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Abstract

Since animal bodies are highly complex to be organized biologically, it is not easy
to evaluate the advantage of flexibility in the muscularskeletal system in comparison
with mechanical rigid bodies. For the reason, a simplification had been implemented
in traditional scheme of the reduced degree of freedom mechanisms with well-designed
fixed limb trajectory for real world applications, and the best mechanical structure
was explored to minimize its energy consumption known in walking linkage mecha-
nisms. As the possible hypothesis, the advantage of high energy conservation effect
can be maximized according to a smooth grounding at the touching moment of the
toe on the ground. The smooth trajectory itself can be reproduced by closed-linkage
walking models, while the effect of the interaction between the toe and ground is
unclear and viscoelastic contact may enhance the effect. For the clarification of the
hypothesis, a fine computational framework is needed to be established to provide
less computational cost and enough accuracy and stability in the analysis. Tradi-
tionally, the rigid-body mechanics and contact force analysis were separately studied
and developed. In the present study, multibody dynamics approach based on the
analytical mechanics was newly integrated with the viscoelastic contact force model,
which is able to implement a hysteresis damping phenomenon simply. By using the
linkage mechanisms, the elasticity of the grounding was analyzed through the inverse
dynamics based on the proposed computational framework involving the multibody
dynamics and contact force model implementation. The proposed method was located
in an intermediate position between the discrete contact model for a less frequency
attachment of bodies and the continuous model for stable attachment phenomenon.
In the sense, the method was appropriate for analyses of walking mechanisms with
a consistent frequency of the attachment with the ground, which requires a fine re-
action force analysis. In the computer experiment as the comparison of typical and
simplified walking linkage mechanisms, the proposed method applied to Chebyshev
and Theo-Jansen walking mechanisms and demonstrated the required torque in the
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driving input when those mechanisms were walking on the ground. In an energy
analysis, which is defined as the required input-torque integration in a cycle of the leg
motion, the perfectly elastic ground contact commonly reduced the energy consump-
tion significantly in the comparison of the coefficient of restitution in the damping
factor model by Lankarani and Nikravesh. The result proved the hypothesis of the
positive effect of the smooth grounding in the range of the proposed computational
approach. It may contribute to providing an criterion not only for a real walking
robot design but also assistive devise configurations to absorb unnecessary ground
reaction force to prevent the damage to the leg mechanism and enhance a smooth
walking pattern.

Keyword

Closed-loop linkages, Multibody dynamics (MBD), Contact force model, Energy con-
sumption, Computational framework.

3



Acknowledgments

There have been many people who have helped me during this great experience and

intense learning period. I would like to give my sincerely thanks to them, to only

some of whom it is possible to give particular mention here.

First of all, I would like to thank to my PhD supervisor, Associate Professor

Hiroaki Wagatsuma for the good advice, support and guidance that has been valuable

on both academic and personal growth. He has been very patiently supervising

me and always guiding me in the right direction. I have learned a lot from him,

without his help this thesis would not have met an end. In addition, I would like to

thanks the member of PhD committee Professor Kazuo Ishii, Professor Eiji Hayashi,

Associate professor Horiyuki Miyamoto, Associate professor Hiroaki Wagatsuma for

their excellent suggestion and detail review during the thesis evaluation. I am grateful

to all lab members, in particular, Jisha Maniamma, Ankur Dixit, Kumar Arvind,

Dachkinov Pancho, Yoshitaka Kato, Maria Sanchez, Kazuki Kanamaru, and Takuma

Kariya for their support and for the great time we have shared these three years.

Finally, I owe my heartfelt thanks to my close people. I am very grateful for my

wife Baigalmaa Gantumur, her understanding encouraged me to work hard. Thanks

to my mother Dolgorsuren Purevdorj who always ask for the health and state of the

research work, and also thanks to my close friends in Kyutech, who have made the

effort to understand that PhD does not let me have so much free time. Last but not

least, thank you very much, everyone who directly or indirectly supported and helped

me.

Dondogjamts Batbaatar

4



Contents

1 Introduction 13

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Towards an understanding the effect of physical damping in legged

locomotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Closed-loop linkage models . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Organization of this Dissertation . . . . . . . . . . . . . . . . . . . . 19

2 Mathematical formulations in multibody system dynamics 21

2.1 Formulation for constrained multibody system . . . . . . . . . . . . . 23

2.1.1 Constraint between body and ground . . . . . . . . . . . . . . 24

2.1.2 Driver constraints . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.3 Degree of freedom in constrained mechanical system . . . . . . 27

2.2 Forward dynamics approach . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Solution of the equation of motion . . . . . . . . . . . . . . . 30

2.3 Inverse dynamics approach . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Foot-ground contact model 35

3.1 Kinematic modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Formulations for contact impact analysis . . . . . . . . . . . . . . . . 37

3.2.1 Modeling of normal contact force . . . . . . . . . . . . . . . . 38

3.2.2 Modeling of tangential friction force . . . . . . . . . . . . . . . 40

4 An integrated computational framework for the energy analysis of

5



rigid closed-loop walking mechanisms 43

4.1 Kinematics and gait trajectory analysis . . . . . . . . . . . . . . . . . 45

4.1.1 Formulation for Chebyshev mechanism . . . . . . . . . . . . . 48

4.1.2 Formulation for Theo-Jansen mechanism . . . . . . . . . . . . 50

4.1.3 Result of the numerical simulation . . . . . . . . . . . . . . . 53

4.2 Kinetic and energy analysis . . . . . . . . . . . . . . . . . . . . . . . 56

5 Comparison between the proposed method and the other methods 63

5.1 Demonstrative example 1 . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1.1 The linear complementarity problem . . . . . . . . . . . . . . 64

5.1.2 Energy analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1.3 Result and comparison . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Demonstrative example 2 . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.1 Formulation with Lagrangian approach . . . . . . . . . . . . . 72

5.2.2 Result and comparison . . . . . . . . . . . . . . . . . . . . . . 75

6 Dynamic modelling of the horse locomotion 79

6.1 Biomechanics of horse locomotion . . . . . . . . . . . . . . . . . . . . 81

6.2 Kinematic analysis of horse leg mechanism . . . . . . . . . . . . . . . 82

6.2.1 Classfication of engineering and biological linkages in horse leg

mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7 Discussion and Conclusion 94

6



List of Figures

1-1 Compliant leg model including active and passive elements as well as

soft and hard tissues in the system for the case of simple four bar

mechanism (a), Mass-spring-damper (MSD) as the simplified model of

compliant leg mechanism in general (b), and An effect of the adjustable

damping (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1-2 The models of typical walking mechanisms with input driving link 𝑂1𝐴

and output leg motion. In figure, the arrows represents the direction

of rotation of driving link and leg motion associated with driver. . . . 16

1-3 Proposed an integrated computational framework . . . . . . . . . . . 18

2-1 Abstract representation of a multibody system with its most significant

components bodies, joints, and force elements for the case of human

biomechanical model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2-2 Constraints on absolute coordinates of point 𝑃𝑖 on body 𝑖 and angular

orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2-3 Constraints on the revolute joint connecting two body 𝑖 and 𝑗. . . . . 26

2-4 Integration methods for the solution of equation of motion. Direct

integration (a), Constraint stabilization Baumgarte method (b). . . . 31

2-5 Flowchart of iterative procedure for dynamics analysis of multibody

systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7



3-1 Kinematic model representing the contact and non-contact scenario of

ball and ground interaction. Non-contact scenario with its kinematic

components (a), Contact scenario with Spring-damper model repre-

senting the elastic impact in normal direction. . . . . . . . . . . . . . 35

3-2 Representation of the one-dimensional direct central-impact between

ball and ground (a), dynamic response of contact impact event: de-

formation at instant time (b), elastic component of the contact force

versus deformation (c). . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3-3 Influence of the coefficient of restitution 𝑐𝑟 on the ball-ground interac-

tion. Deformation at instant time (b), viscoelastic behaviour (c). . . . 39

4-1 An integrated computational framework to be able to evaluate the

energy conservation effect in a viscoelastic ground contact in cases of

closed-loop walking mechanisms. . . . . . . . . . . . . . . . . . . . . . 44

4-2 Representations of foot-ground interactions by kinematic models of two

walking mechanisms. (a) Result in the Chebyshev mechanism and (b)

result in the Theo-Jansen mechanism. . . . . . . . . . . . . . . . . . . 47

4-3 Position and posture analyses of two walking mechanisms to generate

different locomotive trajectories associated with individual rotations

at the input driver. (a) Result in the Chebyshev mechanism and (b)

Result in the Theo-Jansen mechanism (b). Individual links colored

differently for the discrimination. In each panel, solid black lines and

the dotted line represents respectively representative movement trajec-

tories and the leg-motion trajectory of the end-effecter. Red points in

the dotted line represents the stance phase. . . . . . . . . . . . . . . . 54

8



4-4 Characteristic analyses of the relative velocity VFT and absolute ve-

locity 𝑉𝐹𝑉 and the acceleration of the foot.(a) and (c) represent respec-

tively velocities and acceleration in the case of the Chebyshev mech-

anism, and (b) and (d) represent same variables in the case of the

Theo-Jansen mechanism. Black and red colors represent respectively

swing and stance phases. . . . . . . . . . . . . . . . . . . . . . . . . . 55

4-5 Results of contact force analyses in the vertical direction. (a) and (c)

represent respectively inelastic and elastic contact conditions in the

Chebyshev mechanism, and (b) and (d) represent respectively same

variables in the Theo-Jansen mechanism. . . . . . . . . . . . . . . . . 57

4-6 Results of contact force analyses in the horizontal direction. (a) and

(c) represent respectively inelastic and elastic contact conditions in the

Chebyshev mechanism, and (b) and (d) represent respectively same

variables in the Theo-Jansen mechanism. . . . . . . . . . . . . . . . . 58

4-7 Analyses of required driving torques for walking under different contact

conditions. (a) Results in the Chebyshev mechanism and (b) results

in the Theo-Jansen mechanism. . . . . . . . . . . . . . . . . . . . . . 60

4-8 Energy consumption of two walking mechanisms in different contact

conditions. (a) Results in the the Chebyshev mechanism and (b) results

in the Theo-Jansen mechanism. . . . . . . . . . . . . . . . . . . . . . 60

4-9 Comparative analyses of the average torque (a) and the total energy

consumption (b) of two walking mechanisms in different contact condi-

tions. CW and CCW represent respectively conditions of the clockwise

input driver rotation and the counter clockwise rotation. . . . . . . . 61

9



4-10 A detail analysis on the contact point in each walking mechanism. (a)

and (c) represent respectively the position analysis and required driving

torque in the single cycle in the case of the Chebyshev mechanism, and

(b) and (d) represent same variables in the case of the Theo-Jansen

mechanism. In the position analysis of the Theo-Jansen mechanism,

links of 𝐿1,𝐿6,𝐿9,𝐿10 and 𝐿11 were only displayed as the highlight of

the contact phenomenon. Representative time points with labels as

C* and T* were selected from the mid-point of the stance phase and

changing points of the temporal sequence of each driving torque. . . . 62

5-1 Kinematic model of ball-ground contact on Langrangian based ap-

proach and penetration model in proposed integrated framework (b). 64

5-2 Simulation result of kinematic analysis of ball-ground interaction, Ball

position (a) Lagrange method and (b),(c) of proposed method during

elastic and inelastic contact, respectively. . . . . . . . . . . . . . . . . 68

5-3 The result of velocity analysis . . . . . . . . . . . . . . . . . . . . . . 68

5-4 The result of contact force analysis . . . . . . . . . . . . . . . . . . . 69

5-5 Energy dissipation during an contact . . . . . . . . . . . . . . . . . . 69

5-6 Force penetration relation in proposed method during elastic contact

(a) and inelastic contact (b). . . . . . . . . . . . . . . . . . . . . . . . 70

5-7 Result of total computation time in numerical experiment in two meth-

ods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5-8 Kinematic model for slider-crank mechanism (a), Corresponding free

body diagram of constrained mechanical system. . . . . . . . . . . . . 72

5-9 Contact force for Lagrangian method (a) and proposed method for

inelastic contact (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5-10 Constraint violation at the position level, Lagrangian approach (a) and

Proposed method with Baumgarte’s stabilization technique (b). . . . 76

5-11 Constraint violation at the velocity level, Lagrangian approach (a) and

Proposed method with Baumgarte’s stabilization technique (b). . . . 77

10



6-1 Implementation of horse leg mechanism. Horse leg mechanism con-

sists of three parts: Reciprocal mechanism, which observed in horse

hind limb produces lifting up motion in lower part of the leg. Theo-

Jansen like simplified mechanism with cyclic driving unit as shown in

the middle. Horse like Leg mechanism with different modifiable foot-

path, linear actuator inserted and hoof mechanism added based on

anatomy of the horse leg. . . . . . . . . . . . . . . . . . . . . . . . . . 80

6-2 Schematic illustration of the musculoskeletal system of the horse hind

limb (a) Associations of bones and joint positions, (b) the muscle or-

ganization and (c) the proposed model with closed linkages. Figures

(a) an (b) were drawn based on analyses of Budras et al. (2012) [1]. . 81

6-3 Kinematic model of the horse leg mechanism, generalized coordinates

in constrained segments were placed on the center of each link. . . . . 83

6-4 An effect of length changes of the 𝐿3 link inserted in horse leg mecha-

nism as important function of muscle-tendon unit . . . . . . . . . . . 86

6-5 Characteristic analysis including end effectors placements in the case of

Δ𝐿3 = 𝑎𝑣𝑒 (average). (a) the planner trajectory is shown in, (b) veloc-

ity analysis, (c) acceleration, (d) and driving torque 𝜏 of the proposed

leg mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6-6 Comparison of the common factors in relation to length of 𝐿3 link . . 88

6-7 Gait trajectories generated from the horse leg motion. Walking (a),

Running (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6-8 Different viewpoint of hoof wall (a), Possible contact types depending

on landing of the hoof on ground (b), Representation of impact between

hoof and ground for the case of toe first landing (c) . . . . . . . . . . 90

6-9 Hoof angle variations with respect to the locomotive trajectory. An-

gular rotation of hoof in one locomotive cycle of walking gait (a) and

running gait (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6-10 Resultant values of ground reaction forces under the different contact

condition. Force pattern of walking gait (a) and running gait (b). . . 92

11



List of Tables

2.1 Common techniques dealing with computer simulation of dynamics

analysis of multibody system . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Parameters used in the numerical simulation . . . . . . . . . . . . . . 45

4.2 Parameters of each link length (m) and mass (kg) . . . . . . . . . . . 46

4.3 Resultant values of kinematic analyses of two mechanisms . . . . . . 53

4.4 Resultant values of dynamic analyses of two mechanisms . . . . . . . 59

5.1 Resultant values of constraint violation at position level . . . . . . . . 76

5.2 Resultant values of computation time and force analysis . . . . . . . . 77

5.3 Resultant values of constraint violation at velocity level . . . . . . . . 78

12



Chapter 1

Introduction

1.1 Background and Motivation

The dynamics of legged robots with closed-loop mechanisms have been extensively

studied in recent years [2, 3, 4, 5, 6, 7]. Those theoretical investigations dealt with the

forward dynamics and the inverse dynamics to estimate required actuator torques and

forces for the desired motion [8, 9]. The inverse dynamics analysis is highly important

for an effective design of the mechanical system inspired from the biological system,

in the aim of minimizing the energy consumption and realizing an energy-efficient

motion planning. A recent trend is soft robotics and a hybrid design of rigid and soft

bodies, which is inspired from soft grounding of running athletes [10, 11, 12, 13] or an

appropriate compliance control of walking robots [14, 15, 16, 17] to learn an essence

of the muscularskeletal system.

There are several representation of compliant elements by mechanical spring-

damper in robotic legged design such as series elastic actuators (SEA) [18], leg design

with physical elastic elements [19, 20, 21] inspired from the bi-articular muscle-tendon

structure, spring-loaded inverted pendulum (SLIP) model [22], the distal compliance

by springy foot [23, 24] as shown in Figure 1-1 (a) may the contributes the reduction

of sudden impacts at the point of contact. According to the review by Jie Chen et.

al [25], above the mentioned elasticity or compliance in legged system divided into

three main categories depending on setting locations and configurations which are

13



joint series compliance, joint parallel, and leg distal. On the other hand, the effect

of elasticity in ground surface during the contact impact process is less considered in

robotic foot-ground interaction in comparison with elasticity in the muscularskeletal

system. It is necessary to further investigate the implementation and effects of phys-

ical damping not only in robotic leg design but also in terms of material properties of

ground and leg mechanism as two closed system in contact. In order to study that,

one underlying factor is that most damping models will depend on velocity. Therefore,

contact force model developed in past decades can be useful to explore the potential

functional benefits behind the preferred elasticity in biological systems and to realize

a such benefits in design of legged robots. Recently, much attention paid to the less

understood behaviour of the adjustable damping tested during the vertical drop with

the ground-level perturbations showing that physical damping may help to reject the

perturbation by morphological computation, as it mechanically contributes to the

rejection of perturbation [26, 27, 28, 29]. The main characteristic of the damping

was to reduce unwanted oscillations at touchdown by dissipating the impact kinetic

energy of the system by springy components [30]. Hence, we study the effectiveness

of physical damping on energy dissipation, to investigate how physical damping can

influence the dynamics of the stance phase during the elastic and inelastic contact.

