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ABSTRACT In this paper, we present a multipurpose operation strategy for the efficient distribution of 

power to multiple power services from a single battery energy storage system (BESS). The proposed 

operation strategy uses a modern portfolio theory of financial engineering known as the capital asset pricing 

model to determine the allocation of BESS discharge power. Using this strategy, it is possible to 

quantitatively evaluate the expected return and risk in BESS operation and achieve the maximum expected 

return for the selected acceptable risk. Further, the predictability of the expected return is improved by 

applying the ensemble approach to the estimation model of the expected return. A one-year long 

performance test was conducted at the Japan Electric Power Exchange using the proposed operation 

strategy. A mean absolute error of approximately 2.0% between the expected return of the proposed 

strategy and the actual return was obtained, confirming the accuracy of the proposed strategy. 

INDEX TERMS Batteries, Operations and management, Portfolios, CAPM, and Ensemble approach.  

I. INTRODUCTION 
A. Challenges of BESS for energy service provider 

Battery energy storage systems (BESSs), such as 

stationary energy storage systems and electric vehicles, are 

being used as the main demand side energy resources 

(DSRs). In behind-the-meter systems, DSRs are used to 

reduce the power cost by peak shaving and demand 

response or as backup in the event of a power outage [1]. In 

front-of-meter systems, they are used to adjust the supply 

and demand balance and the frequency or voltage, i.e., to 

stabilize the system [2]. BESSs are expected to find wider 

areas of application in the future. 

Given the output stability and ease of output control of 

BESSs, businesses that operate DSRs and provide electric 

power services (hereinafter referred to as energy service 

providers) are expected to flourish. However, currently, 

BESSs are still expensive, and the improvement of their 

operational economic efficiency is one of the challenges 

faced by energy service providers. 
 
 
 

B. Previous study of operational strategies 

Several operational strategies have been proposed to 

improve the economic efficiency of BESSs. Yang et al. 

provided simulation results of the optimal installed capacity 

and break-even point when a BESS is used to regulate the 

distribution voltage and peak shaving under conditions of 

photovoltaic power [3]. Ran et al. suggested the 

classification of consumers according to their load demand 

and proposed an optimization strategy for electricity 

charges that considers consumer satisfaction and robustness 

of control [4]. Sun et al. proposed an economic operation 

strategy of BESSs based on the use of reusable storage 

batteries with various states of health [5]. Mahmud et al. 

proposed an operation strategy for peak shaving that 

involves charging and discharging groups of electric 

vehicles based on the prediction of the consumer’s power 

generation and demand [6]. Zhao et al. proposed an 

economic optimization strategy that considers the loss 

models’ battery life and solar panel together with the time 

of use [7]. These previous studies mentioned above 

proposed operation strategies that control the operation 



 

VOLUME XX, 2017 9 

pattern of BESSs based on the type of electricity charges 

and the predicted trading price for a single power service. 

However, the use of BESS for a single power service is not 

sufficient for improving economic efficiency because the 

trading price of a service directly affects the economic 

efficiency. Therefore, several operational strategies that 

used a single energy resource for multiple services has also 

been proposed. 

Kazemi et al. proposed a long-term strategy that 

considers battery life when participating in the frequency 

regulation and energy markets, simultaneously [8]. Kazemi 

et al. also proposed a risk-based approach for evaluating the 

participation strategy of a battery storage system in multiple 

markets such as day-ahead energy, spinning reserve, and 

regulation markets [9]. The proposed risk-based model is a 

max-min problem, which is converted to its equivalent 

ordinary maximization problem using duality theory. 

Kazempour et al. proposed the self-scheduling problem of 

hydro generating company for maximizing the profit of 

company through participating in the day-ahead energy and 

ancillary service markets by using a mixed integer non-

linear problem (MINP) problem [10]. And, Kazempour et 

al. also proposed the method to determine optimal storage 

portfolio from a risk averse perspective by using a tri-level 

stochastic optimization problem [11]. Mortaz proposed the 

method to determine interactions among services for 

distributed energy storage plants, including energy arbitrage, 

peak demand shaving and various balancing services, and 

assesses the impact that such interactions have on storage 

plant remunerability in a multiple service [12].  

