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Abstract. With rapid economic development, utilization of energy storage is increasingly important. Carbon materials derived from 

biomass are widely applied in energy storage systems due to their inexpensive and environmentally friendly. Compared to other advanced 

anode materials that have been explored, biomass carbon materials have high specific surface areas, adjustable porous structures, and 

heteroatoms that facilitate ion transfer and diffus ion. To date, a series of porous biomass-derived carbon materials prepared through 

various methods were used as anode electrodes of a secondary battery which greatly promoted their capacities. In this paper, we 

summarize the morphology and pore structure of biomass -derived materials from different precursors, discuss the electrochemical 

performance of the secondary batteries (LIBs, SIBs, KIBs and ASSLMBs) equipped with biomass-derived carbon materials including 

monomers and composites as anode electrodes. Current research challenges along with future prospects for carbon-based electrode 

materials to improve secondary battery energy storage performance are emphasized. 

Introduction 

With rapid development of modern industry and human society, the depletion of fossil fuels and related environmental 

problems are growing evermore serious, and population growth further intensifies the shortage.1-5 In order to relieve the 

pressure of energy demand and reduce dependence on fossil fuels, the mainstream approach focuses on the development 

of sustainable energy technologies, especially electrochemical energy storage systems with the advantages of high 

efficiency, safety, and flexibility. Currently, chemical power sources have been utilized such as fuel cells, supercapacitors, 

and secondary batteries. Among these potential sources, secondary batteries have better stability than fuel cells and higher 

energy density than supercapacitors, and thus firmly occupy the global electrochemical energy storage market6-8 and are 

mailto:tinglima@life.kyutech.ac.jp
mailto:guoxiaolin@cjlu.edu.cn


 

2 

 

widely used in portable electronic devices (mobile phones, notebook computers, etc.), electric vehicles, computerized 

microelectronic mechanical systems, and military equipment (uniforms, gear, drones, etc.). Moreover, the secondary 

batteries of LIBs, SIBs, and KIBs batteries surpassed those of Ni-MH batteries in both volumetric and gravimetric energy 

density, as shown in Fig. 1.9  

  

 

Fig .1 (a) Schematic illustration of the energy density of commercial batteries (Lead acid, Ni-Cd, Ni-MH, LIBs (Li-ion), 

SIBs (Na-ion), and KIBs (K-ion)). Reproduced with permission from Ref. [9] copyright 2020, Elsevier . 
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Secondary battery energy storage technology depends on the performance of the electrode material. 10-12 An excellent 

electrode material should simultaneously satisfy low insertion potential, relatively stable structure, high electronic and 

ionic conductivity, and high electrolyte compatibility.13-16 Currently, graphitized carbon and non-graphitized carbon, 

including hard and soft carbons, are widely studied as primary anode materials. Other titanium-based materials, alloy 

materials, transition metal oxides, sulfides, and organic precursors are also reported to be high-performance secondary 

batteries.17-22 However, to further reduce environmental pollution and promote sustainable energy  development, anode 

materials with abundant resources, low cost, environmentally friendly, and simple to prepare are equally important for 

large-scale applications of secondary batteries.  

Recently, biomass-derived carbon materials have attracted widespread attention as potential materials for anode 

electrodes due to their superior performance, environmental friendliness, abundance, and renewability. Carbon materials  

derived from biomass also have special pore structures ( including hierarchical porous nanosheets ,23 3D flatty porous 

framework,24 3D layered porous active,24-25 and cross-linked porous framework26 ) and chemical element compositions 

with heteroatom-doping, which make them excellent candidates for the porous carbon material needed for anode 

electrodes in secondary batteries.27-30  

Biomass materials from different sources have different chemical components.31-33 Analysis of the elemental composition 

shows that biomass carbon materials are rich in carbon compounds and contain large amounts of H, O, N, and the mineral 

elements of P, S, Ca, K, Mg, Na, and Si.34-35 Rich in impurities, some types of biomass, such as Equisetum arvense,36-37  

rice husk,38 spinach, wheat bran, and dried dates,39 containing Si and carbohydrates.40-43 After acid hydrolysis of the raw 

materials, it is easy to form a porous structure in situ with a buffer space for volume expansion. Therefore, silicon-carbon 

materials derived from biomass are commonly investigated as anode electrodes in Lithium-ion batteries.  

In this review, biomass precursors were classified by morphology and pore structure for the remains of plant-based, 

animal-based, and microorganisms. Then, we highlight recent advances in secondary batteries Lithium-ion batteries 

(LIBs), Sodium-ion batteries (SIBs), Potassium-ion batteries (KIBs)，All-solid-state lithium metal batteries (ASSLMBs) 

with biomass-derived carbon materials as anode electrodes with respect to composition (carbon or silicon-carbon) and 

heteroatom-doping (nonmetal atoms or nanoparticles). Finally, we emphasize current challenges and future prospects for 

carbon-based electrode materials with secondary battery energy storage devices.  

