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Abstract—In this paper, we consider the gathering problem
of seven autonomous mobile robots on triangular grids. The
gathering problem requires that, starting from any connected
initial configuration where a subgraph induced by all robot nodes
(nodes where a robot exists) constitutes one connected graph,
robots reach a configuration such that the maximum distance
between two robots is minimized. For the case of seven robots,
gathering is achieved when one robot has six adjacent robot
nodes (they form a shape like a hexagon). In this paper, we aim
to clarify the relationship between the capability of robots and
the solvability of gathering on a triangular grid. In particular,
we focus on visibility range of robots. To discuss the solvability of
the problem in terms of the visibility range, we consider strong
assumptions except for visibility range. Concretely, we assume
that robots are fully synchronous and they agree on the direction
and orientation of the x-axis, and chirality in the triangular grid.
In this setting, we first consider the weakest assumption about
visibility range, i.e., robots with visibility range 1. In this case,
we show that there exists no collision-free algorithm to solve the
gathering problem. Next, we extend the visibility range to 2. In
this case, we show that our algorithm can solve the problem from
any connected initial configuration. Thus, the proposed algorithm
is optimal in terms of visibility range.

Index Terms—distributed system, mobile robot, gathering
problem, triangular grid

I. INTRODUCTION

A. Background

Studies for (autonomous) mobile robot systems have
emerged recently in the field of Distributed Computing. Robots
aim to achieve some tasks with limited capabilities. Most
studies assume that robots are uniform (they execute the same

algorithm and cannot be distinguished by their appearance)
and oblivious (they cannot remember their past actions). In
addition, it is assumed that robots cannot communicate with
other robots explicitly. Instead, the communication is done
implicitly; each robot can observe the positions of the other
robots.

B. Related work

Since Suzuki and Yamashita presented the pioneering
work [1], many problems have been studied. For example,
the gathering problem, which requires all robots to meet at a
non-predetermined single point, has been studied in various
environments. In the two-dimensional Euclidean space (a.k.a.,
the continuous model), Suzuki and Yamashita [1] showed
that when robots are not fully synchronous, the determinis-
tic gathering of two robots is impossible without additional
assumptions. This impossibility result was generalized to an
even number of robots initially located evenly at two positions
by Courtieu et al. [2]. By contrast, Dieudonné and Petit [3]
showed that, by adding the assumption that robots can count
the exact number of robots at each position, an odd number
of robots can gather from any initial position.

The gathering problem in the discrete space (a.k.a., the
graph model) has also been studied. In the discrete space,
robots stay at fixed positions (the nodes of the graph), and
move from one position to the next position through edges of
the graph. For (square) grid graphs, D’Angelo et al. [4] and
Castenow et al. [5] proposed algorithms to solve the gathering
problem. For ring graphs, Klasing et al. [6], [7] showed the



existence of unsolvable initial configurations and proposed
algorithms to solve the problem from some specific initial
configurations. D’Angelo et al. [8] proposed an algorithm
to solve the problem from any solvable initial configuration.
Stefano and Navarra [9] analyzed the required total number of
robot moves to solve the gathering problem in rings.

As a variant of mobile robots, gathering of fat robots is
considered [10]–[12]. Each fat robot dominates a space of
a unit disc. There are several definitions of the gathering
problem for fat robots, e.g., robots achieve gathering when
(i) they form a connected configuration (each robot touches
at least one other robot and all robots form one connected
formation) or (ii) they reach a configuration such that the
maximum distance between two robots is minimized. For both
the definitions, a collision is not allowed. Thus, introducing
sizes gives several definitions of the gathering problem, which
is an interesting point. Czyzowicz et al. [10] considered
gathering of (i) for three or four fat robots in the continuous
model, and Chrysovalandis et al. [11] studied gathering of
(i) for arbitrary number of robots. Ito et al. [12] considered
gathering of (ii) on discrete square grids.