We then examine how these predictions relate to driving energy with two different

contact cases.
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1.2 Towards an understanding the effect of physi-

cal damping in legged locomotion

Inelastic (hard)

Elastic (soft)

A

B

O2y

x

C

K

D

K

D

K

Zoom

KD

m

D K

=HighD

(a) (b) (c) 

= LowD

Figure 1-1: Compliant leg model including active and passive elements as well as
soft and hard tissues in the system for the case of simple four bar mechanism (a),
Mass-spring-damper (MSD) as the simplified model of compliant leg mechanism in
general (b), and An effect of the adjustable damping (c).

In the purpose, contact dynamics is significant to model the actual contact process

for analyzing an energy dissipation at the moment of the grounding [4, 6]. The

computational scheme based on the Lagrangian formulation provides a systematic

approach to develop collision and/or sustained contact between rigid bodies, while

there are options to focus on either macroscopic or global contact deformations. For

binding of methods for the rigid multibody system with the contact dynamics, the

formulation based on the non-interpenetration constraints as a unilateral constraint

fits to the rigid-body assumption, and then the reaction force from the ground can be

estimated with Lagrange multiplier under the constrained predetermined condition

[31]. If it is possible to integrate methods for rigid body mechanics and contact

dynamics in a consistent manner, the complex muscularskeletal system for walking

can be analyzed in a simplification of bodies only with a compliant contact model

[32, 33, 34] as shown in Figure 1-1 (b).
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1.3 Closed-loop linkage models

In the study by Komoda & Wagatsuma [7] compared different walking mechanisms

specifically focusing on the bio-inspired three closed-linkage models and demonstrated

an advantage of the model with a smooth grounding of the leg-motion trajectory

called the Theo-Jansen mechanism, because of a high energy conservation rather than

others. On the other hand, they analyzed a comparison of the energy consumption

when moving in the air without considerations of the ground reaction force.

Walking direction Walking direction

Input

Input

Output Output

A

B

C

D

1

1
A

B

C

D

O2

E

F

Chebyshev Theo-Jansen

O2

Figure 1-2: The models of typical walking mechanisms with input driving link 𝑂1𝐴
and output leg motion. In figure, the arrows represents the direction of rotation of
driving link and leg motion associated with driver.

The consideration of impact dynamics when grounding of the leg requires a fine

analysis of the forward dynamics of the constrained mechanical system, and the sta-

bility of the general solution is required to improve without reducing the number of

differential equations to represent the model [35, 36, 37, 38]. Recently, the number

of researches was conducted in the modeling of impact analysis in the framework

of the multibody system to be able to treat phenomena in collision of elastic bod-

ies. The establishment of the theory of dissipative forces is crucial for viscoelastic
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body interactions as discussed by Goldobin et al. [39]. Traditionally, several contact

force models for multibody dynamics have been proposed to be generalized contact

kinematics, which was extended from pure elastic contact force models to dissipative

contact force models [40]. Indeed, the dissipative contact force is more realistic to

explain actual phenomena in the outer world for robotic systems to connect, while

the formulation requires constitutive laws and damping factors to accommodate the

energy dissipation associated with the contact-impact process as illustrated in Fig-

ure 1-1 (c). The first dissipative contact force models is considered to be proposed by

Kelvin and Voigt [40, 41], which simply assumed a linear relationship between contact

force and penetration in deformation, as a first-order approximation. Since the linear

spring-damper contact force model does not properly represent the physical nature

of the energy transferred between bodies at the contact process as Hunt and Cross-

ley [42] demonstrated, several models were newly proposed to involve the Hertz law

as the non-linear equation [39, 40, 43]. Although there are several upgrade versions

[40, 44], the most traditional non-linear model is considered to be the model proposed

by Lankarani & Nikravesh [45], which successfully integrates the Hertzian contact law

associated with a hysteresis damping factor as a continuous contact force model with

a high advantage for the contact-impact analysis of multibody systems. Interestingly,

in those non-linear viscoelastic models, the contact force can be decomposed into its

elastic (conservative) component with the impact spring stiffness parameter and vis-

cous (dissipative) component with the hysteresis damping factor [40]. The hysteresis

damping factor controls the amount of hysteresis in the relationship between contact

force and penetration in deformation and it includes a critical parameter known as the

coefficient of restitution, which determines whether the collision provides completely

elastic impact or inelastic impact, by changing the parameter value to be either unity

or null [40, 43].
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Damping 
factor model

Chebyshev Theo-Jansen

Closed-loop walking mechanisms

v.s.

Simple Complex 

(Animal-like)

Inelastic (hard)

Elastic (soft)

Damping 

(coefficient of restitution                        

cr = 0 for inelastic, cr = 1 for elastic)

Dissipatative contact force modelMultibody dynamics approach

(forward and inverse dynamics)
Integrate 

Proposed Computational Framework

Figure 1-3: Proposed an integrated computational framework

In consideration of robotic systems, particularly in walking mechanisms, a fine

contact dynamics model provides a significant benefit to evaluate necessary parame-

ter values to satisfy a desired function. In the passive biped walking robot, called the

passive walker, Corral et al. [46] investigated best ranges of coefficients of restitution

and friction to realize a sustainable walking motion and successfully visualized the

achievement index of walking as a function of coefficients of restitution and friction

by using formulations of kinematics and dynamics with the impact dynamics model.

Returning to the principle problem in the present study, the establishment of a fine

methodology for simulating phenomena of viscoelastic contact with the ground in gen-

eral example as shown in Figure 1-3 is important for bio-inspired walking mechanisms

to prove the efficacy in the energy consumption as an inevitable unsolved problem.

As Komoda and Wagatsuma [6] demonstrated, a set of closed-linkage walking mech-

anisms can be a standard criterion to test the hypothesis that the viscoelastic ground

contact contributes to minimizing the energy consumption of walking mechanisms es-

pecially in the stance phase, which happing ground reaction forces. For the validation
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of the hypothesis, this thesis is devoted to the problem of evaluating required torque

of the input driver and the energy consumption of the system with/without viscoelas-

tic effects in cases of Chebyshev and Theo-Jansen mechanisms as typical closed-loop

walking mechanisms.

1.4 Organization of this Dissertation

Chapter 2: This chapter, includes the formulation that can be used to analyze

the dynamics of planar linkage mechanism within the scope of computational multi-

body dynamics. The computer algorithms mainly utilized in the dynamic of planar

multibody system for the case of forward dynamics analyses are presented. Then,

the key aspects related to the dynamic analysis of constrained multibody mechanical

systems are discussed for instance, stability of general solution of equation of motion

and inverse dynamics of kinematically driven system. The formulation of multibody

system dynamics adopted here uses the generalized absolute coordinates to derive the

multibody system equations of motion. This formulation results in the establishment

of a mixed set of ordinary differential and algebraic equations, which are numerically

solved in order to predict the system dynamics.

Chapter 3: In this chapter, some of most relevant contact force models from pure

elastic constitutive Hertz law to non-linear dissipative models in contact mechanics

are presented. In particular, attention is given to the constitutive law proposed by

Lankarani & Nikravesh. The concept of coefficient of restitution in relation to the

hysteresis damping factor is derived. The approach presented in this chapter is based

on the analysis of energy dissipation associated with the internal damping of the con-

tacting bodies which can be analyzed with various damping factor models proposed

by different authors. Furthermore, basic formulation in generalized contact kinemat-

ics and its further extension with the framework of multibody system dynamics, are

briefly described.

Chapter 4: We introduced a computational framework to integrate the multibody

dynamics with dissipative contact force model in simple manner and partially demon-
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strated the proposed integrated framework on dynamic analysis of the typical walking

mechanism.

Chapter 5: Show demonstrative examples on contact force analysis using proposed

integrated method and compared to other existing method. In particular, compu-

tational efficiency and numerical accuracy were quantified with simple open-loop

and constrained closed-loop system example. Constraint formulation was introduced.

The method employ constraint equation to describe the contact between slider-crank

mechanism and fixed block. its limitation in larger constrained mechanical system

due to poor stability in numerical solution was addressed.

Chapter 6: The rest of the dissertation includes a discussion on the generality and

possible application of our method for the analysis of the ground reaction force in

animal-like realistic gait trajectories reproduced by the musculoskeletal closed linkage

model.

Chapter 7: The limitation of our method associated with the morphological change

of the contact surface is stated and possible implementation of the theoretical method

dealing with the complex representation of the surface parameter is considered in the

future scope of our approach.
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Chapter 2

Mathematical formulations in

multibody system dynamics

The multibody systems are often very complex and consists of a collection of inter-

connected rigid and flexible bodies. These bodies are constrained with respect to each

other using a set of restrictions. Mathematically, these kinematic pairs (or joints) can

be modelled by constraint equations that introduce kinematic relations between the

coordinates describing the configuration of mechanical system as shown in Figure 2-1.
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Bodies Joints Force elements
Rigid (bones)

Flexible (muscles)

Flexible (ligaments)

Revolute

Spherical

COM

Spring-damper

Torsional spring

FG

FI

FGRD

FG - Gravitational force
FI  - Intertial force

FGRD - Ground reaction force

fi

fj

fi, fj - Constraint forces

Figure 2-1: Abstract representation of a multibody system with its most significant
components bodies, joints, and force elements for the case of human biomechanical
model.

The study of kinematics gives information about the motion of a system indepen-

dently of the forces acting on it. The motion of the system depends on the geometry

and configuration of its elements. To understand the kinematics of complex system

motion, it is necessary to study the general motion of a multibody system, with

emphasis on the restrictions introduced by the kinematic pairs (corresponding to the

joints of the linkage system). Therefore, in this section, the systematic computational

tools used to determine position, velocity and acceleration of the system are pre-

sented. Before going into the detailed description of multibody system formulation,

computer and numerical methods to be suitable for implementation on high-speed

digital computers based on analytical techniques of Newton, D’Alambert, and La-

grange are introduced in terms of dependent features or factors for the development