Precursors of biomass-derived materials  

Plant-biomass materials mainly consist of cellulose, hemicellulose, and lignin—three substances used as biomass carbon 

sources.44 Animals-derived biomass mainly includes proteins, fatty acids, and chitin. Chitin-derived carbon nanofibers 

can be used as anode materials and as battery separators (a barrier between the anode and the cathode).45-50 The main 
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components of microorganisms are carbohydrates, protein fibers, and fats, making microorganisms an important source 

of carbon. Each material requires unique processing according to its unique physical and chemical properties.51  

 

Plant-based biomass 

Plant-based biomass mainly includes peels, crop straw, leaves , and weeds. Peels function to protect the fruit, and there 

exists abundant natural pore structures that permit the penetration of water and small-molecule gases, which can act as 

templates that produce frame pore structure through carbonization. The electrode carbon materials derived from peels 

usually possess unique multi-layer, multi-structure, and multi-scale morphology. To date, a series of peel-based biomass 

materials have been studied including banana peels,52-53 pomelo peels,54-55 apple peels,56-57 citrus peels,58 Litchi chinensis 

peels,59-60 pistachio peels,61 coconut shells,62-64 peanut peels,65,66 rice husk peels,67 longan shells,68 walnut shells,26 and 

apricot shells.69 Mitra et al.59 prepared porous carbon material by carbonizing litchi peels at 500 ℃ (Fig. 2a). As shown 

in Figure 2b–e, the average pore diameter is 10μm, evenly distributed. Similarly, Xu et al.62 reported a biomass-derived 

carbon material with high surface area composed of coexisting hierarchical pore structures derived from longan shells 

(Fig. 2f). The thin-walled structures are porous, aiding penetration of electrolytes and reducing resistance of ion migration 

(Fig. 2g–j). 

At present, crop straw is an important biological resource with large output, variety , and wide distribution. Common 

sources of crop straw include rice straw,70 wheat straw,71 corn straw,72 cotton straw.73 Other resource-rich biomass 

materials (leaves and weeds) such as green tea,74 juncus,75 leaves,76 jute fiber,77 dandelion,68, 78-79 hemp stems,80 E. arvense, 

and bamboo leaves have been widely studied as potential electrolytic materials for secondary batteries. As shown in 

Figure 2k, Ma et al. discovered a weed with high Si content that can be used to derive SiOx/C materials for use as anode 

materials in Li-ion batteries.81 The SEM image illustrates that the surface of the raw weeds contained dense Si with 

content exceeding 35% in highly-concentrated areas (Fig. 2l–p). When used as an anode in LIBs, it exhibited remarkable 

capacities (773 mA h g−1 at 0.1 A g−1) following 100 cycles and with desirable performance (472 mAh g−1 at 1 A g−1). 

Guo et al.82 prepared Si/N-doped C/C (SNCC) nanotubes and nano/composite spheres through a simple method using 

rice husks as the precursor, when used in LIB, it delivered a reversible capacity of 1380 mAh g-1 at 0.5 A g-1.77   
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Fig. 2 (a) Schematic of the synthesis of litchi peel sample, (b–e) The FESEM image of the as-prepared litchi peel sample, 

Reproduced with permission from Ref. [55] Copyright 2019, Elsevier; (f) Schematic of the synthesis of porous carbons 

from longan shells. (g–j) SEM and TEM of the porous carbons. Reproduced with permission from Ref. [62] Copyright 

2018, Elsevier; (k) Schematic of the synthesis of anode material, (l–p) SEM of raw materials of E. ravens, Reproduced 

with permission from Ref. [76] Copyright 2020, Elsevier  

Animal-based biomass 

Besides lignocellulose in plant-based biomass, the most abundant N-containing organic polymer in nature is chitin which 

has been proposed as a promising precursor to derive carbon materials doped with N.83 Gopukumar et al.84 synthesized a 

hierarchically macro-meso-micro porous N-doped carbon material from prawn shells by pre-carbonizing the raw material 

at 300 °C, activating with NaOH, and reheating at 750 °C in an inert Ar atmosphere. Yang and et al.59 obtained an anode 

from nanofiber material fabricated by pyrolysis of chitin (Fig. 3a). Atomic Force Microscope (AFM) image shows that 
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the chitin precursor consisted of nanofibers with the average diameter of 10 to 30 nm (Fig. 3b –c), and the nanofiber 

morphology was retained after pyrolysis (Fig. 3d–f). The XRD patterns (Fig. 3g) illustrate that the disordered carbon met 

the theoretical standard for Na ion insertion/extraction at different carbonation temperatures, which facilitated the high 

capacity and excellent rate capability of Na ion batteries. Qiu et al.85 synthesized a 2D hierarchical porous carbon using 

soft pitch as the carbon source and oyster shell as the template and activation agent. The 2D-layered structure surface area 

is 920 m2·g-1 and micro/meso-pore size (0.7–9.5 nm) that effectively shortened the solid-state diffusion distance of Li 

ions in a LIB, which exhibited a high reversible capacity of 1251 mA·h·g-1 at 0.1A·g-1. In addition to the shells of shrimp 

and crab, human hair86 and ox horn87 were utilized as sources of animal-based biomass precursors to synthesize N-doped 

carbon materials for use as anode material in secondary batteries. 
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Fig. 3 (a) Schematic the synthesis of carbon nanofibers, (b, c) AFM characterization of NACF, ( d–f ) SEM 

characterization of NACF, (g) XRD patterns of the samples (reproduced with permission from Ref. [80] Copyright 2018, 

Elsevier), (h) Schematic of the synthesized PC@RP porous carbon composite using fungus, (i) slag illustration of the 

sodiation of PC@RP and RP Particles in SIBs (reproduced with permission from Ref. [85] Copyright 2019, American 

Chemical Society) 

Microorganism-based biomass  

In addition to plant-based and animal-based carbon sources, microorganisms are also widely used as the biomass precursor 

for carbon materials. Penicillium-derived binder-free electrodes,88 edible fungus slag-derived electrodes,89 and wild 

fungus-derived anodes90 have been studied for use in secondary battery energy storage. Michael Gadd et al.91 found that 

electrode materials synthesized through fungal biomineralization of Mn exhibited excellent electrochemical performance 

and cycle stability, with a capacity retention rate above 90% for 200 cycles in LIBs and proposed this method of synthesis 

