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Abstract. The paper focuses on the modified Kirchhoff equation
- (a +0b / N |Vu2dx) Au—ul(u?) +V(x)u = Af(u), xeRN,
JR

where a,b > 0, V(x) € C(RN,R) and A < 1 is a positive parameter. We just assume
that the nonlinearity f(t) is continuous and superlinear in a neighborhood of t = 0
and at infinity. By applying the perturbation method and using the cutoff function, we
get existence and multiplicity of nontrivial solutions to the revised equation. Then we
use the Moser iteration to obtain existence and multiplicity of nontrivial solutions to the
above original Kirchhoff equation. Moreover, the nonlinearity f(f) may be supercritical.
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1 Introduction

In this paper, we are devoted to studying the following modified Kirchhoff equation:
- <a + b/N |Vu|2dx) Au—ulA(u?) +V(x)u = Af(u), x€RN, (1.1)
R

where a,b > 0, V(x) € C(RY,R), A < 1is a positive parameter and f is continuous in R. The
equation (1.1) is the Euler-Lagrange equation of the energy functional

b S|
Iy(u) = %/}RN yvu|2dx+Z </}RN ‘Vu’2dx> +§/1RN (V(x)u? + 2u®| Vul?) dx—)\/]RN F(u)dx,
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where F(t) = fotf(s)ds.
Kirchhoff’s model is a general version of the equation
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oom o oz )
which was first proposed by Kirchhoff in [6] for extending the classical D’Alembert’s wave
equations for free vibration of elastic strings. Kirchhoff’s model takes into account the changes
in string length produced by transverse vibration. In (1.2), L is the length of the string, / is
the area of cross section, E denotes the Young modulus of the material, p is the mass density
and Py denotes the initial tension. In addition, we have to point out that nonlocal problems
also appear in other fields as biological systems, where u describes a process which depends
on the average of itself (for example, population density). Some early classical studies of
Kirchhoff equations can be found in Bernstein [1] and PohoZaev [14]. Much attention was
received after Lions [9] introducing an abstract functional framework to this problem. For
more relevant mathematical and physical background, we refer readers to papers [8,13,21],
and the references therein.
Especially, in recent paper [19], Wu studied the following problem:

oul? o%u

— <a + b/N IVulzdx> Au+V(x)u=g(xu), xeRN (1.3)
R

and obtained four new existence results of nontrivial solutions and a sequence of high energy
solutions for equation (1.3).
Whena = 1and b = 0, (1.3) is reduced to the well known quasilinear Schrodinger equation

—Au+V(x)u—A(w?)u=g(xu), xeRV (1.4)

Several methods can be used to solve the equation (1.4), such as, the existence of a positive
ground state solution has been studied in [10,15] by using a constrained minimization argu-
ment; the problem is transformed to a semilinear one in [2,11] by a change of variables (dual
approach); Nehari method is used to get the existence results of ground state solutions in
[12,17]. Especially, in [7], the existence of positive solutions, negative solutions and sequence
of high energy solutions for the following problem

—Au+V(x)u— A ([ul*) |ul*2u=g(x,y), xeRY

was studied via a perturbation method, where « > 3, V € C (RV,R) and g € C (RN x R,R).
Recently, Feng et al. [3] studied the following modified Kirchhoff type equation

- <a + b/]RN \Vu\zdx> Au —ulN(u?) + V(x)u = h(x,u), xRV, (1.5)

wherea > 0,b > 0,h € C (]RN X R, ]R) and V € C (]RN , IR). Under appropriate assumptions
on V(x) and h(x,u), some existence results for positive solutions, negative solutions and
sequence of high energy solutions were obtained via a perturbation method. Subsequently,
in 2015, Wu [20] studied the existence of infinitely many small energy solutions for equation
(1.5) by applying Clark’s Theorem to a perturbation functional. And in the same year, He [4]
proved the existence of infinitely many solutions for equation (1.5) by the dual method and
the non-smooth critical point theory. Last year, Huang and Jia [5] obtained the existence of
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infinitely many sign-changing solutions for equation (1.5) with 2 = 1 and h(x,u) = h(u) by
genus theory.

In the present paper, we assume that f € C(R) and V € C (RYN) satisfy the following
conditions

(f1) lim; o @ =0;

(V) V(x) satisfies inf,cgn V(x) > Vo > 0, and limy|_,o V(x) = +o0.

Moreover, f may be supercritical. But we do not assume the Ambrosetti-Rabinowitz condition
or increasing condition.
Next, we give our main results.

Theorem 1.1. Assume that (V'),(f1), (f2) hold. Then equation (1.1) has a positive and a negative
weak solutions for all A small enough.