Recently, one of computational models for programmable
matter, amoebot has been introduced [13]. Each amoebot
moves on a triangular grid and occupies one or two adjacent
nodes. Each amoebot has a finite memory, limited visibility
range, and ability to communicate with a robot staying at an
adjacent node. Several problems using amoebots have been
considered, such as leader election [14], gathering [15], and
shape formation (or pattern formation) [16]. Recall that while
amoebots have finite memory and communication capability,
(standard) autonomous mobile robots have no memory or
communication capability. Hence, the mobile robot model is
weaker than the amoebot model, and it is interesting to clarify
solvability of problems between the mobile robot model and
the amoebot model.

Meanwhile, when considering a discrete space, a space
filled by regular polygons is sometimes preferable because its
simple structure helps to design an algorithm and to discuss
the solvability of a problem among various robot models. In
addition, (i) only triangular, square, and hexagonal grids are
discrete spaces filled by regular polygons, (ii) gathering on a
square gird has already been studied [12], and (iii) recently the
amoebot model has been extensively studied on a triangular
grid. Hence, in this paper we consider gathering of mobile
robots on a triangular grid.

C. Our contribution

In this paper, we consider the gathering problem of seven
mobile robots on triangular grids. We say in this paper that
gathering is achieved when robots reach a configuration such
that the maximum distance between two robots is minimized.
For the case of seven robots, letting a robot node be a node
where a robot exists, gathering is achieved when one robot
has six adjacent robot nodes like Fig. 1. This implies that
robots form a (filled) hexagon. In this paper, we aim to
clarify the relationship between the capability of robots and
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Fig. 1. An example of the gathering problem.

the solvability of the gathering problem on a triangular grid.
In particular, we focus on visibility range of robots. To discuss
the solvability of the problem in terms of the visibility range,
we consider strong assumptions except for visibility range.
Concretely, we assume that robots are fully synchronous, and
they agree on the direction and orientation of the x-axis, and
chirality in the triangular grid. In this setting, we first consider
the weakest assumption about visibility range, i.e., robots with
visibility range 1. In this case, we show that there exists no
collision-free algorithm to solve the gathering problem. Next,
we extend the visibility range to 2. In this case, we show
that our algorithm can solve the problem from any connected
initial configuration. Thus, the proposed algorithm is optimal
in terms of visibility range. Due to page limitation, we omit
a part of proofs of lemmas and a theorem, and a full version
is given in [17].

II. PRELIMINARIES

A. System model

An (infinite) triangular grid is an undirected graph G =
(V,E), where V is the set of nodes and E is the set of edges.
The grid has one special node called origin, and we denote it
by vo. Each node vj ∈ V has six adjacent nodes: east (vjE or
E), southeast (vjSE or SE), southwest (vjSW or SW), west (vjW or
W), northwest (vjNW or NW), and northeast (vjNE or NE). The
axis including vo and voE (resp., vo and voNE) is called the x-
axis (resp., y-axis)1. An example is given in Fig. 2. In addition,
a sequence of k + 1 distinct nodes (v0, v1, . . . , vk) is called
a path with length k if {vi, vi+1} ∈ E for all i ∈ [0, k − 1].
The distance between two nodes is defined as the length of
the shortest path between them.

In this paper, we consider seven mobile robots and denote
the robot set by R = {r0, r1, . . . , r6}. Robots considered here
have the following characteristics. Robots are uniform, that is,
they execute the same algorithm and cannot be distinguished
by their appearance. Robots are oblivious, that is, they have
no persistent memory and cannot remember their past actions.
Robots cannot communicate with other robots directly. How-
ever, robots have limited visibility range and they can observe

1Although the origin, the x-axis, and the y-axis are terms of the coordinate
system, we use these terms for explanation. In the following, we use several
terms of the coordinate system.
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Fig. 2. An example of a triangular grid.

the positions of other robots within the range. This means
that robots can communicate implicitly by their positions.
We consider two problem settings about robots: robots with
visibility range 1 and robots with visibility range 2. Robots
with visibility range 1 can observe nodes within distance 1,
that is, they can only observe their six adjacent nodes. On the
other hand, robots with visibility range 2 can observe nodes
within distance 2 (eighteen nodes in total). We assume that
they are transparent, that is, even if a robot ri and several
robots exist on the same axis, ri can observe all the robots
on the axis within its visibility range. Robots do not know
the position of the origin, but they agree on the direction and
orientation of the x-axis, and chirality (the orientation of axes,
e.g., clockwise or counter-clockwise) in the triangular gird.