(i.e. use of fungal Mn biomineralization process based on urease-mediated Mn carbonate bioprecipitation) as potential 

application in the synthesis of biomaterials. Guo et al.85 synthesized PC @ RP porous carbon composite using fungus slag 

as the template compounded with red phosphorus (Fig. 3h). The high porosity of fungus slag promoted the positive 

transmission of Na+ ions and nano-level red phosphorus, effectively reducing the resistance between electrolytes and 

electrolytic materials (Fig. 3i). When used in SIBs, the PC @ RP composite maintained high retention rates (87%) after 

100 charge/discharge cycles. 
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Table 1. Electrochemical performance of various biomass-derived anode materials for use in secondary batteries 

Materials  Precursor SBET m2 g-1 Application Specific Capacity after 100 cycles  Ref 

PSDHC-600A Peanut shell  706.1  LIBs 474 mAh g-1 at 1 A g-1 36 

BCN Coconut shell  995.2  LIBs 800 mAh g-1 at 0.1 A g-1 66 

BPPG Banana peel  217.3  LIBs 800 mAh g-1 at 0.1 A g-1 52 

HPC Honeysuckle 830  LIBs 1215 mAh g-1 at 0.1 A g-1 111 

N-CNS soybean 1089 LIBs 550 mAh g-1 at 0.5 A g-1 104 

FeS/Carbon Carrageen 852  LIBs 839 mAh g-1 at 0.1 A g-1 71 

LPG Loofah 270  LIBs 225 mAh g-1 at 0.1 A g-1 158 

OHC ox horn  1300  LIBs 1181 mAh g-1 at 0.1 A g-1 86 

FeS/Carbon Carrageen 852  SIBs 227 mAh g-1 at 0.1 A g-1 71 

BPPG Banana peel  217.3  SIBs 298 mAh g-1 at 0.1 A g-1 52 

NP-CNSs Citrus peels  1167  SIBs 266 mAh g-1 at 0.1 A g-1 58 

PSDHC-600A Peanut shell  706.1  SIBs 190 mAh g-1 at 0.25 A g-1 36 

LPG Loofah 270 KIBs 150 mAh g-1 at 0.1 A g-1 158 

CNM prawn shell 336  LIBs 740 mAh g-1 at 0.1 A g-1 82 

CNM prawn shell 336  SIBs 325 mAh g-1 at 0.1 A g-1 82 

OPDHC-A orange peel 1272  SIBs 156 mAh g-1 at 0.5 A g-1 92 

Note: PSDHC-600A (porous hard carbons-600A); BCN (boron carbonitride); BPPG (Banana peel pseudographite); HPC (hierarchical porous carbon); N-

CNS (ultra-thin carbon nanosheets); LPG (loofah-derived pseudo-graphite); OHC (ox horn derived carbon); NP-CNSs (nanoporous carbon nanosheets); PSC 

(prawn shell derived carbon); OPDHC-A (orange peel derived hard carbon) 
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Applications in LIB anode electrode 

LIBs have become the first choice for green batteries in the 21st century and the most promising research object for 

scholars and scientists.92 Generally, graphite is the most representative anode material in LIBs  because of its low Li 

intercalation potential which prevents deposition of Li metal dendrites and improves security; however, the theoretical 

capacity of a graphite anode is only 372 mA·h·g-1, which is needs to be elevated for LIB applications.93 The theoretical 

capacity of Si is 4200 mAh g-1 when fully intercalated with Li, with an actual capacity of 4000 mAh g-1, which is 10 times 

the capacity of graphite.94 These intrinsically-desirable molecular structures and architectures are favorable for energy 

storage and transport toward a sustainable energy economy. Large volume expansion (360% for Li4.4Si) and poor 

electrical conductivity hinder application of Si-based anode materials in LIBs. One of the most effective strategies is  the 

use of Si-C compounds which have high capacity, good conductivity, and good stability.95 Anode materials doped with 

atoms of N, P, and S can expand the surface area, provide more reaction sites, and enhance conductivity, which is 

beneficial to the absorption and transfer of ions during the charging process. According to the way in which the 

heteroatoms are introduced, the biomass-derived carbon can be divided into intrinsically-doped carbon and extrinsically-

doped carbon.96 

 

Biomass-derived carbon 

Non-doped carbon. 

 In general, carbon materials derived directly from pyrolysis of biomass requires further treatment with an activation 

reagent such as KOH to increase surface area and porosity. Specifically, as the biomass-derived carbon substrate is etched 

by the KOH, micropores and mesopores form during the redox reaction process and the water vapor contributes to the 

fabrication of pores during activation. Moreover, K ions (K+), as the activated intermediate, can be inserted into the carbon 

skeleton to further expand the spacing of crystal planes.97-98 Tian et al.65 studied peanut shell-derived carbon anodes 

carbonized at 600 ℃ with and without KOH activation (PSDHC-600 A and PSDHC-600). Compared with PSDHC-600, 

PSDHC-600A shows richer pore structure (Fig. 4a–d) and greater surface area (from 375.2 to 706.1 m2·g-1, Fig. 4e). For 

LIB applications, the reversible capacity increased from 314 to 474 mA·h·g-1 at 1 A·g-1 after 400 cycles for PSDHC-600 

and PSDHC-600A, respectively (Fig. 4f), and retained its capacity at 310 mA·h·g-1 after 10,000 cycles at 5 A·g-1. Kim et 

al.74 synthesized a carbon anode derived from discarded green tea with a spherical nanostructure and average diameter of 

30 nm. The cyclic voltammetry curves illustrated that a solid electrolyte interface (SEI) formed on the surface of the 

anode during the first cycle, which enhanced the reversible capacity to 498 mA·h·g-1 after 100 cycles when applied in 

LIBs. 
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Fig. 4 (a, c) SEM, (b, d) TEM of the sample, (e) BET of the sample, (f) electrochemical performances of PSDHC-600 

and PSDHC-600A for LIB applications. Reproduced with permission from Ref. [59] Copyright 2015,  Elsevier. 

