

Studies on Typhoon and Convection

著者	Fujita Tetsuya
year	1952-06
その他のタイトル	台風及び對流に関する研究
URL	http://hdl.handle.net/10228/00008763

Report of Meteorological Laboratory Vol.2 Nos.1-4

STUDIES ON

TYPHOON AND CONVECTION

Ву

Tetsuya FUJITA

JUNE 1952

Kyushu Institute of Technology Tobata City, Japan Report of Meteorological Laboratory Vol. 2 Nos. 1-4

STUDIES ON

TYPHOON AND CONVECTION

By

Tetsuya FUJITA

藤田村也氏

JUNE 1952

Kyushu Institute of Technology

Tobata City, Japan

STUDIES ON TYPHOON AND CONVECTION

by Tetsuya Fujita

Chapter 1

Pressure Distribution within Typhoon

Chapter 2

Temperature Distribution within Typhoon

Chaptor 3

New theory on Convection Problems

Chapter 4

Examples of Analyses

CHAPTER I

PRESSURE DISTRIBUTION WITHIN TYPHOON

CONTENTS

1,	Introduction 1
2,	Examination of Practical Pressure Distributions 3
3,	Radius Ratio of Pressure Profile 4
4,	Cyclone Function 5
5,	Deepening and Filling 36
6,	Expansion and Shrink of Isobars 40
7,	Pressure Tendency 42
8,	Standard and Anomalous Pressure 46
9,	Pressure Oscillations 50
10,	Pressure Dips 64

.

CHAPTER I PRESSURE DISTRIBUTION WITHIN TYPHOON

§ 1 Introduction

The pressure traces recorded at the time of a typhoon passage are well-shaped, suggesting that they might be shown by a mathematical expression. Y. Horiguchi studied the pressure field within the typhoon of Aug. 1924, concluding that the pressure is represented by the formula: (760 - P)(r + 1.7) = 68.1, where r is the distance from the typhoon center measured in 100 km. unit. It was known that this formula shows the pressure distribution within the typhoon studied by Horiguchi, but the formula is not so convenient when we attempt to represent the pressure curves for the other typhoons.

Introducing a variable x, the dimensionless quantity defined as the ratio r/r_0 , K. Takahashi(26) presented the equation,

 $P = P_{\infty} - \frac{\Delta P}{1+x}$ ($x = r/r_0$) ------(1) where P is the pressure r km. from the center, P_{∞} the pressure undisturbed by the typhoon, ΔP the depth of the pressure funnel, and r_0 the constant for each typhoon. It has been proved that this formula is capable of representing the pressure curves in the outer areas of typhoons. There remained, however, a fundamental problem that we must admit the existence of the finite pressure gradient at the center.

The pressure distribution in the vicinity of the center bas been studied by many writers, leading them to the conclusion that the pressure increases parabolically with the radius. Of course, in the outer area where the pronounced convergence is predominant, it is believed that the absolute angular momentum for each air parcel is

P.

liable to be conserved. In the inner area, however, the parcels involved are rather stagnant, and they circulate as if they were fixed on a solid disc, on account of the internal friction and the eddy transfer of momentum. These motions of the air result in the initiation of a constant vorticity ζ in the vicinity of the center.

Now, we consider the case where the air flows along the circular isobar with the tangential velocity v_{e} , the vorticity is written thus:

$$\boldsymbol{\xi} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \, \boldsymbol{v}_{\boldsymbol{\theta}} \right) \tag{2}$$

From the equation, it is known that the velocity v_{θ} is to be proportional to the radius, namely.

$$\mathbf{v}_{\theta} = k \mathbf{r} \tag{3}$$

where, k is the constant having the value $\frac{1}{2}\zeta$, whence, $\zeta = \frac{1}{r} \frac{\partial}{\partial r} k r^2 = 2k$

If the wind around the center be the cyclostrophic, we have

$$\frac{v_{\theta}^{2}}{r} = \frac{1}{\rho} \frac{\partial I}{\partial r}$$

Using the relation, $v_0 = \frac{1}{2} \zeta r^2$, we obtain the pressure, thus:

$$P = P_{\infty} - \Delta P + \frac{\rho \zeta^2}{8} r^2 \qquad (4)$$

V. Bjerknes presented an expression,

In the vicinity of the center, where x is very small, this formula can be reduced to

$$P = (P_{\infty} - \Delta P) + \Delta P x^{2}$$
(5b)

This equation shows that the pressure in center increases parabolically. In the outer area, however, the pressure approaches rapidly to P_{∞} , namely, the second term in the right side of the original equation is reduced to $\Delta P/x$? On the other hand, when x is very large Takahashi's equation is reduced to $P_{\infty} - \Delta P/x$ and it is known that the typhoons in our country are well- represented by his equation.

§ 2 Examination of the Practical Pressure Distribution

In order to find out the equation which could represent the pressure curves for typhoons, it is very important to examine the pressure of many typhoons. The writer analysed the pressure field using the method presented hereunder.

The pressure curve of a typhoon through her center may be termed the prefile. The profile would change, according to the direction, therefore, it will be better to define that the profile is the mean value of the ones along various directions. When the reporting stations are scattered uniformly in the typhoon areas, the profile can be drawn by plotting the pressure for each station. In the practical case, however, the stations are concentrated on the islands and the continent which do not cover the typhoon areas perfectly. The mean value along the circle with the radius R will be defined thus: $\bar{P}_{R} = \frac{1}{2\pi} \int_{0}^{2^{\pi}} P_{R\theta} d\theta$ (6) where, $P_{R\theta}$ is the pressure on the ring R km. from the center.

Using this method, many profiles for typhoons in their various stages were obtained, among which the case in Typhoon Jane of 3 Sept. 1950 is reproduced in Fig. 1.

In the practical computation of \overline{P}_R , it is desirable to obtain a great number of pressures on the circle. This is very laborious, therefore, the writer chose the pressures at the 36 points on the circle in Fig. 1, in order to calculate the value of \overline{P}_R easily. The result was pretty much satisfactory and proved that Takahashi's equation is very capable for the representation of the outer field of

P. 3

Fig. 1. To determine the mean pressure along the circle of the radius, 500 km. The circle is devided into every 10 degree segments. Typhoon Jane of 3 Sept. 1950.

typhoon.

Taking the above-mentioned characteristics of profiles into consideration, the writer obtained the equation which coincides with the equation by Takahashi in the outer area, and with that by Bjerknes in the vicinity of the center, that is.

$$P = P_{\infty} - \frac{\Delta P}{\sqrt{1+x^2}}$$
 (x = r/r_o) -----(7a)

This equation can be reduced to the formulas:

$$P = (P_{\infty} - \Delta P) + \frac{1}{2} \Delta P x^{2} \quad (\text{inner area}) - (7b)$$
$$P = P_{-} - \Delta P/x \qquad (\text{outer area}) - (7c)$$

There happened, however, an important problem how to connect the parabola in the center with the hyperbola extending to the infinite distance. Of course, the above-mentioned equation by the writer is one of the equations which would join the two curves.

Now it is likely that the pressure curves for typhoons are not so simple that they could be represented by the equations containing

P• 4

only three constants, P_{∞} , ΔP , and r_0 .

Fig. 2. Showing the curves which join the parabolas with hyperbola⁵. To obtain a reasonable curve by connecting the two thick curves in Fig. 2, it is necessary to introduce a new constant by which the shape of the curve could be changed. The shape of the profile is closely related to the position of the infloxion point at which the profiles for inner and for outer areas could

be connected continuously.

After the examination of profiles, it was known that the pressure ratio, (Pinfl.-Pcenter): ΔP is not always constant for each typhoon. By the way, the writer computed the pressure ratio for the equations, thus:

the	ratio	0.000 for	$P = P_{\infty}$		$\frac{\Delta F}{1+x}$
the	ratio	0.250 for	$P = P_{\infty}$	-	$\frac{\Delta P}{1+x^2}$
the	ratio	0.184 for	$P = P_{\infty}$		$\frac{\Delta P}{\sqrt{1+x^2}}$

These results show that the ratios are constant for each equation, suggesting that it is not always able to represent the profile for an arbitrary typhoon.

