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Abstract

Static source code analyser tools are operating on an intermediate rep-
resentation of the source code that is usually a tree or a graph. Those rep-
resentations need to be updated according to the different versions of the
source code. However, the developers might be interested in the changes or
might need information about previous versions, therefore, keeping different
versions of the source code analysed by the tools are required. RefactorErl is
an open-source static analysis and transformation tool for Erlang that uses
a graph representation to store and manipulate the source code. The aim
of our research was to create an extension of the Semantic Program Graph
of RefactorErl that is able to store different versions of the source code in a
single graph. The new method resulted in 30% memory footprint decrease
compared to the available workaround solutions.
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1 Introduction

Static program analysis [3] is a method of debugging of the source code of a program
performed before the execution. It is used early in development before any other
testing. The benefits of static analysis need to be mentioned: speed (compared to
manual code reviews automated tools are way faster and the early found coding
errors are less costly to fix); depth (static code analysers can cover every possible
code execution path); accuracy (human errors can be eliminated).
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Version control [18] (also known as revision control or source control) is a com-
ponent of software configuration management. It is used for managing changes to
programs, documents and other data. The idea of storing the differences between
different versions of a document is as old as writing is but it became more important
in the last two decades when the area of computing has started. In software engi-
neering, version control is any kind of tracks that provides control over the changes
between the different version of source code. Version controlling tools make the
process easier and much faster, so it is very convenient to use them. One of the
most famous tools for that is Git [8], which is known by most software developers.

RefactorErl [4, 19] is a static source code analyzer and transformation tool for
Erlang programs. Beyond that RefactorErl does thorough static analysis on the
given source code, it has many other features to support code comprehension: it
finds the dependencies between the modules, provides a query language to gather
semantic information about the source code, performs clustering, etc. Some source
code analysers have their own built-in version controlling systems. RefactorErl does
not provide version controlling, it works on a given snapshot of a software.

The internal representation of RefactorErl gives us the opportunity to build
the version control over that. The tool represents the source code in a Semantic
Program Graph (SPG) [12] which will be explained in detail later. The graph is
stored in a database to make the results of the source code analysis permanently
available. The tool can work with different databases (i.e. the distributed, relational
Mnesia database [14], or the key-value Kyoto database [10]), but it builds the
same internal representation, the SPG, in any cases. All the analyses and the
transformations are performed on the graph layer, thus our version controlling is
defined on the top of the SPG and not on the database layer.

The main contribution of this paper are the algorithms as an extension of Refac-
torErl to handle different versions of the source code. Our first tests on open source
repositories provided a memory saving for about 30%.

In Section 2, we introduce some information about the RefactorErl tool and
the data structure used by the tool. In Section 3, the algorithm of finding the
differences between different versions is presented which is followed by Section 4,
where the algorithm of storing the found differences is discussed. Then, in Section
5, we present some usage of the version control. In Section 6 the evaluation is
explained. Section 7, contains information about the related work. Finally, Section
8 concludes the paper.

2 Background

In our work we focus on the RefactorErl framework that was designed to analyse
Erlang source code.

Erlang The Erlang [6, 1] programming language is a general-purpose, competi-
tive, dynamically typed programming language. Other important features include
being a greedily evaluated, non-purely functional and open source language. It is
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designed to develop systems with high fault tolerance and real-time robust size. Er-
lang programs run inside a virtual machine (Erlang VM or node), so programs writ-
ten in Erlang are platform-independent. Erlang’s standard library is called OTP
(Open Telecom Platform [13]), which was originally designed to write telecommu-
nications software, but can be used more widely. The Erlang runtime environment
and OTP are collectively referred to as Erlang/OTP.

RefactorErl Static source code analyser tools are heavily used in software devel-
opment and maintenance processes. RefactorErl [4, 17, 19] is an open-source static
source code analyzer and transformer tool for Erlang source codes. Despite the fact
that RefactorErl is still considered as a prototype tool, its usefulness in industrial
usage has been proved already. It was initially developed at the request of Ericsson
and it is still used by developers there. Apart from static analysis it has many
other features: it is compatible with the most famous code editors; it can find the
dependencies between the modules and it also represents this information in well
designed graphs; it gathers many different kind of information about the source
code; the found bugs can be investigated. These features manifest the significance
of RefactorErl.

