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Abstract

In this paper we report the estimation of conditional logistic regression models

for the Health Utilities Index Mark 2 and the SF-6D, using ordinal preference

data. The results are compared to the conventional regression models

estimated from standard gamble data, and to the observed mean standard

gamble health state valuations.

For both the HUI2 and the SF-6D, the models estimated using ordinal data

are broadly comparable to the models estimated on standard gamble data

and the predictive performance of these models is close to that of the

standard gamble models. Our research indicates that ordinal data have the

potential to provide useful insights into community health state preferences.

However important questions remain.
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Introduction

As cost effectiveness analysis has become more important in health care

decision making processes, the interest in how to value health outcomes has

increased. There is a substantial body of research on the relative strengths

and weaknesses of alternative methods (e.g. Torrance 1986; Brazier et al

1999). Such research has focused primarily on three valuation methods; Time

Trade Off (TTO); Standard Gamble (SG); and Visual Analogue Scales (VAS),

also called category scaling.

Work that has attempted to identify a preferred method has tended to support

the use of TTO and/or SG (Brazier et al. 1999; NICE 2004). VAS has been

criticised on a number of points, both theoretical (does VAS capture strength

of preference?) and empirical (the data may be subject to end-point and

context bias). (Torrance et al 2001) However, it is widely accepted that TTO

and SG have significant limitations. (Brazier et al 1999) What is remarkable is

the degree to which the role of ordinal data in health state valuation has been

largely ignored; notable exceptions to this observation being the work by Kind

(1982, 1996).

Ranking exercises are conventionally included in health state valuation

interviews as a warm-up exercise, in order to familiarise the interviewee with

the health state classification system being valued and with the task of

considering preferences between hypothetical health states, (Furlong et al
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1990). The use of the data from these ranking exercises has generally been

limited to checking the degree of consistency between the valuations obtained

from the SG or TTO valuation exercises and the ranking exercise.

Kind (1982) identified Thurstone’s (1927) model of comparative judgement as

a potential theoretical basis for deriving cardinal preferences from rank

preference data. Thurstone’s method considers the proportion of times that

health state A is considered worse than health state B. The preferences over

the health states represent a latent cardinal utility function. Individual’s stated

preferences draw upon this latent function but imperfectly; i.e. there are errors

in individual’s expression of the latent utility function. The closer two health

states, A and B, lie on the latent utility function the greater the likelihood that

an individual will incorrectly state that they prefer B to A, when in fact the

utility they expect to gain from health state A is greater than the utility they

expect to gain from health state B. Thus there is a relationship between

observed ordinal preferences and the underlying cardinal latent utility function.

McFadden (1974) proposed the conditional logistic regression model as a

means of modelling this latent utility function from ordinal data. The

assumptions underlying McFadden’s choice model are clearly described by

Saloman (2003).

Recently Salomon (2003) presented work that applied conditional logistic

regression models to the rank data collected as part of the Measurement and

Valuation of Health Study (MVH). Salomon estimated a model equivalent to

that reported by Dolan (1997). This model did not produce utilities on the 0-1
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scale necessary for use in estimating Quality Adjusted Life Years. Salomon

rescaled the model coefficients on to the full health-death (1-0) scale, using

the mean measured TTO value for the PITS state in the EQ-5D classification

(3,3,3,3,3). In this paper we present an approach that avoids the need for

external health state utility data, as in such rescaling, by directly estimating a

parameter for the state death, as part of the model. This method is applied to

rank data from two health state valuation surveys; a UK based valuation

survey for the Health Utilities Index Mark 2, (McCabe et al 2004a) and the UK

valuation survey for the SF-6D, (Brazier et al, 2002).