Nasrolahpour et al. developed a decision-making tool for an 

energy storage system to determine the most beneficial 

trading actions in pool-based markets, including day-ahead 

and balancing market. The proposed model captures the 

interactions of different markets and their impacts on the 

functioning of the storage system [13]. Opathella et al. 

proposed a liner profit-maximizing formulation for grid-

connected merchant-owned energy storage systems 

operating with multiple ancillary services. Their proposed 

model allows for analyzing and optimizing all ancillary 

services and energy arbitrage from the energy storage 

system at the same time, while optimizing the short-term 

and long-term costs [14]. Rahimiyan et al. proposed an 

energy management system that controls a cluster of price-

responsive demand by using a two-stage procedure (the 

day-ahead market and the real-time market) based on robust 

optimization [15]. Zou et al. proposed a multi-period Nash-

Cournot equilibrium model for joint energy and ancillary 

service markets to evaluate the contribution of the ESSs for 

supporting renewable generation. This model can transform 

the bi-level equilibrium model into an integrated single-

level optimization problem to enhance the computation 

efficiency [16]. Chaudhari et al. proposed a hybrid 

optimization algorithm for energy storage management, 

which shifts its mode of operation between the 

deterministic and rule-based approaches depending on the 

electricity price based allocation, and it is calculating 

capital cost of energy storage and relating it to discharge 

power [17].  

When a single BESS is used for multiple services, it is 

important to model the long-term expected returns and risks 

and improve their predictive performance, since the 

transaction period varies depending on the combined 

services. The aforementioned previous studies include 

optimization of revenues and costs, analysis of the 

correlation between the revenues of each service, and 

allocation planning when multiple services are used. 

However, operational strategies that focus on modeling the 

long-term expected returns and risks of combining multiple 

services and improving their predictive performance from 

limited historical data have not been sufficiently studied. 

 
C. Contributions of our study 

In this paper, we proposed a multipurpose operation 

strategy whereby an energy service provider supplies its 

own single BESS to multiple power services and receives 

companion. In this proposed strategy, we applied the two 

important technics to solve the above-mentioned issues. 

One of them is a modern portfolio theory of financial 

engineering known as the capital asset pricing model to 

determine the allocation of BESS discharge power. It is 

possible to quantitatively evaluate the expected return and 

risk in BESS operation and achieve the maximum expected 

return for the selected acceptable risk. Other is the 

ensemble method, known as bagging (Bootstrap 

AGGregatING -- Bagging), in order to enhance the 

predictability of the estimation model in the multipurpose 

operation strategy. One of the major factors that affect the 

predictability of an estimation model is the limited number 

of samples in the dataset used for modeling. Therefore, we 

considered to apply an ensemble approach to proposed 

strategy to improve the predictability of the expected rate of 

return from small dataset. 

The contributions of proposed strategy are summarized 

as follows: 

 

(1) It is possible to quantitatively evaluate the expected 

return and risk in BESS operation and achieve the 

expected return for the selected acceptable risk by 

using CAPM. 

(2) It is possible to improve the predictability of the 

expected return from small dataset by using the 

ensemble method. 