Semantic Program Graph During the initial analysis, the tool builds a Se-
mantic Program Graph (SPG) [12]. In order to make the source code analysis
results available for further use, we need to save the graph. The SPG is stored in a
database. Different databases can be used to store the SPG, but all the analyses and
transformations are manipulating the SPG itself. If the source code is changed, the
tool updates the graph, so in the new graph, only the new information is available.
Any kind of backups about different versions are really expensive at the current
implementation, because we can use the backuping features of the used database
only to backup the whole SPG. Therefore we would like to design a much more
effective way of version handling on the SPG level. An adequate solution to this
problem is to save the differences in the same graph. In this way, we do not need
to store database backups and load them once an older version is needed.

The SPG is a three-layered rooted, directed, labelled graph structure that con-
tains lexical, syntactic and semantic information about the source code. The dif-
ferent kinds of data are stored in the nodes of the graph (in the attributes of the
node) that are linked through tagged edges. These edges contain structural in-
formation about the nodes. The graph has a specified structure. It starts with a
root node, which is followed by a node containing the information about the file
(the name, absolute path, etc.). They are linked with an edge tagged with the file.
The file node is linked to its forms: the function definitions and attributes. The
function definition forms are linked to its clauses, and so on. In addition, there are
module and function semantic nodes to represent the semantic information as well.
Based on the structure of the graph, we were able to define an algorithm to find the
differences between two versions of the source code by traversing the representing
syntax trees simultaneously.
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Motivation During a software development in industry, versions occur quickly
and many times the difference between them are important since the new change
could lead to some error or the previous version was more effective, etc. Storing
the versions in a static analyzer tool helps the developers to fasten the process of
debugging, not to mention the analyses of the relations between the versions that
the tool can provide.

As it was previously mentioned, any kind of backups are expensive since Refac-
torErl can store only one version of a source code at once. It is possible to manually
create backups of the different versions on database level, but a single running in-
stance of RefactorErl can handle only one version at the same time. Loading an
old version of the source code requires to start a new RefactorErl instance and load
the whole old SPG stored in the backups. That is an inconvenient, time-, memory-
and resource-consuming task.

3 Detecting differences

As it was mentioned before, RefactorErl generates an SPG for each module and it
stores the analyzed source code in this structure. When we re-analyze a module
that has already been analyzed, the tool recognizes this and replaces the subgraph
belonging to the modified source code part1 with a new subgraph, but the old and
the new version of the software have not been related to each other so far. The old
subgraph is deleted after the new subgraph is created, however, there is a point in
the analysis when the information for both graphs can still be found in the tool.
We use this point to analyze the two subgraphs, detect differences, and perform
version control.

In our version controlling, the primary goal is to somehow explore the differences
between the two graphs, and then, in some way, to represent the information stored
by the two subgraphs in a merged subgraph.

The differences can be categorised into three major groups that need to be
recognized and addressed in different ways. These three groups are:

• Update

• Deletion

• Insertion

Let us look at how to handle each case properly. For that we will use an example
seen on Figure 1. The example contains two function definitions. The first one,
foo, checks whether its argument is 0 and returns the term zero. Function op

multiplies its arguments.

1RefactorErl performs an incremental analysis on form level: once a form (e.g. function,
attribute, etc.) changed in the source code, it reanalyses only the changed form
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foo(0) -> zero.

op(A, B) -> A * B.

Figure 1: Example Erlang function

3.1 Update

We talk about an update when we had something in a version, and we changed
something in it, without inserting a new part or deleting a whole part of the source
code.

For a better understanding we make a modification on the example presented
in Figure 1. As it can be seen in Figure 2, we made an update on the return value
of the function op, the multiplication operation (*) has been changed to plus (+).

foo(0) -> zero.

op(A, B) -> A + B.

Figure 2: Example Erlang function with update

The algorithm of finding the updates is the most important, because after re-
solving those updates we will consider the remaining changes either as a deletion
or an insertion depending on where the extra elements on the graph were found.

As a first step we make all combinations of function nodes and store them in
a list2. We will go through these function pairs and check if they are the same
function in different versions. For that we check whether the name and the arity of
the functions are the same. If so, we say that these two functions are the same and
we look for the differences between those functions. This algorithms works well for
real code examples as the name of the function rarely changes after a commit3.