 

In addition to potassium hydroxide,59 zinc chloride,99 sodium hydroxide,100 potassium carbonate,78 sulfuric acid,79 and 

phosphoric acid80 were also used as activators for carbon materials derived from biomass. Sun et al.99 derived anode 

materials with high specific surface area of 1191.30 m2 g−1 from rice husks using a ZnCl2 activation method. When used 

for LIB applications, this material delivered a reversible capacity of 1105 mAh g−1 at 0.1 A g-1 after 360 cycles. Jusef 

Hassoun et al.101 used different activators to obtain AC-H (H3PO4) and AC-K (KOH) derived from cherry pits and found 

that AC-H had higher specific surface area (1662 m2 g−1) compared to AC-K (1171 m2 g−1), and that AC-H had better 

electrochemical performance at low rates, while AC-K exhibited excellent performance at high rates. 

 

Carbon doped with nonmetal atoms/single atoms. 

Doping of carbon with heteroatoms forms defects and active sites, and enhances the electrical conductivity of the anode 

material, which in turn improves the electrochemical performance in LIBs.102 How the heteroatoms are introduced to can 

be classified as intrinsic doping and extrinsic doping.103-104 Intrinsic doping means that the precursor contains heteroatoms, 

and thus the heteroatoms are more likely retained in  the skeleton of the carbon material during the carbonization 

cracking process. High stability and low cost are obvious advantages of the intrinsic doping method; however, the content 

of the heteroatom is easily limited by the precursor, causing inadequate doping. For extrinsic doping, the substance 
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containing the heteroatom reacts with the biomass precursor to obtain the target product without strict limitations on the 

amount of dopant. Among the different dopant atoms, N atoms are the most widely used dopants to introduce defects to 

biomass-derived electrode materials.81,82 Doping with N atoms can strengthen the wettability of biomass-based electrode 

materials and improve the migration rate of ions, which improve the performance of the anode material. To date, carbon 

materials with high N content have been prepared, including ultra-thin carbon nanosheets derived from soybean milk,105 

nitrogen doped porous carbon materials derived from duckweed,106 and nitrogen doped porous carbon from Ginkgo biloba 

as precursors.107  

Xiao et al.87 prepared N-rich porous carbon materials by pyrolysis of ox horns activated with KOH, and the specific 

surface area of the material increased from 10 to 1300 m2 g-1. Moreover, XPS spectra showed that C, O, and N were the 

main elements in the derived material and the N content reached 5.5%. The high N content indicates that the generation 

of defects and enhanced the conductivity of the carbon material and the electrochemical performance in LIBs  with a 

specific capacity of 1181 mAh g-1 at 0.1 A g-1 and 304 mAh g-1 at 5 A g-1. Xiao et al.71 reported a porous N-rich material 

(HPNC) with a surface area of 916.0 m2 g-1. The hierarchically-porous HPNC was derived from wheat straw, which was 

carbonized under an Ar atmosphere at 700 ℃ and activated by potassium hydroxide with a mass ratio of 3:1. The crude 

protein in the wheat straw precursor contributed to the high N content in HPNC and was used as the anode material for 

the LIBs, in which the reversible cycling capacity of HPNC achieved 1470 mAh g-1 with 0.1 C and 344 mAh g-1 at 50 C. 

In addition, Kim et al.108 synthesized a N-doped carbon material derived from shaddock peel using a carbamide-induced 

N-doping procedure and attributed the expansion of interlayer spacing and optimization of porous structure during 

formation of the C-N bonds. 

 

Carbon doped with multiple atoms.  

In addition to N, doping with S atoms also provides more active sites and enhances the conductivity of electrode 

materials,109-111 therefore, doping with multiple nonmetal atoms has been widely applied to modify biomass-derived 

carbon materials. Xiang et al.112 reported on electrode materials (HPC) co-doped with S and N directly derived from the 

biomass of honeysuckle. Elemental mapping and SEM images demonstrate that S and N are evenly distributed in carbon-

based material with a 3D porous hierarchical structure. For LIB applications, the reversible capacity of HPC was 1215 

mAh g-1 at 0.1 A g-1 and 370 mAh g-1 at 20 A g-1 after 100 cycles. Excellent electrochemical performance was attributed 

to the multi-level porous nanostructure and the introduction of heteroatoms, which reduced the diffusion resistance 

between the electrolyte and electrode material and facilitated the transport of Li ions. Similarly, Ciucci et al.113 developed 

P and N dual atom-doped carbon material (PNCC) from egg yolk. When used as a half-cell electrode material, its shows 

a reversible capacity of 770 mAh g-1 at 0.5 A g-1 after 100 cycles. Wang et al.114 reported that a carbon-based material 
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doped with S, N, and O (NOSDCA-3) derived from algal-derived carrageen. The SEM and TEM images showed the 

sponge-like interconnected porous structure of NOSDCA-3. The XPS showed that the elemental content of C, N, O, and 

S are 85.87%, 1.65%, 7.69%, and 4.79%, respectively. When tested as LIB anodes, a reversible capacity of 839 m Ah g-1 

at 0.1 A g-1 and a capacity of 228 mAh g-1 at 10 A g-1 were obtained. 

 

Carbon composed with TMO/TMS.  

