

Numerical investigations of the multi-layer graphene as a thermal interface material and an elector-magnetic field shield layer for 3D power supply on chip applications

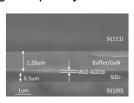
著者	Furue Ayano, Matsumoto Satoshi, Hasegawa
	Masataka
year	2021-10
URL	http://hdl.handle.net/10228/00008805

Philadelphia, Pennsylvania USA Oct. 24-27, 2021

Numerical investigations of the multi-layer graphene as a thermal interface material and an elector-magnetic field shield layer for 3D power supply on chip applications

Ayano Furue 1, Satoshi Matsumoto 1, and Masataka Hasegawa 2

- 1 Kyushu Institute of Technology, Kitakyushu-shi, Fukuoka / Japan
- 2 The National Institute of Advanced Industrial Science and Technology, Tsukuba-shi, Ibaraki / Japan


Si(100)

INTRODUCTION

Advantages of 3D Power SoC

- · High efficiency at high frequency switching
- High power density (miniaturization)

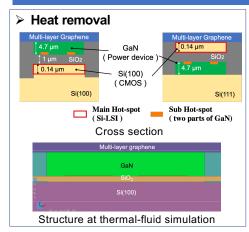
Direct bonding of GaN - Si(100) [1]

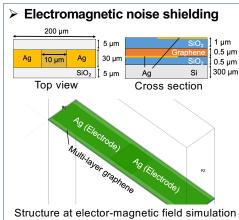
Power device Insulator Passive Insulator Control circuit Si substrate Heat spreader and

Passivation

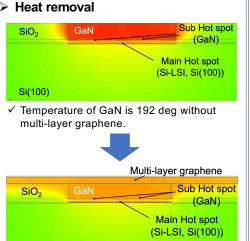
Heat sink

3D power SoC [2]

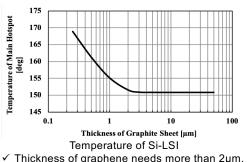

> Challenges

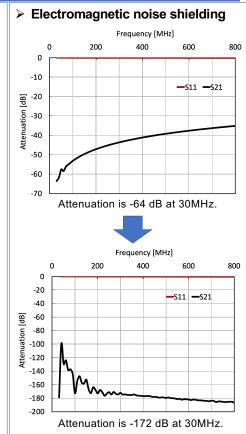

- · Heterogenous integration
- · Heat removal
- · Electromagnetic noise shielding

Multi-layer graphene


[1] R. Ishito, K. Ono, and S. Matsumoto, IEEE CPMT Symposium Japan 2019, ECR Session 12, 2019. [2] K. Hiura, Y. Ikeda, Y. Hino, and S. Matsumoto, Japanese J Applied Physics, vo.56, 04CR13, 2017.

DESIGN DETAILS




SIMULATION RESULTS

✓ Temperature of GaN is 174 deg with multi-layer graphene.

Si-LSI
✓ Noise attenuation with multi-layer graphene is 108 dB higher than without it.

CONCLUSIONS

- ✓ We can remove the heat of hot-spot in GaN power device by putting GaN on Si-LSI and using multi-layer graphene.
- ✓ Multi-layer graphene enables to shield electromagnetic noise.

ACKNOWLEDGEMENTS / CONTACT

The part of this work was supported by JSPS KAKENHI Grant Number 18H01430. furue.ayano907@mail.kyutech.jp, smatsu@ele.kyutech.ac.jp