Theorem 1.2. If (V), (f1), (f2) hold and f(t) is odd, then the equation (1.1) has a sequence {u,} of
solutions such that I (u,) — oo for all A small enough.

This paper is organized as follows. In Section 2, we present the variational framework and
some lemmas, which are bases of Section 3. In Section 3, we give the proof of Theorems 1.1
and 1.2.

In what follows, Cy, C, ¢; and C;(i = 1,2,...) denote positive generic constants.

2 Preliminaries and revised functional

In this section, we give work space, the revised functional and some lemmas.
Let C5° (RN) be the collection of smooth functions with compact supports. Let

H' (RY) = {u e1?(RV) :/IRN Vul2dx < +oo}

with the inner product
(u,v)ip = / (Vu-Vo+uv)dx
RN

and the norm
ull g = (u, )}/

Set
HY, (1RN) = {u c H! (JRN) : /RN V(x)uldx < +oo}
with the inner product
(u,0)pp, = /]RN [Vu-Vo+ V(x)uv]dx

and the norm

g, = {0}
Then both H' (RV) and Hy{, (RV) are Hilbert spaces. Set E = H}, (RY) N W4 (RVN) with the
norm [|ul|g = |lull gy + [|u[lwrs. Then E is a reflexive Banach space.
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Notice that there is no growth condition |f(t)| < C|t| + C|t|7 ! and no Ambrosetti-
Rabinowitz condition tf(t) — 4F(t) > 0. So we need the cutoff function.

By (f2), there exists M > 0 large such that f(M) > 0. And then given M > 0, let

f(t), 0<t<M
ha(t) = ¢ CptP~!, t>M
0, t <0,

where Cyy = f(M)/MP~! and 4 < p < 22*. The continuity of f implies the continuity of h.
Moreover, by (f1) and (f2), hy satisfies that

(h1) There exists4 < p <22*if N >3 and 4 < p < o0 if N = 1,2 such that
[iaa(8)] < Cilt| + Corlel” ™ < C(M) (Je] + 1471 ) - VEeR,

where C); = max;cpo ) |f(t)[/t and C(M) = max {C),,Cm};
(h2) lim;_o ) _

7 =

(h3) There exists u > 4 and r > M such that

‘1|I1f HM(t) >0
t|l=r

and

pHum(t) < hp(t)t
for |t| > r, where Hy(t) = fot hai(s)ds.

By [22, Lemma 3.4] and the condition (V), we get that the embedding H},(RY) < L*(RY)
is compact for each 2 <5 < 2*.

In what follows, we consider the revised problem

- (a + b/]RN |Vu|2dx> Au—ulA(u?) + V(x)u = Ahp(u), x € RN, (2.1)

Equation (2.1) is the Euler-Lagrange equation associated of the natural energy functional
Ja(u) : E — R given by

a b 2
Ja(u) = E/IRN |Vu\2dx+Z </}RN |Vu|2dx> +§/1RN (V(x)u? + 202 |Vu|?) dx

—A Hpy(u)dx.
RN

For 0 € (0,1], let Joa(u) = 10 [on ([Vul* +u*) dx + Jy(u). Let u™ = max{u,0} and u~ =
max{—u,0}. Set

a b 2
Ji(u) = E/IRN yvu\zdx+1 </}RN ]Vu’%ix) +§/1RN (V(x)u? 4 2u*|Vul?) dx

- /\/ Hyg(u™)dx
RN
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and Jg, (1) = 10 [pn (IVul* +ut) dx + J5 (u).

A sequence {u,} C Eis called a P. S. sequence of ], if {J(u,)} is bounded and [} (u,) — 0
in E*. We say that ], satisfies the P. S. condition if every P. S. sequence possesses a convergent
subsequence.

Our goal is to first prove that the critical point of ], (#) can be obtained as limits of critical
points of Jpr(u). And then we need to prove that the nontrivial critical point u of J,(u)
satisfying ||u|/z~ < M is a nontrivial solution of (1.1).

Lemma 2.1. Assume that (V'), (h1) and (hy) hold. Then the functionals ) and ]55\ are well defined
in Eand ]y, J;\ € C*(E,R).

Proof. The proof is similar to [3, Lemma 2.1], we omit it here. O

Lemma 2.2. Assume that (V'), (h1) and (hy) hold. Then every bounded P. S. sequence {u,} C E of
Jo (respectively, ]é';\) possesses a convergent subsequence.