Methods

Data

Detailed descriptions of the HUI2 and SF-6D classification systems, and the

valuation surveys have been reported in detail elsewhere, thus, we will only

provide a brief summary of them here, (Brazier et al, 2002; McCabe et al

2004a). (See Appendices 1 and 2)

Health Utilities Index Mark 2

The Health Utilities Index Mark 2 is a six dimension health state classification

(sensation, mobility, emotion, cognition, self care and pain) with either four or

five levels for each dimension. It describes a total of 8,000 distinct health

states. It was developed specifically for use with paediatric populations,

(Torrance et al 1996). (See Appendix 1)
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In the present study, one hundred and ninety eight respondents ranked 8

health states from the HUI2 classification plus Full Health and Immediate

Death, (McCabe et al 2004). The health states valued were sampled from an

orthogonal array for the HUI2 classification. The interviewees then valued the

same 8 health states using the McMaster version of the SG question; i.e. the

chance board prop was used to aid the respondent in understanding the

question.

The chance board was designed to communicate probabilities to respondents

who have little or no experience of the concepts. The probability of the two

uncertain outcomes and the one certain outcome associated with the two

choices are displayed at the same time. Furlong et al state that “The board

uses diagrams of common gambling-type wheels with colour coded pie-

shaped segments representing the probabilities.” (Furlong et al. 1990)

The risk of death was varied in a ping-pong manner until the respondent

identified a risk of death at which they were indifferent between the impaired

health state and the uncertain choice. Where health states were ranked as

worse than immediate death, the worse than death version of the SG question

was used, (Furlong et al 1990). In the worse than death version of the SG

question; the options are death with certainty or the uncertain choice of full

health or the impaired health state being valued.

The respondent was asked to imagine that they were a ten year old child who

would live for another 60 years in the outcome health state.
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SF-6D

The SF-6D has 6 dimensions: physical functioning, role Limitations, social

functioning, pain, mental health and vitality. Each dimension has 4, 5 or 6

levels. The classification describes a total of 18,000 health states, (Brazier et

al 2002). (See Appendix 2)

A representative sample of 611 members of the UK population provided

standard gamble valuations for a sample of 249 health states defined by the

SF-6D classification.

The interview consisted of an exercise to rank 5 health states that the

respondent would then be asked to value, plus the best and worst states

defined by the SF-6D and immediate death. This was followed by a series of

SG questions. The SG question asked the respondent to value one of 5

certain SF-6D health states, in a lottery with the best and ‘pits’ health states

as the alternative outcomes. All respondents were then asked to provide a SG

valuation of the PITS state in relation to death. The form of the sixth SG

valuation depended upon whether the respondent has ranked the PITS state

as better or worse than death, in the ranking exercise. The result of the sixth

SG exercise was then used to ‘chain’ the health state values in order to place

them on to the 1-0, full health –death scale. The interviewers used the

McMaster chance board prop and the ping-pong version of the SG question,

(Furlong et al. 1990).
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The respondent was asked to answer the question for him or herself,

imagining that they would remain in the outcome health state for the rest of

their lives, (Sturgis and Thomas, 1998).

Model specification

To model the predicted health state valuations using the ordinal preference

data we used conditional logistic regression as outlined by McFadden (1974).

To operationalise this model we assumed that the ranking exercise is

equivalent to the respondent making a series of individual selections from

smaller and smaller sets of states. Thus, in ranking 10 health states we

assume that the respondent first chooses the most preferred health state from

all 10, before choosing the most preferred health state from the remaining 9

and so on, until all the health states have been assigned a rank between 1

and 10. To characterise this as equivalent to pair wise choice we must rely on

the hypothesis of the Independence of Irrelevant Alternatives; i.e. the ranking

of the pair is not affected by the other states that are ranked in the same

exercise.

The conditional logistic regression model assumes that respondent i has a

latent utility value for state j, Uij, and that given the choice of two states j and

k, the respondent will choose state j over state k if Uij > Uik . Hence given the

task of choosing the preferred state from a finite group of different states,

respondent i will choose state j if Uij > Uik for all j ≠ k.  
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Each individual’s cardinal utility function for state j is Uij = μj +εij where μj is

representative of the tastes of the population and εij represents the particular

taste of the individual. If the error term ε has an extreme value distribution,

then the odds of choosing state j over state k are exp{μj – μk}.