 

The rest of our paper is organized as follows. We first 

explain the details of proposed multiple operation strategy 

in Section II. Then, we present numerical analysis and 

conditions in Section III. Next, we discuss the results of 

numerical analysis in Section IV. Finally, we provide our 

conclusion in Section V.  
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II. Multipurpose strategy 
A. Multipurpose operation strategy based on CAPM 

Because energy service providers supply and distribute a 

limited amount of power stored in a single BESS to 

multiple power services (hereinafter referred to as products), 

it is necessary to determine an economically efficient power 

allocation method. Here, if the distributed products include 

products such as forward contracts that are traded in bulk 

over a long period of time, it is necessary to determine the 

power allocation for other products that are traded in the 

short term simultaneously. Therefore, it is important to 

estimate the trading price of each product over a long 

period. However, because the trading price of electricity is 

influenced by various external factors, such as electricity 

demand, weather, fuel price, corporate activities, and 

policies, it is difficult to accurately estimate the electricity 

trading price of all traded commodities. 

 Figure 1 shows the multipurpose operation strategy 

proposed. This strategy uses historical data on electricity 

trading prices and, based on the well-known CAPM [19], 

which is one of the modern portfolio theories in financial 

engineering, estimates the expected yearly return and risk 

when supplying power to each product and optimizes the 

portfolio. Furthermore, the concept of asset allocation based 

on CAPM is extended to the BESS discharge power control 

to determine the discharge power allocation plan. 

CAPM uses the mean-variance analysis method to 

quantify risk. In this method, the uncertainty of portfolio 

revenue is characterized by two quantities: the expected 

value of return and the variance of return. In the proposed 

multipurpose operation strategy, it is possible to select a 

portfolio of discharge power allocation with the highest 

expected return for any acceptable risk in the operation 

from the derived efficient frontier based on CAPM. 

In summary, with the proposed multipurpose operation 

strategy, the expected return and risk of the discharge 

power allocation plan of the BESS is quantitatively 

evaluated in order to achieve risk diversification in service 

operation, and it is possible to pursue the maximum 

expected return for the selected acceptable risk.  

B. Formulation of multipurpose operation strategy 
(i) Proposed multipurpose operation strategy 

 Figure 2 shows a flow chart of the multipurpose 

operation strategy proposed in this paper. First, the yearly 

expected return and risk of each product are estimated from 

the historical data of the electricity trading price (Figure 2 

(1)). Next, the expected yearly return and risk of the 

portfolio combining all products is estimated (Figure 2 (2)). 

Portfolio refers to the allocation of discharge power by the 

BESS to multiple products with a predetermined yearly 

expected return. An efficient frontier is then derived by 

determining the discharge power allocation that maximizes 

the expected yearly return for each acceptable risk through 

optimization (Figure 2 (3)) based on CAPM. Here, the 

efficient frontier is the solution set of the portfolio in which 

the combination of risk and expected yearly return is 

optimal. Finally, these calculated optimized portfolios are 

averaged into a single charge / discharge portfolio of BESS.  

In the Figure2 (4), we used the ensemble method, known 

as bagging (Bootstrap AGGregatING -- Bagging), in order 

to enhance the predictability of the estimation model in the 

multipurpose operation strategy. With the ensemble method, 

multiple weak learners are trained and used in combination; 

this method is known to be more accurate than the single 

learner method [20]. The ensemble method is broadly 

divided into the sequential ensemble method, in which 

weak learners are generated sequentially, and the parallel 

ensemble method, in which they are generated 

simultaneously. Bagging is a typical algorithm of the latter 

category, which effectively reduces errors by combining 

weak learners with low dependence and having randomness 

incorporated into the learning process. 

In bagging, random samples are extracted with 

replacement from the original data set to generate several 

 
 

FIGURE 2. Formulation of the proposed multipurpose operation 
strategy  

 

FIGURE 1. Proposed multiple operation strategy 



 

VOLUME XX, 2017 9 

different data sets with low dependency from a small data 

set. This removes the constraint on the number of data 

samples, which affects the predictability, thereby improving 

the effectiveness of the method. In addition, the algorithm 

is simple and easy to model, and the calculation time is 

shortened owing to parallel processing in generally [20]. 

Thus, in terms of practical use, the constraints on system 

implementation are very few. 