Proof. The proof is analogous to [3, Lemma 2.2], we omit it here. O

Lemma 2.3. Assume that (V') and (hy)—(h3) hold. Let {6, } C (0, 1] be such that 6,, — 0. Let u,, € E
be a critical point of Ja, \ with Jg, A (un) < c for some constant c independent of n. Then, passing
to a subsequence, we have u, — u in H, (RN),u,Vu, — uVu in L2 (RN), 0, [pn (\Vun|4 +
up)dx — 0, Jo, 2 (un) — Jr(u) and u is a critical point of .

Proof. Step 1: We need to prove that the sequences { [pn 12 [Viy|>dx}, {8y [|ttn][jy1s } and
{ Hun||%{‘1/ } are bounded.
By (hy), for 0 < gy < %(% — %)VO, there exists & > 0 such that
1 2
?thM(t) — HM<t> < got

for all || < 4. By (hy), for 6 < |t| < r(r is the constant appearing in the condition (h3)), one
obtains .
’ythM(t) - HM(t)‘ <2C(M) (1+rP72) £,

where C(M) is the constant appearing in the condition (/7). Thus, we get
‘:[thM(t) - HM(t)‘ <ot +2C(M) (L4172 2, Vte [—r1].
Since lim|,|_,o, V(x) = +00, there exists pg > 0 such that

1/1 1 9
- (2 — y) V(x) >2AC(M) (1+1"772)

for all |x| > po. Thus,

1 1 2 1
(2 B > /IRN V(x)undx A |un (x)|<r L"unhM (Mn) ~ (un) dx

H
1 1 2 p—2\ .2
> (3-2:) L Vs - 2ac(u) (14 777%) 23,

, (22)
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where B,, := {x € RN : Bp,| := meas (B,,) . Moreover, since u, € E is a critical
point of ], A, for each ¢ € E, we have

0= (Jo a (un), ) =06, /]RN [|Vun]2 Vu,V¢+ ]un’2 un(p} dx
+ <a+b/ ]Vun\zdx)/ VunV4>dx~|—2/RN (12Vu, V9 + Vs up) dx  (23)
+/ un¢dx—A/ i (i) .

Hence, it follows from (h3) and (2.2) that

¢ > Jo,x (tn)

1,
= Jo A (Un) — = <]6,1,/\ (tn) r”n>

(DY g, e (22 [ 19+ b_b [ 19 dx i
— 4 ‘u n W14 2 ‘M RN n 4 ﬂ RN n
4 2 2 1 2
+(1——= / |V, |“uzdx+ | = — = / V(x)uzdx
Z 2 p)Jry

A/ [ unhpt (uy) — Hyp (un)} dx

1 4 a a 2 b b 2, \?
<4—‘u> 971 ||unle,4+ (2_}1) /]RN|VMH| dx+ <4_;l/l> </]RN‘VM;1| dx>

4 2 9 1 1 2 p—2\ .2
+<1_}4> /RNWL{”] undx+<4—2y> /RNV(x)undx—Z)\C(M) (14 7P72) " | By, |

1 1 4 2 2
> (33 i+ ex sy ca [0 9 = 2C1 ()

v

where Ci(M) = 2C(M) (14 r=2) * | By, |. Therefore, we get

1 1

(33 ) 8o Balls-t e Il +cx [ Vi dx < CoraGD. @4

By (2.4), going if necessary to a subsequence, we get u, — u in H‘l/ (]RN ) ,uy Vi, — uVu
in L2 (RN) ,u, — uin L* (RN) for s € [2,22*) and u,(x) — u(x) a.e. x € RN. This completes
the proof of Step 1.

Step 2: We claim that u, € L® (RV), |luy]|;o < M and |Ju||,,, < M, where the positive
constant M is independent of n.

Depending on (2.4), we infer

[tz = |[u2||72r < C|Vi2|[72 < Co+ ACH(M). (2.5)

SetT >2,r > 0and @i} = 7 (u,), wherey : R — Ris a smooth function satisfying ~(t) = t for
|t| < T—1,v(—t) = —y(t);¥'(t) = 0fort > T and </ (t) is decreasing in [T — 1, T|]. This means
that a1 = u, for |u,| < T —1;|al| = |y (un)| < |un| for T
|y > T, where T —1 < Cr <T.
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Setting ¢ = uy, |iI}

A/IRN hm (un)qbdx—/ V(x)unpdx

RN

=0, /}RN [\Vun|2VunV<,b+ |un|2un¢} dx + <a+b/1RN |Vun|2dx> /}RN Vu, Vdx

+2/]RN (29, + |Vt ) dx

> 2/ ufqunV<pdx
RN

2r
=2 | |* [ Vity | dx 42

~T
uy
|un|>T

(14 27) | |2 |V, [* dx

[un | <T—1

+2 [y () 7+ 2y Gat) |y ()2 (1) ] [0 |V

T—-1<|uu|<T

1

Y]