For the analyses reported here, the expected value of each unobserved utility

was assumed to be a linear function of the categorical levels on the

dimensions of each dataset respectively. The general model specification is:

)ijij uθDg  ijxβ( (1)

where  = utility; i = 1, 2, …, n represents respondents and j = 1,2, …, m

represents health states. g is a function specifying the appropriate functional

form, which is assumed here to be linear. uij is an error term whose

autocorrelation structure and distributional properties depend on the

assumptions underlying the particular model used.

x is a vector of dummy explanatory variables (x) for each level  of

dimension  of the instrument in question. For example for the SF-6D, x23

denotes dimension  = 3 (social functioning), level  = 2 (health limits social

activities a little of the time). For any given health state, x will be defined as

x = 1 if, for this state, dimension  is at level 

x = 0 if, for this state, dimension is not at level 

Level 1 is the baseline for each dimension.
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D is a dummy variable for the state ‘Death’, which takes the value 1 for this

health state. For all other health states the variable Death is always set at 0.

The value of the full health state is constrained to equal 1. The value of

any other health state is calculated as 1 minus the sum of coefficients

for each of the dimension level dummies in the state.

Rescaling model coefficients on to the death-full health (1-0) scale

The latent variable μ is not estimated on the zero-one (death-full health) scale

required for calculating QALYs. Therefore, we rescaled the coefficients using

the formula βr = β / D; where βr is the rescaled coefficient on dimension

level  and  is the coefficient on death. These rescaled coefficients provide

predictions for health state values on the same scale as SG or TTO

valuations, although not necessarily the same values. This method of

rescaling anchors death at zero, and full health at 1, whilst retaining the

possibility of a health state having a value of <0; i.e. worse than death.

Model Assessment

Models are assessed in a number of stages. The first stage checks that the

estimated model coefficients have the expected negative sign and that they

are statistically significant. The second stage checks for logical
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inconsistencies; i.e, that lower levels of functioning are associated with

greater decrements in health state value.

The rescaled coefficients are then compared to the coefficients from the

preferred models estimated on the SG data from the same valuation

interviews, (Brazier et al 2002, McCabe et al 2004). We assessed the

predictive performance of the models using the following battery of measures:

 Root Mean Square Error (RMSE),

 Mean Absolute Error (MAE),

 Intra-class correlation co-efficient (ICC)

 Proportion of health state values predicted to within 0.05 of the

observed mean of the standard gamble valuations

 Ljung-Box test for autocorrelation in the errors, (Ljung G, Box G 1979).

The RMSE and MAE are both summary measures of the prediction error

compared to the observed mean SG value. We report both for comparability

with other health state valuation model literature, some of which report the

MAE, whilst others report the RMSE. (Salomon, 2003; Brazier et al, 2002;

Dolan 1997; McCabe et al, 2004a)

In addition we plot the health state values predicted by the models against the

observed mean SG values and the values predicted by the original SG

models. We also plot the errors against the observed mean values.
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We use the Hausman test to test the validity of the Independence of Irrelevant

Alternatives assumption (IIA), (Weesie J, 2004). Hausman's test compares

the maximum-likelihood estimator of beta based on the full dataset with

maximum likelihood estimators of beta based on data in which one alternative

is dropped. Under IIA, beta(restricted) and beta(overall) should be

approximately equal. IIA is violated if the two estimates of beta are

significantly different.

We report model coefficients, significance levels, diagnostic plots and tests of

predictive performance for both the HUI2 and the SF6D models.
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Results

Health Utilities Index Mark 2

Table 1 reports the original and rescaled coefficients for the rank health state

utility models for the HUI2. It also gives the results for each of the diagnostic

tests. For comparative purposes the same information is provided for the SG

health state valuation model (McCabe et al 2004).

The similarity of the rank and SG data models is quite striking. The rank

model has one more inconsistency than the SG model, and does not

distinguish as clearly between the different levels on the mobility dimension.

However, this dimension is one of the weaker dimensions in the SG model.

With the exception of the sensation and mobility dimensions, the utility

decrement for the impaired level of functioning on each dimension are larger

in the SG than the rank model. The predictive performance of the two models

is closer than we would have expected given the difference in the level of

information the two models were estimated from. This said, the SG model

does perform better than the rank model on all tests.

Figure 1 plots the observed health state values and the prediction errors for

both the SG and the rank health state models. The plots confirm the similarity

of the predictive performance of the rank and SG models.
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SF-6D

Table 2 reports the same information for the SF-6D models.

