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Abstract

In this paper, we propose a new three-dimensional (3D) photon-counting integral imaging reconstruction method using a

merging reconstruction process and maximum likelihood estimation (MLE). The conventional 3D photon-counting reconstruction

method extracts photons from elemental images using a Poisson random process and estimates the scene using statistical

methods such as MLE. However, it can reduce the photon levels because of an average overlapping calculation. Thus, it may not

visualize 3D objects in severely low light environments. In addition, it may not generate high-quality reconstructed 3D images

when the number of elemental images is insufficient. To solve these problems, we propose a new 3D photon-counting merging

reconstruction method using MLE. It can visualize 3D objects without photon-level loss through a proposed overlapping

calculation during the reconstruction process. We confirmed the image quality of our proposed method by performing optical

experiments.

Index Terms: Integral imaging, Photon counting, Statistical optics, Three-dimensional (3D) visualization.

I. INTRODUCTION

Recently, three-dimensional (3D) imaging under low-lumi-

nance conditions has emerged as the most important tech-

nique in several industries. LiDAR is being used to

recognize object shapes in dark conditions [1]; however, it

cannot visualize the object colors or provide detailed infor-

mation. Therefore, it is unfeasible for object recognition

under dark conditions. On the other hand, photon-counting

imaging and statistical models can be used to detect photons

that occur rarely in unit time and space [2-5]. Such models

use the Poisson random process and maximum likelihood

estimation (MLE) to visualize an object in a dark scene. To

generate the 3D information of the object, the integral imag-

ing technique is typically used with the photon-counting

method. Integral imaging is one of the most valuable passive

3D imaging techniques that can provide full parallax without

using expensive equipment and constant light sources. The

technique uses a camera or lens array to record two-dimen-

sional (2D) images with different perspectives for creating

3D scenes [6]. The recorded images are referred to as ele-

mental images. When each elemental image passes through

the lenslet array, a 3D scene can be generated. To generate

the 3D scene using a computational process, volumetric

computational reconstruction (VCR) has been used [7-10]. In

addition, VCR has also been used with the photon-counting

method, which is called the 3D photon-counting integral

imaging technique [11-18], to generate 3D scenes under dark

conditions. Moreover, visualizing 3D objects in a low-light

environment may require photon-limited elemental images,

which can be generated using a computational statistical

photon-counting model. These elemental images can con-
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struct a likelihood function for MLE [11-12] and the MLE

can then visualize the 3D object in the dark scene. However,

the conventional method has certain critical problems in

visualizing 3D scenes. If the number of elemental images

required for reconstruction is insufficient, estimating the

object in the scene becomes difficult. Furthermore, insuffi-

ciency in the number of photons for visualizing the 3D scene

can lead to an inaccurate visualization of the object. To solve

these problems, we propose a new reconstruction method to

visualize 3D scenes under extremely dark conditions. We

believe it to be an effective method for visualizing an object

with a few elemental images and expected photons. 

The paper is organized as follows. In Section 2, we

explain the principle of conventional 3D photon-counting

imaging using MLE and present the proposed method. In

Section 3, we introduce the optical experimental setup and

results to demonstrate the performance of our proposed

method. Finally, we present our conclusions in Section 4.

II. PHOTON-COUNTING INTEGRAL IMAGING 

METHOD

A. Conventional Photon-counting Integral Imaging

Computational photon counting can be defined by a statis-

tical distribution, such as a Poisson distribution. This is

because photons are rarely detected in unit time and space

[3,4]. The distribution can be used to extract the photons

from a normalized scene, which contains a certain number of

photons, as follows:

,  (1)

where R(x) is the original elemental image, Np is the number

of photons, and Px represents the total number of pixels in

the elemental image. Finally, we obtain the normalized irra-

diance λ(x) of the detected image. The Poisson random pro-

cess is used to estimate the photons in the normalized image

as follows:

C(x)|λ(x) ~ Poisson[λ(x)], (2)

where C(x) is a photon-limited image with the expected

number of photons. Fig. 1 illustrates these processes.

To generate a color photon-limited image, red, green, and

blue channels are considered. Each color has a different opti-

cal frequency and photon energy. Therefore, photons can be

defined according to each channel as follows:

,  (3)

, (4)

where Nc represents the number of photons in the color

dimension, h represents the Planck constant, W represents

the energy radiating from the object surface during the pho-

ton observation process, vc is the mean optical frequency

value of each color dimension, and η represents the quantum

efficiency.