Each robot executes the algorithm by repeating Look-
Compute-Move cycles. At the beginning of each cycle, the
robot observes positions of the other robots within its visibility
range (Look phase). According to the observation, the robot
computes whether it moves to its adjacent node or stays at
the current node (Compute phase). If the robot decides to
move, it moves to the node by the end of the cycle (Move
phase). Robots are fully synchronous (FSYNC), that is, all
robots start every cycle simultaneously and execute each phase
synchronously. We assume that a collision is not allowed
during execution of the algorithm. Here, a collision represents
a situation such that two robots traverse the same edge from
different directions or several robots exist at the same node.
Concretely, the following three behaviors are not allowed: (a)
some robot ri (resp., rj) staying at node vp (resp., vq) moves
to vq (resp., vp), (b) some robot ri staying at node vp remains
at vp and robot rj staying at node vq moves to vp, and (c)
several robots move to the same empty node.

A configuration of the system is defined as the set of
locations of each robot. Here, the location of a robot ri is
defined as the position that (1) ri is currently staying at and
(2) is represented as an intersection of an axis parallel to
the x-axis and an axis parallel to the y-axis. Each axis ax
is represented by (i) whether it is parallel to the x-axis or
the y-axis and which direction it is far from the axis, and
(ii) the number of axes between the axis including vo (i.e.,
the x-axis or the y-axis) and ax. However, robots do not
know the position of vo and they cannot use information of
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Fig. 3. An example of a configuration.

(global) locations. A node is called a robot node if the node is
occupied by a robot. Otherwise, the node is called an empty
node. We assume that the initial configuration is connected,
that is, the subgraph of G induced by the seven robot nodes
is connected. This assumption of connectivity is necessary
because, if a configuration becomes unconnected and a robot
r has no adjacent robot node, r cannot know the direction
to reconstruct a connected configuration due to obliviousness,
which implies that robots cannot achieve gathering.

When a robot executes a Look phase, it gets a view of the
system. A view of a robot is defined as the set of robot nodes
within its visibility range. For example, in Fig. 3, a robot at
node vj recognizes that nodes vjE , v

j
SW, and vjNE are robot nodes

when its visibility range is 1 and recognizes that nodes vk and
vℓ are also robot nodes when its visibility range is 2.

B. Gathering problem

The gathering problem of mobile robots requires that
starting from any connected initial configuration, the robots
terminate in a configuration such that the maximum distance
between two robot nodes is minimized. In the case of seven
robots, gathering is achieved when one robot has six adjacent
robot nodes (Fig. 1). Concretely, we define the problem as
follows.

Definition 1. A collision-free algorithm A solves the gathering
problem of seven autonomous mobile robots on a triangular
grid if and only if the system reaches a configuration such that
one robot has six adjacent robot nodes and no robot moves
thereafter, without a collision throughout the execution of A,

III. ROBOTS WITH VISIBILITY RANGE 1

In this section, for robot with visibility range 1, we show
that there exists no collision-free algorithm to solve the
problem. Due to page limitation, we describe a part of the
proof here, and the rest of the proof is given in [17].

Theorem 1. For robots with visibility range 1, there exists no
collision-free algorithm to solve the gathering problem even
in the fully synchronous (FSYNC) model.

Proof sketch. We show the proof by contradiction, that
is, we assume that there exists a collision-free algorithm A
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Fig. 4. Configurations we consider in the proof.

to solve the gathering problem from any connected initial
configuration. In the proof, we consider several configurations
and robot behaviors, and show that if some robot moves to
some direction by Algorithm A, several robots cannot move
anywhere (i.e., they have to stay at the current nodes) since
a collision occurs or the configuration becomes unconnected.
Eventually, we show that there is a configuration such that
all robots need to stay at the current nodes and they cannot
achieve gathering, which is a contradiction.

