

Development of the h-BN manufacturing process for3D-LSI

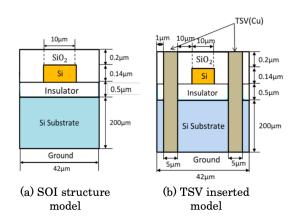
著者	Yokoi Masashi, Shinkai Satoko, Matsumoto			
	Satoshi			
journal or	2021 IEEE CPMT Symposium Japan (ICSJ)			
publication title				
page range	120-121			
year	2021-12-24			
URL	http://hdl.handle.net/10228/00008801			

doi: https://doi.org/10.1109/ICSJ52620.2021.9648854

Development of the h-BN manufacturing process for 3D-LSI

Masashi Yokoi Department of Advanced Infomatics Kyushu Institute of Technology Fukuoka, Japan q232090m@mail.kyutech.jp Satoko Shinkai Department of Advanced Infomatics Kyushu Institute of Technology Fukuoka, Japan shinkai@phys.kyutech.ac.jp Satoshi Matsumoto department of Electrical Engineering and Electronics Kyushu Institute of Technology Fukuoka, Japan smatsu@ele.kyutech.ac.jp

Abstract— Hexagonal-BN (h-BN) based SOI structure with through silicon via (TSV) shows higher heat dissipation performance without degrading electrical characteristics compared with the conventional SOI structure. This paper evaluates the manufacturing process for 3D-LSI concluding h-BN. Hexagonal-BN etched by F_2 +He shows useful top shapes of TSV for the 3D-LSI.


Keywords—Hexagonal-BN (h-BN), through silicon via (TSV), dry etching technology, F2+He gas

I. INTRODUCTION

In order to expand "Moore's law", a technology for integrating multiple chips into one package has appeared. A package composed of multiple chips requires (1) smaller external dimensions, (2) higher operating frequency and bandwidth, (3) higher power efficiency, and (4) lower manufacturing costs. To achieve these goals, we expect Three Dimensional-Large Scale Integrated circuits (3D-LSI) using Through Silicon Via (TSV). For the 3D-LSI, exhaust heat is one of the important issues. Then, it is considered to use thin diamond film as an insulator. It has been proposed because the diamond have higher thermal conductivity than SiO₂[1, 2]. But it was only about half of exhaust heat effect which is expected from the thermal conductivity of the nano-crystalline diamond[3]. The nanocrystalline diamond has a surface roughness of several nanometers and this film cannot cover the surface of the heat source and these prevents the heat transfer from heating element to nano-crystalline diamond. This result reveals that higher thermal conductivity and atomically flat surface are required to obtain higher heat exhaust performance. In such situations, hexagonal-BN (h-BN) is attractive for the buried insulator layer because it has higher thermal conductivity with atomically flat surface (Ra of h-BN < 0.25 nm)[4, 5].

The thermal conductivity of the materials is listed in Table I. When SiO₂ is used for Insulators shown in Figs. 1, the low thermal conductivity of SiO₂ (1.38 [W/($m \cdot K$)]) causes serious heat storage problems. However, when h-BN is used as an insulator material, the good horizonal thermal conductivity of h-BN (390 [W/($m \cdot K$)]) effectively acts on

TABLE I. Thermal conductivities				
material	Thermal conductivity [W/(m • K)]			
Si	145			
SiO2	1.38			
h-BN	Vertical 2 Horizonal 390			

Figs. 1 Schematic of the cross-sectional SOI structure.

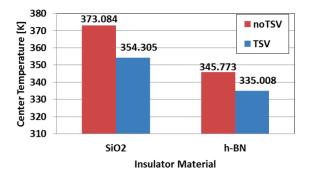
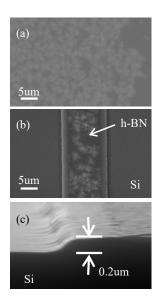


Fig. 2. Temperature at center of heat source (Si) and insulator with and without TSV.

exhaust heat. Especially, TSV is very effective in the case of h-BN as shown in Fig. 2[6]. For the manufacturing of TSV, it is important to establish dry etching technology for h-BN.

In this paper, we have succeeded at patterning h-BN for 3D-LSI manufacturing process, and report the results.


II. EXPERIMENTAL

The sample was used h-BN transferred onto a Si wafer. First, the sample was performed ultrasonic cleaning with pure water for 1 [min]. And then, Al with thickness of 200 [nm] was deposited to form a metal mask. Next, the sample was carried out pattering using a mask-less exposure system (MLA100). The prepared mask patterns were Line & Space type. The width of mask parts (line parts) and etching parts (space parts) were 10 μ m and 30 μ m, respectively. Inductive Coupled Plasma Reactive Ion Etching (ICP-RIE) was applied for etching method. Fluorine+ helium (F₂:He=1:9), CHF₃ and SF₆ were used as the etching gas. The etching conditions were the ICP power of 300 [W], the bias power of 100 [W], the process pressure of 1 [Pa], the gas flow rate of 20 [sccm], and the etching time of 10 [min]. The resist and metal mask ware removed from the sample after ICP-RIE process. The h-BN samples are observed by optical microscope and Scanning Electron Microscopy (SEM).