§ 3 Radius Ratio of Pressure Profile

According to the discussion above, it is desirable to introduce the new constant which would change the pressure ratio presented before. In the practical case, however, it is very difficult to determine the location of the inflexion point on the curve accurately. The writer, therefore, considered the ratio of two radii Rn and Rm corresponding to the pressures $\frac{2}{3}\Delta P$ and $\frac{1}{3}\Delta P$ lower than P_{\bullet} , instead of the value of (Pinfl-Pcenter): ΔP which could not be evaluated before

the location of the inflexion point was given. As shown in Fig. 3, the value Rn/Rm will easily be obtained. Thus, the ratio Rn/Rmmay be termed the radius ratio of a pressure profile.

After the evaluation of the radius ratio for the formulas by many authors, it was known that the ratio for Takahashi's equation

Fig. 3. How to determine the radius ratio Rn/Rmfor a typhoon profile.

the ratio for Takahashi's equation is minimum and that for Bjerknes' maximum.

According to the study of the practical pressure traces, the radius ratios are known to be about 0.10 - 1.0 for typhoona, and 1.0 - 10 for continental cyclones. In the redevelopment stage of a typhoon into an extra-tropical or continental cyclone, gradually the ratio increases. In this respect, Takahashi's equation is most suitable for the tropical storms having a steep funnel.

The variation of the radius ratio for the Muroto Typhoon of 21 Sept. 1934, which passed across Shikoku, Kinki, and Ou Districts, is shown below.

Time	(MST)	5	6	7	8	9	10	11	12	13	14	15	16
Rn/	R m,	0.17	0.17	0.16	0.17	0.23	0.30	0.31	0.33	0.36	0.38	0.41	0.41
				and the second second			and a second second second		2	l Sen	tember	r 1934	1.

It will be seen in the table that the radius ratio changed rapidly, so that we must make an equation of wide range in the ratio, in order to represent the profiles for the typhoon presented here.

§ 4 Cyclone Function

The writer obtained the function containing the new constant related to the redius ratio of the pressure curves, thus:

$$\Psi = \frac{1}{\sqrt{1 + \left(x - \frac{x+i}{x+a}\right)^2}}$$
 (8a)

where, a is the constant capable of changing the radius ratio from 0.065 to 0.635. Therefore, it is clear that this function has an good adaptability from typhoon to continental cyclone in various stages.

Emphasizing the characteristic of the present function, it may be suitable to term this function "the Cyclone Function" together with the symbol Ψ . Using this symbol, the pressure of a typhoon can be written as follows: $P = P_{\infty} - \Psi \Delta P = f(R_{\infty}, \Delta P, a, \tau_0) - (8b)$ It will become evident, in the following discussion, how completely this formula accounts for not only the pressure field, but also the pressure tendency, filling and deepening, expansion and shrink of isobars, and the temperature distribution within typhoons.

The four constants in formula (8a) are the important ones by which the shape of the pressure curves can perfectly be determined. Therefore, it is convenient to give them following names.

 P_{a} Undisturbed Pressure ΔP Pressure DepthaCyclone Constant r_0 Unit Radius

THE VALUES OF

$$\Psi = f(x,a) = \frac{1}{\sqrt{1 + \left(x \cdot \frac{x+1}{x+a}\right)^2}} \qquad P \ 9 \ -15$$

$$\frac{\partial \Psi}{\partial x} = \Psi'_{x} = -\Psi^{3} \frac{x^{4} + (1+2a)x^{3} + 3ax^{2} + ax}{(x+a)^{3}} P 16 - 22$$

$$\frac{\partial \Psi}{\partial a} = \Psi_a' = \Psi^3 \frac{z^2 (z+1)^3}{(z+a)^3} \qquad P \ 23 - 29$$

The values of $\Psi'_{\mathbf{x}}$, which are always negative, are tabulated omitting the negative signes. All the quantities are shown in three figures, according to the following manner.

True ValuesTabular Values13.81387.267260.3773770.06946940.002132130.0009719710.0000570570.00006006

Computed February 1952 ·

P. 8

The Values of Ψ . No. 1

70		~
Р	¢	Э

hannes and the second second						*********	****									
x a	•00	•01	•02	•03	•04	.05	•06	.07	. 08	•09	.10	.11	.12	.13	.14	.15
0.02	700	0.07	000	026	047	060	060	076	070	087	086	088	000	001	002	003
0.04	607	061 760	090	920	941	900	909	970	015	900	058	900	930	071	976 075	990
	690	740	702	010	017	901	960 907	900	010	020	020	036	0/3	0/8	053	057
0.00	670	7 tr () 7 1 0 1	106	010	040 011	000	000	090	910	940	769	010	018	025	900	901
0.00	677	707	101	767	706	000	000	040	019	091	901 976	910	804	0 <u>∩</u> 2	000	015
0.1	610	101	101	602	707	007	064	040	750	770	701	701	800	808	8U7 817	824
0.2	640	620	671	646	657	669	670	600	609	707	716	791	722	740	748	756
0.0	2019	500	600	600	210	000 292	674	000 C17	651	650	666	672	620	697	604	700
0.4	001	590	600	609 577	010	501	004 600	040 205	001	000	000 69E	671	627	CAZ	640	655
0.5	500	506	510	511	004 555	591	590	000 E72	014 E70	010	500	0.01	600	640	610	616
0.0	530	500	540	549	500	001 577	500	DIG	010	004	009	094	600 567	600 679	610	E01
0.1	007	514	010	563	040	500	000	540	040	000	500	000	570	516	011	501
0.0	405	490	495	500	504	508	513	971	544	520	500	504	539	540	041 510	551 527
0.9	466	470	474	478	482	486	490	494	497	501	505	508	512	510	519	523
1.0	447	451	454	458	462	465	468	473	475	479	481	485	488	492	495	498
1.2	414	417	419	423	425	428	431	434	436	439	442	445	447	450	452	455
1.4	385	387	389	392	394	396	399	401	403	405	408	410	412	414	417	419
1.6	359	361	363	365	367	369	370	372	374	376	378	380	382	384	386	388
1.8	336	338	340	341	343	345	346	348	350	351	353	354	356	358	359	361
2.0	316	318	319	320	322	323	325	326	327	329	330	332	333	335	336	337
2.2	298	299	301	302	303	304	306	307	308	309	311	312	313	314	315	317
2.4	282	283	284	285	287	288	289	290	291	292	293	294	295	296	297	298
2.6	268	269	269	270	271	272	273	274	275	276	277	278	279	280	281	282
2.8	255	255	256	257	258	259	260	260	261	262	263	264	235	266	266	267
3.0	243	243	244	255	246	246	247	248	249	249	250	251	252	253	253	254
3.2	232	232	233	234	234	235	236	236	237	238	238	239	240	240	241	242
3.4	222	222	223	224	224	225	225	226	227	227	228	228	229	230	230	231
3.6	213	213	214	214	215	215	216	217	217	218	218	219	219	220	220	221
3.8	204	204	205	205	206	206	207	207	208	209	209	210	210	211	211	212
4.0	196	197	197	198	198	198	199	199	200	200	201	201	202	202	203	203
4.2	189	189	190	190	190	191	191	192	192	193	193	193	194	194	195	195
4.4	182	183	183	183	184	184	185	185	185	186	186	187	187	187	188	188
4.6	176	176	177	177	177	178	178	178	179	179	180	180	180	181	181	181
4.8	170	170	171	171	171	172	172	172	173	173	173	174	174	174	175	175
5.0	164	165	165	165	166	166	166	167	167	167	168	168	168	169	169	169
5.5	152	152	153	153	153	153	154	154	154	154	155	155	155	156	156	156
6.0	141	142	142	142	142	143	143	143	143	144	144	144	144	144	145	145
6.5	132	132	133	133	133	133	133	134	134	134	134	134	135	135	135	135
7.0	124	124	124	125	125	125	125	125	125	126	126	126	126	126	126	127
7.5	117	117	117	117	117	118	118	118	118	118	118	119	119	119	119	119
8.0	110	111	111	111	111	111	111	111	112	112	112	112	112	112	112	112
8.5	105	105	105	105	105	105	105	106	106	106	106	106	106	106	106	107
9.0	100	100	100	100	100	100	100	100	100	101	101	101	101	101	101	101
9.5	94 <u>8</u>	94 <u>9</u>	୨5 <u>୦</u>	951	952	953	954	955	956	957	958	959	960	961	962	963
10.0	905	906	907	908	909	910	910	911	912	913	914	915	916	917	ดาล	ala
11.0	830	83 <u>1</u>	83 <u>2</u>	832	833	834	835	835	836	837	838	838	839	840	841	841
12.0	767	768	768	769	770	770	771	771	772	773	773	774	775	775	776	776
13.0	712	713	713	714	$71\overline{4}$	715	715	716	716	717	718	71ลี้	710	710	720	720
14.0	665	665	66 6	666	667	667	668	668	669	669	670	670	671	671	672	672
15.0	$62\overline{4}$	624	625	625	626	626	626	627	627	628	628	620	620	620	630	630
16.0	587	587	588	588	588	589	589	590	500	500	500	501	507	502	500 500	502
17.0	555	555	556	556	556	557	557	557	550	550 550	550	071	0.97	09 <u>6</u>	09 <u>4</u>	095
18.0	526	526	527	527	527	527	528	528	528	520	520	52 <u>9</u>	520	520	559	00U
19.0	498	498	490	499	400	400	500	500	500	02 <u>3</u>	009	501	02 <u>9</u>	00U	53 <u>0</u>	ວ <u>ວບ</u> ເດິ
		+ • • •		- J_J		エコゴ	000	<u>orvo</u>	200	DOD	DUD	DOT	<u>50</u> T	502	502	50 <u>2</u>

.