2 |un|>T
1

2r—2
ity

4
+2r/ |1ty |
T—1<[u,|<T
1
2 Jju|>T

1 r 22 2
3 (@) () et 5 [ e ()
2 JT-1<|u,|<T 7 JT-1<|u,|<T

2

v

]

2 oo | [ (58
2 _
- (r+2)? /T—1<|un|<T U (u'{

Y

v [l (uT)} ‘zdx.

r1 12
e fon ¥ [ (a2) |t

2
+5 TlgunET‘(a,"{)rv(\un,Z)’ dx

(7 (un))? [V | dx

1

ax + ——

(r+2)?

(r+2)2

112
+ (rjz)z / e 9 [l (a1) ][ ax

= ‘V {|un|2 (11;)’} ‘2 dx + /u,1<T—1 1 |72 |V |* dx

S A G R

[ P ()

2
]dx

o 5P

Choosing 0 < A < V,/C), then it follows from (h;) and (2.6) that

1
7727 e
By (2.5) and Holder inequality, we obtain

/ |Mn|][J
RN
= / |un|"’_4
RN

(/ |un|(p_4) N dx>
RN

2r
all dx

2r
arl Ju,|*dx

IN

(p=4)(N-2)
N

v [ (a) ][ av < acu [l

2r

all dx.

% then we easily infer that ¢ € E. Therefore, it follows from (2.3) that

(2.6)
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(-4)(N-2) e
4N

r IN—( 414\1])(1\1 2) o
/ ( L u%) ’ dx
RN

u
4N—(p—4)(N—2)
¥ IN—( g14\1])(1\172)
u%) ! dx . (2.8)

n

_ (/N 02 dx>
R

< (Co+ACH (M)'F (/]RN (

Since u? ’ﬁ,Tl ‘r € D12 (]RN ), by the Sobolev embedding theorem, we infer

4N

~T
Uy

2
3

n n

AP 2 (1Y 1|2 2.9
[/]RN(L[”””) dx] §CRNV[un(un>} dx. (2.9)
Then by (2.7), (2.8) and (2.9), one has
2 . %
2T 7T o\ NN
[/IRN (u% il ) dx} < ACo (M) (r +2)? /]RN < il u%) ! dx ,
where the constant C,(M) > 0 is dependent on M. Since 4 < p < 22*,d:=2*/qg=% — £ +
_ 8N
1> 1, where g = IN=(p—4)(N=2)" Then
1 1
o || qd 7d(r+2) 71 5 r|r74 =)
</]RN (un il ) dx) < [AC(M)(r +2)%] 0 </]RN [un il ] dx) . (210

Take r = rg be such that (2 +r9) g = 22*. From |i}| = |7 (us)| < |ux| and (2.5), one has

oo

Takeing the limit T — oo in (2.10) with » = rg, we obtain

it

"2 ax < [ un| @0 dx < Co+ ACI (M),
N

1 1 L
(/]R 4 ’2+7‘0 9 g ) 4 (ro+2) < [ACZ(M) (ro+2)2} (0 12) (/]R 4 ‘2+1’o 7 4y > (r0+2)'

Further, setting 2 + 1, = d (2 +1p), we get

1 1

1 ——
</IRN |un|(2+7‘1)q dx> q(T1+2) S |:/\C2(M) (7’0 +2)21| 2(r0+2) <‘/IR |‘l/[ | 2+7‘0 qd > (r0+2) .

Inductively, we have

1 1 1
</ |un|(2+7’k+l)‘7 dx) 9(res1+2) < [/\CQ(M) (e _‘_2)2} 2(re+2) </ ] (2+1)q gy > (rk+2)
RN RN

1 1

<ﬁ[AC M) (r; +2)2] 0 (241009 g ) 07
< TT[ACa(M) (i +2)7] [l G5 ) T

i=0

where (2+7;) =d' (2+19) (i =0,1,...,k). Moreover,

ﬁ[ACZ Vz+2)2}2("'1“):e p{zandl (ro+2) }

i=0 i=0 d' (ro +2)

:eXp{é lln\/m(rwz) . ilnd

di(ro+2) di(ro+2)

}
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1

is convergent as k — 0. Let C; = [T, {)\CZ(M) (i +2)2} 2+2) - For Cy, we can choose

0 < Ag < Cyp/C1(M) small enough and %Ao < A < Ag such that C, — Co > 0 as k — oo and
1

Coo < M/(2Cy). Then we get

litall o < Ci il 2
Let k — oo, for fixed constant M and %/\0 < A < Ag, by (2.5) we have
HunHLw S Coo ||Mn||L22* S M, HuHLoo S M. (2.11)

Step 3: We will show that u is a critical point of J.