In the multipurpose operation strategy, which applies 

bagging, Q replaced extraction samples (number of data: L) 

are generated by random extraction with replacement 

(random extraction from the original sample allowing 

duplication) from the historical data of electricity trading 

price (number of data: N). From this replaced extraction 

sample, procedures (1) to (3) described earlier are 

performed to generate Q weak learners (hereinafter referred 

to as classification estimation model) As a result, each 

classification estimation derives a different efficient frontier 

depending on the given replacement extraction sample.  

 

(ii) Expected yearly returns and risk of products 

The expected yearly return and risk are estimated from 

the historical data of the power trading price. Equation 1 

shows the daily power procurement unit price Cij (i = 

1,2,3, ..., N) during the charging period of product Pj 

(j=1,2,3,…,M), where N refers to the number of data points 

(number of days), and M refers to the number of products. 

For example, C11 is the daily power procurement unit price 

on the first of the N days of product P1. Cij is obtained by 

adding the trading fee fj to the daily power trading unit 

price Tij. Equation 2 shows the daily power sales unit price 

Bij of product Pj. For example, B11 is the daily power sales 

unit price on the first of the N days for product P1. Bij is 

expressed as the product of Tij − fj and the power 

conversion efficiency η of the BESS. This is due to the fact 

that there is some power loss both at the time of 

procurement (charging) and at the time of selling 

(discharging), and the net amount of power that can 

actually be traded is reduced. The daily return rij of product 

Pj is of simple interest with respect to the procurement price 

and is given by Equation 3. Then, the expected yearly 

return E (rj) of product Pj is given by Equation 4 as the 

simple average value of rij. Thus, the risk of commodity Pj 

can be expressed as shown in Equation 5, as the standard 

deviation σj of the daily return. In other words, the 

uncertainly of the transaction price is reflected in the 

numerical model as the standard deviation of the daily 

return rate based on the actual transaction data of the power 

trading price. 

 

𝐶𝑖𝑗 = (𝑇𝑖𝑗 + 𝑓𝑗) (1) 

𝐵𝑖𝑗 = (𝑇𝑖𝑗 − 𝑓𝑗)𝜂 (2) 

𝑟𝑖𝑗 =
(𝐵𝑖𝑗 − 𝐶𝑖𝑗)

𝐶𝑖𝑗

 (3) 

E(𝑟𝑗) =
∑ 𝑟𝑖𝑗

𝑁
𝑖=1

𝑁
 (4) 

𝜎𝑗 =
√∑ (𝑟𝑖𝑗 − E(𝑟𝑗))

2
𝑁
𝑖=1

𝑁
  

(5) 

 
(iii) Expected yearly return and portfolio risk 

In financial engineering, a portfolio is the collection of 

assets held by an investor and their composition ratio. In 

this paper, a portfolio refers to the allocation of the 

discharge power by a BESS to product Pj, whose expected 

yearly return is E (rj). The expected yearly return of product 

Pj can be expressed as the column vector E (r) of M 

products, each of which have expected yearly return of E 

(rj), as shown in Equation 6. The variance-covariance 

matrix S of the expected return E (r) is an M×M 

determinant that depends on the number of products and is 

given by Equation 7. Equation 8 shows the column vector xj 

of the discharge power allocation x for each product. The 

discharge power allocation is the ratio of the BESS 

discharge power to each product and takes a value between 

0 and 1. The expected return Ep of the portfolio is 

calculated as the weighted sum of the discharge power 

allocation xj and the expected yearly return E (rj) for each 

product, as shown in Equation 9. The variance of the 

portfolio σp
2 is given by Equation 10, which is obtained 

from Equations 7 and 8 [21]. Then, the portfolio risk σp is 

given by Eq. 11. 