The rank data model is quite different from the SG model. It is notable that the

number of inconsistencies is lower in the rank data model than the SG model.

Whilst there are inconsistencies in the coefficients for role physical, in both

models, there are fewer in the rank model than the SG model. The vitality

dimension in the SG model has a number of inconsistencies, the rank model

by contrast has none. The predictive performance of the rank model is slightly

worse than the SG model, for most tests. However, this may not be surprising

as the SG model is being used to estimate the data on which it was

estimated, whilst the rank model is being used to estimate a different dataset,

although the data was obtained from the same sample of respondents. The

LB test results suggest that the relationship between prediction error and

observed health state utility is less strong for the rank model than the SG

model.

Figure 2 plots the observed mean values and the prediction errors for both the

SG and rank data models. It is clear that there is greater variability in the

errors for the SF-6D compared with the HUI2.

Independence of Irrelevant Alternatives

Table 3 reports the test of the assumption of Independence of Irrelevant

Alternatives for both the HUI2 and SF-6D rank models. The results are not
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consistent across all the rank groups, but for both the HUI2 and the SF-6D

models, there is evidence that this assumption does not hold. The models

appear to be most sensitive to the exclusion of those states ranked highly or

lowly.

Discussion

In this paper we have reported the estimation of population cardinal health

state valuation models for the HUI2 and the SF-6D, from individual ordinal

preference data. In both cases the models bare comparison to the health

state valuation models estimated from SG (cardinal) data provided by the

same respondents.

The impetus for this research was an analysis of rank data for the EQ-5D,

presented by Salomon (2003). The predictive performance of the rank EQ-5D

model, in relation to the observed mean TTO value, (MAE=0.062), is slightly

superior to the SF-6D rank model (MAE 0.11) but identical to the HUI2 rank

model.

Our apparent success in estimating cardinal health state valuation models

from ordinal data raises many questions. In describing our results as a

success, we are assuming that the SG data are the appropriate ‘gold

standard’ by which to judge these models. It is arguable that our results say

as much about the limitations of SG data as they do about the existence or

otherwise of a latent utility function. Research is required to examine whether
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respondents expressed preferences are consistent with the models that are

derived from the SG (and TTO) values they provide. Such work is likely to

require qualitative as well as quantitative methods.

Our analysis of the performance of the rank models has assumed that the

relationship between the observed SG values and the predictions of the rank

models is linear. There is no reason why this should be so. The ranking

exercise does not involve risk, whilst the SG explicitly incorporates risk into

the valuation process. Standard models of risk attitude would suggest that a

linear model would not be the best functional form (Dyer and Sarin 1982).

Future work should look at the performance of alternative functional forms.

Theoretical perspectives on the relationship between rank and SG data

should inform such research.

Similarly, the use of a linear additive function for the HUI2 model is at odds

with the research of its developers and others, who report that a multiplicative

multi attribute utility function fits the MAUF data best. (Torrance et al 1996;

Feeny et al. 2002; McCabe et al, 2004b). In contrast, McCabe (2003) reports

that a linear additive model for the HUI2 had better predictive performance, in

a validation dataset, than the multiplicative multi-attribute utility function.

Currim and Sarin (1984) also found that a linear additive model had better

predictive performance than a multiplicative multi-attribute utility function,

although this was not in a health state preference context. More research is

needed on the choice of functional form for health state preference models.
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The application of the conditional logistic regression model requires that the

rank data exercise be characterised as a sequential choice process. Whilst

we believe that this assumption is defensible, we accept that other models of

the ranking process are equally plausible. The results of the Hausman test

results suggest that this assumption may not be robust and therefore our

results must be treated with some caution. There is an increasing body of

research suggesting that respondents apply decision heuristics to complex

choice scenarios, and that lexicographic preferences are common in

contingent valuation studies. (Lloyd, 2003; Cairns et al, 2002) Research on

the thought processes of individual’s undertaking ranking exercises would be

a valuable contribution to this field.