of computationally efficient computer programs.
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Table 2.1: Common techniques dealing with computer simulation of dynamics analysis
of multibody system

`````````````````````̀
Parameters

Existing MBD approaches
Augmented formulation Embedding technique

Structure Sparse matrix Matrix

Choice of coordinate system Absolute Cartesian and Orientation (Body) Joint coordinates

Stability criteria Baumgarte method

Coordinate partitioning method
Integrator

Direct integration

Runge-Kutta

Constraint forces Explicitly appears Eliminated

Computational efficiency High High

Development General purpose General or special purpose

Application to the closed loop system Applicable Less applicable

There are two basic dynamics formulations which are widely used in computer sim-

ulation of multibody systems as shown in Table 2.1. In the augmented formulation,

equation of motion expressed in terms of redundant set of coordinates. As result, the

constraint forces appear in the final form of equations of motion. An advantage of this

formulation is producing simple equations that has sparse matrix structure; therefore,

these equations can be solved efficiently even for the complex miltibody system. In

the second formulation, constraint forces are eliminated from the dynamic equations

by expressing these equations in terms of system degrees of freedom. Which means

joint variables often used as the degree of freedom to express the system configura-

tion. its also stated in literature [47] that use of joint variables has the advantage of

reducing number of equations and disadvantage of increasing the non-linearity and

complexity of equations in case of embedding techniques. Therefore, these type of

formulation widely used in the analysis of robot manipulator. The selection of the

method is depend on careful consideration of application in our fields for instance,

robot manipulator, space structure, and biomechanical systems.

2.1 Formulation for constrained multibody system

The typical walking mechanisms used in this thesis, the anatomical structure are

modelled as rigid bodies in closed kinematic chain [48]. Moreover, the multibody
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methodology is implemented using absolute Cartesian coordinates. Configuration of

the multibody system can be described by an equal number of coordinates defined

for each body in the system. The vector of generalized coordinates for the system is

written as

𝑞𝑖 =

⎡⎢⎣𝑅𝑖

𝜑𝑖

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎣
𝑥𝑖

𝑦𝑖

𝜑𝑖

⎤⎥⎥⎥⎥⎦ (2.1)

where the array of coordinates contains three arrays as 𝑞𝑖 = [𝑥𝑖, 𝑦𝑖, 𝜑𝑖]
𝑇 , 𝑖 = 1, ..., 𝑁𝑏

for a system of 𝑁𝑏 bodies. A set of kinematic constraint equation describing the sev-

eral commonly used kinematic joints to allow particular relative motion between the

adjacent bodies and constraints are expressed by 𝑁𝑏 number of absolute coordinates.

2.1.1 Constraint between body and ground

Each rigid body is characterized by a set of points and unit vectors. There are several

combinations of points and vectors that can be used when the rigid body is defined. In

the presented rigid body linkage model, the number of segment points coincides with

the number of body that the element shares with the rest of the chain known as body

coordinate formulation. Furthermore, local unit vectors are attached to each body and

will be used to determine its absolute orientation. The total number of constraints

directly depends on the combination of points and vectors that characterize each

segment.
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Figure 2-2: Constraints on absolute coordinates of point 𝑃𝑖 on body 𝑖 and angular
orientation

Kinematic constraint equations for the absolute position and angular constraint con-

dition as shown in Figure 2-2 can be written as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Φ𝑠𝑥(𝑞𝑖) = 𝑥𝑖 − 𝑐𝑥

Φ𝑠𝑦(𝑞𝑖) = 𝑥𝑦 − 𝑐𝑦

Φ𝑠𝜑(𝑞𝑖) = 𝜑𝑖 − 𝑐𝜑

(2.2)

where 𝑐𝑥, 𝑐𝑦, 𝑐𝜑 are a given constant. An absolute position constraint on point 𝑃𝑖 of

body 𝑖 in 𝑥 or 𝑦 direction might be imagined as the condition that pin on body 𝑖 at

point 𝑝𝑖 slide in a slot in the x-y plane that is parallel to 𝑥 or 𝑦 axis, respectively.

In other words, In many mechanical systems, the motion of a body is constrained

relative to the ground or fixed on the plane, that is, relative to the stationary frame

𝑥−𝑦 reference frame as shown in example in Figure 2-2. The use of above mentioned

position constraint for the case of closed linkage model is the fixed points or ground

nodes 𝑂1 and 𝑂2 in the Chebyshev and the Theo-Jansen linkages, respectively.
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Figure 2-3: Constraints on the revolute joint connecting two body 𝑖 and 𝑗.

One of the frequently used constraint in multibody system is a relative joint that

allows relative rotation about the a point 𝑃 that is common to bodies 𝑖 and 𝑗, as

shown in Figure. Physically, such a joint is a rotational bearing between the bodies.

This type of joint eliminates the two degrees of freedom from the pair. Constraint

equation that define the relative rotational joint can be written as

Φ𝐾(𝑖,𝑗) = 𝑟𝑃𝑖 − 𝑟𝑃𝑗 = (𝑅𝑖 + 𝐴𝑖�̄�
𝑃
𝑖 )− (𝑅𝑗 − 𝐴𝑗�̄�

𝑃
𝑗 ) ≡ 0 (2.3)

where �̄�𝑃
𝑖 and �̄�𝑃

𝑗 are the unit vector on body 𝑖 and 𝑗, respectively. more explicitly,

Φ𝐾(𝑖,𝑗) =

⎡⎢⎣𝑥𝑖 + �̄�𝑃
𝑖 cos𝜑𝑖 − 𝑦𝑝𝑖 sin𝜑𝑖 − 𝑥𝑗 − �̄�𝑃

𝑗 cos𝜑𝑗 + 𝑦𝑝𝑗 sin𝜑𝑗

𝑦𝑖 + �̄�𝑃
𝑖 sin𝜑𝑖 + 𝑦𝑝𝑖 cos𝜑𝑖 − 𝑦𝑗 − �̄�𝑃

𝑗 sin𝜑𝑗 − 𝑦𝑝𝑗 cos𝜑𝑗

⎤⎥⎦ = 0 (2.4)

where Φ𝐾(𝑖,𝑗) is describing the kinematic constraint equations on the revolute joints

which is obtained by requiring that point 𝑃𝑖 and 𝑃𝑗 coincide.

2.1.2 Driver constraints

The kinematic constraint presented in section 2.1.1 represent physical connections

between bodies; hence they impose limitations on the relative motion between the

bodies and with the grounded or fixed node. In addition to the kinematic constraint,

26



the motion of many mechanical systems is described by actuator input that specifies

the time history of some position coordinates or relative position of pair bodies. To

uniquely determine the time history of motion of a mechanism, a number of input must

be specified, equal in number to the number of degree of freedom of the system. Which

is basically specifying the appropriate number of time-dependent driving conditions.

A family of standard drivers in multibody system, called driving constraint which are

distance driver, rotational driver.

Φ𝐷(𝑞, 𝑡) = [𝜃1 − 𝜔𝑡] = 0 (2.5)

where 𝜃1 is the initial state of driver constraint and 𝜔 is the angular speed. The

generalized coordinates describing the system are dependent and several algebraic

equations need to be introduced to relate them. Those equations, called kinematic

constraint equations, are used in this thesis to guarantee the characteristics of each

body (rigid body constraints) Equation (2.4) and also to guide the system motion

using rheonomic constraint (driving constraint) Equation (2.5) can be rewritten as

Φ(𝑞, 𝑡) =

⎡⎢⎣ Φ𝐾(𝑞)

Φ𝐷(𝑞, 𝑡)

⎤⎥⎦ = 0, (2.6)

2.1.3 Degree of freedom in constrained mechanical system

For a given examples of closed linkage models, the redundant constraint exists in

Equation (2.5) which is described as 𝑛ℎ kinematic constraint equations, the number

of degree of freedom is 3𝑁𝑏−𝑁ℎ degrees of freedom. In general, for the system having

𝑁ℎ independent constraint equations and 𝑁𝑏 coordinates, the number of DoF’s is

obtained as

𝐷𝑜𝐹 = 3𝑁𝑏 −𝑁ℎ (2.7)
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2.2 Forward dynamics approach

In dynamic analysis of mechanical systems, there are two different types of analysis

that can be performed, namely, forward and inverse dynamics. For the case of forward

dynamics analysis, force that produce motion are given and objective is to determine

the position coordinates, velocities, and accelerations. In this type of analysis, ac-

celeration first found from the laws of motion. In most application in closed-form

solution is difficult to obtain and, therefore, one must resort to direct numerical in-

tegration algorithms. Assuming that the multibody system is consists of constrained

bodies or constrained with the ground, the equation of motion must contain reaction

forces corresponding to free body diagram (FBD) in order to analyse the dynamics

of a system.

⎧⎪⎨⎪⎩𝑀𝑞 + Φ𝑇
𝑞 𝜆 = ℎ(𝑎)

Φ(𝑞, 𝑡) = 0
(2.8)

which is a system of differential algebraic equations (DAE) with 𝑛 second order ordi-

nary differential equations and with 𝑚 algebraic constraints. The first derivative of

position constraint equation in Equation (2.8) with respect to time is used to obtain

the velocity constraint equation while the second derivative of Equation (2.8) with

respect to time yields the acceleration constraint equation as

Φ𝑞𝑞 = 𝑣 (2.9)

Φ𝑞𝑞 = 𝛾 (2.10)

where Φ𝑞 is the Jacobian matrix of the kinematic constraint equations, 𝑣 is the velocity

equation, and 𝛾 is the acceleration equation.

Equation of motion (2.8) and re-written in matrix form expressed in terms of a
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redundant set of coordinates as⎡⎢⎣𝑀 Φ𝑇
𝑞

Φ𝑞 0

⎤⎥⎦
⎡⎢⎣𝑞
𝜆

⎤⎥⎦ =

⎡⎢⎣ℎ(𝑎)

𝛾

⎤⎥⎦ , (2.11)

where 𝑀 is a system mass matrix, 𝑞 is the vector that contains the system accel-

erations. The force acting on the system is known, we integrate the acceleration to

determine the velocity. In a forward dynamic analysis, to obtain new coordinates and

velocities, two integration array for 𝑞 and 𝑞 for the time step 𝑡+Δ𝑡 is defined

𝑢 =

⎡⎢⎣𝑞
𝑞

⎤⎥⎦ , �̇� =

⎡⎢⎣𝑞
𝑞

⎤⎥⎦ , �̇�(𝑡)
𝑦𝑖𝑒𝑙𝑑𝑠−−−→𝑢(𝑡+Δ𝑡), (2.12)

if the acceleration is known, the velocity and displacement can be found. its clear from

the above the equation that one needs give the conditions which are initial velocity and

displacement, to be able to integrate the acceleration to determine the displacement

and velocity in response to given forces. A system of differential algebraic equations

(DAE) with 𝑛 second order ordinary differential equations and with 𝑚 algebraic

constraints. The strategy to solve these DAE system is based on turning it into

an ordinary differential equation (ODE) system, since there are many well-known

methods for the integration. The numerical procedure often used for solving the a

system of non-linear algebraic equations is the Newton-Raphson algorithm. However,

method does not always converge, one must specify an upper limit on the number of

iterations used in numerical algorithm. The result of solution of equation of motion

is not close enough to the exact solution, an error is made in definition of the system

constraint, and/or the multibody system is close to singular configuration [49]. A

simple algorithm that can eliminate the need for using Newton-Raphson method is

Baumgarte’s constraint stabilization method.
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2.2.1 Solution of the equation of motion

Above the procedure for forward dynamics analysis requires a set of initial values

for coordinates and velocities to start the integration. However, due to the inaccu-

rate initial condition, a time step of the simulation, the accuracy of the numerical

integration routine, predicted (approximated) values may not be satisfied with their

corresponding constraint with adequate accuracy. Numerical errors due to the finite

precision of the numerical methods leads to constraint violation at the coordinate

and velocity levels; i.e., Φ̇ ̸= 0 and Φ ̸= 0. Therefore, special procedures, capable of

eliminating the error in the constraints, or at least keeping such errors under control,

should be involved in computational scheme. For the reason, several methods capa-

ble of reducing any possibility of constraint violation or at least keeping such errors

under given user tolerance were introduced in the past decades, namely constraint

stabilization technique [38], and coordinate partitioning method [50]. if there is no

error in numerical simulation, constraint must be satisfied with following condition

in both position and velocity level as

Φ ≡ Φ(𝑞) ≡ 0, Φ̇ ≡ D𝑣 ≡ 0, (2.13)

where 𝑞 is vector of generalized coordinates and D denotes the system Jacobian

matrix and 𝑣 is the array of generalized velocities. In the computational simulation,

numerical error can be obtained as

𝐸𝑝𝑖 = Φ𝑇Φ, 𝐸𝑣𝑖 = D𝑣𝑇D𝑣 (2.14)

where index 𝑖 denote the 𝑖-th iteration.
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Figure 2-4: Integration methods for the solution of equation of motion. Direct inte-
gration (a), Constraint stabilization Baumgarte method (b).

According to the comparative study [37], Baumgarte method, an extension of feedback

control theory was presented computationally efficient treatment for the constraint

violation, and the simple modification applied to the equation of motion by replacing

differential Equation (2.10) employing feedback terms, which contributes to reducing

the error at every time step of the simulation is expressed

Φ̈ + 2𝛼Φ̇ + 𝛽2Φ = 0, (2.15)

where 𝛼 and 𝛽 are positive constants known as compensators. By using the Baum-

garte stabilization method, Equation (2.8) becomes

⎡⎢⎣𝑀 Φ𝑇
𝑞

Φ𝑞 0

⎤⎥⎦
⎡⎢⎣𝑞
𝜆

⎤⎥⎦ =

⎡⎢⎣ ℎ(𝑎)

𝛾 − 2𝛼Φ̇− 𝛽2Φ

⎤⎥⎦ , (2.16)

The suitable choice of feedback parameters highlighted in the original work by Baum-

garte [36] when 𝛼 = 𝛽, and further investigation by Ostermeyer [35] introduced

optimal control system formula to reduce the constraint violation. A systematic de-
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termination of parametric study on Baumgarte method was conducted in article by

Flores et. al [51]. In addition, the contact force analysis of a multibody system

at position and velocity level must be accurate enough to detect instant of contact.

Therefore, the integration algorithm not only stabilizes the system value but also

provide a variable time-stepping over the period of contact [40].
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Figure 2-5: Flowchart of iterative procedure for dynamics analysis of multibody sys-
tems

if the initial state of the mechanism is given by set of the vector of generalized coor-

dinates on the center of all bodies. The iterative computational procedure as shown

in Figure 2-5 can be summarized by the following steps:

1. Start at instant time of 𝑡(0) with given initial conditions for position 𝑞(0) and

velocities 𝑞(0).

2. Assemble the global mass matrix M, evaluate the Jacobian matrix Φ𝑇
𝑞 , construct

the constraint equation corresponding to the joints and restrictions in the closed

system, determine the right-hand side acceleration 𝛾 and calculate the force

vector ℎ(𝑎).
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3. Solve the mixed set of differential algebraic equations of motion for acceleration

𝑞 and Lagrangian multiplier 𝜆 at instant 𝑡.

4. Assemble the vector �̇�𝑡 containing the generalized velocities 𝑞 and accelerations

𝑞 for instant of time 𝑡.

5. Integrate numerically, vector 𝑞 and 𝑞 with time step 𝑡+Δ𝑡 and obtain the new

position and velocities.

6. Update the time variable until simulation reach to the end.

2.3 Inverse dynamics approach

Inverse dynamics is widely used in the design and control of many industrial and tech-

nological applications, such as robot manipulators and space structures. By specifying

the task to be performed by the system, the actuator force and motor torques required

to accomplish this task can be predicted. Furthermore, different design alternatives

and force configurations can be explored efficiently using the techniques of the inverse

dynamics. This is particularly important in modern mechanical system in which some

form of control is exerted. An important class of force act in mechanical system is

associated with compliant members, such as spring-damper, leaf spring, ground or

environmental, and other deformable components that have reaction forces. Force

due to compliant members act between the bodies in the system and are functions

of relative state variables. Once the acceleration vector is known, the equation of

motion described in Equation (2.8) may be solved for 𝜆 as

𝑀𝑞 = ℎ(𝑎) + Φ𝐾𝑇

𝑞 𝜆𝐾 + Φ𝐷𝑇

𝑞 𝜆𝐷 (2.17)

or equivalently,

[︂
Φ𝐾𝑇

𝑞 Φ𝐷𝑇

𝑞

]︂⎡⎢⎣𝜆𝐾

𝜆𝐷

⎤⎥⎦ = 𝑀𝑞 − ℎ(𝑎) (2.18)
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where the Lagrange multiplier 𝜆 uniquely determines the constraint forces and torque

that are acting on the kinematic and driving constraint in the system. This fact mo-

tivates the use of terminology inverse dynamics for systems that are kinematically

determined. One can estimate the required torque for the desired constraint in the

closed system by using Lagrange multiplier. if the driver constraint act on the sin-

gle coordinate, simplified equation eliminating the Jacobian matrix associated with

kinematic constraint was introduced by Nikravesh [9] as

𝜏 =
�̇�𝑇 (𝑀𝑞 − ℎ(𝑎))

�̇�𝑖

, (2.19)

where �̇�𝑖 = 𝜔 is the velocity of driver constraint, and 𝜏 that uniquely determines the

load on the driving link.

Finally, the energy consumption was evaluated by the integral of the absolute

value of the driving torque, and the angular velocity of the input driver under different

loading condition is given as

𝐸 =

𝑡1∫︁
𝑡0

|𝜏𝜔|𝑑𝑡. (2.20)