For any ¢ € C° (RN), there exists a bounded domain Q) C R¥ such that supp(¢) C Q.
Thus, by (2.11), we know ¢ = Ppexp (—Ku,) € E for any ¢ > 0 and K > 0. Taking ¢ =
P exp (—Kuy,) as the test function in (2.3), we have

0=0, /IRN exp (—Kuy,) {]Vun|2 Vi, (Vi — KpViy) + || unlp} dx
+ (a + b/ |Vun|2dx> / exp (—Kuy) Vu, (V¢ — KpVu,) dx
RN RN
+ 2/N {exp (—Kuty) u2 Vi, (Vi — KYpVu,) + exp (—Kity) ¢ | Vi, |* un} dx
R
+ /]RN V(x)unp exp (—Kuy) dx — )L/]RN ha (un) P exp (—Kuy,) dx
2 2
< O /RN exp (—Kuy) [IWnI Vi Vip + [ unw] dx (2.12)
2
+ (a—l—b/]RN |V, dx) /}RNexp(—Kun)Vuanbdx
—|—2/ exp (—Kuy,) u2Vu, Vipdx
RN
_ _ 2 2 2\
/]RNexp( Kuy) ¢ |Viy| {K <a+b/]RN |V, dx+2un> ZuH] dx
+/]RN V(x)unl/)exp(—Kun)dx—A/]RN hy (uy) P exp (—Kuy,) dx.
Choose large K > 1 be such that Ka > 1. Then, by
/ exp (—Kity) ¢ |V (1, — u) > [K <a + b/ |Vun|2dx+2u%> —ZuH} dx >0,
RN RN
one has
/}RN exp (—Kuy) Vi, |? [K <a—|—b/}RN |Vun|2dx—|—2u,21> —ZuH} dx
> /1RN exp (—Kup) ¥ (2Vu, Vu — |Vu|2) [K <a+b/]RN ]Vun\zdx—l—Zu%) —Zun] dx
— / exp(—Ku)p|Vul? [K <a+b/ |Vu\2dx—|—2u2> —2u] dax.
RN RN
Because 0, — 0 and |[ju, ||, < M, (2.4) implies

6, /IRN exp (—Kuy) {]Vun|2 Vu,Vip + |un|2un¢] dx — 0
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as n — co. By the weak convergence of u,, the Holder inequality and Lebesgue’s dominated
convergence theorem, we infer

<a—i—b/ |Vun|2dx)/ oK) 7y, Vipdx — <a—|—b/ \Vu]zdx>/ KT UV pdx,
RN RN RN RN
/ exp(—Kun)uZVunV1pdx—>/ exp(—Ku)u*VuVpdx,
RN
/N V(x)unp exp (—Kuy) dx—)/ x)up exp(—Ku)dx
R

and

A/}RN hy (un) Pexp (—Kuy,) dx — A/}RN h(u) exp(—Ku)dx.
Hence, these together with (2.12) can deduce that
2 2
0< <a+b/]RN |Vu| dx> /IRN exp(—Ku)Vth/zdx—FZ/]RN exp(—Ku)u"VuVipdx
—/ exp(—Ku)y|Vul? [K <a + b/ |Vu|*dx —|—2u2> - Zu] dx (2.13)
RN

—|—/ x)up exp(—Ku) dx—/\/ hae(u)p exp(—Ku)dx.
For any ¢ € E with ¢ > 0, by (2.11), we know v := ¢@exp(Ku) € E. By applying [18,
Theorem 2.8], there exists a sequence {y,} C C§° (]RN ) of functions such that ¢, > 0, ¢, = v

in HL(RN) and ¢, (x) — v(x) for a.e. x € RN. Taking ¢ = ¢,, in (2.13) and letting n — oo, we
have

0< <a+b/ |Vu\2dx>/ Vquodx+2/ u?VuVpdx
+2/ |Vu|2ucpdx+/ uqodx—)\/ B (1) pdx.
The opposite inequality can be obtained in a similar way. Therefore,
<a + b/ ]Vu\zdx> / VuV pdx —|—2/ (12VuVe + |Vu|*ug) dx
RN RN RN
+/ ugodx—)\/ hy(u)pdx =0

for all ¢ € E. This shows that u € E is a critical point of ], and
(a + b/ |Vu|2dx> / |Vul?dx +4/ u?|Vul?dx
RN RN RN
+/ de—/\/ I (1) udx = 0. (2.14)
Finally, taking ¢ = u, as the test function in (2.3), one has

