, ε). Since y0(t, w∗, ε) = y0(t, w∗, ε) = 0,
then the constants c0

2(w
∗, ε), c0

3(w
∗, ε) defined by formula (6.15) take the form c0

2(w
∗, ε) =

c0
3(w

∗, ε) = 0. From (6.16)–(6.20) we obtain

y1(t, w∗, ε) = y1(t, w∗, ε) = ε

 0
t
t


and, following (6.21), we get

x1(t, w∗, ε) =

 1
εt
εt

 . (6.23)

Continuing calculations according to (6.15)–(6.22), we see that

ck
2(w

∗, ε) = ck
3(w

∗, ε) = 0, ∀k ≥ 1

and all subsequent approximations xk(t, w∗, ε), k ≥ 2 are equal to the first approximation, that
is vector-function (6.23), as can be seen by a simple substitution, is the solution of (6.2), (6.3),
which at ε = 0 turns into the generating solution (6.10) for the values of parameters (6.13),
minimizing functional (6.11).

Note that one of the important concepts in the study of the problem for finding the ex-
tremum of a function on solutions of an equation, including problem (2.2), (2.3), (4.1), is the
concept of solution sensitivity with respect to the parameters

s(t, ε) =
∂x(t, w, ε)

∂w
.

In the literature [9, 10, 12, 16, 18, 24, 42] there are two approaches to find s(t, ε): the direct
method, which uses the chain rule to find the complete derivative, and adjoint sensitivity
method from Pontryagin papers [39]. The use of the conjugate sensitivity method reduces the
computational costs when finding the gradient by parameters when the number of parameters
is much greater than the dimension of the set of required functions. When the number of
parameters is much less than the number of desired functions, the advantages of this method
are lost due to the complexity of solving the auxiliary coupled system. In Example 6.3 we
consider a boundary-value problem for systems of three differential equations with three
parameters. Therefore, the use of the direct method and adjoint sensitivity method for finding
the gradient by parameters w12, w13, w23 are equivalent. However, when investigating the
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problem of optimization of function on solutions of the Hopfield network for n (n � 3)
neurons, in which the number of weights by far exceeds the number of potentials (M� n), the
adjoint sensitivity method has advantages over the direct method. The study of relationships
of the direct method, adjoint sensitivity method and the accelerated method of conjugate
gradients for solving the presented paper tasks will be devoted to our future research.

7 Conclusions

Necessary and sufficient conditions for the solvability were established, as well as a con-
structive algorithm for finding solutions to a boundary-value problem for a system of weakly
non-linear differential equations describing Hopfield network for n neurons is presented. The
problem of minimizing a functional on the solutions of the given problem was investigated
and the application of the accelerated method of conjugate gradients to its solutions was ex-
plored. The results are demonstrated by examples of problems for the case of three neurons.
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