The values of Ψ	1 0	
----------------------	-----	--

No. 2

xa	.16	.17	.18	.19	.20	.21	.22	.23	.24	.25	.26	.27	.28	. 29	• 30	•32
0.02	994	994	995	996	996	996	997	997	997	997	998	998	998	998	998	998
0.04	979	981	982	984	985	986	987	989	989	990	991	991	992	992	993	994
0.06	961	964	967	969	971	974	975	977	978	979	981	982	983	984	985	986
0.08	940	945	949	952	955	958	961	963	965	967	969	971	972	974	975	977
0.1	921	926	931	935	939	942	946	949	951	954	956	958	960	962	964	967
0.2	832	838	845	851	857	863	868	873	878	882	887	890	894	898	901	907
0.3	763	769	776	782	788	794	800	805	810	815	720	825	629	834	838	846
0.4	707	713	719	725	731	736	742	747	752	757	762	767	772	776	781	789
0.5	661	666	672	677	682	687	693	697	702	707	711	716	720	725	729	738
0.6	621	626	630	635	640	645	649	654	658	663	667	672	675	680	684	692
0.7	586	590	594	59 9	603	607	612	616	620	624	628	6 3 2	636	639	643	651
0.8	555	559	563	567	571	574	578	582	586	589	593	596	600	603	607	614
0.9	527	531	534	537	541	545	548	551	554	~58	561	565	568	571	574	581
1.0	502	505	508	511	514	518	521	524	526	530	533	536	539	F.4.2	545	551
1.2	458	460	463	466	469	471	474	476	479	482	484	486	489	492	494	499
1.4	421	423	426	428	430	432	434	436	439	441	443	445	44 7	449	451	455
1.6	390	392	393	395	397	399	401	403	404	406	408	410	412	414	416	419
1.8	363	364	366	367	369	371	373	374	375	377	379	380	382	383	385	388
2.0	339	340	341	343	344	345	347	348	350	351	353	354	355	357	358	361
2.2	318	319	320	321	323	324	325	326	327	329	330	331	332	334	335	337
2.4	299	300	301	302	304	305	306	307	308	309	310	311	312	313	314	316
2.6	283	284	285	286	287	288	289	269	290	291	292	293	294	295	296	298
2.8	268	269	270	271	272	272	273	274	275	276	276	277	278	279	280	281
3.0	255	255	256	257	258	259	259	260	261	261	262	263	264	264	265	267
3.2	242	243	244	245	245	246	247	247	248	249	249	250	251	251	252	253
3.4	232	232	233	233	234	235	235	236	236	237	238	238	239	239	240	241
3.6	222	222	223	223	224	224	225	225	226	227	227	228	228	229	229	230
3.8	212	213	213	214	214	215	215	216	216	217	217	218	218	219	219	220
4.0	204	204	204	205	205	206	206	207	207	208	208	209	209	210	210	211
4.2	196	196	196	197	197	198	198	199	199	200	200	200	201	201	202	203
4.4	188	189	189	190	190	190	191	191	192	192	192	193	193	194	194	195
4.6	182	182	182	183	183	184	184	184	185	185	185	186	186	186	187	188
4.8	175	176	176	176	177	177	177	178	178	178	179	179	179	180	180	181
5.0	170	170	170	170	171	171	171	172	172	172	173	173	173	174	174	175
5.5	156	157	157	157	157	158	158	158	158	159	159	159	160	160	160	161
6.0	145	145	146	146	146	146	146	147	147	147	147	148	148	148	148	149
6.5	135	136	136	136	136	138	137	137	137	137	137	138	138	138	138	139
7.0	127	127	127	127	128	128	128	128	128	128	129	129	129	129	129	130
7.5	119	119	120	120	120	120	120	120	121	121	121	121	121	121	121	122
8.0	113	113	113	113	113	113	113	114	114	114	114	114	114	114	115	115
8.5	207	107	107	107	107	107	107	108	108	108	108	108	108	108	108	109
9.0	101	101	102	102	102	102	102	102	102	102	102	102	103	103	103	107
9.5	964	965	966	967	968	969	970	971	972	973	974	975	976	977	978	030
10.0	919	92Ō	921	922	923	924	925	926	927	928	928	929	930	931	932	934
11.0	842	843	844	844	845	846	847	847	848	849	850	850	851	852	853	854
12.0	777	778	778	779	780	780	781	781	782	783	783	784	785	785	7 8Ē	787
13.0	721	721	722	722	723	$72\overline{4}$	724	725	725	726	726	727	727	728	729	730
14.0	673	$67\overline{3}$	$67\overline{3}$	674	$67\overline{4}$	675	675	676	676	677	677	678	67 8	679	679	680
15.0	631	63 <u>1</u>	631	631	632	63Ž	633	$63\overline{3}$	634	634	635	635	635	636	636	$63\overline{7}$
16.0	593	$59\overline{3}$	594	594	594	595	595	596	596	596	597	597	597	598	598	599
17.0	560	560	561	561	561	562	562	562	563	563	563	564	564	564	565	585
18.0	$53\overline{1}$	531	531	532	532	532	532	533	533	533	534	534	534	534	535	535
19.0	50 <u>2</u>	503	503	503	503	504	504	504	504	505	505	505	506	506	506	506
				······································		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>نار</u> ب ب			000	000	000	000	<u>ovy</u>	000	$00\overline{0}$