O:Gn/ |Vun|4—|—\un]4} dx + <a+b/ |Vun|2dx>/ (V| dx

+4/ n]Vun\ dx+/ zdx—)\/ B () updx.
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Notice that
/ |Vun]2dx > 2/ VunVudx—/ |Vul|?dx —>/ |Vul?dx,
RN RN RN RN
/ u2 |V, |* dx > 2/ uZNu, Vudx —/ uZ|Vul*dx —>/ u?|Vul|*dx,
RN RN RN RN
A/ h (uy) updx — /\/ B (u)udx
RN RN

and
lim inf V(x)utdx > /N V(x)u?dx.

n—o0 RN R

By (2.4) and (2.14), up to a subsequence, one has
4 2
B l1tull s — O, [utally, — Huu%,/ﬂw 12 Vit [? dx — /RN 2| Vudx.

Hence, Jp, 1 (un) — Jo(u) and u, — u in H}, (RN). This completes the proof. O

3 Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1. First, we will show that for each 6 € (0,1], Jo» and ]55\ satisfy the P.
S. condition. Indeed, by Lemma 2.2, it is sufficient to prove that any P. S. sequence of ]y, is
bounded.

Let {u,} C E be an arbitrary P. S. sequence for Jy,. If {u,} is unbounded in E, we can
assume ||u,| p — +oco. By (2.2) and (h3), we get

1,
Jo (1) — " (Jo (ttn) , thn)

1 1 a a b b ’
= (3 ettt (5-5) folvmPaxs (5= ) (o 7mPar)
4 2,2 11 / 2
+<1 ]4>/ |V u,ﬂx—l—(z y) RNV(X)”ndx

+/\/ [ g (i) HM(un)} dx

a a 2 1 1 2
> (Z_Z —_
> <2 H)/]RN|VL£,1\ dx—l—(2 y) /]RNV(x)undx
1

/ V(x)uldx — ACy (M)

14
If {||un||pr4} is bounded, then — 1. Therefore, by (3.1), we infer

Mg »IIE

Jo (itn) = 1 (Jo o () 1) { a1 1}Hunui@ ACH(M)
> min ﬂ —

[ laallz llualz
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which implies 0 > min {§ — I } > 0. That is to say, it is a contradiction. Hence, we can
assume ||u,||y14 — co. For large n, it follows from (3.1) that

Jo (Un) — ! <]9A(“n) Un )

1 a 2
<4—)ﬂWMW4+mm{2—W4—m}HWM¢—AQ@®
(1 a1l

v

>

1 1 1 a a1 1 )
> _m I 1\ ,a al 1 B |
=5 n{<4 V)G,z " ZV}HMV‘HE AC1 (M)

This together with ||u,|,y1s — oo implies 0 > 3 min { (] — %)9, g2_al_ ﬁ} > 0, a contra-
diction. This shows that {u,} is bounded in E.
Next, by (h1) and (hy), we get

|[Hu(0)] < Ciylof? + Calo|* (32)
for all v € R. For small 0 < p < 1, set

Sp={veE:olle = p}.

Then for v € S, and 0 < A < V/4C), by (3.2), we have

2
]9+,A(U) = 19/ ]Vv\4+v4> dx + E/ \Vv|2dx—|—z (/ ]Vv|2dx>

2/ xX)v? + 20%|Vo|? )dx—/\/ Hy (v) dx
2

1 4 L. 2 217,12 21T 1290 )
> ZLQHUHWM+me{2a’1}||UHH3/+/RNU |Vo|*dx — ACpm /IRNU |Vo|~dx

1 1 .
> 10l0ls + 3 ming2a, 1} ol

e

> min{6,2q,1} [||v\|%v1,4 + IIUIIM

—_

_64m1n{9 2a,1}p*:=6 > 0.

Moreover, for |t| > r, by (h3), we can infer Hy(v) > C|o|'. Thus, by (h1) and (hy), there is a
constant C3(M) > 0 that depends on M such that

Hu(v) > Clo|t — C3(M)o? (3.3)

for all v € E. For any finite-dimensional subspace ECE, by the equivalency of all norms in
the finite-dimensional space, there is a constant f > 0 such that

ol = Blllle (3.4)
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for all v € E. Hence, by (3.3) and (3.4), one has

Jor(v) = 19/ |Vv]4—|—v4) dx + E/ ]Vv\de+9 </ |Vv]2dx>2
2/ x)v* + 20%|Vo|? )dx—A/ Hy(v)dx
< 1eHz;uWM + Emax{a,l}HvHH‘l/ +/RN *|Vo|dx
—|—Z (/uzN \Vv|2dx>2 — /\/RN [Clo|" — C3(M)v?] dx