The recursive function of finding the differences gets two nodes, one of them is
from the SPG of the previous version and the another one is from the new version.
The algorithm can be found in Figure 3. The list of pairs that the algorithm initially
gets is the list of the investigated form nodes. The TableOfDifferences variable
refers to the ETS table [7] in which the difference nodes are stored. While analyzing
a new version of a file RefactorErl recognizes the new, deleted and modified forms
of the source code based on the hash value of the forms. At this point we save the
changed forms4 in ETS tables for further analysis. The equivalent function checks
whether the two nodes are the same in the required attributes (number and type
of attributes, number of children, etc.), and if not, we say that we found an update
at that node and we insert the node and the subgraph bellow it into the version

2We need to generate all function pairs because at this point we do not know their names yet,
as the name is stored in a lower level in the graph.

3In the current implementation, we recognise renaming of function definitions as newly inserted
and deleted functions. Some heuristics can be applied to change this behaviour.

4We save the sub-syntaxtrees representing the changed forms.
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controlled graph with insertUpdate function. If we did not find an update, we
prepare the list of pairs of the children nodes with makePairs function and check
whether the children contain updates. Each edge label has a name and a serial
number in the SPG representing the order of the syntax tree elements. Thus the
children function organizes the nodes in this way, so we are able to create the
pairs for the next step in the recursive investigation.

selectUpdate(ListOfNodePairs)

for NodePair in ListOfNodePairs do

Children1 = children(first(NodePair))

Children2 = children(second(NodePair))

if NodePair in TablesOfDifferences then

if !equivalent(Children1, Children2) then

insertUpdate(Children1, Children2)

else

ListOfChildrenPairs =

makePairs(Children1, Children2)

selectUpdate(ListOfChildrenPairs)

end if

end if

end for

return ok

Figure 3: selectUpdate function

3.2 Deletion

A deletion is when we had something in the source code in a previous version, and
we deleted it in a version after that.

For finding the deletions, we go through the nodes that have been present in
the previous version of the source code but they are not present any more. That
means that we go through the SPG and if we find a node that does not have a
version in the new graph then we conclude that a deletion is found.

In Figure 4, one can see that we made a deletion by deleting the function foo.

op(A, B) -> A * B.

Figure 4: Example Erlang function with deletion

3.3 Insertion

An insertion is, when we insert a brand new part in the source code, which did not
exist in the previous version.
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We use a similar algorithm here as for deletion, the difference is that when we
look for insertions we look for those nodes that are present in the new graph but
they had not been present in the old graph.

As an example, we made an insertion to the code seen in Figure 4, so after
making a deletion we do an insertion on that code. We add the function bar and
the result code can be seen on Figure 5.

op(A, B) -> A * B.

bar(1) -> one.

Figure 5: Example Erlang function with insertion

4 Updating the graph

After finding and identifying the different types of changes, we need to represent
them in the SPG. The basic idea is that we introduce two different types of tags for
the edges. Updates, deletions and insertions are handled in a similar way. Thanks
to RefactorErl, we can easily and efficiently insert new nodes and edges. In the
following, we will demonstrate the algorithm for each case.

Let us consider the examples used in the previous section to present the method
we used for updating the graphs. To make the differences more illustrative, first we
take a look at the non version controlled graph which is generated by the Refac-
torErl. You can find that in Figure 6.

4.1 Update

In the case presented in Figure 2, we find the difference presented in the previous
section. We insert the whole subgraph under the found difference between the
operations with a versioned edge. An edge is versioned when it has the same name
as before but it has a v at the beginning of its name. In the resulting graph
under the difference node, we can find the content of both versions in the different
subgraphs. One can see in Figure 7 the edge vbody which marks the discussed
update.

In this way, we can easily find the versioned part in the graph and we can keep
all the previous features of the tool. An obvious question may arise, whether it is
possible to store more than two versions in this way. Yes, it is possible, but we
need to make it customisable by the users.

4.2 Deletion

The handling of this difference is very similar to the algorithm from the previous
subsection. Let us consider the modified example in Figure 7 again. We can see
that the difference seen in Figure 4 discussed in the previous section is released.
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To handle this, we insert the deleted subgraph under its parent node (the original
function node) with a vform versioned edge seen on Figure 7.

4.3 Insertion

Considering the example seen on Figure 5, we have an inserted function in the code
and we want to represent that in the version controlled graph. For that, we insert
the difference in the same way but for the tag of the edge, we insert an n at the
beginning instead of the v , one can see the inserted nform edge on the Figure 7.
When we do that, we keep the nonversioned edge as well, because it does not bother
us and it is needed to have a syntactically correct graph. Now, we can easily find
the insertions since it had a different concept than the deletions and updates.

5 Gathering information

At this point we have the version controlled SPG saved in the tool. We would
like to extract information from the graph and for that we use the query language
which was already part of the tool and we extended it for the version controlled
graph.