The Values of ψ . No. 3 F. 11

									•••••••••••••••••••••••				1 21 - 122			
xa	• 34	• 36	• 38	•40	•42	•44	•46	. 48	•50	•52	•54	•56	• 58	•60	.65	•70
0.02	999	999	999	999	999	999	999	999	999	100	100	100	100	100	100	100
0.04	994	995	995	996	996	996	997	997	997	<u>9</u> 97	<u>9</u> 98	998	998	998	998	999
0.06	988	989	990	991	991	992	993	993	994	994	995	995	995.	995	996	996
0.08	979	981	982	984	985	986	987	386	989	990	991	991	992	992	993	994
0.1	970	973	975	977	978	979	98I	982	983	984	985	986	987	988	989	991
0.2	914	919	924	928	932	936	940	943	946	949	951	953	955	957	962	966
0.3	854	860	867	873	879	884	889	894	898	930	907	911	914	917	925	931
.0.4	797	805	812	819	826	832	838	843	849	8.54	859	864	868	873	882	891
0.5	746	753	761	768	775	781	788	704	800	805	811	816	821	826	837	848
0.6	700	707	714	721	728	735	741	747	753	759	765	770	776	781	7 93	804
0.7	658	665	672	678	685	692	698	704	709	716	721	726	732	738	750	762
8.0	621	627	634	640	647	652	658	665	670	676	681	687	692	697	709	721
0.9	587	593	599	605	611	616	623	628	633	639	644	649	654	659	671	683
1.0	556	562	568	573	579	584	590	594	600	605	610	615	620	624	636	647
1.2	504	509	514	518	523	528	532	537	542	546	551	555	559	563	574	584
1.4	460	464	468	472	476	480	484	488	492	496	500	504	507	511	521	530
1.6	423	426	430	433	437	440	444	447	451	454	458	461	464	468	476	484
1.8	391	394	397	4 00	403	406	409	412	415	419	421	424	427	430	437	446
2.0	363	366	369	371	374	377	379	382	385	387	390	392	395	398	404	410
2.2	339	342	344	347	349	351	354	356	358	360	363	365	367	370	375	381
2.4	318	-320	322	325	327	329	.331	333	335	337	338	342	34.3	34.5	-350	355
2.6	300	301	303	305	307	309	277	312	314	316	318	320	322	323	328	332
2.8	283	285	286	288	2001	201	203	205	206	208	300	301	303	304	308	312
3.0	268	270	271	273	274	276	277	270	280	281	283	285	286	987	201	205
3.2	255	256	257	259	260	261	263	264	265	267	268	260	271	272	275	270
3.4	243	244	245	216	217	2/0	250	251	252	251	255	256	257	255	261	261
3.6	231	2 3 2	23/	235	236	237	238	230	210	2∆1 2∆1	213	211	245	246	2/11 2/11	251
3.8	221	222	223	221	225	226	227	228	220	230	231	0 T T	277 277	0 g /	ん:27 クマワ	220
	212	213	211	515 515	216	217	んん / 917	210	210	200	201 201	200 200	200 207	204	164	604
4 2	203	204	205	206	207	200	200	200	210	220	275 272	217	ພພວ ວາ ຟ	ムム4 - つ1 m	220	229
A A	106	204	107	108	100	200	200	201	202	207	204	240 201	614 20E	200	200	219
1 C	100	190	100	190	101	200	200	201 107	202	200	204	204	200	200	208	40
4.0	100	109	190	100	191	196	190	190	194	195	196	190	197	198	199	201
5 0	175	176	177	100	104± 170	100	100	100	100	100	100	109	100	190	192	194
5.6	161	162	100	107	100	10	119	100	TOO	101	104	102	100	104	100 100	187
6.0	140	150	104	100	100	152	164	165	165	166	166	167	168	168	169	171
6.5	130	120	140	140		102	102	104	140	100	104	154	122	155	156	158
7.0	130	130	121	121	191	141	122	140	144	140	140	143	144	144	145	146
7.5	122	122	123	192	197	100	106	104	100	100	100	104	104	134	135	136
8.0	115	115	116	116	116	124	⊥&4± 117	164	140	140	160	120	120	120	127	321
8.5	100	100		110		110	110	111	上上 / マ つ つ	110	110	110	110	119	119	120
9.0	109	103	103	104	104	110	110	111		111	111	112	112	112	113	113
9.5	100	100	104	104	104	104	105	105	102	105	105	106	106	106	107	107
10 0	036	037	300	900	990	992	994	995	998	T00	100	100	100	100	101	101
11 0	950	90 <u>1</u>	309	94T	945	945	940	948	950	952	-954	955	<u>957</u>	959	964	958
12 0	C D D	001	009	860	862	863	865	866	868	86 <u>9</u>	871	872	874	87 <u>5</u>	67 <u>9</u>	88 <u>3</u>
13 0	100	190	191	79 <u>6</u>	793	795	795	797	<u>799</u>	800	801	805	804	80 <u>5</u>	<u>808</u>	81 <u>1</u>
10.0	101	600	133	734	735	736	131	738	739	741	742	143	744	745	748	75 <u>1</u>
1/ 0	DOT	004	620	644 642	685	686	687	688	68 <u>9</u>	68 <u>9</u>	69 <u>0</u>	69 <u>1</u>	$69\underline{2}$	69 <u>3</u>	69 <u>6</u>	69 <u>8</u>
14.0	670		0 511	041()	041	642	64 <u>3</u>	643	64 <u>5</u>	64 <u>5</u>	64 <u>6</u>	64 <u>7</u>	648	649	651	653
14.0 15.0	638	638	603	0.00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	000	00.	A	0	A	a		-	-		
14.0 15.0 16.0	63 <u>8</u> 60 <u>0</u>	63 <u>8</u> 60 <u>0</u>	60 <u>1</u>	602	60 <u>3</u>	60 <u>3</u>	604	605	6C <u>6</u>	60 <u>6</u>	60 <u>7</u>	<u>808</u>	60 <u>8</u>	60 <u>9</u>	$61\overline{\underline{1}}$	$61\overline{3}$
14.0 15.0 16.0 17.0	63 <u>8</u> 60 <u>0</u> 56 <u>6</u>	60 <u>0</u> 56 <u>7</u>	60 <u>1</u> 56 <u>7</u>	60 <u>2</u> 56 <u>8</u>	60 <u>3</u> 56 <u>8</u>	60 <u>3</u> 56 <u>9</u>	60 <u>4</u> 57 <u>0</u>	60 <u>5</u> 57 <u>0</u>	60 <u>6</u> 57 <u>1</u>	60 <u>6</u> 57 <u>2</u>	60 <u>7</u> 57 <u>2</u>	60 <u>8</u> 57 <u>3</u>	60 <u>8</u> 57 <u>4</u>	60 <u>9</u> 57 <u>4</u>	61 <u>1</u> 57 <u>6</u>	$\begin{array}{c} 61\overline{3} \\ 57\overline{7} \end{array}$
14.0 15.0 16.0 17.0 18.0	63 <u>8</u> 60 <u>0</u> 56 <u>6</u> 53 <u>6</u>	63 <u>8</u> 60 <u>0</u> 56 <u>7</u> 53 <u>6</u>	60 <u>1</u> 56 <u>7</u> 53 <u>7</u>	60 <u>2</u> 56 <u>8</u> 53 <u>8</u>	60 <u>3</u> 56 <u>8</u> 53 <u>8</u>	60 <u>3</u> 56 <u>9</u> 53 <u>9</u>	60 <u>4</u> 57 <u>0</u> 53 <u>9</u>	60 <u>5</u> 57 <u>0</u> 54 <u>0</u>	60 <u>6</u> 57 <u>1</u> 54 <u>1</u>	60 <u>6</u> 57 <u>2</u> 54 <u>1</u>	60 <u>7</u> 57 <u>2</u> 54 <u>2</u>	60 <u>8</u> 57 <u>3</u> 54 <u>2</u>	60 <u>8</u> 57 <u>4</u> 54 <u>3</u>	60 <u>9</u> 57 <u>4</u> 54 <u>3</u>	61 <u>1</u> 57 <u>6</u> 54 <u>5</u>	61 <u>3</u> 57 <u>7</u> 54 <u>6</u>