Equation (2.17) represents the energy required to drive the mechanism for walking

under different loading conditions, which does not include mechanical energy and

thermal dissipation at joints.
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Chapter 3

Foot-ground contact model

3.1 Kinematic modelling

In general, the motion of a mechanical system is significantly affected by the contact-

impact events in the system. Impact is a complex physical phenomenon in which the

main characteristics are a small period of time, rapid change in force generation, and

large and abrupt changes in the velocities of the contacting bodies as well as material

properties should be considered in some application.
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Figure 3-1: Kinematic model representing the contact and non-contact scenario of
ball and ground interaction. Non-contact scenario with its kinematic components
(a), Contact scenario with Spring-damper model representing the elastic impact in
normal direction.

𝛿 = 𝑦𝑏 −𝑅 (3.1)
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where 𝑦𝑏 is the distance between ball center and ground and R represents the radius

of the ball. This is the most simple form of equation describing the contact kinemat-

ics and can be applied to the determination of walking phase analysis of the typical

walking mechanisms used in this thesis. In previous study by Komoda and Wagat-

suma [7] introduced a curvature analysis, in the view point of well-designed fixed

end-trajectory reproduced by traditional linkages, method is efficient to determine

the edges then the representative two points were commonly used for the definition

of the stance phase to obtain the start and end points in the stride. They also men-

tioned that function of differentials, does not exactly determine the turning points

appearing in the numerical solution because there exists a zero-length loop. There-

fore, the method may not be applicable in general case if complexity of trajectory

and ground surface are increased. Another example by author of Moreira et.al [52]

presented a mathematical model for foot ground surfaces in biomechanical multibody

system. Model represent the possible integration of penetration model of contact me-

chanics and general procedure of kinematic configuration (global coordinates, inertial

reference frames) in miltibody system.

In a simplest manner, a contact mechanics problem occurs when two bodies that

are initially come into contact as shown in Figure 3-1 Contact kinematics of simple

ball and ground interaction is to explain the determination of the contact force as

function of penetration between the contacting bodies can be formulated as

𝛿 =

⎧⎪⎨⎪⎩ 𝛿 (𝛿𝑁 ≥ 0 𝐹𝑁 = 0)

−𝛿 (𝛿𝑁 ≤ 0 𝐹𝑁 ≥ 0)
(3.2)

In equation (3.2), the positive value of 𝛿 is that distance represent a separation, while

negative values denote relative deformation or penetration of the contacting bodies.

These two scenarios are illustrated in Figure 3-1 (a) and (b), respectively. Therefore,

the sign of penetration indicates the transition from separation to in contact and

vice versa. The evaluation of the contact kinematics involves the calculation of three

essential quantities, namely the position of the potential contact points 𝑃𝑛, relative

distance 𝛿 and velocity �̇� in normal and tangential direction.
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3.2 Formulations for contact impact analysis

An equivalent system of the contact process between the solid sphere and fixed un-

moving box or ground is considered to get the relationship between the deformation

and contact force. As shown in Figure 3-2, 𝛿𝑚, and 𝑡1 to 𝑡5, are maximum defor-

mation and timing, respectively. In this model, two phases, the compression phase

and the restitution phase, are included during the impact process. During the com-

pression phase, the indentation deformation 𝛿 increases from zero to the maximum

compression deformation 𝛿𝑚, and the initial contact force reaches at maximum value

𝐹𝑚𝑎𝑥.
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v
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maxF

dm

Figure 3-2: Representation of the one-dimensional direct central-impact between ball
and ground (a), dynamic response of contact impact event: deformation at instant
time (b), elastic component of the contact force versus deformation (c).

The most popular contact force model by Hertz on contact problems has remained an

important basis for both fundamental research and engineering application of contact

mechanics until now. Based on the elastic mechanics, Hertz model described the

relationship between the normal contact force 𝐹𝑁 and the non-linear power function

of penetration depth 𝛿 is expressed as

𝐹𝑁 = 𝐾𝛿𝑛 (3.3)

37



where 𝐾 represents the stiffness of contacting bodies and 𝛿 is the penetration caused

by deformation, as illustrated in Figure 3-1 (a). For contact between other techni-

cally relevant shapes sphere, cube, prism, cylinder(horizontal and vertical), cone and

ground the exponent 𝑛 can be estimated according to Popov [53].

3.2.1 Modeling of normal contact force

A fundamental problem on the contact force model concerning the loss of energy

is firstly considered by Goldsmith [41]. As well as the investigation by Hunt and

Crossley [42], the model accounts for the energy dissipation by applying non-linear

viscous-elastic element, which can be expressed as

𝐹𝑁 = 𝐾𝛿𝑛 +𝐷�̇�, (3.4)

where 𝐾, 𝐷 and 𝛿 denote respectively a generalized stiffness parameter, the damping

coefficient and the same relative penetration or indentation[40]. Exponent 𝑛 is equal

to 3/2 for the case as a parabolic distribution of contact stresses for isotropic material,

which was developed by Herts [54] based on the theory of elasticity. The second term

represents viscous (dissipative) components concerning the penetration velocity at

the start of the firmness and at the end of the compensation evaluated with 𝐷 as a

function of penetration as

𝐷 = 𝜒𝛿𝑛, (3.5)

where 𝜒 is the hysteresis damping factor in terms of the coefficient of restitution as

𝜒 =
3𝐾(1− 𝑐𝑟)

2�̇�(−)
, (3.6)

where 𝑐𝑟 denotes the coefficient of restitution. It is defined as

𝑐𝑟 =
�̇�(+)

�̇�(−)
, (3.7)
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where 𝛿(−) and 𝛿(+) denotes respectively the relative approach and relative departing

velocities. If purely elastic contact occurs, e = 1, the hysteresis damping factor equals

to zero; if the contact is purely plastic, that is, e = 0, the hysteresis damping factor

tends to be infinite from the view of physics. Finally, the normal contact force in

conjunction with the hysteresis damping factor may be described in an alternative

form. Substitution of Equation (3.5) into Equation (3.4) delivers the following form

of the normal contact force model:

𝐹𝑁 = 𝐾𝛿𝑛

[︃
1 +

3(1− 𝑐𝑟)

2

�̇�

�̇�(−)

]︃
. (3.8)

The damping factor in Equation (3.5) is reviewed on the amount of contact force

for conditions whether 𝑐𝑟 closer to 1 or closer to 0 [55, 45]. Flores et al. [55] model is

suitable for the computational purpose with considerations of the stored elastic energy

and dissipated energy associated with internal damping. The damping factor becomes

infinity when 𝑐𝑟 = 0 and then the model provides a non-negligible larger force than the

model proposed by Lankarani & Nikravesh [45]. In the model, the perfectly inelastic

contact is observed based on hysteresis damping factor as a function of restitution for

different contact force models presented in comparative analysis [56, 57].
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Figure 3-3: Influence of the coefficient of restitution 𝑐𝑟 on the ball-ground interaction.
Deformation at instant time (b), viscoelastic behaviour (c).

In order to understand the effect of the coefficient of restitution 𝑐𝑟, the dynamic

response of the is presented in Figure 3-3 , contact force is plotted against deformation.
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In these case of studies presented here, two different values for coefficient of restitution

are selected as unity and null. As it expected when coefficient of restitution decreases,

maximum deformation and the maximum contact force values are reduced. This is

indicated by the increase of contact duration and size of hysteresis loop associated

with energy dissipated during the contact process as shown in Figure 3-3 (b). its

also shown that coefficient of restitution equal to unity, there is no energy dissipation

in contact process correspond to the pure elastic Hertz contact law as presented in

Equation (3.1) and Figure 3-2

Equation (3.7) suggests that the shape of the hysteresis loop as shown in Fig-

ure 3-3 (b) and the solution corresponding to the variations of the indentation would

depend on different parameters such as the the ratio of relative approach and de-

parting velocities of the two body formulated as coefficient of restitution. Thus, the

contact force model [45] was introduced in the present study by using the coefficient

of restitution 𝑐𝑟 = 0 as an inelastic (or plastic) contact, resulting in a maximum loss

of kinetic energy due to the internal damping is relatively smaller for the purpose as

𝐹𝑁 = 𝐾𝛿𝑛

[︃
1 +

3(1− 𝑐2𝑟)

4

�̇�

�̇�(−)

]︃
. (3.9)

The equation is valid in assumptions that contacting velocities are lower than the

propagation speed of elastic waves across two bodies, i.e. �̇�(−) ≤ 10−5
√︀
𝐸/𝜌, where 𝐸

is Young’s modulus and 𝜌 is the material mass density. A recent proposal by Ghorbani

et al. [58] can be considered in the further investigation under the assumption that

the proper drop impact velocity could be determined to reach a required spreading

factor examined by dissipative particle dynamics simulations.

3.2.2 Modeling of tangential friction force

A friction model is considered between two bodies of different shapes as contacting

surfaces. The dynamic friction forces 𝐹𝑓 in the presence of sliding [59, 60] can be

expressed as

𝐹𝑓 = −𝜇𝐹𝑁𝑐𝑓𝑐𝑑. (3.10)
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where 𝜇 the kinetic friction coefficient. In order to take the friction force effect into

account with respect to the modified Coulomb law, the direction of the tangential

velocity vector 𝑐𝑓 = |𝑣𝑇 | with the target body velocity 𝑣𝑇 , which is opposite to

direction of motion. 𝑐𝑑 is the dynamic correction coefficient derived from 𝑣𝑇 and the

upper limit 𝑣0 and lower limit 𝑣1 of the friction velocity as

𝑐𝑑 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 𝑣𝑇 ≤ 𝑣0

(𝑣𝑇 − 𝑣0)/(𝑣1 − 𝑣0) 𝑣0 ≤ 𝑣𝑇 ≤ 𝑣1.

1 𝑣𝑇 ≥ 𝑣1

(3.11)

It implies that the friction force disappears in either way it is close to zero ve-

locity or there is no contact has been discussed in the context of one-dimensional

friction models [61]. If the normal force 𝐹𝑁 is obtained from a contact with a force-

deformation (Equation (3.9)), a logical point-to-point spring-damper element [8, 9] is

only active during the period of contact, and the friction force could be categorized

as an applied force due to no explicit constraints to be an interaction between the

ground and a leg. When the contact is modeled as kinematic joints (or constraints),

a coefficient of Lagrangian represents the resulting contact force, and the correspond-

ing friction could be categorized as a reaction force [62]. In our analysis, the ground

reaction force was estimated as unknown applied force from the ground in the stance

phase according to the compliant contact force model defined as

𝑀𝑞 +Φ𝑇
𝑞𝜆 = ℎ(𝑎) + ℎ(𝐺𝑅𝐹 ), (3.12)

where ℎ(𝐺𝑅𝐹 ) is the external (ground) reaction force and the total force acting on the

point of contact during the stance phase is ℎ(𝑎)+ℎ(𝐺𝑅𝐹 ) = [𝐹𝑓 , −𝑚𝑖𝑔 + 𝐹𝑁 , 0]
𝑇

. If

there are no applied forces except the gravitation, such as the swing phase, equations

of motion is given as

𝑀𝑞 +Φ𝑇
𝑞𝜆 = ℎ(𝑎), (3.13)

41



where the constrained segment of dynamics is accompanied with the generalized force

vector ℎ(𝑎) = [0, −𝑚1𝑔, 0, ..., 0 −𝑚𝑖𝑔, 0]
𝑇

in which 𝑚𝑖 is the mass of the body

(𝑖), and 𝑔 is the gravitational acceleration.
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Chapter 4

An integrated computational

framework for the energy analysis

of rigid closed-loop walking

mechanisms

In this chapter we integrate the formulations presented in Chapter 2 and 3 of com-

putational procedure of the constrained multibody system and the compliant contact

force in one computational. Graphical representation of computational procedure

is shown in Figure 4-1. At the starting point of the numerical simulation, initial

configurations of target mechanisms are given according to the primary operation in

the forward dynamics analysis. For the contact force analysis, the type of collision

given by coefficients of restitution in the range from 0 to 1 is an option as the initial

parameter of the framework.
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Figure 4-1: An integrated computational framework to be able to evaluate the energy
conservation effect in a viscoelastic ground contact in cases of closed-loop walking
mechanisms.

The simulation procedure for the proposed computational framework as shown in

Figure 4-1 can be summarized by the following steps:

1. Start at instant time 𝑡(0) with given initial configuration of the mechanisms such

as generalized coordinates defining the position and orientation of each body.

2. Define the initial parameters for the contact force analysis such as contact stiff-

ness 𝐾, kinetic frictional coefficient 𝜇, and other necessary variables.

3. Input the type of contact by digits from 0 to 1, inelastic to elastic, respectively.

4. Assemble the global mass matrix M, evaluate the Jacobian matrix Φ𝑇
𝑞 , construct

the constraint equation corresponding to the joints and restrictions in the closed

system, determine the right-hand side acceleration 𝛾 and calculate the force

vector ℎ(𝑎).

44



5. Solve the mixed set of differential algebraic equations of motion for acceleration

𝑞 and Lagrangian multiplier 𝜆 at instant 𝑡.

6. Integrate numerically, vector 𝑞 and 𝑞 with time step 𝑡+Δ𝑡 and obtain the new

position and velocities.

7. Estimate the relative position between potential contact point 𝑃𝑛 of leg mech-

anism and ground plane 𝑦𝐺 at instant time 𝑡.

8. Check for contact between leg mechanism and ground and: (i) if no new contact

is detected, update the time and proceed step 9 of this procedure; (ii) if there is

a contact occurs, calculate the contact reaction forces in normal and tangential

direction and reorganize the generalized force vector ℎ(𝑎) by applying the ground

reaction force as external applied force ℎ𝐺𝑅𝐹 at the during the period of contact.

9. Update the time variable and go to the step 4 if the current time of analysis is

smaller than the end time of simulation. Otherwise terminate the analysis.

4.1 Kinematics and gait trajectory analysis

According to the multibody dynamics (MBD) formulation above, the constitutive

contact force model is calculated numerically with kinematic and dynamic analyses,

which allow to visualize temporal evolutions of the leg-motion trajectory, velocity and

acceleration.

Table 4.1: Parameters used in the numerical simulation

Kinematic/Dynamic analysis Contact force analysis

Gravitational acceleration [𝑚/𝑠2] 𝑔 9.81 Stiffness [𝑁/𝑚] 𝐾 2× 104

The velocity of the driving crank [𝑟𝑎𝑑/𝑠] 𝜔 2𝜋 Coefficient of restitution 𝑐𝑟 0 ≤ 𝑐𝑟 ≤ 1

Total simulation time [𝑠] 𝑡 0 ≤ 𝑡 ≤ 3 Coefficient of kinetic friction 𝜇𝑘 0.4

Baumgarte parameters 𝛼 15

Baumgarte parameters 𝛽
√
2𝛼

Time step [𝑠] 𝑑𝑡 1× 10−3
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Parameters in Table 4.1 were used for the numerical simulation for dynamic analyses

of two closed-loop walking mechanisms. MATLAB-based numerical simulation was

performed with a combination of the Euler method with the time step of 1.0× 10−3s.

In order to reduce an accumulation numerical error, Baumgarte method [35, 36]

was introduced with feedback parameters for the stability of the general solution

in equations of motion. For the contact analysis to prevent an unnatural rise of

ground reaction force, the stiffness was determined with a criterion value as 2 × 104

N/m for contacting bodies according to the work of Ristow [63]. Thus, the ground

deformation is equivalent to the resultant motion of the stiffness-damping system

under the compression.

Table 4.2: Parameters of each link length (m) and mass (kg)

Theo-Jansen

Link Side Length Mass

𝑙1 𝑂1𝐴 0.100 0.025

𝑙2 𝐴𝐵 0.333 0.083

𝑙3 𝑂2𝐵 0.277 0.069

Chebyshev 𝑙4 𝐵𝐶 0.372 0.093

Link Side Length Mass 𝑙5 𝑂2𝐶 0.267 0.067

𝑙1 𝑂1𝐴 0.100 0.025 𝑙6 𝐴𝐷 0.413 0.103

𝑙2 𝐴𝐵 0.282 0.071 𝑙7 𝑂2𝐷 0.262 0.066

𝑙3 𝑂2𝐵 0.282 0.071 𝑙8 𝐶𝐸 0.263 0.066

𝑙4 𝐵𝐶 0.282 0.071 𝑙9 𝐷𝐸 0.245 0.061

𝑙5 𝐶𝐷 0.793 0.198 𝑙10 𝐷𝐹 0.327 0.082

𝑙6 𝐷𝐸 0.050 0.013 𝑙11 𝐸𝐹 0.438 0.110

𝑎 𝑂1𝑂2 0.222 - 𝑎 𝑂1𝑂2 0.257 -

For the consistent comparison [7], each length and mass of individual links are de-

termined from the normalization based on the equivalent size of driving crank 𝑂1𝐴
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as the radius of 0.1 m in two mechanisms as shown in Table 4.2. The number of

links is different depending on each mechanism, i.e. Chebyshev has five links and the