 

𝐄(𝒓) = [

𝐸(𝑟1)

𝐸(𝑟2)
⋮

𝐸(𝑟𝑀)

] (6) 

𝑺 = [

𝜎11 ⋯ 𝜎𝑀1

⋮ ⋱ ⋮
𝜎1𝑀 ⋯ 𝜎𝑀𝑀

] (7) 

𝐱 = [

𝑥1

𝑥2

⋮
𝑥𝑀

] (8) 

𝐸𝑝 = ∑ 𝑥𝑗𝐸(𝑟𝑗)

M

j=1

 (9) 

𝜎𝑝
2 = 𝒙𝑻𝑺𝒙 = ∑ ∑ 𝒙𝒋𝒙𝒌𝝈𝒋𝒌

𝑴

𝒌=𝟏

𝑴

𝒋=𝟏

 (10) 

𝜎𝑝 = √∑ ∑ 𝒙𝒋𝒙𝒌𝝈𝒋𝒌

𝑴

𝒌=𝟏

𝑴

𝒋=𝟏

 (11) 

 
(iv) BESS discharge plan 

The solution set plotted using the acceptable risk of the 

portfolio and the maximum value of the expected yearly 

return is called the efficient frontier. Portfolios on the 

efficient frontier are known to be the best combination of 
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mean and variance [21]. Figure 3 shows an overview of the 

efficient frontier. In the proposed multipurpose operation 

strategy, the portfolio with the expected return of risk 

allowed by the energy service provider is selected from this 

efficient frontier; then, the discharge power allocation to 

each product of the BESS is determined. 

To derive an efficient frontier, Equations 12–14 were 

formulated as an optimization problem aimed at 

maximizing the expected return for any acceptable risk of 

the portfolio. Equation 13 expresses the equality constraint 

that the sum of the allocation xj for each product in the 

portfolio must be 1. The acceptable risk of the portfolio is 

varied, and the maximum value of the expected yearly 

return for each acceptable risk is calculated by optimization. 

The Solver function of a spreadsheet software was used for 

optimization calculation, and the optimization algorithm 

used was the generalized reduced gradient method, which is 

used for solving nonlinear programming problems. 

 

maximize 𝐸𝑝 = ∑ 𝑥𝑗𝐸(𝑟𝑗)

M

j=1

 (12) 

subject to ∑ 𝑥𝑗 =

M

j=1

1 (13) 

0 ≤ 𝑥𝑗 ≤ 1 (j=1,2,3…,M) (14) 

 

 In the proposed multipurpose operation strategy shown 

in Figure 2, the efficient frontier of the classification 

estimation model is calculated in parallel. Then, in the 

efficient frontier of each classification estimation model, 

the discharge power allocation is averaged for all portfolios 

with the same acceptable risk—this becomes the discharge 

power allocation rate xj' of the new portfolio. Assuming that 

the number of classification estimation models is Q, xj' is 

calculated as follows: 

 

𝑥𝑗
′ =

𝑥1+𝑥2+⋯+𝑥ℎ

𝑄
＝

∑ 𝑥ℎ
𝑄
ℎ=1

𝑄
, (15) 

Where SOCini denotes the present value of the charge 

state of the state of charge, SOCmin is the lower limit of 

operation, and C is the rated capacity. Then, the amount of 

power W charged in the BESS is given by Equation 16. The 

control target value wj of the amount of charge/discharge 

power by BESS for each product is given by Equation 17, 

using W and the allocation xj' of the selected portfolio. 

 

W = (𝑆𝑂𝐶𝑖𝑛𝑖 − 𝑆𝑂𝐶𝑚𝑖𝑛)𝐶 (16) 

𝑤𝑗 = 𝑥𝑗
′W (17) 

 

III. Numerical analysis 

 In this study, a multipurpose operation strategy was 

applied to the day-ahead market, real-time market, and 

forward market of the Japan Electric Power Exchange [22], 

for assuming that it would be provide charge / discharge 

power of BESS to the reserve services because the 

proposed strategy determines the discharge plan in advance. 