Transition metal oxides and sulfides (TMO/TMS) have been widely studied due to their high theoretical capacity based 

on the reaction: TMO (TMS) + 2Li+ + 2e- ↔ Li2O (Li2S) + TM; however, this reaction is accompanied by a drastic 

change in volume during charging and discharging. Composed with the conductive supporting substrates is a strategy to 

relive the structural change and maintain the stability of TMO/TMS. Biomass-derived carbon materials are suitable as 

buffer for anode materials and many researchers have synthesized X/biomass -derived carbon composites (where X 

represents Li4Ti5O12,115 NiCo2O4,55 ZnMn2O4,116 FeS2,117 Co1-xS,118 and Co3O4
119) to improve the stability and reversible 

capacity in LIBs. 
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Fig. 5 (a) Scheme of synthesis of PPC/NiCo2O4 composite, (b) SEM, (c) TEM of the PPC/NiCo2O4 composite, (d) cycling 

performance of PPC/NiCo2O4 composite. Reproduced with permission from Ref. [51] Copyright 2020, Elsevier 

 

Liang et al.55 synthesized carbon material derived from pomelo peels (PPC) and composited it with NiCo2O4 nanoparticles 

to obtain PPC/NiCo2O4 (Fig. 5a). The SEM images show a very thin layer of NiCo2O4 covering the PPC surface following 

hydrothermal and heat treatments (Fig. 5b, c). As used in LIBs, PPC/NiCo2O4 shows a reversible capacity of 473.7 mAh 

g-1 at 0.5 A g-1 after 210 cycles, and 363 mAh g-1 at 2 A g-1 after 1100 cycles. Zhang et al.116 reported a pine needle-
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derived ZnMn2O4/PNC composite prepared by the hydrothermal method. When used as anode material in LIBs, this 

composite showed excellent storage performance and cycle stability with a reversible cap acity of 1000 mAh g−1 at 0.2 C 

and 727 mAh g−1 at 2.0 C after 500 cycles, respectively. Lee et al.120 fabricated a Sn/C composite extracted from 

microalgal biomass. For LIBs, this composite exhibited a reversible capacity of 511.7 mAh g−1 at 200 mA g-1 after 300 

cycles. 

 

Biomass-derived silicon-based/carbon composite 

Si/C composite 

Lithium-ion batteries with anodes made from Si have a maximum theoretical capacity of 4200 mAh g-1 and a lower 

discharge potential than Li/Li+,121 which is considered to strong potential prospects as an LIB electrode material. However, 

Si-based materials have poor electronic conductivity and high volume deformation (about 300%) during charge and 

discharge.122 Compositing Si nanoparticles with carbon materials is an effective strategy to improve cycle stability, which 

provides a larger buffer space for Si/C material, alleviates agglomeration of Si nanoparticles, and improves the 

conductivity of Si to a certain extent.123-124 Some kinds of biomass, such as reeds, chaff, weeds, and bamboo, contain both 

SiO2 and lots of carbohydrates. After acid hydrolysis of the raw materials, it is easy to form a porous structure in situ to 

provide a buffer space for volume expansion and have been widely investigated as anodes in LIBs. Yu et al.125 synthesized 

a 3D porous Si/C anode material using reed plants as the source of Si. The reed precursor was calcined and reduced with 

Mg to obtain porous silica; then compounded with glucose to obtain porous Si/C material (yield of Si ~ 4%, Fig. 6a). The 

TEM images show an even layer of carbon covering the surface of the porous 3D Si structure, which improved the 

conductivity of anode and enhanced cycle stability with a retention capacity of 420 mA h g-1 at 10 C after 4000 cycles. 

Yu et al.126 prepared a porous 3D Si from bamboo charcoal composited with polyacrylonitrile  to prepare a Si@N/C 

material. For LIB applications, a reversible capacity of 603 mAh g−1 at 0.2 A g−1 and a maximum capacity of 360 mAh 

g−1 at 1.6 A g−1 after 120 cycles. The excellent electrochemical performance demonstrates that N-doped carbon can 

improve the conductivity of the Si/N-doped carbon composite anode material and accommodate the volume change better 

during cycling (Fig. 6b). Guo et al.82 prepared a Si/N-doped carbon/carbon nanotube spheres anode material using rice 

husk as the Li-ion precursor. In this work, they used electrospray ionization method and carbonization to obtain 

nanospheres with microstructures. 
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Fig. 6 (a) Schematic of synthesis of porous 3D Si/C anode (reproduced with permission from Ref. [120] Copyright 2015,  

Wiley), (b) schematic of synthesis of the NSC anode (reproduced with permission from Ref. [126] Copyright 2020, 

Elsevier), (c) schematic of synthesis of Porous Si@N/C Composites (reproduced with permission from Ref. [121] 

Copyright 2018, Elsevier) 

 

SiOx/C composite 

 Since Si-based materials have problems caused by volume expansion and poor cycle stability, SiOx with smaller volumes 

of expansion (<150%) present an alternative to popular anode materials used in LIBs.127-128 Gao et al.129 prepared SiOx/C 

nanoparticles (10–50 nm) using rice husks, which contain abundant C and 20 wt% SiOx, as the precursor. SiOx/C 

nanoparticles were obtained in a two-step carbonization process at 900 °C under an Ar/H atmosphere. The reduced 

atmosphere facilitated formation of low valence Si in SiOx/C nanoparticles, which delivered a maximum reversible 

a b

c
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capacity of 600 mAh g-1 after 100 cycles at 0.1 A g-1. Similarly, using ZnCl2 as the activating agent to carbonize rice 

husks, Sun et al.130 fabricated a porous C/SiO2 composite with surface area 1191.30 m2 g−1. High surface area increased 

the contact area between C/SiO2 anode material and the electrolyte thereby promoting Li+ diffusion at their interface and 

contributing to an excellent reversible capacity of 1105 mAh g−1 at 0.1 A g−1 after 360 cycles. Pang et al.131 developed 

highly stable ternary Ni/SiOx/N-doped carbon (NSC) anode material derived from bamboo. SiOx/N-doped carbon (SC) 

framework provided sufficient space to buffer volume expansion during lithiation. The uniform Ni nanoparticles (NPs) 

on the SC matrix restricted the formation of cracks, reduced volume expansion, and thus improved the electrical 

conductivity of SiOx. The electrode exhibited a discharge capacity of 864.6 mAh g-1 at 0.2 A g-1 and 289.8 mAh g-1 at 10 