A potential solution to this problem would be to design the ranking exercise to

ensure consistency with the underlying assumptions of the model. Thus the

respondent would be presented with all the health states to be ranked and

asked to identify the highest ranked health state. This would be recorded and

then the respondent would be presented with the remaining health states and

again asked to identify the highest ranked health state from that set. This

process would be repeated until all the states had been ranked. Work to

establish the feasibility of undertaking this type of valuation exercise and to

compare the results with those from the ranking exercises presented here

would be of significant value.
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Our analyses assume that the rank data are preference data. The literature on

health state preference elicitation has generally argued that VAS data are not

preferences because the valuation process does not require the respondent

to trade. This same observation can be applied to ranking exercises. If rank

data are reflecting an underlying utility function the utility functions may reflect

Broome’s (1994) concept of the relative ‘goodness’ of different health states,

rather than the conventional expected utility, that the SG is designed to

measure.

The analyses assume that the information content of the rank is unaffected by

the order of the rank or indeed the number of states to be ranked. Hausman

and Ruud (1987) have hypothesised that respondents may take more care

with the initial ranking exercises than the later ones. Thus the risk of a ranking

being incorrect would be systematically related to a health state’s position in

the rank; i.e. the assumption of independence of irrelevant alternatives would

not hold. Koop and Poirier (1994) report that a limited relaxation of this

assumption in a model of voter preferences did not have a significant impact

upon the results. Our results suggest that the assumption does not hold for

either model, and that the models are sensitive to both the highly ranked and

lower ranked health states, but relatively insensitive to those states ranked in

the middle.

Should future research confirm the promise of ordinal data to support the

modelling of cardinal health state preferences, it is by no means clear what

the implications for future health state valuation work would be. It may be that
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ranking data may make it possible to incorporate the views of populations for

whom the TTO and SG procedures are felt to be too arduous e.g. younger

children (Saigal et al 1996). However, the ranking tasks themselves are not

simple and no research to date has examined children’s ability to understand

them.

An alternative benefit may be that the future valuation surveys may require

fewer resources. In addition, ranking exercises may be more feasible in postal

interviews than TTO and SG, again allowing more efficient implementation of

health state valuation surveys. It might be that rank data offers the

convenience of the VAS without the problems of context and end-point bias,

(Torrance et al. 2001).

These results raise questions about the relationship between discrete choice

experiments and the conventional methods of obtaining health state

preferences for calculating QALYs. The format of the discrete choice question

fits more immediately within the comparative judgement framework than the

ranking exercises described above. It seems reasonable to expect that

discrete choice scenarios that included a dimension for mortality (or risk of

mortality) might be suitable data sources for a similar modelling strategy to

that described in this paper. This said, it may also prove to be the case that

ranking is a more efficient means to collect these data than discrete choice

experiments. Comparative research is required to examine the pros and cons

of these two alternative approaches.
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Summary

In this paper we have presented two models of population cardinal health

state preferences based upon individual ordinal health state preference data;

one for the SF-6D health state classification, the other for the HUI2 health

state classification. We have compared these to models estimated on SG

valuation data, in terms of the degree of accuracy and bias in predicting mean

observed SG health state valuations in the estimation samples.

The ordinal rank models perform much better than might have been expected

given the difference in the informational content between the SG and ranking

exercises.

The results are consistent with Thurstone’s law of comparative judgement

(1927), and the existence of a latent utility function. The results also suggest

that there is potential for discrete choice experiments to provide health state

preference data on the full health-death scale. Further research on the

potential for ordinal health state valuation data to reflect cardinal population

preferences is required.
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Table 1: Ordinal and Standard Gamble Health State Valuation
Models for HUI22