Theo-Jansen mechanism has eleven links.
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Figure 4-2: Representations of foot-ground interactions by kinematic models of two
walking mechanisms. (a) Result in the Chebyshev mechanism and (b) result in the
Theo-Jansen mechanism.

Contact and non-contact scenarios were considered in the kinematic model according

to penetration equation presented in Chapter 3, as shown in Figure 4-2. When the

leg contacts with the ground, the deformation or penetration is estimated as

𝛿 = 𝑦𝐺 − 𝑃𝑛, (4.1)

where the 𝑃𝑛 is the normal component of the position vector or the potential contact

point, as 𝐸 = [𝐸𝑥, 𝐸𝑦] and 𝐹 = [𝐹𝑥, 𝐹𝑦] respectively for Chebyshev and Theo-Jansen

mechanisms. The ground plane 𝑦𝐺 is consistently leveled from the lowest point of

the leg-motion trajectory in the sense of the relative indentation. Negative values of

𝛿 means the bodies are in contact. Therefore, the sign of penetration indicates the

phase transition from swing to stance and vice versa. By using Equation (4.1), it is

clear to discriminate a walking phase and determine contact forces from the function
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of penetration.

4.1.1 Formulation for Chebyshev mechanism

Chebyshev mechanism as shown in 4-2(a), the length of all links and grounded node𝑂1

and 𝑂2 were tightly fixed according to the geometric equations [64]. Simply explaining

the working principle of closed-loop mechanism, the leg motion is generated by the

links in the system, namely, two fixed nodes 𝑂1 and 𝑂2, three links with the same

length, which are 𝐴𝐵 = 𝑂2𝐵 = 𝐵𝐶 and the input driver of rotating crank 𝑂1𝐴. The

rocker links connecting the point 𝑂2 to 𝐵 follows the motion of the connecting rod

and rotating crank. The extension link 𝐶𝐷 projects from a loop trajectory at the

top onto the bottom as known Chebyshev plantigrade [64] (see Figure 4-3). In the

operation of this plantigrade machine, movements of the extension link are restricted

by another pair legs where it connects with 90 degrees at the input driver and its

relative rotational motion is modified. Thus, the mechanism has the translational

motion at the foot-link 𝐶𝐷𝐸 as the desired ideal walking pattern with few numbers

of links. The kinematic model for the Chebyshev mechanism is illustrated in 4-2(a),

the vector 𝑞 with 18 elements including position and orientation of each body in leg

mechanism expressed as generalized coordinates as follows:

q = [𝑞𝑇1 , 𝑞
𝑇
2 , 𝑞

𝑇
3 , 𝑞

𝑇
4 , 𝑞

𝑇
5 , 𝑞

𝑇
6 ]

𝑇 (4.2)

The vector of 𝑞 contains 18(= 63) elements which are 6 rigid links and their center

of position 𝑥𝑖, 𝑦𝑖 and orientation 𝜑𝑖 are obtained in the generalized coordinates in the

present analysis. A set of kinematic algebraic constraint equation according to the

initial configuration for the position analysis can be written
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Φ(q, 𝑡) =

[︂
Φ𝐾(𝑞)
Φ𝐷(𝑞, 𝑡)

]︂
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1 − 𝑙1𝑐𝑜𝑠𝜃1
𝑦1 − 𝑙1𝑠𝑖𝑛𝜃1

𝑥2 − 𝑙2𝑐𝑜𝑠𝜃2 − 𝑥1 − 𝑙1𝑐𝑜𝑠𝜃1
𝑦2 − 𝑙2𝑠𝑖𝑛𝜃2 − 𝑦1 − 𝑙1𝑠𝑖𝑛𝜃1
𝑥3 + 𝑙3𝑐𝑜𝑠𝜃3 − 𝑥2 − 𝑙2𝑐𝑜𝑠𝜃2
𝑦3 + 𝑙3𝑠𝑖𝑛𝜃3 − 𝑦2 − 𝑙2𝑠𝑖𝑛𝜃2

𝑥3 − 𝑙3𝑐𝑜𝑠𝜃3 + 𝑎
𝑦3 − 𝑙3𝑠𝑖𝑛𝜃3

𝑥4 − 𝑙4𝑐𝑜𝑠𝜃4 − 𝑥2 − 𝑙2𝑐𝑜𝑠𝜃2
𝑦4 − 𝑙4𝑠𝑖𝑛𝜃4 − 𝑦2 − 𝑙2𝑠𝑖𝑛𝜃2
𝑥5 + 𝑙5𝑐𝑜𝑠𝜃5 − 𝑥4 − 𝑙4𝑐𝑜𝑠𝜃4
𝑦5 + 𝑙5𝑠𝑖𝑛𝜃5 − 𝑦4 − 𝑙4𝑠𝑖𝑛𝜃4
𝑥6 − 𝑙6𝑐𝑜𝑠𝜃6 − 𝑥5 + 𝑙5𝑐𝑜𝑠𝜃5
𝑦6 − 𝑙6𝑠𝑖𝑛𝜃6 − 𝑦5 + 𝑙5𝑠𝑖𝑛𝜃5

𝜃4 − 𝜃2
𝜃5 − 𝜋

2
𝜃6 − 𝜃6
𝜃1 + 𝜔𝑡

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
18×1

= 0 (4.3)

where the first 17 elements of the column matrix Φ𝐾(𝑞) are derived from Equation

(2.5) for absolute constraints between body and ground, and Equation (2.4) for con-

straint equation for revolute joins connecting the rigid links. The last element Φ𝐷(𝑞, 𝑡)

is derived by the driving constraint Equation (2.6).

The partial derivative of position constraint equation respect to the generalized

absolute cartesian coordinates 𝑞 is Jacobian matrix Φ𝑞 is obtained as:

Φ𝑞 =

[︂
∂Φ(q,𝑡)

∂q

]︂
18×18

, (4.4)

where it allows us to investigate placement, velocity and acceleration analyses kine-

matically. The forward dynamics analysis introduces the mass matrix M(18 × 18),

and the generalized external force vector ha(18× 1), as follows:

M = 𝑑𝑖𝑎𝑔(𝑀1,𝑀2, · · · ,𝑀6), (4.5)

{M𝑖 = [𝑚𝑖,𝑚𝑖, 𝐽𝑖]
𝑇 | 𝑖 = 1, 2, · · · , 6}, (4.6)

h(a) = [ℎ
(𝑎)
1

𝑇
, ℎ

(𝑎)
2

𝑇
, · · · , ℎ(𝑎)

6

𝑇
]𝑇 , (4.7)

{h(a)
𝑖 = [0,−𝑚𝑖𝑔, 0]

𝑇 | 𝑖 = 1, 2, · · · , 6}, (4.8)

49



where 𝑚𝑖 is the mass of rigid linkage to point 𝑖, 𝐽𝑖 = 2𝑙𝑖/3 is the polar moment of

inertia of rigid linkage to point 𝑖, and 𝑔 is the gravitational acceleration.

4.1.2 Formulation for Theo-Jansen mechanism

The Theo-Jansen mechanism [65] has multiple geometrical structures coupled into

the closed chain system and it produces relative rotational and translational motions

at the foot-link as shown in Figure 4-2(b). It consists of a pair of identical upper

four-bar linkage 𝑂1𝐴𝐵𝑂2 with a coupler (rigid triangle) 𝑂2𝐵𝐶 and lower four-bar

linkage 𝑂1𝐴𝐷𝑂2. 𝐷𝐸𝐹 connection resembles a rigid foot-link since the relative angle

between them is a constant, which eliminates all three-relative degrees of freedom.

In the working principle, each four-bar forms a stiff triangle as a parallelogram, and

the rectangle 𝐶𝐸𝐷𝑂2 changes its shape and regulates the motion of the foot-end

point 𝐹 . The kinematic model for the Theo-Jansen mechanism, the vector 𝑞 with 18

elements including position and orientation of each body in leg mechanism expressed

as generalized coordinates as follows:

q = [𝑞𝑇1 , 𝑞
𝑇
2 , 𝑞

𝑇
3 , 𝑞

𝑇
4 , 𝑞

𝑇
5 , 𝑞

𝑇
6 , 𝑞

𝑇
7 , 𝑞

𝑇
8 , 𝑞

𝑇
9 , 𝑞

𝑇
10, 𝑞

𝑇
11]

𝑇 (4.9)

The vector of 𝑞 contains 33 (= 11 Ö 3) elements which are 11 rigid links and their

center of position 𝑥𝑖, 𝑦𝑖 and orientation 𝜑𝑖 are obtained in the generalized coordinates

in the present analysis. A set of kinematic algebraic constraint equation according to

the initial configuration for the position analysis can be written
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Φ(q, 𝑡) =

[︂
Φ𝐾(𝑞)
Φ𝐷(𝑞, 𝑡)

]︂
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1 − 𝑙1𝑐𝑜𝑠𝜃1
𝑦1 − 𝑙1𝑠𝑖𝑛𝜃1

𝑥2 − 𝑙2𝑐𝑜𝑠𝜃2 − 𝑥1 − 𝑙1𝑐𝑜𝑠𝜃1
𝑦2 − 𝑙2𝑠𝑖𝑛𝜃2 − 𝑦1 − 𝑙1𝑠𝑖𝑛𝜃1
𝑥3 + 𝑙3𝑐𝑜𝑠𝜃3 − 𝑥2 − 𝑙2𝑐𝑜𝑠𝜃2
𝑦3 + 𝑙3𝑠𝑖𝑛𝜃3 − 𝑦2 − 𝑙2𝑠𝑖𝑛𝜃2

𝑥3 − 𝑙3𝑐𝑜𝑠𝜃3 − 𝑎𝑥
𝑦3 − 𝑙3𝑠𝑖𝑛𝜃3 − 𝑎𝑦

𝑥5 + 𝑙5𝑐𝑜𝑠𝜃5 − 𝑥4 + 𝑙4𝑐𝑜𝑠𝜃4
𝑦5 + 𝑙5𝑠𝑖𝑛𝜃5 − 𝑦4 + 𝑙4𝑠𝑖𝑛𝜃4
𝑥7 − 𝑙7𝑐𝑜𝑠𝜃7 − 𝑥6 + 𝑙6𝑐𝑜𝑠𝜃6
𝑦7 − 𝑙7𝑠𝑖𝑛𝜃7 − 𝑦6 + 𝑙6𝑠𝑖𝑛𝜃6
𝑥9 + 𝑙9𝑐𝑜𝑠𝜃9 − 𝑥8 + 𝑙8𝑐𝑜𝑠𝜃8
𝑦9 + 𝑙9𝑠𝑖𝑛𝜃9 − 𝑦8 + 𝑙8𝑠𝑖𝑛𝜃8

𝑥11 − 𝑙11𝑐𝑜𝑠𝜃11 − 𝑥10 + 𝑙10𝑐𝑜𝑠𝜃10
𝑦11 − 𝑙11𝑠𝑖𝑛𝜃11 − 𝑦10 + 𝑙10𝑠𝑖𝑛𝜃10

𝑥6 + 𝑙6𝑐𝑜𝑠𝜃6 − 𝑥1 − 𝑙1𝑐𝑜𝑠𝜃1
𝑦6 + 𝑙6𝑠𝑖𝑛𝜃6 − 𝑦1 − 𝑙1𝑠𝑖𝑛𝜃1
𝑥4 + 𝑙4𝑐𝑜𝑠𝜃4 − 𝑥2 − 𝑙2𝑐𝑜𝑠𝜃2
𝑦4 + 𝑙4𝑠𝑖𝑛𝜃4 − 𝑦2 − 𝑙2𝑠𝑖𝑛𝜃2

𝑥5 − 𝑙5𝑐𝑜𝑠𝜃5 − 𝑎𝑥
𝑦5 − 𝑙5𝑠𝑖𝑛𝜃5 − 𝑎𝑦
𝑥7 + 𝑙7𝑐𝑜𝑠𝜃7 − 𝑎𝑥
𝑦7 + 𝑙7𝑠𝑖𝑛𝜃7 − 𝑎𝑦

𝑥8 + 𝑙8𝑐𝑜𝑠𝜃8 − 𝑥4 + 𝑙4𝑐𝑜𝑠𝜃4
𝑦8 + 𝑙8𝑠𝑖𝑛𝜃8 − 𝑦4 + 𝑙4𝑠𝑖𝑛𝜃4
𝑥9 − 𝑙9𝑐𝑜𝑠𝜃9 − 𝑥6 + 𝑙6𝑐𝑜𝑠𝜃6
𝑦9 − 𝑙9𝑠𝑖𝑛𝜃9 − 𝑦6 + 𝑙6𝑠𝑖𝑛𝜃6

𝑥10 + 𝑙10𝑐𝑜𝑠𝜃10 − 𝑥6 + 𝑙6𝑐𝑜𝑠𝜃6
𝑦10 + 𝑙10𝑠𝑖𝑛𝜃10 − 𝑦6 + 𝑙6𝑠𝑖𝑛𝜃6
𝑥11 + 𝑙11𝑐𝑜𝑠𝜃11 − 𝑥8 + 𝑙8𝑐𝑜𝑠𝜃8
𝑦11 + 𝑙11𝑠𝑖𝑛𝜃11 − 𝑦8 + 𝑙8𝑠𝑖𝑛𝜃8

𝜃1 + 𝜔𝑡

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
33×1

= 0 (4.10)

where the first 32 elements of the column matrix Φ𝐾(𝑞) are derived from Equa-

tion (2.5) for absolute constraints between body and ground, and Equation (2.4) for

constraint equation for revolute joins connecting the rigid links. The last element

Φ𝐷(𝑞, 𝑡) is derived by the driving constraint Equation (2.6). The Jacobian matrix for

Theo-Jansen mechanism Φ𝑞 is obtained as:

Φ𝑞 =

[︂
∂Φ(q,𝑡)

∂q

]︂
33×33

, (4.11)

where it allows us to investigate placement, velocity and acceleration analyses kine-

matically. The forward dynamics analysis introduces the mass matrix M(33 × 33),
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and the generalized external force vector ha(33× 1), as follows:

M = 𝑑𝑖𝑎𝑔(𝑀1,𝑀2, · · · ,𝑀11), (4.12)

{M𝑖 = [𝑚𝑖,𝑚𝑖, 𝐽𝑖]
𝑇 | 𝑖 = 1, 2, · · · , 11}, (4.13)

h(a) = [ℎ
(𝑎)
1

𝑇
, ℎ

(𝑎)
2

𝑇
, · · · , ℎ(𝑎)

11

𝑇
]𝑇 , (4.14)

{h(a)
𝑖 = [0,−𝑚𝑖𝑔, 0]

𝑇 | 𝑖 = 1, 2, · · · , 11}, (4.15)

where 𝑚𝑖 is the mass of rigid linkage to point 𝑖, 𝐽𝑖 = 2𝑙𝑖/3 is the polar moment of

inertia of rigid linkage to point 𝑖, and 𝑔 is the gravitational acceleration.
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4.1.3 Result of the numerical simulation

Table 4.3: Resultant values of kinematic analyses of two mechanisms

Factor Chebyshev Theo-Jansen

Step length (SL) [m] 0.454 0.388

Step height (SH) [m] 0.087 0.166

An effective leg length [m] 0.332 0.560

Maximum penetration (𝛿) -0.002 -0.008

Capability of the lifting up the leg [%] 26.38 29.620

Step length in trajectory length [m] 94.78 85.340

Average velocity [m/s] 0.099 0.390

Maximum velocity in swing phase [m/s] 1.954 3.052

Minimum velocity in swing phase [m/s] -0.673 -0.422

Maximum velocity in stance phase [m/s] 0.118 0.043

Minimum velocity in stance phase [m/s] -0.798 -0.387

Average acceleration [m/s2] 8.754 9.663

Maximum acceleration in swing phase [m/s2] 24.312 76.951

Minimum acceleration in swing phase [m/s2] 6.691 1.892

Maximum acceleration in stance phase [m/s2] 6.615 48.373

Minimum acceleration in stance phase [m/s2] 0.104 0.175

At the initial step of the kinematic analysis, each mechanism was examined to be

able to draw a closed curve by the end-effector with respect to motions of the input

driver to be a rotating-crank with constant angular velocity 𝜔. Generated motions

of links are transferred from the driver to the end-effector as the foot link by the

kinematic transmission of the system. Further functional aspects of parallel linkages

focusing on the the biological nature was investigated by Levin et al. [48] to report an

angular relation of geometrical shapes in a continuous mechanical loop called closed

kinematic chain (CKC).
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Figure 4-3: Position and posture analyses of two walking mechanisms to generate dif-
ferent locomotive trajectories associated with individual rotations at the input driver.
(a) Result in the Chebyshev mechanism and (b) Result in the Theo-Jansen mecha-
nism (b). Individual links colored differently for the discrimination. In each panel,
solid black lines and the dotted line represents respectively representative movement
trajectories and the leg-motion trajectory of the end-effecter. Red points in the dotted
line represents the stance phase.

According to the leg-motion trajectory analysis, the Chebyshev mechanism demon-

strated the lowest penetration 𝛿 = −0.002 m into the ground, which represents a

smooth linear motion with a longer step length in the stance phase SL = 0.454 m

that is 94.78% of the total length of step (Figure 4-3(a)). In the Theo-Jansen mech-

anism, the actual penetration was estimated 𝛿 = −0.008 m into the ground, which

represents an approximate linear motion in the stance phase with step length SL=

0.3883 m as 85.34% of the total length of step (Figure 4-3(b)), which indicated that

the step length is reduced with respect to the ground. The longer steps may intro-

duce a large amount of reaction forces since the contact force depends on the relative

deformation. For the sake of simplification to focus on the viscoelastic ground con-

tact, the main body is assumed to kept stationary, which mean that the height of

the input driver does not change, and the ground is moving backward at the same

velocity as the foot. For the purpose, the speed of the end-effector 𝑉𝐹𝑉 is focused

according to coordinates given by Equation (2.14) with respect to the ground condi-

tion. The foot action with respect to the ground is analyzed by the relative velocity
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of the end-effector in the form of equation proposed by Shigley [66] as

𝑉𝐹𝑇 = 𝑉𝑉 𝑇 + 𝑉𝐹𝑉 , (4.16)

where 𝑉𝐹𝑇 , 𝑉𝑉 𝑇 and 𝑉𝐹𝑉 denote respectively the velocity of the foot relative to the

ground, the velocity of the system relative to the ground and 𝑉𝐹𝑉 is the velocity of

the foot relative to the system. Interestingly, the vector relation of three terms in

Equation (4.16) presents all the relative motions in the system. The stance phase as

𝑉𝐹𝑇 = 0 provides

𝑉𝐹𝑉 = −𝑉𝑉 𝑇 . (4.17)

The relationship of vectors in Equation (4.16) is only valid when a linkage mechanism

is having a fixed walking pattern.
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Figure 4-4: Characteristic analyses of the relative velocity VFT and absolute velocity
𝑉𝐹𝑉 and the acceleration of the foot.(a) and (c) represent respectively velocities and
acceleration in the case of the Chebyshev mechanism, and (b) and (d) represent same
variables in the case of the Theo-Jansen mechanism. Black and red colors represent
respectively swing and stance phases.
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In the continuous contact force model, relative contact velocities as dependent

features determine whether contacting bodies are approaching or separating [67].

The velocity vector [�̇�, �̇�] and acceleration vector [�̈�, 𝑦] of the potential contact point

are obtained from forward dynamic analyses. Thus, the velocity of the end-effector

relative to the ground is reconsidered according to the vector in Equation (4.16),

and then the velocity was almost zero at the mid-point of the stance phase for two

mechanisms, as the desired condition. The condition crucially contributes to the

evaluation of dynamic behaviors of the foot-ground interaction since reaction forces

are given by explicit functions of state variables. Figure ?? showed absolute values of

relative velocities as
√︁

�̇�𝑥 + �̇�𝑦 for the Chebyshev and
√︁

�̇�𝑥 + �̇�𝑦 ) for Theo-Jansen

mechanisms and accelerations as
√︁
�̈�𝑥 + �̈�𝑦) and

√︁
𝐹𝑥 + 𝐹𝑦) in the same way. The

numerical simulation started at the mid-point of the stance phase as explained above.

According to the velocity analysis, the Chebyshev mechanism had the maximum

velocity of 1.95 m/s in the swing phase, and it went down to 0.117 m/s at the mid-

point of the stance phase where the relative deformation is reached at the maximum.

In the Theo-Jansen mechanism, the maximum velocity was obtained as 3.05 m/s

in the swing phase with a faster leg movement rather than that of Chebyshev, and

the velocity went down to 0.0426 m/s at the mid-point of the stance phase which is

consistent with a dynamic behavior of the foot-ground interaction. Both mechanisms

showed an acceleration in the swing phase with respect to the stance phase. The

deceleration just before the stance phase contributes a smooth grounding. Other

representative values were shown in Table 4.3.

4.2 Kinetic and energy analysis

By using the compliant contact force model, as described in Chapter 3, reaction

forces were expressed as continuous functions of penetrations between two bodies. In

the viscoelastic contact force model, elastic and damping terms prevent penetration

between contacting bodies. Hence, no explicit kinematic constraint is considered,

while force reaction terms are utilized.
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Figure 4-5: Results of contact force analyses in the vertical direction. (a) and (c) rep-
resent respectively inelastic and elastic contact conditions in the Chebyshev mech-
anism, and (b) and (d) represent respectively same variables in the Theo-Jansen
mechanism.

In the numerical simulation, the foot-ground vertical reaction force was evaluated

by using Lankarani & Nikravesh model [45] with restitution coefficients as 𝑐𝑟 = 1.0

for elastic and 𝑐𝑟 = 0 for inelastic contact conditions. As shown in Figure 4-5,

contact forces are zero in the swing phase under the condition that there is no local

deformation between the the foot and ground, i.e. no contact with the ground.

Conversely, the mechanism is in contact with the ground if the force is nonzero. The

occurrence of penetration is used for evaluating the local deformation of the contact

interaction between foot and ground, which means the stance phase. According to

the analysis, the maximum contact force was obtained as 18.859N for the Chebyshev

mechanism in the inelastic contact condition and 1.8375N in the elastic case. Average

normal force was 5.6079N and 0.8412N respectively. For the Theo-Jansen mechanism,

the maximum contact force in vertical direction was 96.0835N for the inelastic contact
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condition and 14.0832N in the elastic case. Average normal force was 28.5361N and

4.6052N respectively.
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Figure 4-6: Results of contact force analyses in the horizontal direction. (a) and
(c) represent respectively inelastic and elastic contact conditions in the Chebyshev
mechanism, and (b) and (d) represent respectively same variables in the Theo-Jansen
mechanism.

In the consideration of the tangential force acting at the point of contact, the

friction and the resultant tangential force 𝑓𝑇 due to the deformation at the contact is

consistent with the contact force in the horizontal direction as shown in Figure 4-6.

In the present study, a specific slipping phenomenon is not covered because of the

assumption that the leg is always in contact with the ground in the stance phase. As

shown in Figure 4-6(a) and (c), the maximum tangential force was 5.9895N for the

Chebyshev mechanism in the inelastic contact condition and 0.7990N in the elastic

case (at the mid-point of the stance phase). For the Theo-Jansen mechanism, the