A g-1 after 70 cycles in LIBs. Ma et al.74 prepared Sn/SnSiOx+2@C-650 anode material (Fig. 7a) using a one-pot treatment 

of biomass (Fatsia japonica), the glass phase of SiOx+2, and Sn nanoparticles. The Sn/SnSiOx+2@C-650 delivered a 

maximum reversible specific capacity of 919 mAh g−1 at a current density of 0.2 mA g−1 after 100 cycles (Fig. 7c). After 

100 cycles, the electrode thickness increased from the original 32.3 μm (Fig. 7b) to 39.1 μm (Fig. 7c), while the volume 

expansion was controlled within 20%. 

 

 

 

Fig. 7 (a) Schematic of synthesis of biomass-derived carbon framework, and cross-sectional SEM images of the 

Sn/SnSiOx+2@C-650 electrode (b) before and (c) after 100 cycles (with permission from Ref. [69] Copyright 2019, 

American Chemical Society) 
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Applications in SIB anode electrodes 

Given the high price of Li, the element Na, which is in the same group as Li, has attracted attention in its potential 

application as a secondary battery because of its lower price and abundance. The energy storage mechanisms in the SIBs 

and LIBs are roughly the same with respect to the insertion and extraction of ions on the electrode material. However, the 

graphite that is widely used in LIBs cannot meet the requirements for anode material in SIBs because Na ions have a 

larger radius (1.07 Å) than lithium ions (0.76 Å).132-134 Biomass carbon is produced by the carbonization of natural 

biomass, and most natural biomass is composed of hard carbon materials which are difficult to graphitize.135 To date, 

various biochars derived from biomass have been prepared and used as anode materials for  SIBs.75, 136-138  

 

Non-doped carbon 

Shi et al.139 obtained straw-derived carbon material for anodes (RS-x samples) by pre-processing and carbonization at 

different temperatures (i.e. 900, 1100, 1300, and 1500 oC). As shown in the SEM images (Fig. 8a–d), the RS-x samples 

were made of micron-grade block, and the surface was covered with a layer of nanospheres. The SIB electrode material 

of the RS-1100 sample had the highest reversible capacity of 291.1 mAh g  -1 after 200 cycles at 0.4 C (Fig. 8e–f) due to 

the proper interlayer spacing in this sample, which was conducive to the insertion and extraction of Na ions. The storage 

mechanism of Na ions was revealed for the RS-x electrode on which Na ions adsorbed onto the micropores and defects 

in the sloping region (≥0.1 V), while in the plateau region (<0.1 V), Na ions were inserted into the graphite-like nanolayer 

(Fig. 8g). As the pyrolysis temperature rose, the interlayer spacing and adsorption area declined although the number of 

layers and the value of La increased. Similarly, Pol et al.140 obtained SIB anode materials derived from pistachio shells 

that carbonized at 700 to 1500 oC under an Ar atmosphere. The Raman spectroscopy revealed that the larger D-Raman 

peak and G-Raman peak ID/IG ratio along with increased temperature of carbonization revealed the formation of sp2 rings 

and the transformation of sp3 carbon. Compared to other samples, the sample carbonized at 1000 oC (surface area = 760.9 

m2 g−1) delivered the highest reversible capacity of 225 mAh g−1 at 10 mA g−1. 
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Fig. 8 SEM image of RS-x. (a) RS-900, (b) RS-1100, (c) RS-1300, (d) RS-1500, (e) discharge/charge curves,(f) cyclic 

performance, (g) mechanism of RS-x electrodes for sodium storage (reproduced with permission from Ref. [131] 

Copyright 2018, Elsevier) 

 

Carbon doping with nonmetal atoms  

Single atom 

Introducing dopant atoms into the carbon sp2 lattice to replace carbon atoms could form more defects, increase electronic 

conductivity and the number of active sites of the heteroatom-doped carbon.141-142 In general, the dopant atoms B, N,143 

Fl,144 S,145 and P146 are common in SIB applications. Ci et al.147 derived porous N-doped carbon materials from egg yolk 

through carbonization at 650 ℃ and washing with NaOH and HCl to remove impurities. The XPS spectra revealed that 

the N in porous carbon can be divided into quaternary N and hexagonal pyridinic N with a total carbon content of 4.6%. 

Also, heteroatom doping and low carbonization temperatures cause high disorder of carbon (ID/IG ratio was about 0.94).  

Nitrogen-doped porous carbon anode material used in SIB applications delivered a reversible capacity of 208 mAh g−1 at 

0.1 A g-1. Sun et al.148 prepared a series of 3D layered S-doped biomass materials—S-OS, S-GP, S-ES, and S-LL derived 

from onion skin, garlic peel, elm samara, and lotus leaf, respectively (Fig. 9a–d). The SEM images show that these 

biomass precursors have similar 3D frameworks of parallel flakes (Fig. 9e–h), which were well-preserved after the S-

doping carbonization process (Fig. 9i–l). For SIB applications, the S-OS, S-GP, S-ES, and S-LL precursors delivered 
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specific capacities of 178.4, 155.6, 145.7, 176.1 mA h g−1, respectively, at 5 A g− 1, demonstrating the excellent 

performance of these S-doped carbon materials (Fig. 9m–p). 