Table 1 presents details of the markets considered. In the 

day-ahead market, the electricity for the following day is 

exchanged (bought and sold). In the real-time market, 

electricity is traded to deal with the unexpected supply 

demand mismatch that occurs between the day-ahead 

market and the actual supply and demand. In the forward 

 
 
FIGURE 3. Efficient frontier 
 

 

TABLE I 

TARGET POWER SERVICE 

Item 
Day-ahead 

market 

Real-time 

market 

Forward 

market 

Product 

symbol Pj 
P1~P48 P49~P96 P97 

Product 

classification 

48 products divided into 

30-minute periods each 

day 

1 product 

for a 

specific 

period 

Trading fee 

fj (JPY/kWh) 
0.030 0.10 0.68 

Product 

properties 
Risk product 

Risk-free 

product 

 

 

 
FIGURE 4. Plot of target product 
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market, medium to long-term electricity is traded at a fixed 

price. In the forward market, the electricity of constant 

output is traded as one product during the trading period. 

The day-ahead market and real-time market are subject to 

daily and hourly fluctuations in trading price. In the 

forward market, the price may be fixed for the trading 

period. For this reason, the day-ahead and real-time markets 

are classified as risk products in CAPM, and the forward 

markets are classified as risk-free products. 

Figure 4 shows a plot of the target product group. In each 

market, electricity may be traded as 48 products, each of 

which is a 30-minute block of a day. In the forward market, 

multiple time blocks are treated as one trading product; 

however, in this paper, they are treated as products that can 

be traded every 30 min to match the conditions with other 

products. 

In this proposed strategy, as the number of data for the 

daily return rate shown in Eq.3 increases, the number of 

data for the variance (risk) of the return rate of the service 

increases, and the accuracy of the model becomes higher. 

For this reason, it is preferable to fix the charging block. 48 

charging blocks can be selected from 0:00 to 24:00, 

although the historical data shows that the midnight block is 

the cheapest in terms of procurement price, so we 

conducted a case study with a fixed block at 0:00-0:30 in 

this study. In practical terms, charging of the storage battery 

(purchase of electricity) will be performed for 30 min 

during the first of the time blocks (00:00 to 00:30) and the 

discharge of the battery (sale of electricity) will be 

performed during the remaining 47 time blocks (00:30 to 

24:00). That is, of the 97 products targeted for trading, a 

total of 95 products including 47 products in the day-ahead 

market (P2–P48 in Figure 5), 47 products in the real-time 

market (P50–P96 in Figure 5), and one product in the 

forward market (P97 in Figure 5) are trade products that are 

discharged and supplied by BESSs.  

Table 1 also lists the trading fees obtained from 

Reference [22]. The trading fee in the forward market is a 

fixed monthly fee, but to unify the conditions with other 

products, we consider the deemed value of the cost per 

30-minute time blocks (1,000 yen/month × 12 months ÷ 

365 days ÷ 48 time blocks ≒ 0.68 yen). The BESS 

charge/discharge efficiency η was set based on the power 

conversion efficiency of the BESS in the market; the AC-

DC and DC-AC power conversion efficiencies were set to 

0.9, and the charge/discharge efficiency was set to 0.9 × 0.9 

= 0.81. In general, the charge/discharge efficiency of a 

BESS varies depending on the load factor; however, for 

simplicity, it was set to a constant value in this study.  

Because the main purpose of this study is to confirm the 

effectiveness of the return risk analysis and forecast 

performance improvement of operation strategies that apply 

CAPM and ensemble approach, the specific installed 

capacity, charge/discharge rate of the storage battery, and 

transient response were not considered in the proposed 

model. However, the proposed operation strategy assumes 

an allocation plan at 30-minute intervals based on 

transaction times, and we believe that short-time response 

characteristics and other factors will not have much impact. 