					[[he]	Value	es of	:Ψ	•	No	o. 4			I	P. 12
xa	. 75	.80	•85	•90	•95	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
0.02	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	100	<u>1</u> 00	<u>1</u> 00	100	100	100	100	<u>1</u> 00	100
0.04	999	999	999	999	999	999	100	<u>100</u>	100	100	100	100	100	100	100	100
0.05	997	998	998	998	998	998	999	999	999	999	999	<u>700</u>	<u>700</u>	<u>=00</u>	700 700	<u>700</u>
0.0	990	993	990	990	995	995	996	997	997	998	998	998	998	999	999	999
0.2	969	972	975	977	979	980	983	986	987	989	990	991	992	993	994	994
0.3	937	942	947	951	955	957	963	968	972	975	977	979	981	983	985	986
0.4	899	906	912	918	923	928	937	943	950	955	959	963	966	969	972	974
0.5	857	866	874	881	888	894	905	914	923	930	936	941	946	951	954	957
0.6	815	824	833	842	850	857	870	882	892	902	909	917	923	928	934	938
0.7	773	784	794	80Z	779	819	834	847 011	859	870	848	857	896	902	882	880
0.0	100	740	715	725	734	743	760	776	789	803	815	826	836	845	853	861
1.0	658	669	678	688	698	707	724	740	754	768	780	792	803	813	823	832
1.2	594	604	614	623	631	640	657	673	687	702	714	728	739	751	761	771
1.4	539	548	556	565	573	581	597	612	626	640	653	666	678	690	701	711
1.6	492	500	507	515	523	630	545	558	572	585	597	610	621	633	644	654
1.8	451	459	465	472	479	486	499	511	524	536	548	559	570	581	592	602
2.0	417	423	429	435	441	447	459	470	482	493	504	514	525	535	545 EOZ	555
2 A	360	396	370	400	409	414	464 307	4.00	440	400	400	410	400	194 158	166	516 A7A
2.6	337	341	346	350	354	359	367	376	384	393	401	409	417	425	433	441
2.8	317	320	325	328	332	336	344	352	360	367	375	382	390	397	404	411
3.0	298	302	305	309	313	316	323	330	337	344	351	358	365	371	378	385
3.2	282	285	289	292	295	298	305	311	318	324	330	337	343	349	355	361
3.4	267	270	273	276	279	282	288	294	300	305	311	317	323	328	334	339
3.6	254	257	260	262	265	268	273	279	284	289	294	300	305	310	316	320
3.8	242	244	247	249	252	255	259	264	269	274	279	284	289	293	298	303
4.2	221	223	225	227	230	232	236	240	200	248	252	257	261	265	260	273
4.4.	212	214	216	218	220	222	226	229	233	237	241	245	249	253	256	260
4.6	203	205	207	209	211	212	216	220	223	227	230	234	238	241	245	243
4.8	195	197	199	201	202	204	207	211	214	217	221	224	227	231	234	237
5.0	188	190	191	193	195	196	199	202	206	209	212	215	218	221	224	227
5.5	172	173	175	176	178	179	182	184	187	190	192	195	198	200	203	206
6.5	109	148	101	162	163	164	167	169	171	173	176	178	180	183	185	187
7.0	137	138	1.39	140	141	141	143	145	147	148	102	104	100	100	157	150
7.5	128	129	130	131	131	132	134	135	137	138	140	141	143	144	146	148
8.0	121	121	122	123	123	124	125	127	128	129	131	132	134	135	136	138
8.5	114	114	115	116	116	117	118	119	121	122	123	124	125	127	128	129
9.0	108	108	109	109	110	110	112	113	114	115	116	117	118	119	120-	121
9.5	102	103	103	104	104	105	106	107	108	109	110	111	111	112	113	114
10.0	886	800	902	808 99 <u>6</u>	99 <u>T</u>	995	100	101	201	103	104	105	106	107	108	109
12.0	814	817	821	824	827	90 <u>0</u> 830	916	96 <u>0</u> 842	96 <u>1</u> 840	9 4 <u>0</u> 8 5 6	94 <u>6</u> 862	94 <u>9</u> 868	90 <u>7</u>	96 <u>4</u>	971	979
13.0	753	756	759	762 762	764	767	772	778	783	789	794	799	805	810	816	09 <u>4</u> 821
14.0	70 <u>0</u>	$70\overline{3}$	705	707	$71\overline{0}$	$71\overline{2}$	$71\overline{7}$	722	726	73Ī	736	741	746	750	755	760
15.0	65 <u>5</u>	65 <u>7</u>	65 <u>9</u>	66 <u>1</u>	66 <u>3</u>	66 <u>5</u>	669	$67\overline{3}$	$67\overline{7}$	68 <u>1</u>	68 <u>6</u>	69 <u>0</u>	$69\overline{4}$	69 <u>8</u>	702	706
16.0	615	61 <u>7</u>	618	62 <u>0</u>	62 <u>2</u>	624	62 <u>8</u>	63 <u>1</u>	63 <u>5</u>	63 <u>8</u>	64 <u>2</u>	64 <u>6</u>	64 <u>9</u>	65 <u>3</u>	65 <u>6</u>	66 <u>0</u>
10.11	579	58 <u>1</u>	582	584	58 <u>5</u>	587	59 <u>0</u>	59 <u>4</u>	59 <u>7</u>	600	60 <u>4</u>	60 <u>7</u>	610	61 <u>3</u>	$61\overline{\underline{7}}$	62 <u>0</u>
10.0	^{04<u>ช</u> 518}	04 <u>9</u> 520	55 <u>1</u> בכב	552	55 <u>4</u>	55 <u>5</u>	55 <u>7</u>	561	56 <u>3</u>	56 <u>6</u>	56 <u>9</u>	57 <u>2</u>	57 <u>5</u>	57 <u>7</u>	58 <u>0</u>	58 <u>3</u>
	010	υLŲ	<u>し</u> ん <u>エ</u>	02 <u>2</u>	ี่ טג <u>4</u>	<u>g</u> ac	52 <u>8</u>	<u>э.5О</u>	003	53 <u>6</u>	53 <u>9</u>	541	54 <u>4</u>	547	54 <u>9</u>	55 <u>2</u>

The Values of Ψ . No. 5 P. 13

xa	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0	3.2	3.4	3.6	3.8	4.0	4.2
0.02	100	10Q	100	<u>1</u> 00	100	<u>1</u> 00	100	100	<u>1</u> 00	100	<u>1</u> 00	100	100	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00
0.04	<u>1</u> 00.	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	100	<u>1</u> 00	<u>1</u> 00	100	100	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	100
0.06	<u>1</u> 00	100	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	<u>]</u> 00	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00
0.08	999	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	100	100	<u>1</u> 00.	100	100	<u>1</u> 00
0.1	999	999	999	999	999	999	999	100	100	<u>1</u> 00	<u>1</u> 00.	<u>1</u> 00	100	100	100	100
0.2	9.95	995	.996	996	996	997	997	997	997	997	998	998	998	998	999	999
0.3	987	988	989	990	991	991	935	992	993	993	994	995	995	996	996	996
0.4	976	978	949	980	982	983	984	985	986	987	988	989	990	991	992	993
0.5	961	964	966	968	970	972	974	975	976	978	980	982	983	985	986	985
0.0	942	940	949	1756	955	957	960	962	964	900	969	916	910	911	979	900
0.7	805	020	969	904	901	940 021	940	940	949	906	900	900	904	907	909	916
0.0	888	876	882	888	804	808 961	004	300	012	016	023	020	000 035	•040	901 QAA	048
1.0	840	848	855	862	868	874	879	884	800	8910	903	920	917	023	928	933
1.2	781	790	798	806	814	821	828	835	841	847	858	867	876	884	892	898
1.4	721	731	740	749	757	766	773	781	788	795	807	819	830	840	849	858
1.6	665	675	684	693	702	710	719	727	734	742	756	769	781	792	803	813
1.8	612	622	631	640	649	658	666	674	682	690	705	718	731	743	755	766
2.0	564	573	582	591	600	608	616	624	632	640	655	669	682	695	707	718
2.2	521	530	539	547	555	564	570	579	586	594	609	623	636	649	661	673
2.4	483	491	499	507	515	523	530	537	545	552	566	579	593	605	617	629
2.6	449	456	464	471	4 7 8	486	493	500	506	513	527	540	552	565	576	588
2.8	418	425	432	439	446	453	459	466	472	479	491	503	515	527	539	550
3.0	391	398	404	410	417	423	429	435	441	447	459	471	482	493	504	515
3.2	367	373	379	385	391	396	402	408	413	419	430	441	452	462	472	483
3.4	345	351	356	361	367	372	378	383	388	393	404	414	424	434	444	453
3.6	326	331	336	341	346	351	356	360	365	370	380	389	399	408	417	426
3.8	308	312	317	3 2 2	326	331	336	340	345	350	359	367	376	385	393	402
4.0	292	296	300	305	309	313	318	322	326	330	339	347	355	363	371	379
4.2	277	281	285	289	293	297	301	305	309	313	321	328	336	343	351	359
4.4	264	268	271	275	279	283	286	290	294	297	305	312	310	326	334	340
4.6	252	255	259	262	266	269	273	276	280	283	290	297	303	310	317	323
4.8	241	244	247	250	254	257	260	263	267	270	276	282	289	295	301	308
0.0	200	233	236	239	243	246	249	252	255	258	264	270	275	281	287	293
0.0	100	102	213	210	219	221	224	226	229	231	237	242	247	252	257	262
6.5	103	196	194	100	196	107	203	205	207	210	214	218	223	221	232	230
7.0	160	162	164	165	167	100	100 177	179	109	191	170	107	100	100	211	214
7.5	140	151	152	154	155	157	158	160	161	163	166	160	172	175	170	180
ε.ο	139	140	142	143	144	146	147	148	150	151	154	156	150	162	164	167
8.5	130	131	133	134	135	136	137	139	140	141	143	146	148	151	153	155
2.0	122	124	125	126	127	128	129	130	131	132	134	137	139	141	143	145
٩.5	115	116	117	118	119	120	121	122	123	124	126	128	130	132	134	136
10.0	109	110	111	112	113	114	115	116	117	118	119	121	123	124	126	128
11.0	987	994	100	101	102	103	103	104	105	106	107	108	110	111	113	114
12.0	·90 <u>0</u>	90 <u>7</u>	91 <u>3</u>	91 <u>9</u>	9 2 6	93 <u>2</u>	93 <u>8</u>	94 <u>4</u>	95 <u>1</u>	957	9 7 0	983	996	101	102	103
13.0	82 <u>6</u>	83 <u>2</u>	83 <u>7</u>	84 <u>3</u>	84 <u>8</u>	85 <u>3</u>	8 5 9	864	હ7 0	87 <u>5</u>	88 <u>6</u>	89 <u>7</u>	90 <u>8</u>	91 <u>9</u>	930	941
14.0	76 <u>5</u>	769	77 <u>4</u>	77 <u>9</u>	784	78 <u>8</u>	79 <u>3</u>	79 <u>8</u>	80 <u>2</u>	80 <u>7</u>	71 <u>ē</u>	82 <u>6</u>	83 <u>5</u>	84 <u>5</u>	854	86 <u>3</u>
15.0	710	714	718	72 <u>2</u>	727	73 <u>1</u>	73 <u>5</u>	73 <u>9</u>	74 <u>3</u>	74 <u>7</u>	75 <u>5</u>	76 <u>3</u>	77 <u>2</u>	78 <u>0</u>	78 <u>8</u>	79 <u>6</u>
16.0	66 <u>4</u>	667	671	67 <u>5</u>	67 <u>9</u>	68 <u>2</u>	<u>686</u>	69 <u>0</u>	69 <u>3</u>	69 <u>7</u>	704	71 <u>1</u>	719	72 <u>6</u>	73 <u>3</u>	74 <u>0</u>
17.0	623	62 <u>6</u>	63 <u>0</u>	63 <u>3</u>	63 <u>6</u>	63 <u>9</u>	642	64 <u>6</u>	64 <u>9</u>	65 <u>2</u>	65 <u>8</u>	66 <u>5</u>	67 <u>1</u>	67 <u>8</u>	68 <u>4</u>	69 <u>0</u>
10.0	56 <u>6</u>	58 <u>9</u>	592	595	598	601	604	607	<u>610</u>	613	619	624	63 <u>0</u>	63 <u>5</u>	64 <u>1</u>	64 <u>7</u>
17.0	<u>סה</u> כ	05 <u>7</u>	96 <u>0</u>	200	56 <u>5</u>	56 <u>8</u>	57 <u>0</u>	57 <u>3</u>	57 <u>5</u>	57 <u>8</u>	58 <u>3</u>	58 <u>8</u>	59 <u>4</u>	<u>599</u>	60 <u>4</u>	60 <u>9</u>