 

Fig. 9 (a–d) Digital photographs; (e–h) SEM images of onion skin, garlic peel, elm samara, and lotus leaf; (i–l) SEM 

images of the S-OS, S-GP, S-ES, S-LL samples; (m–p) electrochemical performance of the S-OS, S-GP, S-ES, and S-

LL samples (reproduced with permission from Ref. [140] Copyright 2019, Elsevier) 

 

Multiple atoms  

In general, carbon materials doped with multiple heteroatoms including B-N,149 N-S, and N-P150 have been applied as 

anode material in SIBs. Zhang et al.151 synthesized N and S dual-doping carbon through hydrolyzation of bean shells. 

Broad beans are rich in resources and contain a series of heteroatoms including O, N, and S, which are naturally excellent 

precursors for heteroatom-doped carbon materials. These electrodes exhibit a high initial discharge capacity of 466.3 

mAh g-1 at 0.2 A g-1 and outstanding cycle performance, with great potential for application in SIBs. 

 

Carbon composed of nanoparticles  

Yang et al.152 prepared highly-porous FeS/carbon fibers (FeS/CFs) for use as anode material with an Fe-carrageenan 

composite as the precursor. During preparation of the Fe-carrageenan fiber (Fig. 10a), Fe+ can promote the formation of 

a double helix structure and strengthen the aggregation of different double helix, which is conducive to long-distance 

d) Digital photographs, (e–h) SEM images of onion skin, garlic peel, elm samara and lotus leaf. (i–l) SEM images the of the S-OS, S-GP, S-ES, S-LL samples. (m
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cross-linking. The FeS nanoparticles are formed in situ by interacting with the S-containing group of carrageenans and 

uniformly embedded in the unique 1D porous carbon fibrous matrix (Fig. 10b –d).  

 

 

Fig. 10 (a–d) Digital photographs; (e–h) SEM images of onion skin, garlic peel, elm samara, and lotus leaf; (i–l) SEM 

images the of the S-OS, S-GP, S-ES, and S-LL samples; (m–p) electrochemical performances of S-OS, S-GP, S-ES, and 

S-LL samples (reproduced with permission from Ref. [145] Copyright 2018, Elsevier Copyright 2018, American 

Chemical Society) 

 

After pyrolysis in an Ar atmosphere, the Fe-carrageenan fibers decompose to FeS/CFs, and porous FeS/CFs were obtained 

by calcining at 600 °C in a CO2 atmosphere. The composite material delivered  a high capacity of 283 mAh g–1 at 1 A g–

1 and rate of 247 mAh g–1 at 5 A g–1 after 400 cycles. 

Dan et al.153 prepared hierarchical iron phosphides/biomass carbon materials using the electrodeposition method to 

composite the iron phosphide with the carbon biomass derived from magnolia leaf. The porous carbon enhanced the 

electrical conductivity and reduced the mechanical stress due to the iron phosphides. The nanosheet structure of the 

phosphides/biomass carbon increased the specific surface area, provided more active sites, and shortened the ion diffusion 

channel. The electrode delivered a reversible capacity of 500.9 mAh g-1 at a current density of 0.05 A g-1 and 197 mAh 

g-1 at 0.5 A g-1 after 100 cycles. The Sb2O4/C composite prepared by Dutta154 used Indian blackberry seeds as the carbon 

precursor and found that disordered carbon created a massive network of space, which increased conductivity, provided 
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a buffer for volume expansion which in turn benefitted stability during the charge/discharge process, and exhibited a high 

reversible capacity of 236 mAh g-1 at a current density of 1 A g-1after 125 cycles. 

Applications in potassium ion batteries and all solid-state lithium battery 

Potassium ion batteries 

Currently, LIBs are one of the most commonly used energy storage systems;155-156 however, the shortage of Li resources 

create a need for alternatives. In addition to Na ions, K-ion batteries (KIBs) are of interest because of the abundant 

resources and appropriate oxidation-reduction potential of K ions.157-158 Lu et al.159 prepared potato biomass porous 

carbon (PBPC) approximately 10 nm in diameter (Fig. 11a). When used as anode material for KIBs, the PBPC exhibited 

excellent electrochemical performance, with a reversible capacity of 248 mAh g-1 at 0.1 A g-1 and a coulomb efficiency 

exceeding 99% (Fig. 11b). Similarly, Yao et al.160 found that Ganoderma lucidum spores—a traditional Chinese medicinal 

material with abundant protein, amino acids, and vitamins—have a natural hollow cage-like structure and a double wall. 

Through simple carbonization, a porous carbon material shows a specific surface area of 104.4 m2 g-1 and stable 

mesopore/macropore structure was obtained (Fig. 11c–f). For KIB applications, this porous carbon material anode 

material exhibited a reversible capacity of 163.8 mAh g-1 after 100 cycles at of 0.2 A g-1 (Fig. 11g). 
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Fig. 11 (a) Schematic illustration of the potato biomass porous carbon (PBPC) derived from potato. (b) Discharge and 

charge capacity and coulombic efficiency of PBPC-1000 at 0.1 A g-1 (reprinted with permission from Ref. [151], 

Copyright 2018, Elsevier). (c) SEM image of untreated Ganoderma lucidum spore. (d) SEM image of CPC. (e, f) TEM 

image of CPC (reprinted with permission from Ref. [152], Copyright 2020, Elsevier). (h) Schematic illustration of the 

synthesis of N-doped walnut septum. (i) Charge and discharge at of 100 mA g−1 (reprinted with permission from Ref. 
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[153], Copyright 2019, Elsevier). (k) Schematic illustration of the synthesis of Loofah-derived carbon. (l) Capacity of 

Luffa-derived carbon (reprinted with permission from Ref. [154], Copyright 2019, Elsevier) 

Guo et al.161 obtained N-doped hierarchical porous carbon (NHPC) materials from walnut septum (Fig.  11h). The layered 

structure, large interlayer spacing, and numerous active sites contributed to the excellent electrochemical performance of 

NHPC as an anode material in KIBs with a reversible capacity of 242.5 mAh g−1 after 200 cycles at 0.1 A g−1 (Fig. 11i). 