To reconstruct 3D images from the photon-limited 2D

images, an integral imaging technique is used. The technique

can be divided into two processes: pick-up and reconstruc-

tion, as described in Fig. 2.

In general, a lens array is used to record the elemental

images of the 3D objects [6]. However, the resolution of the

elemental images can be low because of being recorded

together in a single image sensor. To solve this problem,

synthetic aperture integral imaging (SAII) [7,8] can be used.

In SAII, because a camera array is used, each elemental

image has the resolution of a single image sensor and high-

resolution elemental images can be recorded. To obtain high-

resolution photon-limited elemental images, Eqs. (1) and (2)

are used with SAII. Photon-limited elemental images follow

a Poisson distribution in a 3D scene. Therefore, the likeli-

hood function can be defined as follows:
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Fig. 1. Computational photon counting model.
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,  (5)

,  (6)

where L(λ) is the likelihood function of the Poisson random

process, Ck represents the photon-limited elemental image, and

λ
^

k is the estimated elemental images. k and K are the index

and number of photon-limited elemental images, respectively. 

Using Eqs. (5) and (6), the normalized image can be esti-

mated as Ck. Using these estimated elemental images, 3D

reconstructed images can be generated [13-18].

Fig. 3 illustrates the conventional photon-counting integral

imaging technique, where f represents the distance between

the estimated elemental images and the virtual pinhole array,

Zr is the distance between the virtual pinhole array and the

reconstruction depth plane, ∆x is the shifting pixel value of

each photon-limited elemental image on the reconstruction

plane, and p represents the interval between the virtual pinholes.

The elemental images overlap on the reconstruction plane

through the pinholes. Finally, 3D photon-limited images are

reconstructed using the following equations:

, (7)

, (8)

where Ex represents the number of elemental image pixels,

Sx is the camera sensor size, and O(x) represents the overlap

count of the elemental images. Finally, we can generate the

3D photon-counting image under low-luminance situation by

using MLE with the estimated elemental images. However,

the conventional method cannot visualize the 3D scene accu-

rately under extremely dark conditions. In addition, the gen-

erated 3D image may be of low visual quality if the elemental

images are insufficient. To solve these problems, we propose

a method that can provide high visual quality in photon-lim-

ited situations.

B. Merging Reconstruction Method Using MLE

The conventional method cannot effectively utilize the

photons of the elemental image [13,15]. For more effective

utilization, we propose a new merging reconstruction method

that can utilize the photon information effectively even in

extremely dark conditions. Fig. 4 illustrates the proposed merg-

ing reconstruction method. Unlike the conventional recon-

struction process, our proposed method employs merging

reconstruction layers to generate the 3D reconstructed image

from partial elemental images. In addition, these recon-

structed images can be reused as elemental images because

each elemental image has a different perspective information

of the scene, and the photons can be present at various loca-

tions in the estimated image. Partial reconstruction can effec-

tively accumulate this photon intensity. When we cannot

obtain the elemental image sufficiently under dark condi-

tions, the conventional method may have a critical problem
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Fig. 4. Proposed reconstruction process.

Fig. 2. Principle of integral imaging.

Fig. 3. Photon counting Integral imaging reconstruction process.
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in visualizing the scene. On the contrary, because our pro-

posed method reuses the reconstructed images as elemental

images, it can visualize the scene better than the conventional

method. Finally, we can generate a single reconstructed image

at the end of the merging reconstruction process. 

To gather the photons in a sufficient number during the

reconstruction process, an improved overlap matrix is used

in our proposed method. In the conventional overlap process,

we use the overlapping matrix O(x) without considering the

existence of photons on the reconstruction plane. The con-

ventional method calculates the overlapping counts using the

complete elemental images. However, this averaging calcula-

tion can reduce the photon intensity. In particular, when the

photon has a low intensity, the photon level can reduce

owing to conventional overlapping calculations, causing a

loss of photon information. On the other hand, our proposed

method calculates the overlapping matrix by considering the

existence of photons. For example, if the photon intensity is

zero at a pixel in the estimated image, the incident photon

does not exist in the estimated image. To consider this condi-

tion, our proposed method only calculates the photon over-

lapping counts according to the photon presence in the

image. The merging reconstruction and shift values can be

defined as follows:

, (9)

 , (10)

where ∆Sm is a shifting pixel value on each merging layer,

Ex
m is the total number of pixels for the elemental image on

the mth merging layer, and Ck
m represents the kth recon-

structed elemental images on the mth merging layer. This

merging reconstruction process regenerates the elemental

image from the first reconstructed image layer and is imple-

mented continuously until a single image is generated. Thus,

we obtain a high-visual-quality reconstructed image that can

visualize the 3D scene effectively without using numerous

elemental images and expected photons.