First, we consider the configuration of Fig. 4 (a). In the
figure, robot ri (resp., rj) has one adjacent robot node SE
(resp., NW) and the other robots have two adjacent robot nodes
SE and NW, respectively. In such a configuration, we first
show that intermediate robots cannot leave the current nodes.

Lemma 1. A robot with two adjacent robot nodes W and E,
SW and NE, or NW and SE must stay at the current node.

Proof. We consider configurations of Fig. 5. In each configura-
tion, robots ri and rj have two adjacent robot nodes W and E.
On the other hand, robots rp and rq have three adjacent robot
nodes and they must stay at the current nodes because they
cannot detect whether the current configuration is a gathering-
achieved configuration or not. In addition, if ri moves to W,
NW, or SW, rj also moves to the same direction because
they have the same view. Then, either in Fig. 5 (a) or (b),
wherever rk moves to, a collision occurs or the configuration
becomes unconnected. By a similar discussion, when ri and rj
move to E, NE, or SE, it causes a collision or an unconnected
configuration either in Fig. 5 (c) or (d). Thus, a robot with two
adjacent robot nodes E and W cannot leave the current node.
By the similar discussion, we can show that a robot with two
adjacent robot nodes SW and NE, or NW and SE must stay
at the current node. Thus, the lemma follows.

By this lemma, we can have the following two colloraries.

Collorary 1. A robot with one adjacent robot node E, SE, SW,
W, NW, or NE can move only to NE or SE, E or SW, SE or
W, SW or NW, W or NE, or NW or E if it moves, respectively.

Collorary 2. A robot with two adjacent robot nodes E and
SW, SE and W, SW and NW, W and NE, NW and E, or NE
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Fig. 5. An example of a configuration that a robot with two adjacent robot
nodes W and E must stay at the current node.

and SE can move only to node SE, SW, W, NW, NE, or E if it
moves, respectively.

By Lemma 1, intermediate robots in Fig. 4 (a) cannot leave
the current nodes, and hence ri or rj has to leave the current
node. Without loss of generality, we assume that in A robot ri
with one adjacent robot node SE moves to SW. Notice that ri
can move only to SW or E by Collorary 1. In the following,
we consider several robot behaviors and eventually show that
a robot with one adjacent robot node NE or SW must stay
at the current node. Then, in a configuration of Fig. 4 (b), all
robots must stay at the current nodes and they cannot solve
the gathering problem, which is a contradiction.

When a robot with one adjacent robot node SE moves to
SW, several robot behaviors are not allowed since a collision
occurs, as shown in Fig. 6 (for simplicity, we omit robot nodes
unrelated to prohibited robot behaviors). Concretely, we have
the following proposition. Notice that behavior (d) is used in
in [17].

Proposition 1. When a robot with one adjacent robot node
SE moves to SW, the following four robot behaviors are not
allowed: (a) a robot with one adjacent robot node NE moves
to NW, (b) a robot with two adjacent robot nodes NW and SW
moves to W, (c) a robot with one adjacent robot node E moves
to NE, and (d) a robot with two adjacent robot nodes NW and
E moves to NE.

In the following, we consider the following five cases: (1)
a robot with one adjacent robot node NW moves to W, (2)
a robot with one adjacent robot node SW moves to SE, (3)
a robot with one adjacent robot node NE moves to E, (4) a
robot with one adjacent robot node NW moves to NE, and (5)
a robot with one adjacent robot node SW moves to W. In each
case, we show that the assumed robot behavior is not allowed.
Thus, by Proposition 1-(a) and cases (2), (3), and (5), robots
cannot achieve gathering from the configuration of Fig. 4 (b),
which is a contradiction (results of cases (1) and (4) are used
for cases (2), (3), and (5)).