The semantic query language [11] was designed to query information about the
analyzed Erlang code. The concepts of the query language are defined according
to the semantic units and relationships of the Erlang language, e.g. functions and
function calls, records and their usage, etc.

The elements of the language are the following entities: module, function, vari-
able, etc. Each of them has several selectors and properties. A selector selects a set
of entities that meet the given requirement. A property describes some properties
of an entity type.

One of the needed information pieces could be to define whether the modules
are version controlled or not. For that we performed the query seen in Figure 8.
The query returns whether the uploaded modules are version controlled or not,
in other words, its return value is a Boolean which is true if a module contains
information from a previous version and false otherwise.

ri:q("mods.is_versioncontrolled").

ri:q("mods.is_versioned").

Figure 8: ”Is the module version controlled” query

For a huge repository, this information might not be needed for all the modules
or we would like to know which specific functions are version controlled. For that
we realized a query found in Figure 9. It is quite similar with the first one apart
from that it defines whether the functions in the modules are version controlled or
not in the same way.
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ri:q("mods.funs.is_versioncontrolled").

ri:q("mods.funs.is_versioned").

Figure 9: ”Is the function version controlled” query

Also we might need the names of the version controlled functions and the query
presented in Figure 10. It is built on the query presented in Figure 9. The return
value of this query is a string which contains the name of the version controlled
function in case that it is version controlled and not versioncontrolled otherwise.

ri:q("mods.funs.versname").

ri:q("mods.funs.versionname").

ri:q("mods.funs.versionedname").

ri:q("mods.funs.vname").

Figure 10: ”Name of version controlled functions” query

It is possible that we are not sure about the stored version on the SGP. This
problem can be solved using the query presented in Figure 11. This query gives
the number of the included versions on graph for each module. The returned value
is an integer which is one if only the actual version is stored, two if the previous
version is also included on the graph, etc.

ri:q("mods.version_counter").

ri:q("mods.vercount").

ri:q("mods.versions_number").

ri:q("mods.vernum").

Figure 11: ”Number of stored versions” query

6 Evaluation

We made some measurement for the algorithm using a public GitHub reposi-
tory [5] and two of its versions, the used old version can be found with change-id
499de032d7c6fc294aff977bea1405e09a1a3eae and the new version can be found
with change-id 5b7363c14071abe92d4039a7fc96371bd6eee91e. The number of
lines that differ between the two versions is 646.

To investigate the measurement, we check the tool’s memory footprint5 in five
different states of the tool: when the tool is empty; when only the first version is
loaded into the tool; when only the second version is loaded to the tool; when both

5We used the erlang : memory(). function.
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Table 1: Results for version controlling a public repository

ets total
Empty 1399208 23318920

Old version 90707888 119560720
New version 94655240 123790536

Version controlled 106574824 177795384
Old- + New- version 183963920 220032336

of the version are loaded to the tool separately; when the versions are loaded to
the tool using version control.

It is important to mention that the results are strongly dependent from the
analyzed data. If there are almost no differences between the versions, we will get
almost 100% efficiency. Meanwhile, when the source code has totally changed, the
version control is not efficient at all, as both of the source codes have to be saved.

The results for the measurements presented above can be seen in Table 1 and
Figure 12. As one can see, the tool’s memory footprint is the smallest when the
tool is empty. When only the first version is loaded, it has a smaller footprint than
the second version. It is generally true as the code is developed over time. When
both of the versions are loaded separately, the memory requirements are around
twice as big as for the versions separately. When the algorithm of version control
is used we can see that the memory requirement for the tool is less than for the
case without using version control. This means that the algorithm works as it was
expected at the first place. Quantifying the results in this case 32, 52% memory
gain was achieved.

At the same time we also checked the overhead of the version controlling algo-
rithm on the runtime: we experienced 4% overhead.

7 Related work

Version control of trees [2] presents everywhere in software development; generally
it is solved by serializing the tree, not via methods operating on the tree itself.

Ralph Hinze and Ross Paterson have published a data structure called finger
tree [9], which is purely functional. It can be used to efficiently implement other
functional data structures. The finger tree, amortized, provides access to the ”fin-
gers” (leaves) of the tree where it stores the data. Depending on the size of the
given part, we can concatenate or split data in logarithmic time in the size of the
smaller piece. Internal nodes store what associative action their descendants have
performed. The data stored in internal nodes can be used to provide its function-
ality to other non-tree data structures.