On the other hand, these factors will affect the accuracy of 

the results as errors. We are considering improving the 

accuracy of the prediction model by relearning it with 

power data to be collected during operation, and to improve 

the robustness of the prediction model by applying the 

DFSS method (Design For Six Sigma). The 

charge/discharge current value corresponding to the amount 

of power (kWh) charged/discharged in Equation 17 must 

not be greater than the charge/discharge rate of the storage 

battery used for the BESS. The return risk is a 

dimensionless value and can be generalized regardless of 

the installed capacity. 

Historical data for the three years from FY2016 to 

FY2018 were used for the numerical analysis. Figure 5 

shows the changes in trading prices in each market (7-day 

moving average). It can be seen from the figure that trading 

prices tend to vary from year to year; hence, it is difficult to 

estimate the trading price for any year from the data set of 

the previous year. The expected yearly return and risk of all 

products for each year were derived using Equations 4 and 

5, and the results are shown in Figure 6. The expected 

yearly returns are between −25.0% and 66.7% in FY2016, 

between −27.9% and 16.9% in FY2017, and between 

−33.5% and 13.7% in FY2018. From the figure, it can be 

seen that the expected returns differ from year to year. 

  Using these data sets, the estimation models (efficient 

 
FIGURE 6. Risk-return distribution of all products 

 
FIGURE 5. Trading price transition (7-day moving average) 
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frontier) and the expected yearly return (estimated value) 

for each acceptable risk are derived for the different 

patterns shown in Table 2. In Table 2, pattern 1 is the case 

for applying CAPM without ensemble approach (bagging). 

Pattern 2 is the case for applying CAPM with ensemble 

approach (bagging) when replaced extraction samples is 1-

year and the number of weak learners is 3. Pattern 2 is to 

confirm the effect of applying ensemble approach. Pattern 3 

is to confirm the effect of increasing the number of replaced 

extraction samples. Pattern 4 is to confirm the effect of 

increasing the number of weak learners. Next, we derive the 

return (actual value) when the portfolio of the estimation 

model is operated for the one-year period of FY2019. 

Finally, the value estimated with the estimation model was 

compared with the actual value, and the predictability of the 

model was evaluated. 

 
IV. Results of numerical analysis 

 The effect of the number of samples and the number of 

classification estimation models was determined by 

deriving the efficient frontier of the classification 

estimation models in different patterns. Figures 7 and 8 

show the frontiers obtained with Pattern 2 and Pattern 4. 

The frontiers are shown in Figures 8 and 9, respectively. It 

can be seen that efficient frontiers with different trajectories 

for each classification estimation model are obtained by 

generating different datasets with low dependency through 

random extraction with replacement from the original 

dataset with N samples. 

With Pattern 2 and Pattern 4, it can be seen that, as the 

number L of replaced samples increases, the difference 

between the corresponding classification estimation models 

in the low-risk region (regions with small variance) 

decreases, and is generally very small. The reason for this 

could be that, as the number of extractions from replaced 

extraction samples increases, a relatively larger number of 

values close to the average return are extracted. In contrast, 

as the number L of replaced extraction samples increases, 

the difference between the corresponding classification 

estimation models in the high-risk region (region with large 

variance) increases. This may be because as the number of 

extractions from replaced extraction samples increases, 

more values farther from the average return are extracted. 

Figures 9 to 11 show the relationship between the 

expected return (estimated value) and actual return (actual 

value) when the portfolio of the efficient frontier was 

operated during FY2019. The expected yearly rate for 

Pattern 1 shows the efficient frontier derived using the 

three-year historical data of FY2016 to FY2018. In other 

words, Pattern 1 shows the result without bagging. The 

expected yearly returns for Pattern 2 and Pattern 3 are the 

average of the efficient frontiers of the classification 

estimation model obtained by applying bagging.  

In Pattern 1 (Figure 9), the deviation of the estimated 

value from the average value is large, the mean absolute 

error (MAE) in the measurement interval is 5.0%, and the 

maximum value of the absolute error is 8.0%. This is 

consistent with the conclusion drawn from the results 

reported in Figure 5, i.e., that it is difficult to predict the 

yearly expected return for any year with the limited dataset 

of the past three years because trading prices follow 

different trends every year. 