Case 1: a robot with one adjacent robot node NW moves
to W. In this case, as shown in Fig. 7, the following three
robot behaviors are not allowed: (a) a robot with two adjacent
robot nodes W and SE moves to SW, (b) a robot with one
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Fig. 6. Prohibited behaviors when a robot with one adjacent robot node SE
moves to SW.
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Fig. 7. Prohibited behaviors when a robot with one adjacent robot node NW
moves to node W.

adjacent robot node E moves to SE, and (c) a robot with one
adjacent robot node NE moves to E. Then, let us consider the
configuration of Fig. 8. In the configuration, by Proposition 1
and the above discussion, no robot can leave the current node
and robots cannot achieve gathering, which is a contradiction.
Thus, we have the following lemma.

Lemma 2. A robot with one adjacent robot node NW cannot
move to node W.

Case 2: a robot with one adjacent robot node SW moves
to SE. In this case, as shown in Fig. 9, the following four robot
behaviors are not allowed: (a) a robot with one adjacent robot
node NW moves to NE, (b) a robot with two adjacent robot
nodes NE and SE moves to E, (c) a robot with one adjacent
robot node W moves to NW, and (d) a robot with two adjacent
robot nodes NW and E (resp., W and NE) moves to NE (resp.,
NW). Then, in a configuration of Fig. 10, only robot rp with
two adjacent robot nodes SW and E can move to SE or robot
rq with two adjacent robot nodes W and SE can move to SW
by the above discussion and Lemmas 1 and 2 and Collorary 2.
We consider each of the behaviors and show for both the cases
that robots cannot achieve gathering from some configuration.

Case 2-1: robot rp moves to SE. In this case, clearly a robot
with one adjacent robot node NE cannot move to E and a robot
with one adjacent robot node W cannot move to SW since a
collision occurs. In addition, when considering a configuration
of Fig.11 (a), only robot ri with one adjacent robot node E
can leave the current node and it needs to move to SE by
the previous discussions. Now, we consider the configuration
of Fig. 12 (a). In the figure, robot r1, r3, and r5 move to SE
and the other robots must stay at the current nodes. Then,
the system reaches the configuration of Fig. 12 (b). In the
configuration, robots r0, r2, r4, and r6 move to SE and the
other robots must stay at the current nodes. Then, the system
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Fig. 8. An unsolvable configuration when a robot with one adjacent robot
node NW moves to W ((i): by Fig. 6 (c), (ii): by Fig. 7 (b), (iii): by Fig. 7 (a),
(iv): by Fig. 6 (b), (v): by Fig. 6 (a), (vi): by Fig. 7 (c)).

reaches the configuration of Fig. 12 (a). Thus, robots repeat
configurations of Fig. 12 (a) and (b) forever and they cannot
achieve gathering, which is a contradiction.

Case 2-2: robot rq moves to SW. In this case, clearly a robot
with one adjacent robot node E cannot move to SE since a
collision occurs. In addition, when considering a configuration
of Fig. 11 (b), only robot ri with one adjacent robot node W
can leave the current node and it needs to move to SW by
the previous discussions. Now, we consider the configuration
of Fig. 13 (a). In the figure, robot r0, r2, r4, and r6 move
to SW and the other robots must stay at the current nodes.
Then, the system reaches the configuration of Fig. 13 (b). In
the configuration, robots r1, r3, and r5 move to SW and the
other robots must stay at the current nodes. Then, the system
reaches the configuration of Fig. 13 (a). Thus, robots repeat
configurations of Fig. 13 (a) and (b) forever and they cannot
achieve gathering, which is a contradiction. Thus, we have the
following lemma.

Lemma 3. A robot with one adjacent robot node SW cannot
move to node SE.

Similarly to the proofs of Lemmas 2 and 3, in the remaining
cases we can have the following lemmas by showing several
prohibited robot behaviors and a configuration from which
robots cannot achieve gathering (the detailed proofs are given
in in [17]).

Lemma 4. A robot with one adjacent robot node NE cannot
move to node E.

Lemma 5. A robot with one adjacent robot node NW cannot
move to node NE.

Lemma 6. A robot with one adjacent robot node SW cannot
move to node W.