In the finger tree, the finger is the part where you can access a part of the data
structure, in imperative languages this is called pointers. Fingers are structures
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Figure 12: Diagram for results version controlling a public repository

that point to the end of a series or a letter to node. The fingers are part of the
original wood, thus ensuring constant access over time. It also stores in each inter-
nal node the result of applying some associative operation to its descendants. This
”summary” data stored in the internal nodes can be used to provide the functional-
ity of data structures other than trees. Finger trees are inherently persistent which
means that older versions of the tree are always preserved. This data structure
is often used for for handling the undo/redo operation in editors because it makes
easy to find the differences in the text. The undo/redo actions can be interpreted as
version control, but there some issues that need to be mentioned. The inside repre-
sentation of RefactorErl does not make it possible to use the undo/redo method for
version control without any changes, because the SPG (Semantic Program Graph)
structure does not have the ”summary” data property, thus the finger tree change
detection mechanism cannot be adopted easily for our use case.

UML diagrams also have version control issues [15]. The logic of the version con-
trol solution for UML diagrams is very similar to the version control implemented
in RefactorErl. First, let us look at how a UML diagram is built. When design-
ing UML diagrams, we distinguish between two types of diagrams, those that are
semantically relevant and those that are not. It is important that UML diagrams
also have a tree structure. Node has a well-defined type, and there can be different
types of connections between different types of node. Some node is complex, they
can carry several different types of information, but one can also store an entire
subchart.
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Differences need to be classified into different groups, as each difference needs
to be treated differently. Let us look at what types of differences there can be
between UML diagrams. First, we divide the differences into two groups, there are
differences within node when only the content of node has changed, and there are
structural differences when there has already been a change in the structure itself.
Differences within node can be simple when only one attribute has changed, it can
be multivalued when multiple attributes have changed, or it can be a change within
an attribute reference when only the reference has changed.

In the event that there has also been a change within the structure, we must
also divide them into several groups.

• Internal design difference: when there was no change within the elements,
only the relationships between them changed.

• Shifting within a structure: when the structure remains the same as it was,
only one or more edges moved.

• Internal node shifting: when we put operations or attributes from one class
to another.

• Position shifting: when rearranging the order of attributes or operations
within a class.

As the inside representation of RefactorErl does not force us to divide the han-
dling of version control in as many different groups, it is important to know how
different data structures are version controlled.

The difference computation of the version control algorithm of the UML di-
agrams works in a very similar way as in RefactorErl. Both of the algorithms
go through the nodes in a breadth-first order and compare them to each other.
The difference is that we consider changes inside nodes and for UML diagrams the
differences are identified comparing the subgraph for each node. This would not
be effective for us as the elements can be reorganized easily without making any
significant change so we decided to compare each node pair only.

8 Conclusion

In this paper we presented how version control works in RefactorErl. After defining
the different cases of modifications between different versions we explained how
those differences can be found and represented in the tool. We also showed some
use-cases and the results of the analysis of its efficiency.

The proof of concept implementation of the algorithm is integrated within the
RefactorErl environment. In general, it has an overhead on the run-time, but it has
a smaller memory footprint. The previous graphs for previous versions do not need
to be saved, because the annotated new graph is storing all the required information
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about the different versions. The algorithm can be optimized for different resources
and different projects. We are investigating the possible usage of the versioned
graph now.

For treating more than one version, an extra parameter needs to be introduced
for counting the version number next to versioned edges. By this we can easily
differ the different versions from each other and it also makes possible to store all
the version in one graph.

8.1 Future work

The next step is the extension of the implementation to handle more than two
versions. For this an index could be added for the version controlled edges (i.e.
vbody1 , vbody2 , . . . ). This way we can differ the versions easily. We would like to
note here that only the representation of the changes need to be changed at this
stage, the defined algorithm for finding and categorizing the differences is the same
in all cases.

The algorithm could also we extended with some extra heuristic algorithms, so
we could find the differences in as low level as possible. The heuristic algorithms
could be defined after collecting some data from industrial usage.

The designed generic difference detection algorithm can be used in other projects
as well. It would be a nice proof of the reusability of our approach to try it on
the representation of the SSQSA [16] language independent source code analyser
framework.
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[19] Tóth, Melinda and Bozó, István. Static analysis of complex software systems
implemented in Erlang. In Central European Functional Programming School,
pages 440–498. Springer, 2011. DOI: 10.1007/978-3-642-32096-5_9.