.

The Values	of ^	Ψ	•
------------	------	--------	---

P. 14

No. 6

$x \stackrel{a}{<}$	4.4	4.6	4.8	5.0	5.2	5.4	5.6	5,8	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5
0.02	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	100	<u>1</u> 00	<u>1</u> 00	100
0.04	100	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	<u>]</u> 00	<u>1</u> 00	<u>1</u> 00	100	<u>1</u> 00	<u>1</u> 00	100	100	100	100	100
0.06	100	100	<u>1</u> 00	100	<u>100</u>	100	100	<u>100</u>	100	100	100	100	100	<u>7</u> 00	100	100
0.08	100	$\frac{1}{100}$	100	100	100 100	100	¹ 00	<u>100</u>	$\frac{100}{100}$	100	100	100	100	100	100	100
0.1	<u>7</u> 00	100	100	700	<u>100</u>	<u>7</u> 00	=00	<u>700</u>	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	100	100	100	100	100	100	100
0.3	999	999	999	999	999	999	999	008	999	<u>700</u>	<u>700</u>	<u>100</u>	700	700	<u>700</u>	<u>400</u>
0.4	993	994	994	995	995	996	996	996	996	997	997	998	998	998	998	999
0.5	989	989	990	991	992	992	993	993	994	995	995	996	996	997	997	997
0.6	982	983	984	986	987	987	988	989	990	991	992	993	994	995	995	996
0.7	974	976	977	979	980	981	982	983	984	987	988	990	991	992	993	993
0.8	964	966	969	970	972	974	975	977	978	981	983	985	987	988	989	990
0.9	9.52	955	957	960	963	965	967	969	971	975	977	980	982	984	985	987
1.0	938	941	945	949	952	954	957	959	962	966	970	974	976	979	980	982
1.2	902	910	915	920	924	928	932	936	939	946	952	957	961	965	968	971
16	822	830	830	000 846	253	860	90C 866	900	911	920	920	930	941 017	947 027	901 901	900
1.8	776	786	795	803	812	819	827	834	840	855	868	879	889	898	906	913
2.0	729	740	750	759	768	777	782	792	800	817	832	845	857	868	878	886
2.2	684	695	705	715	725	734	742	751	759	778	794	809	823	8 35	847	857
2.4	640	651	661	672	682	691	700	709	717	737	755	771	786	800	813	825
2.6	599	610	620	631	640	650	659	668	677	697	715	733	749	764	778	791
2.8	560	571	582	591	601	610	620	629	637	658	677	695	712	728	743	756
3.0	525	535	545	555	564	573	583	591	600	621	640	659	676	692	707	721
3.2	493	505	512	521	530	539	548	557	565	585	605	623	640	657	683	687
3.4	462	472	481	490	498	507	515	524	532	552	571	589	606	622	638	653
2.0 2.0	400	444	400	401	409	4/8	400	494	502 172	102	539	000 527	5/4	590	605 675	620 580
4.0	387	305	403	410	418	400	400	400	410	496	182	100	515	530	5/5	560
4.2	366	374	381	388	395	402	409	416	423	440	456	472	488	503	516	531
4.4	347	354	361	368	375	381	388	394	401	417	433	448	463	477	491	505
4.6	330	336	343	350	356	362	368	374	381	396	411	425	439	453	467	480
4.8	314	320	326	332	337	344	350	356	361	376	390	404	418	431	444	457
5.0	299	305	310	316	322	327	333	339	344	358	371	385	398	410	423	435
5.5 CO	267	272	277	282	287	292	296	301	306	318	330	342	353	365	376	387
0.0	24U 210	- 440 - 999	249	253	258 977	262	266	270	275	285	296	307	316	328	336	346
7.0	190	203	206	209	213	216	241 210	223	226	234	213	251	250 250	267	275	283
7.5	183	186	189	192	195	198	201	204	207	215	222	229	236	243	251	258
·8.0	170	172	175	178	180	183	186	188	191	198	204	210	217	223	230	236
8.5	158	160	162	165	167	170	172	174	177	183	189	194	200	206	212	218
9.0	147	150	152	154	156	158	160	162	164	170	175	180	186	191	196	203
9,5	138	140	142	144	146	148	150	152	154	158	163	168	173	178	182	187
	130	136	133	135	137	139	140	142	144	148	153	157	.162	166	170	175
12.0	105	106	107	108	110	111	120	120	172	131	135	139	143	146	150	154
13.0	952	962	973	984	005	101	105	103	104	107	100	110	141	130	100	137
14.0	873	882	892	901	910	920	929	939	948	972	995	102	104	107	100	110
15.0	80 <u>5</u>	81 <u>3</u>	822	830	838	847	855	864	872	892	913	933	954	974	995	102
16.0	$74\overline{7}$	75 <u>5</u>	76 <u>2</u>	769	776	784	791	799	806	824	842	861	879	897	915	933
17.0	69 <u>6</u>	70 <u>3</u>	70 <u>9</u>	715	722	729	$73\overline{5}$	742	749	76 <u>6</u>	$78\overline{2}$	798	$81\overline{4}$	8 30	846	863
18.0	65 <u>3</u>	65 <u>9</u>	66 <u>5</u>	671	67 <u>7</u>	68 <u>2</u>	68 <u>8</u>	69 <u>3</u>	700	714	729	744	75 <u>8</u>	77 <u>2</u>	$78\overline{7}$	80 <u>2</u>
19.0	61 <u>4</u>	62 <u>0</u>	62 <u>5</u>	63 <u>0</u>	63 <u>5</u>	64 <u>0</u>	64 <u>6</u>	65 <u>1</u>	65 <u>6</u>	66 <u>9</u>	68 <u>3</u>	69 <u>6</u>	70 <u>9</u>	72 <u>2</u>	73 <u>5</u>	74 <u>8</u>