Thus, by Proposition 1-(a) and Lemmas 1, 3, 4, and 6, robots
cannot achieve gathering from the configuration of Fig. 4 (b).
This contradicts the assumption that there exists a collision-
free algorithm A to solve the gathering problem. Therefore,
the theorem follows.

IV. ROBOTS WITH VISIBILITY RANGE 2

In this section, for robots with visibility range 2, we propose
a collision-free algorithm to solve the gathering problem from
any connected initial configuration.
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Fig. 9. Prohibited behaviors when a robot with one adjacent robot node SW moves to SE.
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Fig. 10. A configuration such that only
rp or rq can leave the current node ((i):
by Lemma 2, (ii): by Fig. 9 (a), (iii): by
Fig. 9 (b)).
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Fig. 11. (a): An example such that only a robot ri with one adjacent robot node E can leave the current node in Case 2-1 ((i): by Fig. 6 (c), (ii): by Fig. 9
(c), (iii): prohibited behavior when a robot with two adjacent robot nodes SW and E moves to SE), (b): An example such that only a robot ri with one
adjacent robot node W can leave the current node in Case 2-2 ((iv): by Fig. 6 (c), (v): prohibited behavior when a robot with two adjacent robot nodes W
and SE moves to SW, (vi): by Fig. 9 (c)).
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Fig. 12. Configurations that robots repeat alternately ((i): by Fig. 11 (a), (ii): by Fig. 9 (d), (iii): assumption of Case 2-1, (iv): assumption of Case 2, (v): by
Fig. 6 (a), (vi): prohibited behavior when a robot with two adjacent robot nodes SW and E moves to SE, (vii): by Fig. 9 (c), (viii): prohibited behavior when
a robot with two adjacent robot nodes SW and E moves to SE).
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Fig. 13. Configurations that robots repeat alternately ((i): assumption of Algorithm A, (ii): by Fig. 9 (d), (iii): assumption of Case 2-2, (iv): by Fig. 11 (b),
(v): by Fig. 6 (c), (vi): prohibited behavior when a robot with two adjacent robot nodes W and SE moves to SW, (vii): by Lemma 2, (viii): by Fig. 9 (a)).

A. Proposed algorithm

The basic idea is that each robot firstly determines the base
node that is the rightmost robot node within its visibility range
and then it moves toward the base node to achieve gathering.
First, we explain how to determine the base (or rightmost)

robot. For explanation, in the following we assume that each
robot ri recognizes that it is located at an origin and it assigns
labels to each node within its visibility range like Fig. 14. In
the figure, the first (resp., second) element of each label is
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Fig. 14. Assignment of labels.
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Fig. 15. Examples of how to determine the base nodes ((a): node vb is the
base node, (b): ri does not determine the base node, (c): ri determines vb as
the base node and moves there).

called the x-element (resp., y-element)2. Then, ri determines
the robot node with the largest x-element as the base node
(possibly the robot node where ri itself stays). If several robot
nodes have the largest x-element, ri does not determine the
base node at that time and waits at the current node until the
configuration changes. As exceptions, if node (4,0) is an empty
node and nodes (3,1) and (3,-1) are robot nodes, ri determines
node (4,0) as the base node to avoid the configuration such
that no robot determines a base node and each robot waits at
the current node. In addition, if robot nodes (1,1) and (1,-1)
have the largest x-element among all the labels of robot nodes
within ri’s visibility range, and ri moves to node (2,0) so that
it becomes a base. Examples are given in Fig. 15.