Niu et al.162 derived a hard carbon material (pseudo-graphite) from a Luffa by one-step pyrolysis (Fig. 11k). The graphite-

like units on a micron scale and near-surface defects on a larger scale contributed to the dual-ion storage mechanism of 

the Loofah-derived carbon material, and achieved good electrochemical performance as both anode material in both LIBs 

and KIBs (Fig. 11). 

 

All-solid-state lithium metal batteries 

To date, the safety issues and limited cycle life limits the commercialization of lithium metal batteries. Use of newer 

nonflammable solid electrolytes in place of traditional organic flammable electrolytes can reduce the risk of fire and 

explosion. Considering the defects of the anode materials, an ideal frame material is required for constructing the novel 

solid multi-level structure lithium metal electrode. Therefore, adopting a m ulti-level structure inside the electrode is an 

effective way to enhance the interface contact and improve the performance of the solid -state lithium metal battery.163-165 

Inspired by the multi-level structure of diatomite, Yu et al.166 prepared a multi-level Li metal solid composite anode with 

a stable structure and without dendritic growths (Fig. 12). They transformed natural diatomite (Fig. 12a) into a silicon 

framework (Fig. 12b) with a multi-level pore structure using the magnesium thermal reduction method. The multi-level 

structure of the Si framework was mixed with molten lithium and stirred to prepare the lithium-silicon composite powder 

(Fig.12c). Next, polyethylene oxide polymer solid electrolyte (PEO-SPE) was used to modify the surface of the lithium-

silicon powder. Finally, the powder was cold-pressed into a mold to form a composite lithium metal negative electrode 

(PEO-DLSL) with a multi-level structure. In the PEO-DLSL, the lithium metal is embedded in the pore structure of the 

PEO-SPE-modified Li4.4Si frame, thereby increasing its contact area with the electrolyte, which is beneficial in obtaining 

a uniform Li ion flow and maintaining the electrode structure “Completeness.” As a result, at high current density (>0.5 

mA cm-2), the multi-level structure of the lithium metal composite anode derived from diatomite achieved uniform 

deposition and extraction of lithium metal, which effectively inhibited lithium dendrites. With PEO-SPE as the solid  

electrolyte, the PEO-DLSL symmetric battery can be cycled for more than 1000 h without short circuiting during the 

lithium extraction/deposition test, and the polarization voltage can be maintained below 100 mV. Researchers further 

investigated the performance of PEO-DLSL in all solid-state lithium metal batteries (PEO-SPE is a solid electrolyte with  

lithium iron phosphate as the positive electrode). The PEO-DLSL-based solid-state lithium metal battery showed superior 
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cycle stability (500 cycles can be cycled at a rate of 0.5 C, and the capacity decay rate of 0.04 % per cycle), which is an 

advantage over the solid lithium metal battery using flat lithium foil with a short circuit after 75 cycles (Fig.  12d). 

  

Fig. 12 (a–b) SEM images of pristine diatomite framework (DF) and DF-Si, respectively. (c) The fabrication process of 

PEO-DLSL. (d) Long-term cycling performance of batteries at a current density of 0.5 C. Reprinted with permission from 

Ref. [158], Copyright 2019, Springer. 
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Conclusions and Perspectives  

Nowadays, biomass-derived anode is widely studied as electrode materials as new energy storage devices due to their 

large specific surface area, stable structure and excellent electrical conductivity etc. The d emand for green and sustainable 

energy storage materials provokes the development of low-cost and eco-friendly anode materials for the secondary 

batteries. Biomass, as a rich, cheap and easily available renewable resource, provides sufficient raw materials for 

preparing porous carbon materials. In this review, we summarized the diversity of structural characteristics of common 

biomass precursors for carbon materials to be used in secondary batteries to store energy and introduced the application 

of biomass-derived carbon anode materials in LIBs, SIBs, KIBs, and  All-solid-state lithium metal batteries, with respect 

to composition and heteroatom-doping. By classifying the biomass materials according to the source of their precursor, 

the material composition and structural characteristics provide a reference for further design and  application of biomass 

materials in the field of secondary batteries. The carbon materials doped with nonmetal elements improve electrical 

conductivity and facilitate transmission of electrons, therefore electrochemical performance of carbon -based anode 

materials can be enhanced. Carbon materials doped with metal elements also increase the discharge specific capacity, 

energy power, and energy density because the heteroatoms narrow the band gap and thereby enhance conductivity.  

Although materials derived from biomass show great potential as anode material in secondary batteries, there are issues 

that limit further application. First, biomass-derived carbon has various porous structures and morphology, and thus it is 

not easy control the quality or quantity of material needed for mass production. The best way to scale up production for 

biomass-derived carbon materials from the laboratory stage to industrial application needs further exploration, and future 

research should be directed towards the development of structurally-controlled biomass-based carbon materials to achieve 

sustainable development strategies. In addition, Biomass-derived carbon material has low first coulomb efficiency and 

poor stability, which restrict their large-scale development seriously. And hopefully, the development and application of 

heteroatom doping or compounding with other compounds can be an effective solution to the problem. Furthermore, 

Biomass-derived carbon material needs to choose some lower-cost precursors that are not restricted by geographical 

restrictions and seasonal restrictions for the development from laboratory to industrialization.  

In addition to secondary batteries, biomass materials have also been fully studied in other fields such as supercapacitors, 

fuel cells, Wastewater treatment, gas adsorption and catalyst，biomedicine, sensor device. Currently, with the continuous 

innovation of new energy technology, researchers are constantly increasing the research passion on low -cost and 

pollution-free biomass materials. We believe that biomass materials will definitely be a very shining star in this energy 

revolution. 
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