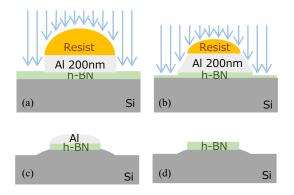

III. RESULTS AND DISCUSSION

Figure 3(a) shows the surface of the h-BN transferred onto Si. From this figure, crystal pattern of the h-BN can be confirmed. Line & space patterns were prepared on this sample. Then, ICP-RIE using F_2 +He gas was carried out. The obtained results are shown in Figs. 3 (b) and (c). From Fig. 3(b), it can be seen that h-BN remains on the line parts and completely removed by etching on the space parts. In addition, cross-sectional image of Fig. 3(b) is shown in Fig. 3(c). From this figure, Si is subsequently over-etched about 0.2 μ m.

Figure 4 shows the schematic images of h-BN etching mechanism by F_2 +He gas. As shown in Fig. 4 (a), the shapes

Figs. 3. SEM images of (a) h-BN surface, (b) after dry etching using F2+He gas, (c) cross sectional image of (b)

Figs. 4. The schematic images of etching mechanism by F2+He gas :(a) After the start of etching, (b) During etching , (c) After the end of etching, (d) After removing Al mask.

TABLE II. Comparison of etching characteristics					
gas	h-BN etching	Isotropic	Anisotropy		
F ₂ +He	Excellent	Poor	Excellent		
CHF ₃	Fair	Poor	Good		
SF_6	Good	Good	Poor		

of resist are dome-type. First, the both ends of the resist are etched with the progress of etching, as shown in Fig. 4 (b). Along with this, both ends of the Al mask are etched. After the end of etching, the resist is completely etched as shown in Fig. 4 (c). This phenomenon is under the present etching conditions. If the etching conditions such as the bias power and etching time are changed, the resist may be remained. Next, the Al mask is removed by wet etching as the last process. The cross-sectional image of final state is as shown in Fig. 4 (d).

On the other hand, it has been reported that h-BN can be etched using CHF₃ and SF₆ gases. [7,8] Therefore, in order to confirm the usefulness of F₂+He gas for h-BN etching, h-BN etching was performed using CHF₃ and SF₆ gases. As a result, h-BN could not be etched completely in the case of CHF₃ gas. When SF₆ gas was used as etching gas, h-BN was sufficiently etched. However, since SF₆ gas has the property of isotropic, side etching was proceeded strongly. Accordingly, the layout patterns were collapsed. Therefore, it was confirmed that SF₆ gas was unsuitable for h-BN patterning. Table II shows a summary of the etching characteristics of each gas for h-BN.

Therefore, it is found that dry etching of h-BN using F_2 + He gas is a useful etching method to form the top structure of TSV for 3D-LSI.

IV. CONCLUSION

The h-BN is etched by ICP-RIE using F_2 +He, CHF₃ and SF₆ gases. The h-BN cannot be sufficiently etched using CHF₃ gas. When SF₆ gas is used as etching gas, h-BN is sufficiently etched. However, since SF₆ gas has the property of isotropic, side etching is proceeded strongly. Accordingly, the layout patterns were collapsed. Different from these gases, the usefulness of F_2 +He gas for h-BN etching is confirmed. The etching by F_2 +He gas realizes the useful top shapes of TSV for the 3D-LSI.

REFERENCES

- [1] J.-P Mazellier et al., 2009 IEEE Int. SOI Conf. 141, 2009.
- [2] K. Nalagawa et al., JJAP vol.53, No.4, 04EP16, 2014.
- [3] S. Duangchan et al., J of Material Science; Material in Electronics, vol.28, pp.617-624, 2017.
- [4] I. Jo, et al., Nano Lett., 13, 550-554, 2013.
- [5] S. M. Kim et al., Nature communications, 6, 8662, 2015.
- [6] Yoshiki Sato, Kota Ono, Satoshi Matsumoto, and Masataka Hasegawa, SSDM 2018, pp961-962, 2018
- [7] "Dry etching techniques for active devices based on hexagonal boron nitride epilayers", Samuel Grenadier, Jing Li, Jingyu Lin, and Hongxing Jiang, J. Vac. Sci. Technol. A 31(6), Nov/Dec 2013, 06151
- [8] ACS Appl. Mater. Interfaces 2020, 12, 8533-8538
- [9] S. Grenadier, J. Li, J. Lin, H. Jiang, J. Vac. Sci. Technol. A31(6) 061517, 2013