Next, we explain how to achieve gathering based on the
base node. Robots consider the base node as the rightmost
node of a gathering-achieved configuration and they basically
move east on a triangular grid with avoiding a collision and
an unconnected configuration. Concretely, if the label of the
base node from robot ri is (2,-2), (3,-1), (4,0), (3,1), or (2,2),
it moves to one of adjacent nodes as indicated in Fig. 16
(a) using ordinal numbers in Fig. 16 (b). That is, among the
candidate nodes that ri may visit in the next cycle, ri moves
to the empty adjacent node with the smallest ordinal number.
If several robots try to move to the same node vj , the robot
staying at the node with the largest ordinal number moves
to vj . If all the candidate nodes are robot nodes, ri stays at
the current node. For example, in Fig. 17, robots ri and rj

2Labels are assigned for explanation and they are a little different from the
coordinate system. For example, the difference between labels (0,0) and (2,0)
is 2 but the distance between node (0,0) and node (2,0) is 1.
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Fig. 16. Movement rules ((a): candidate nodes to visit, (b): ordinal numbers).
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Fig. 17. An example to avoid a
collision using ordinal numbers.
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Fig. 18. An example to avoid a
collision using x-elements.

consider the common node vb as the base node, ri (resp., rj)
has two candidate nodes vn and vℓ (resp., vm and vℓ) to visit,
vn (resp., vm) is a robot node, and hence it tries to visit vℓ
(resp., vℓ). In this case, since the ordinal number 4 of the
node where ri stays is larger than the ordinal number 3 of
the node where rj stays, ri moves to vℓ and rj stays at the
current node. If two robots consider the common node as the
base node like the above example, they can share the common
ordinal numbers and can avoid a collision or an unconnected
configuration. However, it is possible that some two robots
consider different robot nodes as their base nodes due to their
limited visibility range, which may cause a collision or an
unconnected configuration. For example, in Fig. 18, robot ri
considers v′b as the base node but rj considers vb as the base
node, and they try to move to the same node vℓ according to
the movement rule. In this case, the robot with the smaller
x-element of the node label moves to the node and the other
robot stays at the current node. Hence, in Fig. 18, ri moves to
vℓ and rj stays at the current node. Moreover, only with the
movement rule in Fig. 16, no robot leaves the current node in
the configuration in Fig. 19. In this case, as a special behavior,
if the label of the base node from robot ri is (3,1), nodes (1,1),
(2,0), and (1,-1) are robot nodes, and node (-1,1) is an empty
node, ri moves to the northwest adjacent node (-1,1) so that
robot rj staying at ri’s southeast adjacent node (1,-1) can move
to the node where ri is currently staying. When robots reach
a configuration such that no robot leaves the current node, the
configuration is one solution of the gathering problem.

An example of the algorithm execution is given in Fig. 20.
From (a) to (b), since r2’s northeast and southeast adjacent
nodes are robot nodes and no other robot node has larger x-
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Fig. 19. An example to avoid a standstill.
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Fig. 20. An example of the algorithm execution.

element than that of the node where r2 stays, it moves to east
adjacent node vb. From (b) to (c), robots r0 and r3 consider vb
as the common base node and they try to move to the empty
node vk with the smallest ordinal number among candidate
empty nodes. In this case, since the ordinal number of the
node where r3 stays is larger than that of the node where r0
stays, r3 moves to vk and r0 stays at the current node. From
(c) to (d), r5 (resp., r6) considers v′b (resp., vb) as the base
node and they try to move to node vℓ. In this case, since the
x-element of the node that where r5 stays is smaller than that
of the node where r6 stays, r5 moves to vℓ and r6 stays at
the current node. From (d) to (e), as a special behavior, robot
r5 moves to the northwest adjacent robot node so that r6 can
move to the node where r5 is currently staying. From (e) to
(f), robot r6 considers vb as the base node and it moves to the
northeast adjacent node. Then, robots achieve gathering.

The pseudocode of the proposed algorithm is described in
Algorithm 1. In the following, we explain several robot behav-
iors that avoid a collision or an unconnected configuration. The
behavior of robot ri for the case that, the label of the base node
is (2,0) but the node is an empty node, is described in lines 1 –
3. In this case, ri tries to move to node (2,0). However, if ri’s
west adjacent node (-2,0) is a robot node and ri moves to the
base node (2,0), the configuration may become unconnected
(Fig. 21 (a)). Hence, in this case ri moves to node (2,0) when
ri’s northwest or southwest adjacent node is also a robot node
(Fig. 21 (b)).