Ċ,

The Values of Ψ . No. 7

P. 15

•

<		and a second									1000 00000000 000000		***********	and and second processing and		
x	10	12	14	16	18	20	25	30	35	40	45	50	60	70	80	90
0.02	100	100	100	100	100	100	100	100	1 00	100	100	100	100	າດດ	100	100
0.04	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
0.06	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
0,08	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
0.1	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
0.2	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
0.3	100	100	100	100	100	100	100	100	100	100	100	<u>1</u> 00	100	100	100	100
0.4	999	100	100	100	100	<u>1</u> 00	<u>1</u> 00	100	<u>1</u> 00	<u>1</u> 00	100	100	<u>1</u> 00	100	<u>1</u> 00	<u>1</u> 00
0.5	998	$\overline{9}99$	<u>1</u> 00	<u>1</u> 00	100	<u>1</u> 00	100	<u>1</u> 00	<u>1</u> 00	100	100	<u>1</u> 00	100	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00
0.6	996	99 7	998	<u>9</u> 99	999	999	100	100	<u>1</u> 00	100	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00
0.7	994	996	997	998	998	999	999	999	100	<u>1</u> 00	<u>1</u> 00	100	100	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00
0.8	991	904	996	997	997	998	999	999	999	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	<u>1</u> 00	100	<u>1</u> 00	<u>1</u> 00
0.9	988	991	994	995	996	99 7	998	900	999	999	999	<u>1</u> 00	100	100	<u>1</u> 00	<u>1</u> 00
1.0	984	988	991	993	995	996	997	998	999	999	999	999	100	<u>1</u> 00	100	100
1.2	973	980	985	988	991	992	995	997	998	998	999	999	999	<u>1</u> 00	100	100
1.4	959	970	977	982	985	988	992	995	996	997	998	998	999	999	999	100
1.6	941	956	966	973	978	982	988	992	994	995	996	997	978	999	999	999
2.0	804 978	939	956	962	969	975	983	988	991	993	994	996	997	998	998	999
2.0U	066	919	936	949	957	964	976	983	987	990	992 000	994	996	997	998	998
20L	875	870	911	906	028	900	909	911	901	900	909	991	994	990	991	991
26	803	842	090 8771	807 919	920	909	900	910	911	90%	900	900	994	994	990	990
2.8	760	812	845	870	800	960	941 034	901	910	970	901	904	909	330	994	990
3.0	735	781	817	84.6	860	887	010	901	900	063	070	900	900	9 9U 9 87	000	0.02
3.2	701	749	788	810	84.1	866	913	920	900	900	963	969	902	083	987	9.00
3.4	667	717	758	792	819	842	884	912	931	945	955	963	973	979	984	987
3.6	633	686	729	764	794	818	866	896	919	935	946	955	968	975	980	985
3.8	603	654	698	736	768	794	845	880	905	923	937	947	962	971	977	981
4.0	573	625	669	707	740	768	823	862	890	912	925	938	954	965	973	978
4.2	545	596	640	679	713	742	801	843	874	896	914	927	946	959	968	974
4.4	518	568	612	652	686	716	778	823	857	882	901	916	938	952	963	970
4.6	493	542	585	625	660	691	754	802	838	866	887	905	929	945	956	965
4.8	469	517	559	5 9 9	634	665	731	781	819	849	873	891	919	937	950	959
5.0	447	493	535	573	608	640	707	759	800	832	857	877	907	928	942	953
5.5	398	440	479	515	549	581	649	706	750	787	816	841	878	904	922	936
6.0	356	394	430	464	496	527	594	651	698	738	722	800	844	875	898	916
0.0 7 0	ಿನ 1 201	200	300 751	419	신선년 409	418	543	599	648	691	726	757	806	844	671	893
7.5	285	060 207	201	200	4U0 271	404	496	507	600	64 3	DQT	113	767	8()9	041 6.07	866
8.0	243	268	202	0 <u>40</u> 316	340	090 362	404 A17	001 A67	000 517	090 555	000	620	161	116 725	0U7 774	057
8.5	223	246	260	201	312	322	±⊥(ζQ ζ	430	010 474	500	090 559	020 527	617	100 607	114	770
9.0	207	227	248	268	287	307	353	40U 308	114 170	010 170	002 515	001 540	041 600	660	109	710
9.5	192	211	229	248	266	284	327	368	-407	445	470	519	009 579	692	600 RRP	7 A C
10.0	179	196	213	230	247	263	303	342	370	414	447	470	537	588 588	677	672
11.0	157	172	186	200	214	229	263	297	329	360	390	410	474	523	567	607
12.0	140	152	164	177	189	201	231	260	288	316	343	369	419	465	509	54 7
13.0	125	136	147	157	168	178	204	230	255	280	304	327	372	415	455	492
14.0	114	123	132	141	151	160	183	2 05	227	249	271	292	332	371	409	444
15.0	104	112	120	128	136	144	1 64	184	204	223	243	261	298	334	368	401
16.0	95 <u>1</u>	102	110	117	124	131	149	167	184	202	219	236	269	301	333	363
17.0	879	94 <u>3</u>	101	107	114	120	136	152	168	183	199	214	244	274	302	330
18.0	81 <u>6</u>	87 <u>4</u>	93 <u>2</u>	<u>989</u>	105	110	125	139	153	167	181	195	222	249	275	301
.L9.0	761	81 <u>3</u>	86 <u>5</u>	91 <u>7</u>	96 <u>9</u>	102	115	129	141	153	166	179	204	228	252	276