3 b 1
< S0l + 0l + 5 max{a, 1ol — AC| ol + ACs (M) [o]3

(3.5)

1 1
< gmax(3, b} ol + (ACs(M) + 5 max{a,1} ) ol ~ ACE ol

forallv € E and 0 < 0 < 1. Thus, there is a large R > 0 such that J5, < 0 on E \ Bg, where
Br := {u € E: ||u|]|g < R}. Set a fixed e € E with e > 0 and ||e||g = 1. For any fixed constant
T > 0, define the path ht : [0,1] — E C E by hy(t) = tTe. Then for large T > 1 and u > 4, by
(3.5), we get

Joa (hr(1)) < %max{@b}ﬂ + <)\C3(M) + ;maX{a,l}> T2 — ACB'T" < 0

with ||hr(1)||z > p, and

max Jo (hr(t)) < C.

Hence, by [16, Theorem 2.2], ]gf ), possesses a critical value

Co: 1nfmax]9/\(())2(5>0

nel tef0,1]
and
< h <,
Co g[gﬁIm( T(t) <
where

['={n€C(0,1],E) : 7(0) = 0,7(1) = hr(1)}.

Therefore, ]; ), possesses the Mountain Pass geometry. Further, by Lemma 2.3 and Mountain
Pass Theorem, we know that the equation (2.1) has a positive weak solution. This together
with (2.11) implies that (1.1) has a positive weak solution. Moreover, by a similar argument,
we infer that the equation (1.1) has a negative weak solution. This completes the proof. O

Next, in order to prove Theorem 1.2, we need to revise the cutoff function. Let

f(t), 0<t<M
m(t) = Cputr,  t>M
—hp(—t), t<O.

Then for the odd function f(t), it is easy to know that f1y(t) satisfies (};)—(h3) and the odd
function property.
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Hereinafter, we will concentrate on the following equation
- <a + b/N |Vu\2dx> Au—ul(u?) + V(x)u = Ay (u), x € RN, (3.6)
R

Here [, (u) : E — R is the natural energy functional corresponding to (3.6)

a

a b L |
Jalu) = E/IRN \Vu\zdxjuz </}RN ]Vu‘%lx) +§/1RN (V(x)u? +2u?|Vu|?) dx

—A Ay (u)dx,
RN

where Hy(t) = fot hin(s)ds. For 0 € (0,1], let for(u) = 10 [ (IVul* +ut) dx + Ji(u).

Lemma 3.1. Assume that (V), (f1), (f2) hold. If f(t) is odd, then for all 8 € (0,1] fixed, fo A has a
sequence of critical points u; such that there exist aj, B; both of which are independent of 6 to satisfy
wj — 00 as j — oo, aj < Bjand cj(0) € [, Bj] forall 6 > 0.

Proof. Consider the eigenvalue problem
/N(Vu Vo +V(x)up)dx = g/N updx, Vo € Hi(RN). (3.7)
R R

For real number ¢, if there exists u € H}, (RN) (u # 0) to satisfy (3.7), then ¢ is called a
eigenvalue of the operator L = —A + V. Further, by the condition (V') and the compactness of
the embedding H{, (RN) < L? (RV), we infer that the spectrum o (L) = {¢1,&2,...,Cn, ...}
of L satisfies

0<§1<‘§2<"'<(§n<"'

and §, — +o0 as n — 0. Let ¢, be the eigenfunction corresponding to the eigenvalue §,. By
regularity argument, we know ¢, € E. Set E, = span{¢1,¢2,...,¢,}. Then we decompose
the space E as a direct sum E = E, ® W, for n = 1,2,..., where W, is orthogonal to E, in
H}, (RN). For p > 0, set

_ . 2 2 2 2
Z _{”EE"|”||H},+/IRN“ |Vuldx <p }
By (3.5), there exists r, > 0 independent of 6 such that
Joa(u) <0, Yu€E,\Z,. (3.8)

Set
Dy=E,NZ,, Gp= {go € C(DyE): pisodd and glyz p = id}

and
T = {¢ (Dn\A) L9 EGyun>j,A=—ACE,NZ, is closed and y(A) < n—j},
where 7(-) is the genus. Let