maximum friction force was 52.3904N in the inelastic contact condition and 6.1263N

in the elastic case, as shown in Figure 4-6(b) and (d).
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Torque analyses of two mechanisms were obtained under different contact condi-

tions considering the actual production of resistive load on the input driver.

Table 4.4: Resultant values of dynamic analyses of two mechanisms

Factor [Nm] Chebyshev Theo-Jansen

Average absolute driving

torque in stance phase dur-

ing inelastic contact

0.417 0.888

Maximum torque 0.077 5.088

Minimum torque -0.774 -1.465

Average absolute driving

torque in stance phase dur-

ing elastic contact

0.011 0.018

Maximum torque 0.061 0.714

Minimum torque -0.154 -0.559

Average absolute driving

torque in swing phase

0.083 0.019

Maximum torque 2.280 1.694

Minimum torque -2.4313 -1.098

Average absolute driving

torque during elastic con-

tact

0.056 0.028

Average absolute driving

torque during inelastic con-

tact

0.287 0.398
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Figure 4-7: Analyses of required driving torques for walking under different contact
conditions. (a) Results in the Chebyshev mechanism and (b) results in the Theo-
Jansen mechanism.

As shown in Figure 4-7, the negative driving torque was observed in the stance phase

for the Chebyshev mechanism because the input driver reversely rotates against the

moving direction of the end-effector and therefore the resistive load increases in the

phase. It may be associated with ”geometrical work” in the report of Waldron and

Kinzel [68] that back-driving actuators waste power. The requirement of the geomet-

ric work in the Theo-Jansen mechanism in swing and stance phases was comparatively

smaller than that of Chebyshev. Other representative values were shown in Table 4.4.
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Figure 4-8: Energy consumption of two walking mechanisms in different contact
conditions. (a) Results in the the Chebyshev mechanism and (b) results in the Theo-
Jansen mechanism.

The energy consumption of two walking mechanisms was calculated during the clock-

wise (CW) rotation of the input driver, considering the different contact conditions.

As shown in Figure 4-8, for the Chebyshev mechanism, the energy consumption in
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swing and stance phases was obtained 2.7686 J and 0.1769 J, respectively. In the

case of the Theo-Jansen mechanism, the energy consumption in swing and stance

phases were 1.6773 J and 0.9362 J, respectively. During the inelastic contact, for the

Chebyshev mechanism, the energy consumption in swing and stance phases was ob-

tained 2.766 J and 1.5314 J, respectively. In the Theo-Jansen mechanism, the energy

consumption in swing and stance phases were 1.6774 J and 5.0556 J, respectively.
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Figure 4-9: Comparative analyses of the average torque (a) and the total energy
consumption (b) of two walking mechanisms in different contact conditions. CW and
CCW represent respectively conditions of the clockwise input driver rotation and the
counter clockwise rotation.

As shown in Figure 4-9, the energy consumption significantly was reduced in the

elastic contact conditions commonly in two mechanisms. The tendency is high in the

Theo-Jansen case rather than the Chebyshev case. For the validation of the com-

parative analyses, the same clockwise rotation was given in two walking mechanisms

as explained. In the sense of the moving direction, the counter clockwise rotation of

the input driver is required to the Theo-Jansen mechanism for going forward. In the

comparison of conditions of the clockwise (CW) and the counter clockwise (CCW)

rotations of the input driver, the reduced energy consumption was consistently evalu-

ated. The horizontal force or friction was different depending on the moving direction.
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Figure 4-10: A detail analysis on the contact point in each walking mechanism. (a)
and (c) represent respectively the position analysis and required driving torque in the
single cycle in the case of the Chebyshev mechanism, and (b) and (d) represent same
variables in the case of the Theo-Jansen mechanism. In the position analysis of the
Theo-Jansen mechanism, links of 𝐿1,𝐿6,𝐿9,𝐿10 and 𝐿11 were only displayed as the
highlight of the contact phenomenon. Representative time points with labels as C*
and T* were selected from the mid-point of the stance phase and changing points of
the temporal sequence of each driving torque.

The further analysis on the process when the foot is contacting with the ground

was shown in Figure 4-10. The result showed a significant reduction of the required

driving torque at the early stage of the stance phase in the case of the Theo-Jansen

mechanism as the effect of viscoelastic ground contact.
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Chapter 5

Comparison between the proposed

method and the other methods

In this chapter, we discuss about the importance of numerical stability in compu-

tational methods dealing with multibody system and to show how the stability is

achieved in our proposed method in comparison with other existing method. Stabil-

ity of numerical solution is one of the challenging issue in multibody computer system

analysis. Our method is not changing the structure of the general MBD techniques,

instead it combines different analysis by introducing a new branches that threat exter-

nal force in addition to conventional MBD simulation workflow as discussed in Chap-

ter 1 and 3. Traditionally there are two method in analysis of contact impact event

in multibody system, namely, discrete and continuous. Either of these two methods

is suitable for computational analysis of multibody dynamics. Furthermore imple-

menting any of these methods in forward dynamics analysis as presented in Chapter

2, program requires a special attention to several computational issues related to the

accuracy and mathematical representation of contact constraint. Method should be

possibly applied into the analysis of various different examples of mechanical sys-

tem that experience the contact impact. Therefore, to make systematic comparison,

particular attention is given to the most popular approaches, that are, Lagrangian

formulation, continuous contact force analysis. Finally, two examples of application

are considered to compare the accuracy and computational cost of the methods used
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throughout this chapter.

5.1 Demonstrative example 1

The first example is the impact of free falling ball on the ground, one of the simplest

contact system. Figure 5.1 (a) and (b) shows contact kinematics of system both in

Lagrangian approach and penetration model in continous contact force analysis.
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Figure 5-1: Kinematic model of ball-ground contact on Langrangian based approach
and penetration model in proposed integrated framework (b).

The ball with mass of 1.0 kg and moment of inertia equal to 0.1 kg𝑚2, radius of 0.1

m is released from the 1 m initial height under the action of gravitational downward

force. Thus, ball falls down until it collides with ground, which is considered to be

fully rigid and stationary for the case of contact kinematic model in Figure 5.1 (a). In

this example, Lagrangian approach was initially introduced a linear complementarity

condition due to impenetrability in impacting objects in order to have unique solution

on the contact reaction forces. Therefore condition imposes a gap distance where no

penetration is accepted. The same initial configuration was set in the kinematic model

with penetration in Figure 5.1 (b) , the ball rebounding is depend on values of input

coefficient of restitution.

5.1.1 The linear complementarity problem

Complementarity formulation is based on the fact that in contact dynamics either the

relative kinematic variable is zero and the corresponding constraint force is nonzero,

or viceversa. In the case of normal contact, if the gap distance is zero, then the

normal force is not zero. For two dimensional problems using the complementarity
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rule to model the contact yields a linear complementarity problem (LCP) which can

be solved using algorithms based on linear programming such as Lemke’s algorithm

and other.

𝑔𝑁 = 𝑦𝑏 −𝑅 (5.1)

which yields,

𝑔𝑁 =

⎧⎪⎨⎪⎩𝑔𝑁 > 0 𝐹𝑁 = 0

𝑔𝑁 = 0 𝐹𝑁 > 0
(5.2)

Equations (5.1) and (5.2) represent an inequality complementarity behavior, for

which the product of the relative normal gap and normal contact force is always zero,

that is,

𝑔𝑁 ≥ 0, 𝐹𝑁 ≥ 0, 𝑔𝑁 · 𝐹𝑁 = 0 (5.3)

Thus, the relation between the gap distance and normal contact force can be subjected

to the inequality complementarity condition in its standard form can be written as

𝑦 = 𝐴𝑥+ 𝑏, 𝑦 ≥ 0, 𝑥 ≥ 0, 𝑦𝑇𝑥 = 0 (5.4)

The unknowns in Equation (5.4) are the vector y and x which contains the relative

acceleration and contact force.

The equations of motion for the moving ball can be expressed at the velocity level

as

𝑀𝑀(𝑢𝐸 − 𝑢𝐴)− ℎ𝑀Δ𝑡−𝑊𝑁𝑀𝑓𝑁 = 0 (5.5)

where velocity 𝑢𝐸 and position 𝑢𝐴 are obtained from equation of motion and inte-

grating velocity at instant of time. Those variables in equations of motion can be

expressed as

𝑀 = 𝑚 (5.6)
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ℎ = −𝑚𝑔 (5.7)

𝑊𝑁 = (1) (5.8)

by introducing above mentioned variables, the scalar LCP can be formulated as

𝐴 = 𝑚−1 (5.9)

𝑏 = 𝑢𝐴(1 + 𝜀𝑁)− 𝑔Δ𝑡 (5.10)

The set of algebraic equation solved with linear complementarity problem (LCP)

formulation by lagrangian approach. By integrating velocity, position at the end of

the time step can be calculated as

𝑞𝐸 = 𝑞𝑀 +
1

2
Δ𝑡𝑢𝐸 (5.11)

where 𝑞𝑀 is the midpoint state variable of Moreau’s time-stepping algorithm with

an LCP formulation.

𝑔𝑁 = 𝐴𝐹𝑁 + 𝑏
𝑦𝑖𝑒𝑙𝑑𝑠−−−→ 𝑔𝑁 ≥ 0, 𝐹𝑁 ≥ 0 𝑔𝑁𝐹𝑁 = 0 (5.12)

An LCP can have a unique solution, multiple solutions or no solution at all. All

existing solutions can be found using enumerative methods [69], which which are

designed to find one unique solution of the LCP. There are multiple solver algorithms

available for use but to minimally using it as function to get a solution we described

a form of Matlab function with input and output variables.

(𝑥, 𝑦) = 𝐿𝐶𝑃 (𝐴, 𝑏) (5.13)

For large dimensions, enumerative methods become computationally costly because

the LCP of dimension 𝑛 provides 2𝑛 different combinations of 𝑛 variables.
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5.1.2 Energy analysis

The simplest way to quantify the energy loss during a contact period is based on the

energy balance equation proposed by (Beer and Johnston 1997) for the system of two

spheres

Δ𝐸 = 𝑇 (−) − 𝑇 (+) =
1

2
𝑚𝑖

[︂(︁
𝑣
(−)
𝑖

)︁2

−
(︁
𝑣
(+)
𝑖

)︁2
]︂
+

1

2
𝑚𝑗

[︂(︁
𝑣
(−)
𝑗

)︁2

−
(︁
𝑣
(+)
𝑗

)︁2
]︂

(5.14)

Considering the kinetic energies before and after impact, the energy loss can be ex-

pressed as a function of the coefficient of restitution and impact velocity. Dissipated

energy can be estimated with initial impact velocity and given coefficient of the resti-

tution at the instant of time 𝑡 according to Lankarani & Nikravesh (1990).

Δ𝐸 =
1

2
𝑚𝑖

(︁
�̇�(−)

)︁2 (︀
1− 𝑐2𝑟

)︀
(5.15)

where 𝑚 is the equivalent mass of the two bodies and 𝑐𝑟 is the restitution coefficient

in contact force model described in Equation 3.7. In our analysis, 𝑚 can be found

with only mass of the ball since the ground is stationary. Equation provides only

dissipated energy at instant of time 𝑡. Total energy loss can be evaluated by the

integration of contact force around the hysteresis loop of contact force model.

5.1.3 Result and comparison

A computational experiment was conducted to compare above mentioned methods

under equivalent condition.
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Figure 5-2: Simulation result of kinematic analysis of ball-ground interaction, Ball
position (a) Lagrange method and (b),(c) of proposed method during elastic and
inelastic contact, respectively.

As shown in position analysis in Figure 5-2, there was no significant differences

in position analysis in Lagrange method compared to inelastic condition in proposed

method. However, during the elastic contact, rebounding effect of the ball indicated

in proposed approach due to the energy interconversion in the system as shown in

Figure 5-2 (b).
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Figure 5-3: The result of velocity analysis

In the velocity analysis, its clearly shown in Figure 5-3 (a) and (c) that velocity

drops to the zero just after impact for the case of Lagrangian method as well as with

inelastic condition in proposed method after small rebounding. The contact occurs

at the same instant time and the ball velocity was consistent with contact-impact

dynamics in two methods.
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Figure 5-4: The result of contact force analysis

Since the ball is free falling from the predefined height, there is only mass and

gravitational downward forces acting on the center. When the initial impact detected

contact force estimated for Lagrange method with solver algorithm used to find a

unique solution and result of reaction force determined with Lagrange multiplier. In

the continuous approach, contact force estimated as a non-linear function of pene-

tration as well as material properties of the ball with constitutive laws proposed by

Lankarani & Nikravesh (1990). As shown in Figure 5-4, the contact occurs repeat-

edly due to the rebounding of the ball. On the other hand, in inelastic contact, ball

stays on the ground just after impact without rebounding while time history of force

analysis was consistent in two methods.
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Figure 5-5: Energy dissipation during an contact

Dissipated energy due to the internal damping is shown in Figure 5-5. There

was no significance difference found in two methods for the case of inelastic contact.
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Interestingly, force-penetration diagram shows that there was no energy dissipated

during the elastic impact with ground.
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Figure 5-6: Force penetration relation in proposed method during elastic contact (a)
and inelastic contact (b).

A computation time during the simulation was measured with Matlab function

𝑐𝑝𝑢𝑡𝑖𝑚𝑒 returns the total CPU time (in seconds) used by each method from the time

it was started.
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Figure 5-7: Result of total computation time in numerical experiment in two methods.

The total simulation time was comparatively higher in Lagrange method as shown

in Figure 5-7 because the ball remains on the ground after impact and algorithm

further processing to find a unique solution by recalling a solver function. On the other
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hand, proposed method uses twice smaller processing time even in same condition as

inelastic contact occurs. Applicability of the Lagrange method is taken granted if

contact dynamics of system is a clear, for instance its used in treatment of contact

force analysis in rail-road dynamics where bodies are always in contact or formulated

with strict constraint. However, based on the comparative analysis, proposed methods

has shown advantages compared to Lagrangian method even in simple example of free

falling ball.

5.2 Demonstrative example 2

A simple example of ball-ground contact clearly demonstrated the use of Lagrangian

method for open-loop system with unilateral contact as well as penetration model

as integration into proposed method. Since there is no constraint imposed condition

accuracy becomes a not critical issue. We proposed a new experimental setup with

slider crank mechanism subject to contact impact with another free block which has

certain application to compliant force generator mechanism [70].
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Figure 5-8: Kinematic model for slider-crank mechanism (a), Corresponding free body
diagram of constrained mechanical system.

In the assumption that the multibody system consists of constrained bodies and

constraints according to the interaction with the ground, equations of motion must

contain reaction forces corresponding to free body diagram (FBD) to analyze the

dynamics of a system. The reaction forces are included in equations of motion based

on FBD of a system as shown in Figure 5-8 (b). Slider-crank mechanism in Figure

5-8 (a) is constrained, therefore, reaction force appears at the joints which can be

expressed with Lagrangian multipliers, the result of DAE of motion. The external

force 𝐹𝐸𝑋𝑇 acting on the constrained system when it impact the object has opposite

direction and applied on the joint 𝐵 of slider unit.

5.2.1 Formulation with Lagrangian approach

There are two main approaches that can be used in multibody system formulations to

obtain the contact force when slider impact with the another free block. In the first