The behavior of robot ri for the case that the label of the
base node is (4,0) is described in lines 5 – 9. In this case,
if node (2,0) is an empty node, ri tries to move to the node.
However, if ri’s southwest adjacent node (-1,-1) is a robot node
and ri moves to node (2,0), the configuration may become
unconnected (Fig. 22 (a)). Hence, in this case ri moves to
node (2,0) when its southeast adjacent node (1,-1) is also a

�

�

���

�

�

�

�

���

�

�

Fig. 21. Behavior of robot ri for the case that the label of the base node vb
is (2,0) but the node is an empty node.
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Fig. 22. Behavior of robot ri for the case that the label of the base node vb
is (4,0).

robot node (Fig. 22 (b)).
The behavior of robot ri for the case that the label of the

base node is (3,-1) is described in lines 11 – 15. In this case, if
nodes (2,0), (1,-1) and (1,1) are robot nodes and node (-1,-1) is
an empty node, ri tries to move to its southwest adjacent node
(-1,-1) so that the robot staying at node (1,1) could move to
node (0,0) where ri is currently staying. However, due to the
limited visibility range, it is possible that ri and some robot
rj consider different nodes as base nodes, rj staying at node
(-2,0) or (-2,-2) tries to move to node (-1,-1), and a collision
occurs (Fig. 23 (a), (b)). Hence, in this case ri moves to node
(-1,-1) when nodes (-2,0), (-2,-2), and (-1,1) are empty nodes
(Fig. 23 (c)). In addition, if node (1,-1) is an empty node, ri
tries to move to the node. Then, it is possible that ri and some
robot rj consider different nodes are base nodes, rj staying at
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Fig. 23. Behavior of robot ri for the case that the label of the base node vb
is (3,-1) (v′b: the base node for robot rj ).
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Fig. 24. Behavior of robot ri for the case that the label of the base node vb
is (2,2) (v′b: the base node for robot rj ).

node (-1,1) tries to move to node (-2,0), and the configuration
become unconnected (Fig. 23 (d)). Hence, in this case ri moves
to node (1,-1) when node (0,-2) is an empty node.

The behavior of robot ri for the case that the label of the
base node is (2,2) is described in lines 27 – 29. In this case,
if node (1,1) is a robot node and node (-1,1) is an empty
node, it tries to move to node (-1,1). However, due to the
limited visibility range, it is possible that ri and some robot rj
consider different nodes are base nodes, rj staying at node (-
2,0) tries to move to node (-1,1), and a collision occurs (Fig. 24
(a)), or rj staying at node (-1,-1) does not leave the current
node and the configuration becomes unconnected (Fig. 24 (b)).
Hence, in this case ri moves to node (-1,-1) when nodes (-2,0)

and (-1,-1) are empty nodes (Fig. 24 (c)).
Although there still exist several robot behaviors that avoid

a collision or an unconnected configuration, we omit the detail.

B. Correctness

The correctness of the proposed algorithm has been eval-
uated by computer simulations. By the simulations, we con-
firmed that robots which execute the proposed algorithm can
achieve gathering from all possible connected initial con-
figurations (3652 patterns in total) in the fully synchronous
(FSYNC) model. Thus, we have the following theorem.

Theorem 2. For robots with visibility range 2, the proposed
algorithm solves the gathering problem from any connected
initial configuration in the FSYNC model.

V. CONCLUSION

In this paper, we considered the gathering problem of seven
autonomous mobile robots on triangular grid graphs. First, for
robots with visibility range 1, we showed that no collision-free
algorithm exists for the gathering problem. Next, for robots
with visibility range 2, we proposed a collision-free algorithm
to solve the problem from any connected initial configuration.
This algorithm is optimal in terms of visibility range.

There are four possible future works as follows. First, we
will complete a theoretical proof of correctness for the pro-
posed algorithm in Section IV. Second, we will consider the
relaxed version of connected initial configuration such that the
visibility relationship among robots constitutes one connected
graph. Third, we will consider gathering for different number
of robots. Lastly, we consider other problems such as the
pattern formation problem for autonomous mobile robots on
triangular grids.
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