2 All coefficients for both models were significant at the p<0.1.

RankCoeff RescaledCoeff SGCoeff
Sensation Level 2 -0.9933 -0.1156 -0.1151
Sensation Level 3 -0.9351 -0.1089 -0.1223
Sensation Level 4 -2.1167 -0.2464 -0.2253
Mobility Level 2 -0.7287 -0.0848 -0.0516
Mobility Level 3 -0.9887 -0.1151 -0.1224
Mobility Level 4 -0.8041 -0.0936 -0.1308
Mobiliyt Level 5 -1.0085 -0.1174 -0.1103
Emotion Level 2 -0.8122 -0.0946 -0.0945
Emotion Level 3 -1.0001 -0.1164 -0.1119
Emotion Level 4 -1.4291 -0.1664 -0.1801
Emotion Level 5 -1.4378 -0.1674 -0.1824
Cognition Level 2 -0.3223 -0.0375 -0.0567
Cognition Level 3 -0.5438 -0.0633 -0.0966
Cognition Level 4 -0.7732 -0.0900 -0.1676
Self Care Level 2 -0.4409 -0.0513 -0.0516
Self Care Level 3 -0.6924 -0.0806 -0.1138
Self Care Level 4 -0.7762 -0.0904 -0.1158
Pain Level 2 -0.8132 -0.0947 -0.1114
Pain Level 3 -0.9401 -0.1095 -0.1155
Pain Level 4 -1.2169 -0.1417 -0.1626
Pain Level 5 -1.7654 -0.2055 -0.2538
Death -8.5895 -1

n states 51 51
MAE 0.062 0.051
No.>0.05 23 18
No.>0.10 12 5
RMSE 0.0775 0.0657
LB 36.11 25.78
ICC 0.953 0.936
No. of Logical Inconsistencies 2 1
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Table 2: Ordinal and Standard Gamble Health State Valuation

Models for SF-6D3

3 Coefficients in bold are significant at p<0.1

RankCoeff RescaledCoeff SGCoeff
Physical Functioning 2 -0.3636 -0.0566 -0.0600
Physical Functioning 3 -0.4313 -0.0671 -0.0200
Physical Functioning 4 -0.9856 -0.1534 -0.0600
Physical Functioning 5 -0.6340 -0.0987 -0.0630
Physical Functioning 6 -1.4475 -0.2253 -0.1310
Role Limitations 2 -0.3211 -0.0500 -0.0570
Role Limitations 3 -0.4069 -0.0633 -0.0680
Role Limitations 4 -0.4053 -0.0631 -0.0660
Social Functioning 2 -0.3627 -0.0565 -0.0710
Social Functioning 3 -0.4203 -0.0654 -0.0840
Social Functioning 4 -0.5737 -0.0893 -0.0930
Social Functioning 5 -0.8055 -0.1254 -0.1050
Pain 2 -0.3772 -0.0587 -0.0480
Pain 3 -0.3635 -0.0566 -0.0340
Pain 4 -0.6520 -0.1015 -0.0700
Pain 5 -0.8187 -0.1275 -0.1070
Pain 6 -1.1912 -0.1854 -0.1810
Mental Health 2 -0.2157 -0.0336 -0.0570
Mental Health 3 -0.3371 -0.0525 -0.0510
Mental Health 4 -0.7016 -0.1092 -0.1210
Mental Health 5 -0.8993 -0.1400 -0.1400
Vitality 2 -0.1740 -0.0271 -0.0940
Vitality 3 -0.2140 -0.0333 -0.0690
Vitality 4 -0.3226 -0.0502 -0.0690
Vitality 5 -0.5267 -0.0820 -0.1060
Death -6.4240 -1.0000

n states 249 249
MAE 0.088 0.074
No.>0.05 169 118
No.>0.10 84 52
RMSE 0.110 0.098
LB 106.720 169.570
ICC 0.8300 0.8300
No. of logical inconsistencies 3 5
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Table 3: Hausman’s Test for Independence of Irrelevant Alternatives

Health Utilities Index Mark 2 SF-6D

Category Hausman p Category Hausman p

3 80.39 0.0000 8 126.03 0.0000

7 49.56 0.0007 6 35.2 0.1074

8 15.91 0.8202 . 24.03 0.5741

9 21.14 0.5119 7 30.62 0.2426

2 20.71 0.5388 4 32.32 0.1828

4 26.49 0.2311 5 75.53 0.0000

10 50.64 0.0005 3 110.45 0.0000

5 190.44 0.0000 2 221.1 0.0000

6 221.3 0.0000 - - -

1 -299.42 1.0000 - - -
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Figure 1: Prediction Errors for SG and Rank Models: HUI2
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Figure 2: Prediction Errors for SG and Rank models: Sf-6D
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Appendix 1: Health Utilities Index Mark 2 (Torrance et al. 1996)