approach, the contact between slider block and free block is described by kinematic
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constraint equation. The contact force can be obtained as the reaction force due

to the imposition of the contact constraints with Lagrange multipliers [71]. When

equality constraint are used, it is assumed that there is no penetration or separation

between the contact constraints which is

Φ (𝑞, 𝑠, 𝑡) = 0 (5.16)

where q is the vector of system generalized coordinates, s is the vector of the

surface parameter, and t is the time. As discussed in Chapter 2, after differentiating

the preceding equation twice respect to the time, the constraint equations at the

acceleration level can be written as

Φ𝑞q̈+ Φ𝑠𝑠 = 𝛾 (5.17)

Φ𝑞 and Φ𝑠 are the sub-Jacobians of the constraint equation associated, respec-

tively, with the generalized coordinates q and surface parameters s; and 𝛾 is the

quadratic velocity vector.

⎡⎢⎢⎢⎢⎣
𝑀 0 Φ𝑇

𝑞

0 0 Φ𝑇
𝑠

Φ𝑞 Φ𝑠 0

⎤⎥⎥⎥⎥⎦
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑞

𝑠

𝜆

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =

⎡⎢⎢⎢⎢⎣
ℎ(𝑎)

0

𝛾

⎤⎥⎥⎥⎥⎦ (5.18)

These equation can be solved to determine the acceleration 𝑞 and 𝑠 as well as vec-

tor of Lagrange multipliers 𝜆. In the constraint contact formulation, the constraint

equation must be satisfied at position, velocity, and acceleration level without vio-

lation. However, above mentioned formulation, Baumgarte’s stabilization techniques

no longer applicable in acceleration equation. Therefore, formulation on acceleration

level including the contact constrained is considered to be index 1 system. In order

to reduce the constraint violation and maintain the stability of equation of motion in

position and velocity level, index 2 formulation can be introduced as

𝑞(0) = 𝑞0, (5.19)
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𝑣(0) = 𝑣0, (5.20)

𝑞 = 𝑣, (5.21)

𝑀�̇� = ℎ(𝑎) +𝑊 𝑇𝜆, (5.22)

𝑀
(︁
𝑣+𝑗 − 𝑣−𝑗

)︁
= 𝑊 𝑇

𝑗 Λ𝑗, (5.23)

0 ≤ 𝑔⊥𝜆 ≥ 0, (5.24)

Starting from the initial conditions (5.16)-(5.17), the system’s state given by po-

sition 𝑞 and velocity 𝑣 are described by a non-impulsive behavior. It is influenced by

the generalized mass matrix 𝑀 and right hand side forces ℎ(𝑎). Due to the Signorini-

Moreau condition (5.21), gap distance 𝑔𝑁 affect this type of motion by varying contact

force parameters 𝜆. The notation 𝑔⊥𝜆 stands for 𝑔𝑇𝜆 = 0. The force parameters

weight the columns of 𝑊 𝑇 in the equations of motion (5.19). For countable time

instances t, the velocities jump enforced by an impact Λ𝑗 according to (5.19). With

(5.18), the position 𝑞 can be calculated by the fundamental theorem of calculus for

differentiable functions. One might think that the complementarity problem (5.16)-

(5.21) is integrated best by an event-driven time-integration strategy. However as

event-driven schemes resolve the exact time of impact, they cannot accurate enough.

𝑔𝑁 = 𝑥5 − 𝑥4 − 𝑎
𝑦𝑖𝑒𝑙𝑑𝑠−−−→ 𝑥5 − 𝐿1 cos 𝜃1 + 𝐿2 cos 𝜃2 + 𝑎 cos 𝜃3 (5.25)

𝑀 =

⎛⎜⎝ 𝐽1 + 𝑙21
(︀
𝑚1

4
+𝑚2 +𝑚3

)︀
𝑙1𝑙2 cos (𝜃1 − 𝜃2)

(︀
𝑚2

2
+𝑚3

)︀
𝑙1𝑙2 cos (𝜃1 − 𝜃2)

(︀
𝑚2

2
+𝑚3

)︀
𝐽2 + 𝑙22

(︀
𝑚2

4
+𝑚3

)︀
⎞⎟⎠ (5.26)
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ℎ(𝑎) =

⎛⎜⎝−𝑙1𝑙2 (𝜃1 − 𝜃2)
(︀
𝑚2

2
+𝑚3

)︀
𝜔2
2 − 𝑔𝑙1 cos 𝜃1

(︀
𝑚1

2
+𝑚2 +𝑚3

)︀
𝑙1𝑙2 (𝜃1 − 𝜃2)

(︀
𝑚2

2
+𝑚3

)︀
𝜔2
1 − 𝑔𝑙2 cos 𝜃2

(︀
𝑚2

2
+𝑚3

)︀
⎞⎟⎠ (5.27)

The bilateral constraint holds slider at fixed y position as

𝑔 = 𝑙1 sin 𝜃1 + 𝑙2 sin 𝜃2 = 0 (5.28)

Linear complementarity problems are the result of other method which mathe-

matically give the exact solution to contact problem where constraint inequality is

arises. In the second approach, a compliant contact force with assumed that stiffness

and damping coefficient is used to describe the contact-impact phenomenon and its

possible to consider the separation [72]. The second approach is integrated in our

proposed computational framework. Therefore, proposed method benefits from both

constraint formulation and contact force model which will be shown with computa-

tional accuracy analysis in this chapter.

5.2.2 Result and comparison

In contact force analysis, force appears at the exact time when slider impact the

object was obtained in plot with proposed method. Due to the constraint enforced

condition, the timing of contact was different in Lagrangian method. Furthermore,

we estimated the simulation error in position and velocity level for the two methods.

Representative values are shown in Table 5.1.
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Figure 5-9: Contact force for Lagrangian method (a) and proposed method for in-
elastic contact (b).

Table 5.1: Resultant values of constraint violation at position level

Factors Lagrangian approach Proposed method

Mean error at position constraint 0.0045 7.123

Total accumulated error 1.5585 0.2138
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Figure 5-10: Constraint violation at the position level, Lagrangian approach (a) and
Proposed method with Baumgarte’s stabilization technique (b).

In general, error must be zero or must be enough to give a right answer. In

position level, the values are fluctuated due to the constraint imposed condition in

Lagrangian approach.
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Table 5.2: Resultant values of computation time and force analysis

Lagrangian approach
Proposed integrated method

(Lankarani and Nikravesh)

Coeff. Rest. - 𝑐𝑟 = 0.1 𝑐𝑟 = 1

Δ𝑡 [s] 0.429 0.429 1.286

𝐹𝑁𝑚𝑎𝑥 [N] 4.204 2.806 3.295

CPU time [s] 28.4063 14.2344 3.4063

Baumgarte’s stabilization technique initially implemented in conventional MBD

approach which makes proposed framework to be general and simple. The mean

error was kept in values as shown in the table just after a few millisecond when the

system reached at stable state. Total accumulated error was comparatively smaller

in proposed method. Representative values are shown in Table 5.2.
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Figure 5-11: Constraint violation at the velocity level, Lagrangian approach (a) and
Proposed method with Baumgarte’s stabilization technique (b).

Contact relative velocities in constraint was estimated and rebounding of impact

velocity was indicated in Lagrangian method. The rebound impact velocity represents

the initial instant of impact. When there is no stabilization algorithm that gives

accurate solution in velocity before and after impact, at least correct the error at

instant time, apparently there is sudden increase of numerical error which may cause

the simulation will be no longer proceed. Mean error in velocity level was the same
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but total accumulated error was slightly increased in Langrangian method because

its the sum of error it each joint that enforced by the impact. Proposed method

with Baumgarte stabilization techniques demonstrated the accurate analysis in both

position and velocity level. Representative values are shown in Table 5.3.

Table 5.3: Resultant values of constraint violation at velocity level

Factors Lagrangian approach Proposed method

Mean error at velocity constraint 0.0705 0.0012

Total accumulated error 211.5316 3.4806
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Chapter 6

Dynamic modelling of the horse

locomotion

Legged locomotion has been widely studied and tried to rebuild by simple mechanical

systems called biological walkers, which were based on open and closed chain mechan-

ical systems [73, 74, 75, 76]. Biological walkers are not only focusing on a benefit of

multiplicity of legs [74, 76] but also are highlighted in a less-energy consumption ac-

cording to the generation of smooth leg trajectories, which is demonstrated by Theo

Jansen [65] and confirmed in previous chapter of these thesis. The author of Ko-

moda & Wagatsuma [7] demonstrated that the Theo Jansen mechanism walks with

less energy consumption with respect to hexapods [74, 76] when it is moving with

a slow walking speed, while it is getting worse in the high-speed walking. However,

it is known that the animal locomotion changes depending on the speed of mobility,

especially in horses, which exhibit gait pattern transitions [77, 78, 79, 80] presumably

for minimization of the energy consumption. In the consideration of analyses on the

energy efficacy of the animal locomotion with a high-speed mobility, the kinematic

model based on a simple mechanism such as closed linkages has advantages yet it re-

quires the mechanism with a high duty-factor [79, 81] which is defined as the fraction

of the duration of a stride for which each foot remains on the ground, or the ratio

between stance and swing phase. Interestingly, possible extensions of closed linkage

mechanism were reported [82, 49, 83] in order to change the duty-factor.
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Figure 6-1: Implementation of horse leg mechanism. Horse leg mechanism consists
of three parts: Reciprocal mechanism, which observed in horse hind limb produces
lifting up motion in lower part of the leg. Theo-Jansen like simplified mechanism with
cyclic driving unit as shown in the middle. Horse like Leg mechanism with different
modifiable footpath, linear actuator inserted and hoof mechanism added based on
anatomy of the horse leg.

Coros et. al. [84] propsed the theoretical framework to provide a desired cyclic

trajectory based on multiple gears with different diameters and rotation phases con-

nected with linkages by using a solver of the constraint optimization problem and

then verified to provide animal leg motions. Their approach has an advantage of

the design any free form of cyclic motion can be generated by the combination of

multi-gears with a simple linkage as the kinematic analysis; however their theoreti-

cal analysis cannot apply to computation of the force and torque estimation of the

mechanism as the kinetical analysis as presented in Chapter 2 of this thesis. In the

sake of kinematic and kinetical analysis of the horse leg motion as the representative

animal with a high-speed mobility, we hypothesized that the musculoskeletal sys-

tem can be modeled based on closed linkages as shown in Figure 6-1 and found a

critical link to effectively control the shape of leg trajectories. Once the functional

relationship of muscle-tendon units can be represented by the simple closed-linkage

system, the model allow us to investigate how the leg trajectory is modifiable in the

displacement analysis in the kinematic analysis and when and where the leg has the

maximum torque in the inverse kinematic analysis. This method will reveal what
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kinematic transmission are derived from the input to the end-effector as toe by ap-

plying changes of parameters to represent leg components.

6.1 Biomechanics of horse locomotion
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Figure 6-2: Schematic illustration of the musculoskeletal system of the horse hind
limb (a) Associations of bones and joint positions, (b) the muscle organization and
(c) the proposed model with closed linkages. Figures (a) an (b) were drawn based on
analyses of Budras et al. (2012) [1].

In the horse body, reciprocal mechanism in hind limb, basics of functional anatomy

observed in vitro experiment [85], confirmed by vivo measurement [86] are shown in

Figure 6-2 (a), (c) with blue and orange lines to represent the stifle and the hock move

individually. The mechanism produces a lifting-up trajectory that allows the horse

to navigate the lower limb in a smooth and coordinated manner as shown in Figure

6-3 (c). Mechanics of the horse leg was explained by Hoyt et. al. [78] and Hildebrand

[87] with its anatomical point of view. A purely qualitative investigation of rear-leg

external anatomy shows a similarity in this proposed design in shape and size of the

distal region, while that the proximal limb (rump) is larger and more rounded than the

equivalent shoulder region indeed. Figure 6-3 (a) and (b) provided the musculoskeletal
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structure of whole hind limb which we focused on. The red circles represent joints in

horse limb correspond to the 𝐵, 𝐶, 𝑂2, 𝐹 , 𝐺 joints in proposed leg mechanism except

the joints placed in suspensory part. Musculoskeletal structure of hind limb was

represented by simple shapes such as triangle in upper limb dotted by big red circles

in Figure 6-3 (a), which is controlled by tensor fascia muscles and series parallelogram

in lower limb represented by blue and orange colors known as reciprocal apparatus.

The triangle structure in the toe which contacts with the ground known as hoof

formed by links drawn by orange lines except to the suspensory ligaments. Thus, all

of these connections provides the unique structure of walking in the viewpoint of closed

linkages. It leads an operating principle of the horse leg mechanism to have an upper

and lower 3-bar mechanism forms a rigid triangle that allows parallelogram linkage

to change the shape and guide motion of one another. Finally, motion transferred

from second parallelogram to the hoof part. Same principle operates in the Theo-

Jansen mechanism [82, 83, 84] in case of simplified model illustrated in Figure 6-1

(b). However, none of related past related works [14-16] have not yet reported the

importance of an additional linear translational actuator, which is critically control

the shape of the leg trajectory. We focused on the original perspective and applied

this principle to reciprocal apparatus and the hoof part in proposed leg mechanism

in Figure 6-3(c). In the following section, the function was evaluated with multibody

dynamics.

6.2 Kinematic analysis of horse leg mechanism

In this Chapter, we introduced a closed-linkage mechanism inspired from muscleskele-

tal structure of horse hind limb, regenerate horse-like flexible leg trajectories.
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Figure 6-3: Kinematic model of the horse leg mechanism, generalized coordinates in
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The kinematic model for the horse leg mechanism is illustrated in Figure 6-3,

the vector 𝑞 with 42 elements including position and orientation of each body in leg

mechanism expressed as generalized coordinates as follows:

q = [𝑞𝑇1 , 𝑞
𝑇
2 , 𝑞

𝑇
3 , 𝑞

𝑇
4 , 𝑞

𝑇
5 , 𝑞

𝑇
6 , 𝑞

𝑇
7 , 𝑞

𝑇
8 , 𝑞

𝑇
9 , 𝑞

𝑇
10, 𝑞

𝑇
11, 𝑞

𝑇
12, 𝑞

𝑇
13, 𝑞

𝑇
14]

𝑇 (6.1)

The vector of 𝑞 contains 42 (= 14 Ö 3) elements which are 6 rigid links and their

center of position 𝑥𝑖, 𝑦𝑖 and orientation 𝜑𝑖 are obtained in the generalized coordinates

in the present analysis. A set of kinematic algebraic constraint equation according to

the initial configuration for the position analysis can be written

83



Φ(q, 𝑡) =

[︂
Φ𝐾(𝑞)
Φ𝐷(𝑞, 𝑡)

]︂
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1 − 𝐿1 cos 𝜃1
𝑦1 − 𝐿1 sin 𝜃1

𝑥2 − 𝐿2 cos 𝜃2 − 𝑥1 − 𝐿1 cos 𝜃1
𝑦2 − 𝐿2 sin 𝜃2 − 𝑦1 − 𝐿1 sin 𝜃1
𝑥3 + 𝐿3 cos 𝜃3 − 𝑥2 − 𝐿2 cos 𝜃2
𝑦3 + 𝐿3 sin 𝜃3 − 𝑦2 − 𝐿2 sin 𝜃2

𝑥3 − 𝐿3 cos 𝜃3 − 𝑎𝑥
𝑦3 − 𝐿3 sin 𝜃3 − 𝑎𝑦

𝑥4 + 𝐿4 cos 𝜃4 − 𝑥2 − 𝐿2 cos 𝜃2
𝑦4 + 𝐿4 sin 𝜃4 − 𝑦2 − 𝐿2 sin 𝜃2
𝑥5 + 𝐿5 cos 𝜃5 − 𝑥4 + 𝐿4 cos 𝜃4
𝑦5 + 𝐿5 sin 𝜃5 − 𝑦4 + 𝐿4 sin 𝜃4

𝑥5 − 𝐿5 cos 𝜃5 − 𝑎𝑥
𝑦5 − 𝐿5 sin 𝜃5 − 𝑎𝑦

𝑥6 + 𝐿6 cos 𝜃6 − 𝑥4 + 𝐿4 cos 𝜃4
𝑦6 + 𝐿6 sin 𝜃6 − 𝑦4 + 𝐿4 sin 𝜃4
𝑥7 + 𝐿7 cos 𝜃7 − 𝑥6 + 𝐿6 cos 𝜃6
𝑦7 + 𝐿7 sin 𝜃7 − 𝑦6 + 𝐿6 sin 𝜃6
𝑥8 − 𝐿8 cos 𝜃8 − 𝑥7 + 𝐿7 cos 𝜃7
𝑦8 − 𝐿8 sin 𝜃8 − 𝑦7 + 𝐿7 sin 𝜃7

𝑥8 − 𝐿8 cos 𝜃8 − 𝑎𝑥
𝑦8 − 𝐿8 sin 𝜃8 − 𝑎𝑦

𝑥9 + 𝐿9 cos 𝜃9 + 𝐿61 cos 𝜃6 − 2𝐿5 cos 𝜃5 − 𝑎𝑥
𝑦9 + 𝐿9 sin 𝜃9 + 𝐿61 sin 𝜃6 − 2𝐿5 sin 𝜃5 − 𝑎𝑦

𝑥9 − 𝐿9 cos 𝜃9 − 𝑥1 − 𝐿1 cos 𝜃1
𝑦9 − 𝐿9 sin 𝜃9 − 𝑦1 − 𝐿1 sin 𝜃1

𝑥10 + 𝐿91 cos 𝜃10 − 𝑥7 + 𝐿7 cos 𝜃7
𝑦10 + 𝐿91 sin 𝜃10 − 𝑦7 + 𝐿7 sin 𝜃7

𝜃10 − 𝜃7
𝑥11 − 𝐿11 cos 𝜃11 − 𝑥10 + 𝐿91 cos 𝜃10
𝑦11 − 𝐿11 sin 𝜃11 − 𝑦10 + 𝐿91 sin 𝜃10
𝑥12 − 𝐿10 cos 𝜃12 − 𝑥11 − 𝐿11 cos 𝜃11
𝑦12 − 𝐿10 sin 𝜃12 − 𝑦11 − 𝐿11 sin 𝜃11
𝑥12 + 𝐿10 cos 𝜃12 + 2𝐿81 cos 𝜃8 − 𝑎𝑥
𝑦12 + 𝐿10 sin 𝜃12 + 2𝐿81 sin 𝜃8 − 𝑎𝑦
𝑥13 + 𝐿12 cos 𝜃13 − 𝑥10 + 𝐿91 cos 𝜃10
𝑦13 + 𝐿12 sin 𝜃13 − 𝑦10 + 𝐿91 sin 𝜃10
𝑥14 − 𝐿13 cos 𝜃13 − 𝑥13 + 𝐿12 cos 𝜃13
𝑦14 − 𝐿13 sin 𝜃13 − 𝑦13 + 𝐿12 sin 𝜃13
𝑥14 − 𝐿13 cos 𝜃13 − 𝑥12 + 𝐿10 cos 𝜃12
𝑦14 − 𝐿13 sin 𝜃13 − 𝑦12 + 𝐿10 sin 𝜃12

𝜃1 + 𝜔𝑡

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
42×1

= 0

(6.2)

where the first 41 elements of the column matrix Φ𝐾(𝑞) are derived from Equation

(2.5) for absolute constraints between body and ground, and Equation (2.4) for con-

straint equation for revolute joins connecting the rigid links. The last element Φ𝐷(𝑞, 𝑡)

is derived by the driving constraint Equation (2.6).

The partial derivative of position constraint equation respect to the generalized
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absolute cartesian coordinates 𝑞 is Jacobian matrix Φ𝑞 is obtained as:

Φ𝑞 =

[︂
∂Φ(q,𝑡)

∂q

]︂
42×42

, (6.3)

where it allows us to investigate placement, velocity and acceleration analyses kine-

matically. The forward dynamics analysis introduces the mass matrix M(42 × 42),

and the generalized external force vector ha(42× 1), as follows:

M = 𝑑𝑖𝑎𝑔(𝑀1,𝑀2, · · · ,𝑀14), (6.4)

{M𝑖 = [𝑚𝑖,𝑚𝑖, 𝐽𝑖]
𝑇 | 𝑖 = 1, 2, · · · , 14}, (6.5)

h(a) = [ℎ
(𝑎)
1

𝑇
, ℎ

(𝑎)
2

𝑇
, · · · , ℎ(𝑎)

14

𝑇
]𝑇 , (6.6)

{h(a)