¢j(0) = inf sup foa(u), j=12,...
Bel; ueB

We claim that ¢;(0) (j = 1,2,...) are critical values of Jy, and there exist B; > a; such that
¢j(0) € [aj,B;] and &j — o0 as j — oo.
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Since fp, is increasing with respect to 6, we have ¢;(8) < ¢;(1) :== g; (j = 1,2,...).
And then we will estimate the lower bound for ¢;(). Depending on the following Lemma
3.2, we have an intersection property: If p < r, for all n > j, then for B € I, we have
BNozZ,N Wi # @. Therefore,

ci(0) > inf fo (1) > inf [ (u).
i( )_ueazl?ﬂwj,l Jo( )_ueazl?ﬂm,l]A( )

For small ¢ > 0 and u € 92, N Wj_y, by (h;), for 0 < A < V/4C); one has
Jo(u) > Ja(u)
> E/ |Vu\2dx+é / |Vu|>dx 2+1/ (V(x)u? + 2u?|Vu|?) dx
— 2 JrN 4 \ JrN 2 JRN

—A/}RN (Chu? + Cumlul?) dx

1
> Zmin{a,l}”u”él +/ u?|Vul?dx — ACy /IRN |u|Pdx
1 (1-t)
> L min{a, 1} — ACu JullS ™ Jull 5.
1 a-tp
> me{a 1}0? —)\CMg Tz -t
1 a-vp
— tr_ A=ty
where t € (0,1) satisfies 1 5= s + 351, Take p = p;j be such that p](.l Hptz=2 _ mér)‘L{C”Ml}(; .

Then choosing r, > p,, we infer ]9/,\( u) > minde 1}p]2 := aj — +oo. Thus, ¢j(0) € [aj, Bj]
(aj — 00 as j — o0).

Now we show that ¢;(0) (j = 1,2,...) are critical values of Jor. Indeed, if cj(6) is
not a critical value of Jy,, then by [16, Theorem A.4], we know that for given 0 < & <
min {«;: j=1,2,... }, there exist ¢ € (0,&) and 7 € C([0,1] x E, E) such that

@) n(t,u) =uforallt € [0,1]if fou(u) & [c;(0) — & c;(60) +&].

(b) n(t,-) : E— E is a homeomorphism for each t € [0, 1].

© n(1, fC] 9 c f;{){e)_g, where J§\ = {u € E: Jya(u) <«}.
(d) n(t,u)is odd in u.

Set ¢ = 7(1,-). Then, by (3.8), ¢ = id on 02,, N E, for all n. By the definition of c;(6), there
exists B € I'j such that

sup fo(u) < ¢j(0) +e.
u€B

Notice that A = ¢(B) € I';. By (c), we know

¢j(0) < sup Jou(u) <c;(6) —¢,

ueA

which is a contradiction. Hence, ¢;(6) (j = 1,2,...) are critical values of s . This completes
the proof of Lemma 3.1. O
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Lemma 3.2. For B € T, it follows that BN dZ, N W;_1 # @ provided p <1, foralln > j.

Proof. Set B = ¢(D,\A) with n > jand v(A) < n—j. Let ¥ = {u€D,:ou) € 2,}.
Then we can easily infer that 0 is an interior point of X. Let X be the connected component
of X containing 0 . Then X is a bounded symmetric neighborhood of 0 in E,. Hence, by
[16, Proposition 7.7], y(dX’) = n. Since (P|aZ,nmEn = id, we obtain

o (u / W) |Vo(u)2dx =2 > p?, u € azZ, NEy. (3.9)

Then we get ¢(dX) C 9Z,. In fact, for each u € X, because ¢(u) € Z,, (3.9) implies that
u € int(Z,,) NE,. Hence, if ¢(u) € int(Z,), then the continuity of ¢ implies that there
exists an open ball B(u,r) C D, centered at u with radius r such that ¢(B(u,r)) C int (Z,) .
Since B(u,r) is connected, u € X and B(u,r) C X, we know that u is an interior point of
X. It contradicts that u € 0X. Hence, ¢(u) € 9Z,. Set W = {u € D, : ¢(u) € 9Z,}. Then
X C W,y(W) = nand y(W\A) > n— (n—j) > j— 1. Hence [16, Proposition 7.5-2°] implies
v(@(W\A)) > j — 1. Notice that codim (Wj_;) = j — 1. Consequently, p(W\A) N W,_1 # O,
that is to say, BN o2, N1 W;_1 D ¢(W\A) N W;_; # @. The proof is finished. O

Proof of Theorem 1.2. Depending on Lemma 2.3, Lemma 3.1 and Lemma 3.2, we get that the
equation (2.1) has a sequence {u,} of solutions such that f)(u,) — -+oco. Then for A small
enough and fixed M, it follows from (2.11) that the equation (1.1) has a sequence {u,} of
solutions such that I, (u,) — +oo. O
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