Level Sensation Level Self care
1 Able to see, hear and speak normally for age 1 Eats, bathes, dresses and uses the toilet normally for age

2 Requires equipment to see or hear or speak 2 Eats, bathes, dresses or uses the toilet independently with
difficulty

3 Sees, hears, or speaks with limitations even with equipment 3 Requires mechanical equipment to eat, bathe, dress, or use the
toilet independently

4 Blind, deaf, or mute 4 Requires the help of another person to eat, bathe, dress or use
the toilet

Mobility Cognition
1 Able to walk, bend, lift, jump and run normally for age 1 Learns and remembers schoolwork normally for age

2 Walks, bends, lifts, jumps or runs with difficulty but does not require
help

2 Learns and remembers schoolwork more slowly than
classmates as judged by parents and/or teachers

3 Requires mechanical equipment (such as canes, crutches, braces or a
wheelchair) to walk or get around independently

3 Learns and remembers very slowly and usually requires
special educational assistance

4 Requires the help of another person to walk or get around and requires
mechanical equipment

4 Unable to learn and remember

5 Unable to control or use arms or legs

Emotion Pain
1 Generally happy and free from worry 1 Free of pain and discomfort

2 Occasionally fretful, angry, irritable, anxious depressed or suffering from
“night terrors”

2 Occasional pain. Discomfort relieved by non-prescription
drugs or self-control activity without disruption of normal
activities

3 Often fretful, angry, irritable, anxious depressed or suffering from “night
terrors”

3 Frequent pain. Discomfort relieved by oral medicines with
occasional disruption of normal activities

4 Almost always fretful, angry, irritable, anxious, depressed 4 Frequent pain. Frequent disruption of normal activities.
Discomfort requires prescription narcotics for relief

5 Extremely fretful, angry, irritable, anxious or depressed usually requiring
hospitalisation usually requiring hospitalisation or psychiatric
institutional care

5 Severe pain. Pain not relieved by drugs and constantly
disrupts normal activities.
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Appendix 2: The Short Form 6D (Brazier et al, 2002)

Level Physical Functioning Level Pain
1 Your health does not limit you in vigorous activities 1 You have no pain

2 Your health limits you a little in vigorous activities 2 You have pain but it does not interfere with your normal work (both
outside the home and housework)

3 Your health limits you a little in moderate activities 3 You have pain that interferes with your normal work (both outside
the home and housework) a little bit

4 Your health limits you a lot in moderate activities 4 You have pain that interferes with your normal work (both outside
the home and housework) moderately

5 Your health limits you a little in bathing and dressing 5 You have pain that interferes with your normal work (both outside
the home and housework) quite a bit

6 Your health limits you a lot in bathing and dressing 6 You have pain that interferes with your normal work (both outside
the home and housework) extremely

Role limitations Mental health
1 You have no problems with your work or other regular daily activities as a result

of your physical health or any emotional problems
1 You feel tense or downhearted and low none of the time

2 You are limited in the kind of work or other activities as a result of your physical
health

2 You feel tense or downhearted and low a little of the time

3 You accomplish less than you would like as a result of emotional problems 3 You feel tense or downhearted and low some of the time

4 You are limited in the kind of work or other activities as a result of your physical
health and accomplish less than you would like as a result of emotional problems

4 You feel tense or downhearted and low most of the time

Social functioning

5 You feel tense or downhearted and low all of the time

Vitality
1 Your health limits your social activities none of the time 1 You have a lot of energy all of the time

2 Your health limits your social activities a little of the time 2 You have a lot of energy most of the time

3 Your health limits your social activities some of the time 3 You have a lot of energy some of the time

4 Your health limits your social activities most of the time 4 You have a lot of energy a little of the time

5 Your health limits your social activities all of the time 5 You have a lot of energy none of the time

Footnote: The SF-36 items used to construct the SF-6D are as follows: physical functioning items1, 2 and 10; role limitation due to physical problems item 3;
role limitation due to emotional problems item 2; social functioning item 2; both bodily pain items; mental health items 1 (alternate version) and 4; and
vitality item 2.
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