Pattern 2 (Figure 10) showed some improvement, but due 

to the small number of replaced samples, the MAE was 

4.8% and the maximum absolute error was 9.2%. In Pattern 

3 (Figure 11), which had a large number of replaced 

samples, the error in the high-risk area is small. The MAE 

and maximum absolute error of Pattern 3 were 2.1% and 

4.7%, respectively, which are satisfactory. In areas with a 

 

FIGURE 7. Efficient frontier with Pattern 2 

 

 
FIGURE 8. Efficient frontier with Pattern 4 

 

TABLE II 

VERIFICATION PATTERN 

Pattern 
Sample no 

N 

Replaced 

extraction 

samples 

no: L 

weak 

learners 

no: Q 

Pattern 1 

(w/o bagging) 

1,095 

－ － 

Pattern 2 365 3 

Pattern 3 1,095 3 

Pattern 4 1,095 5 
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risk below 25%, the absolute error was also less than 2.0%; 

hence, the predictability of the proposed method may be 

considered sufficient for practical purposes. On the other 

hand, in the high-risk area, the maximum value of the 

divergence of the daily expected return in the measurement 

interval is approximately 50%, and there is no significant 

reduction in error. The number of classification estimation 

models Q increased from 3 in Pattern 3 to 5 in Pattern 4, 

but no significant improvement in predictability was 

observed. The results of all the patterns are summarized in 

Table 3. 

 

 

Figures 12 and 13 show the discharge power allocation 

of a BESS on the efficient frontiers of Pattern 1 and Pattern 

3. These results show the proportion of the power W of the 

BESS discharged to the portfolios in the efficient frontier in 

accordance with the risk allowed by the energy service 

providers, which is consistent with the result obtained 

with Equation 17. From the figure, it can be seen that the 

estimation model in Pattern 3, which was constructed based 

on multiple different replaced extraction samples using 

bagging, results in a charge/discharge power portfolio with 

varied product composition; hence the portfolio has a 

higher risk diversification effect. In Pattern 1, the discharge 

power allocation was not considered because the results 

were not reliable in areas with a risk lower than 15%. 

 

 

 

 
FIGURE 9. Yearly expected return (estimated value) and return 
(actual value) with Pattern 1  
 

 
 
FIGURE 10. Yearly expected return (estimated value) and return 
(actual value) with Pattern 2  
 

 
FIGURE 11. Yearly expected return (estimated value) and return 
(actual value) with Pattern 3 

 
FIGURE 12. Discharge power allocation on the efficient frontier 
with Pattern 1 

TABLE III 

VERIFICATION RESULTS 

Pattern MAE (%) 

Maximum 

absolute error 

(%) 

Pattern 1 

(Conventional ) 
5.0 8.0 

Pattern 2 4.8 9.2 

Pattern 3 2.1 4.7 

Pattern 4 2.9 6.0 

 

FIGURE 13. Discharge power allocation on the efficient frontier line 
with Pattern 3 
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V. Conclusion 

We proposed a multipurpose operation strategy that 

efficiently distributes power to multiple power services 

from a single BESS. With the proposed operation strategy, 

the allocation of BESS discharge power is determined by 

using the CAPM and the ensemble Approach, and it is 

possible to quantitatively evaluate the expected return and 

risk in BESS operation and achieve the maximum expected 

return for the selected acceptable risk with higher 

predictability.  

Although there is still room for improvement in 

predictability in the area of high variance of the return (risk 

is generally above 20%), the area of low variance of the 

return (risk is generally below 20%) has very high 

predictability. However, given that the return peaks at 

around 20% risk, there is no practical issue. For these 

reasons, the multi-objective operation strategy proposed in 

this study can support more efficient operation of energy 

service providers while providing them with a profit 

outlook that is appropriate for their acceptable risk.  
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