𝑖 = [0,−𝑚𝑖𝑔, 0]

𝑇 | 𝑖 = 1, 2, · · · , 14}, (6.7)

where 𝑚𝑖 is the mass of rigid linkage to point 𝑖, 𝐽𝑖 = 2𝑙𝑖/3 is the polar moment of

inertia of rigid linkage to point 𝑖, and 𝑔 is the gravitational acceleration.

6.2.1 Classfication of engineering and biological linkages in

horse leg mechanism

Except for the engineering classification of the planar linkages driven by cyclic motion

as known as Grashof condition, Muller (1996) [88] proposed the analytical classifi-

cation method focusing on evolutionary changes in the mechanical behavior of the

biological linkages. Its linear and non-linear transmission property indicated in living

organisms with different parameter such as length and absolute angle. According to

the classification, the reciprocal mechanism in horse hind limb based on its anatom-

ical name of the bars coded in type of 2𝑃𝑙𝑠𝑙𝑠 parallelogram linkage. Here number

indicates the motion variables and linkage is non-crossed parallelogram based on their

length of the bars 𝑎 ∼= 𝑐 and 𝑏 ∼= 𝑑, where 𝑎, 𝑐 are the length of long side as noted

𝑂2 to 𝐹 and 𝐸 to 𝐶 as shown in Figure 6-2 (c). The configuration gives a linear

transmission of 𝛼2 to 𝛽2 (𝛼-input angle, 𝛽-output angle).

85



Table ?? shows the experimental result of classification for all linkages entered in

proposed leg mechanism. Firstly, linear transmission observed in biological linkage.

The range of the motion variables 𝛼2, 𝛽2 of 2𝑃𝑙𝑠𝑙𝑠 linkage indicated [35∘ − 141∘],

which was close to its working range of biological linkage as previously mentioned.

Secondly, Non-linear transmission depending on length of linear actuator 𝐿3 was ob-

served in engineering linkages. Kinematic transmission of the crank-rocker mechanism

measured by input angle 𝛼1 output angle 𝛽1 as shown in Figure 6-4. As a result, the

amplitude of angular oscillation in rocker link changes depending on length of 𝐿3 link.

In addition, amplitude measured on three different values of 𝐿3 link, black triangle

correspond to the highest points of the oscillation and red dot represent the lowest

points. All links in this leg mechanism formed by one another. Therefore, the relative

angle between them describes the amplification of force and speed and acceleration

of end effector.
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Figure 6-4: An effect of length changes of the 𝐿3 link inserted in horse leg mechanism
as important function of muscle-tendon unit

A positive transmission 𝛼, 𝛽 either increases or decreases of the type 2𝑃𝑙𝑠𝑙𝑠,

absolute transmission stability obtained in biological system. Working range of output

motion variable indicated [30∘−145∘] in case of the biological linkage driven by muscles

in horse hind limb [85]. Before making the classification of mechanism into biological
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and engineering linkages, we tested the effect of length changes of 𝐿3 link. Besides,

𝐿3 is the linear actuator connecting 𝐵 and 𝑂2 grounded node as shown in Figure 6-2

(c), 𝑥
′
3 and 𝑦

′
3 are coordinates located in the center of the body correspond to the

absolute coordWinates defining orientation of the body.
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Figure 6-6: Comparison of the common factors in relation to length of 𝐿3 link

The distance driver inserted to the linkage as function of muscle tendon unit and

its constraint formulation was considered. The results presents detailed information

on the effect of changes of linear displacement in distance driver measured on ve-

locity, acceleration and power consumption of driving link as shown in Figure 6-6.

The result shows that biologically inspired closed linkage mechanism driven by cyclic

motion can be energy efficient and adaptable with the sudden change of the envi-

ronment were presented by different modifiable leg trajectory. The validity of the

horse leg mechanism was confirmed successfully in terms of both range of motion

and kinematics. The important finding is that a kicking force is generated in the

toe just before the grounding as shown clearly in acceleration plot in Figure 6-5(c).

The non-linear kinematic transmission in length change of link may provide a hint

to analyze adaptive capabilities in the animal locomotion even by the simple closed

linkage without a complex actuator control system. Furthermore, in applying appro-
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priate driver constraint in system as principle movement strategy in running animal

functional and animal-like end trajectories were generated and evaluated with duty

factor which defines the specific locomotor behaviour with respect to the stance and

swing timing in one locomotive cycle by Batbaatar & Wagatsuma (2020) [89].
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Figure 6-7: Gait trajectories generated from the horse leg motion. Walking (a),
Running (b).

Two trajectories were selected as typical trajectories to reproduce walking and

running gaits according to the mechanics of the simple model, which are generated

by changing the control parameters associated with driver constraint in the horse leg

mechanism. As shown in Figure 2, the 1𝑠𝑡 trajectory considered to be a walking in

term of duty factor and step length, the relation was evaluated in previous study. The

2𝑛𝑑 trajectory which has longer step length compared to the 1𝑠𝑡 trajectory considered

to be running gait in which leg orientation controlled by swinging motion with respect

to the body, which may potentially generate the propulsive ground reaction force due

the intrinsic high rate of angular oscillation at the hoof. In addition, the motion

analysis can be developed following two points. The first point is a consideration of

replacement of elastic links in a part. According to the theory of the flexible multibody

dynamics [47], our analysis seamlessly can be extended to the flexible multibody

dynamics, which may improve the efficacy to absorb the ground reaction force when

grounding of the leg. The second point is the ground reaction analysis to require

an introduction of the extra component as the ground surface can be formulated

according the the contact force model in Chapter 3 of this thesis. The third point
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is the visualization of the ground reaction force because there are different type of

contact occurs in hoof of leg mechanism with ground in comparison with pointed

contact by Chebyshev and Theo-Jansen mechanism. It is reflected to the condition

with determination of multiple points in contact as illustrated:

CompressionRestitution

1t2t3t4t5t

d
m dd

(c) 

(b) 
Heel first Flat landing Toe first

Frond view Side viewBottom view

(a) 

Figure 6-8: Different viewpoint of hoof wall (a), Possible contact types depending
on landing of the hoof on ground (b), Representation of impact between hoof and
ground for the case of toe first landing (c)

As shown in Figure 6-8(c), there are three types of possible foot-ground contact

occurs, namely, heel first, toe first, flat, or multiple point contact. In consideration of

rolling hoof motion in contact with the ground: firstly, contact force should be treated

systematically to assemble sequence of impulses in order to determine the exact shape

of ground reaction force considering the complete gait cycle of leg motion. Secondly,

hoof-ground interaction imposes large local elastic deformation where a biological

animal absorbs the energy in passive elastic tendons that are used in the energy

interconversion during the locomotion cycle explained in articles [90, 91].
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Figure 6-9: Hoof angle variations with respect to the locomotive trajectory. Angular
rotation of hoof in one locomotive cycle of walking gait (a) and running gait (b).

In the temporal evaluation of the hoof angle as shown in Figure 6-9, walking and

running gaits were generated in accordance with the first and second trajectories

in Figure 6-7. In the waling gait, the transition of sub-phases commonly occurred

in the rolling motion of the triangle structure in both cases. In the walking gait,

those sub-phases from heel-strike, flat and toe-off were gradually generated (Figure

6-9 top-left), which is consistent with the gradual change of the hoof angle (Figure

6-9 bottom-left), while in the running gait, the transition started from the toe-strike

that causes the roll-over sub-phase quickly and then reached to the toe-off sub-phase

with a large gap from the ground rather than that in the walking gait. The result

was numerically examined as the first contact occurs at instant time 𝑡1 = 0.267𝑠

and 𝛼1 = −6.83∘ leaves the ground at 𝑡3 = 0.569𝑠 and 𝛼1 = −20.9∘ for the 1𝑠𝑡

(walking) trajectory. In the case, the hoof rolling over the ground and during the

mid-stance multiple contact points were examined at 𝛼1 = −0.23∘ degree in which

hoof was almost parallel with the ground. When the hoof leaves the ground, angular

variation during the contact phase was reached 26∘ degrees. For the 2𝑛𝑑 (running)

trajectory, the contact phenomenon occurred at the instant time 𝑡1 = 0.208𝑠 and

𝛼1 = 6.20∘ firstly, shifted to leaving from the ground at 𝑡3 = 0.478𝑠 and 𝛼1 = 71.08∘.

Finally, the hoof angle was reached 64.8∘ degrees, which is approximately 2.5 times

larger than the result in the walking gait. Interestingly, the hoof-ground interaction
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was significantly influenced by the initial impact phenomenon, which differentiate

the grounding part either heel or toe and it reflects to successive sub-phases too.

Even in the simple model, the differentiation was clearly observed not only in the

trajectory level as a posture and kinematic analysis but also in the kinetic level as

the dynamics analysis, which is easily extended to the energy analysis. All these

sub-phases are characterized as representative sub-phase to reconstruct the target

gait and it can provide the parametric analysis with stiffness and damping, which is

associated with an actual parameter from soft tissues in the distal limb. It is because

that the compliant contact force model was theoretically described as shown in the

method section, which allow to change those parameters related to reaction forces

easily.
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Figure 6-10: Resultant values of ground reaction forces under the different contact
condition. Force pattern of walking gait (a) and running gait (b).

In the MATLAB based numerical simulation, ground reaction forces were evalu-

ated by using Lankarani & Nikravesh [45] model by changing restitution coefficients

as 𝑐𝑟 = 1.0 for elastic and 𝑐𝑟 = 0 for inelastic contact cases. According to the analysis,

the maximum contact force was obtained as 453.65N for the 1𝑠𝑡 (walking) trajectory

in the inelastic contact condition and 175.34N in the elastic case. Average normal

force was 80.83N and 34.88N respectively. For the 2𝑛𝑑 (running) trajectory, the maxi-

mum GRF was 8.694kN for the inelastic contact condition and 5.719kN in the elastic

case. Average normal force was 978N and 800N respectively. Result showed that

the significant reduction of ground reaction force with respect to the viscoelastic con-
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tact was estimated as 61.35% in 1𝑠𝑡 trajectory and 34.22% in 2𝑛𝑑 trajectory. In the

walking trajectory, multiple point support occurring in which hoof loaded the body

weight at mid-stance as shown in Figure 6-10 (a), the maximum pressure or force

peak indicated in only when the leg first impact and leaves the ground which was

consistent with the force pattern observed in the human walking gait [92, 90].
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Chapter 7

Discussion and Conclusion

In the previous study by Komoda & Wagatsuma [7], which investigated a similar

comparison of the energy consumption of different closed-loop mechanisms, their re-

sults were not considered about the interaction of the leg and the ground surface.

The ground reaction is highly important as shown by Corral et al. [46], which inves-

tigated best ranges of coefficients for restitution and friction to realize a sustainable

walking motion. As Nikooyan & Zadpoor [11] discussed in their theoretical study,

a significant contribution of the ground reaction force appears in muscle fatigue due

to human running because a soft tissue vibration in the physiological body is trig-

gered by the impact force when the leg is grounding, which can be modeled by a

mass-spring-damper model. According to the model by Clark et al. [12], the ground

contact mechanism in human running has two steps and then the total ground reac-

tion force is composed of the collision of the lower limb and the concurrent vertical

accelerations of the rest of the body during ground contact. Phenomenologically,

in their study, the ground reaction force is observed as a bell-shape impact at the

first moment in the stance phase, known as a rocking chair mechanism, and interest-

ingly in the present study a bell-shaped peak in the early stance phase was similarly

observed in the torque in the inverse dynamics in the case of the Theo-Jansen mech-

anism as shown in Figure 4-10. The human leg mechanism is more complex rather

than walking linkages, while our computer experiment showed a possibility to ana-

lyze the spring-damper effect owing to a flexibility of the ankle region as a common
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tendency of the walking and running mechanism in a simple manner. However, the

second component due to leaning of the entire body weight into the leg is not ex-

plained by walking linkages if they are stable vertically without releasing the fixation

of the rotation center as discussed by Komoda & Wagatsuma (2015) [49] or further

development of the linkage to mimic an realistic animal leg motion by Batbaatar &

Wagatsuma [5]. In the mechanical and material mechanics points of view, the elas-

tic deformation has the benefit to store and release energy in the locomotion cycle

[90, 91], which may inspire an energy regeneration in the actuator design [93, 94].

If an appropriate energy regeneration [95] and automatic compliance control [25] is

possible based on the linkage system with elastic materials without electromechan-

ical complex systems, it has a large impact to the robotic system design to reduce

the size and cost. The proposed scheme contributes to the detail analysis in those

purposes. In regard to the nonlinear property of dissipative contact force models, we

introduced the model by Lankarani & Nikravesh [45] as the traditional one, while

the detail comparison is possible to analyze by replacing other nonlinear models such

as Flores et al.[55] and Hu & Guo [30]. In the present study, the dissipative con-

tact force model is integrated computationally to focus on the energy consumption

of different walking linkages for minimizing numerical errors due to the complexity

of the formulation, which is consistent with the approach of Flores and Ambrósio

[67], while if an interaction with the ground surface with geometric changes is crucial,

there exists a further extension of the differential-algebraic system as Equation (2.8)

including the vector of non-generalized surface parameters under the consideration of

geometric parameters separately from absolute coordinates formulated by Rathod &

Shabana [96]. For the sake of analyses of closed-linkage walking mechanisms in the

viewpoint, we proposed the computational scheme to integrate formulations of the

multibody dynamics and a dissipative contact force model in a replaceable way to

enable a precise numerical evaluation including inverse dynamics, which was crucial

for the evaluation of the energy consumption of different walking mechanisms. In

the present study, the effect of viscoelastic ground contact was successfully proved

to reduce the energy consumption commonly in Chebyshev and Theo-Jansen walking
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mechanisms by using our integrative method of the multibody dynamics with the

dissipative contact force model. In the binary condition of the coefficient of restitu-

tion in the damping factor model by Lankarani & Nikravesh [45], the perfectly elastic

impact reduced 31.4% and 61.2% energy consumption with respect to the inelastic

impact respectively in cases of Chebyshev and Theo-Jansen mechanisms in the same

clockwise rotation of the input driver. In the consideration of the moving direction,

the counter-clockwise rotation of the input driver is necessary in the Theo-Jansen

mechanism, and if it has no elasticity in the ground contact the bell-shaped torque

requirement was arisen for a constant rotation of the input driver, which was not

observed in the Chebyshev mechanism. The phenomenon reflects to an impact force

against the ground and it implies the generation of a locomotive power for going for-

ward, or kicking the ground. The viscoelasticity effectively absorbs the impact in the

stance phase and significantly contributes to the reduction of the energy consumption.
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