III. EXPERIMENTAL SETUP AND RESULTS

To prove the enhancement in image quality after applying

our proposed method, we performed an optical experiment.

We used a 5(H) × 5(V) camera array to generate elemental

images. The focal length was set as 55 mm, the pitch

between the cameras as 2 mm, and the dimensions of the

elemental image as 400(H) × 600(V) pixels. Fig. 5 illustrates

our experimental setup.

To estimate the photons using the photon-counting model,

normalized images were generated using Eq. (1). Fig. 6

shows the original elemental image and its normalized ver-

sion used in this experiment.

To compare the performances of the conventional and pro-

posed methods, we composed various dark conditions. In

this experiment, we assumed the number of photons to be

from 100 to 1000. Figs. 7 and 8 show the experimental results

obtained using the conventional and proposed method, respec-

tively. The reconstruction depth of the first object was 250 mm.

As shown in Fig. 7, it is very difficult to recognize the toy

shape satisfactorily until 1000 expected photons are used. To

visualize the object using the conventional method, we had

to use more photons, as shown in Fig. 7(c) and (d). We can

observe the object shape slightly only after using over 3000
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Fig. 7. Conventional reconstructed image; (a) 700 expected photons are

used, (b) 1000 expected photons are used, (c) 3000 expected photons are

used, (d) 6000 expected photons are used.

Fig. 5. The optical experimental setup.

Fig. 6. Photon counting process; (a) original elemental image and (b) its

normalized image.
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expected photons. Therefore, the conventional method

requires more than 3000 expected photons to visualize an

object under dark conditions.

In contrast, the proposed method can visualize the 3D

object shape slightly even when 100 expected photons are

used, as shown in Fig. 8(a). As the number of photons

increase, the proposed method can visualize the background

scene better in the dark situation because each elemental

image contains a uniform probability of photon occurrence.

Therefore, our proposed method can enhance the overall

visual quality. As a result, our proposed method can even

recognize the details of the toy (e.g., the words on the shoul-

ders of the first toy), as shown in Fig. 8(d). 

To verify the performance of our proposed method, we

calculated the photon intensity average value for the photon-

limited image. To obtain this value, we used the mean of the

reconstructed image, as shown in Table 1.

According to Table 1, the proposed method can enhance the

photon intensity value by approximately 10 to 20 times than

that by the conventional method. In other words, our proposed

method can preserve the photon information excellently under

dark conditions. To evaluate the image quality of the recon-

structed image, a correlation analysis was performed, as

shown in Fig. 9.

For plotting the graph, the correlation peak value was used

as the performance metric. As evident from the graph, our

proposed method shows the highest correlation peak overall,

that is, it can visualize 3D objects effectively under dark

conditions. In conclusion, the conventional MLE has a criti-

cal problem in visualizing objects under dark conditions, and

also requires sufficient elemental images for visualization.

However, our proposed method can be utilized even under

harsh conditions without sufficient photons and elemental

images.

IV. CONCLUSION

Through optical experiments, we proved that our proposed

method can visualize 3D scenes effectively even under

extremely dark conditions. Especially, while reconstructing a

3D image, the conventional 3D photon-counting technique

can diminish the photon levels, because the conventional

overlapping matrix causes a photon intensity loss. In con-

trast, the proposed method can visualize the object even

without sufficient elemental images because it regenerates

the elemental images on multiple merging layers, which are

reused as elemental images on each merging layer. It can

also enhance the number of photons on each merging layer.

Therefore, our proposed method can effectively accumulate

photons from each elemental image, even under extremely

dark conditions. However, the method requires several calcu-

lations during the reconstruction process, increasing the pro-

cessing time. We aim to find a solution for this problem in

the future. Our proposed method can be used for night vision

systems, autonomous vehicle systems, unmanned cameras,

and microscopy under low-luminance conditions.

Fig. 9. Correlation analysis data.Fig. 8. Proposed reconstructed image; (a) 100 expected photons used, (b)

400 expected photons used, (c) 700 expected photons used, (d) 1000

expected photons used.

Table 1. Photon intensity analysis data of conventional and proposed

methods.

Expected photons
Photon intensity mean

Conventional Proposed

Np=100 0.0008/image 0.0092/image

Np=400 0.0016/image 0.0358/image

Np=700 0.0027/image 0.613/image

Np=1000 0.0040/image 0.0852/image
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