-

. **•**

The Values of Ψ_{x} . No. 1

P. 16

x a	.00	.01	•02	•03	•04	•05	•06	•07	•08	•09	.10	•11	.12	.13	.14	.15
0.02	350	<u>4</u> 61	<u>4</u> 75	<u>4</u> 10	<u>3</u> 57	<u>2</u> 75*	228	191	160	137	11 8	<u>1</u> 03	901	798	710	636
0.04	346	<u>1</u> 96	<u>2</u> 48	<u>2</u> 61	<u>2</u> 53	<u>2</u> 36	217*	<u>1</u> 97 ء	: <u>1</u> 79≯	× <u>1</u> 62≯	<u>1</u> 46	<u>1</u> 33	<u>1</u> 21	<u>1</u> 10	<u>1</u> 01	937
0.06	34 3	110	<u>1</u> 52	<u>1</u> 73	<u>1</u> 84	184	<u>1</u> 78	171	1 63	<u>1</u> 53	144	• <u>1</u> 34×	× <u>1</u> 26	• <u>1</u> 18*	• <u>1</u> 10	103
0.08	338	<u>8</u> 00	<u>1</u> 11	<u>1</u> 30	<u>1</u> 41	<u>1</u> 46	<u>1</u> 47	<u>1</u> 46	<u>1</u> 42	<u>1</u> 37	<u>1</u> 32	<u>1</u> 27	<u>1</u> 22	<u>1</u> 16*	• <u>]</u> 10,	<u>⊧1</u> 05
0.1	334	642	863	<u>1</u> 02	<u>1</u> 13	120	<u>1</u> 23	<u>1</u> 25	<u>1</u> 24	<u>1</u> 23	<u>1</u> 20	<u>1</u> 17	<u>1</u> 14	110	<u>1</u> 06	<u>1</u> 02
0.2	314	399	474	535	589	634	670	700	725	745	761	771	780	783	785	784
0.3	294	334	370	404	433	461	484	506	527	544	559	573	584	592	603	611
0.4	274	297	319	340	360	377	394	410	424	437	449	460	471	481	490	497
0.5	257	271	286	300	313	325	338	350	361	371	382	390	399	407	416	423
0.6	238	248	260	271	281	289	297	306	316	324	331	338	34.6	352	359	367
0.7	222	230	238	246	255	2 62	268	275	282	288	294	300	306	312	317	322
0.8	206	212	218	225	231	237	243	249	255	260	265	270	275	280	285	289
0.9	192	197	202	207	212	217	222	227	231	235	239	243	249	252	256	259
1.0	178	182	186	192	196	200	204	208	212	215	218	221	225	229	232	236
1.2	156	159	162	165	168	170	173	176	179	181	184	187	190	192	194	197
1.4	137	139	141	143	145	147	150	152	154	156	158	160	162	164	166	168
1.6	120	122	124	125	127	129	130	132	133	134	136	138	140	142	143	145
7.8	106	108	109	110	112	113	114	116	117	118	119	120	122	123	124	126
Z•0	94 <u>7</u>	957	968	97 <u>8</u>	988	999	101	105	103	104	105	106	107	108	109	110
2.2	84 <u>7</u>	856	864	873	882	891	899	908	917	925	934	942	950	958	966	974
2.4	763	770	777	784	791	799	806	813	820	827	834	840	847	853	860	866
2.6	69 <u>4</u>	69 <u>9</u>	705	710	715	721	726	731	736	742	747	75 <u>3</u>	758	764	769	775
6.6	·630	635	639	644	64 <u>8</u>	653	65 <u>7</u>	661	66 <u>6</u>	671	67 <u>5</u>	68 <u>0</u>	68 <u>5</u>	690	694	699
3.U 7.0	57 <u>4</u>	578	582	58 <u>6</u>	59 <u>0</u>	594	597	60 <u>1</u>	60 <u>5</u>	609	613	617	62 <u>1</u>	625	62 <u>9</u>	633
3.6	525	560	531	534	53 <u>7</u>	54	54 <u>4</u>	547	55 <u>0</u>	553	555	560	563	567	570	574
0•4	481	484	487	489	492	495	498	50 <u>1</u>	50 <u>3</u>	50 <u>6</u>	509	51 <u>4</u>	515	510	521	524
১. ০ সুও	44 <u>4</u>	440	440	451	453	455	457	459	462	404	460	469	47 <u>1</u>	474	477	48Q
0.0	400	41 <u>0</u>	416	410	41 <u>1</u>	41 <u>9</u>	421	460	460	420	43 <u>0</u>	434	434	430	438	441
4.0	352	019 751	20 <u>1</u>	30 <u>3</u> 757	30 <u>5</u>	387	389	391	393	395	39 <u>7</u>	399	401	403	40 <u>5</u>	401
4.0	20 <u>6</u> 225	20 <u>4</u>	- 20 <u>0</u> - 200	220 220	00 <u>9</u>	00 <u>1</u>	20 <u>6</u>	226	200	220	00 <u>9</u>	311	210	01生 74日	010 747	510
1.6	306	207	200	200	00 <u>1</u>	00 <u>0</u>	005	2000	201	ರ <u>ಿ9</u> ಶಾಂ	710	04 <u>6</u> 701	04 <u>4</u> 799	04 <u>0</u> 292	225	04 <u>0</u> 796
4.8	286	287	202	200	201 917	202	01 <u>4</u>	205	206	01 <u>0</u>	508 97 <u>8</u>	200	06 <u>6</u> 200	06 <u>0</u> 202	36 <u>3</u>	204
5.0	264	265	266	267	280 72	270	29 <u>0</u> 971	272	59 <u>0</u> 977	69 <u>1</u> 971	290 275	~9 <u>9</u> 977	20 <u>0</u>	00 <u>6</u> 970	200	00 <u>4</u>
5.5	22a	230	231	232	232	277	61 <u>1</u> 971	075	226	ん1 <u>生</u> のマワ	270	07Q	220	210	200	202
6.0	196	197	197	108	100	ະວ <u>ວ</u> 100	200 200	201	202	202	203	204	204	205	206	206
6.5	173	174	175	175	175	176	176	177	177	178	170	170	180	180	181	181
7.0	152	152	$15\bar{3}$	153	154	154	155	155	156	156	157	157	158	158	158	159
7.5	136	137	137	137	138	138	139	139	139	139	140	140	140	141	141	142
8.0	121	121	122	122	$12\overline{2}$	123	123	$12\overline{3}$	123	$12\frac{1}{2}$	124	124	125	125	125	126
8.5	109	$10\overline{9}$	109	110	110	110	111	111	111	111	112	112	$\overline{112}$	112	113	113
9.0	9 <u>85</u>	9 <u>87</u>	<u>990</u>	9 <u>92</u>	994	996	999	100	100	101	101	101	101	101	102	102
9.5	8 <u>95</u>	8 <u>97</u>	8 <u>99</u>	901	9 <u>03</u>	905	907	909	911	913	915	917	919	920	922	924
10.0	8 <u>15</u>	8 <u>17</u>	8 <u>18</u>	8 <u>20</u>	8 <u>2</u> 2	824	825	827	829	830	832	834	935	837	839	841
11.0	6 <u>86</u>	6 <u>87</u>	6 <u>89</u>	6 <u>90</u>	6 <u>91</u>	6 <u>93</u>	6 <u>94</u>	6 <u>95</u>	6 <u>96</u>	6 <u>98</u>	699	700	702	703	704	706
12.0	5 <u>86</u>	5 <u>87</u>	5 <u>88</u>	5 <u>89</u>	5 <u>90</u>	5 <u>91</u>	5 <u>92</u>	5 <u>93</u>	594	5 <u>95</u>	596	5 <u>9</u> 7	598	599	600	601
13.0	5 <u>05</u>	5 <u>06</u>	5 <u>07</u>	5 <u>07</u>	5 <u>08</u>	5 <u>09</u>	5 <u>10</u>	5 <u>11</u>	5 <u>11</u>	5 <u>12</u>	5 <u>13</u>	5 <u>14</u>	515	516	5 <u>16</u>	517
14.0	4 <u>41</u>	4 <u>42</u>	4 <u>42</u>	4 <u>43</u>	444	444	4 <u>45</u>	445	4 <u>46</u>	4 <u>4</u> 7	447	448	449	449	450	451
15.0	3 <u>89</u>	3 <u>90</u>	3 <u>90</u>	3 <u>91</u>	3 <u>91</u>	3 <u>92</u>	<u>392</u>	3 <u>93</u>	3 <u>93</u>	394	394	3 <u>95</u>	395	3 <u>96</u>	3 <u>96</u>	397
16.0	<u>344</u>	3 <u>44</u>	3 <u>45</u>	3 <u>45</u>	3 <u>46</u>	3 <u>46</u>	3 <u>47</u>	3 <u>47</u>	3 <u>48</u>	3 <u>48</u>	348	349	349	350	350	351
17.0	308	3 <u>08</u>	3 <u>09</u>	3 <u>09</u>	3 <u>09</u>	3 <u>10</u>	3 <u>10</u>	3 <u>11</u>	3 <u>11</u>	311	3 <u>12</u>	312	312	3 <u>13</u>	313	313
18.0	277	277	2 <u>78</u>	2 <u>78</u>	2 <u>78</u>	2 <u>79</u>	2 <u>79</u>	2 <u>79</u>	2 <u>79</u>	2 <u>80</u>	2 <u>80</u>	280	281	281	281	282
13.0	2 <u>41</u>	2 <u>41</u>	2 <u>48</u>	2 <u>48</u>	2 <u>48</u>	2 <u>48</u>	2 <u>49</u>	2 <u>49</u>	2 <u>49</u>	2 <u>49</u>	2 <u>50</u>	2 <u>50</u>	2 <u>51</u>	2 <u>51</u>	2 <u>51</u>	2 <u>51</u>

The Values of Ψ_{x} . No. 2

xa	.16	.17	.18	.19	.20	.21	.22	.23	•24	.25	.26	.27	•28	•29	• 30	• 32
0.02	573	517	471	431	39 3	363	335	309	288	267	250	234	218	205	192	171
0.04	850	786	734	673	626	58 2	545	511	478	450	423	398	376	355	337	304
0.06	970	907	852	800	752	710	671	636	599	568	540	512	487	465	442	402
°•08*	k9971	•950	903	858	817	778	743	708	675	644	616	589	562	540	518	475
0.1	987	9491	*911* 770	8754	*8431 754	*809*	*778*	(748) 707	*719 7174	690 7061	663	637 	614 670	591 6584	570 6454	520
0.03	101 616	610	621	621	104	141	628	627	625	623	620	617	613	610	605	596
0.4	504	510	516	522	527	530	534	536	538	540	541	542	544	544	544	542
0.5	430	435	A4]	446	451	456	461	465	468	471	473	476	478	480	482	487
0.6	373	378	383	388	393	398	402	406	410	416	417	421	424	427	430	437
0.7	327	332	337	342	347	351	355	359	363	367	371	374	377	380	383	389
0.8	293	297	301	306	310	314	318	322	325	328	3^{3}	334	338	341	344	349
0.9	263	267	271	2 75	279	282	286	289	292	295	298	301	304	306	309	315
1.0	240	243	246	249	253	255	258	261	263	266	269	272	275	277	280	285
1.2	200	202	205	207	210	212	215	217	219	222	224	226	228	230	232	236
1.4	1/0	1/2	1/4	176	1/8	179	160	102	164	120	160	162	191	190	194	160
1.8	127	128	120	130	132	133	134	135	136	138	139	140	141	142	143	145
2.0	111	112	113	114	115	116	117	118	119	120	120	121	122	123	124	125
2.2	982	990	998	100	101	102	103	104	104	105	106	107	107	108	109	111
2.4	872	879	885	892	898	905	911	918	924	931	938	944	951	957	964	977
2.6	78 <u>0</u>	786	79 <u>1</u>	79 <u>7</u>	702	808	813	819	824	83 <u>0</u>	836	841	84 <u>7</u>	85 <u>2</u>	85 <u>8</u>	86 <u>8</u>
2.8	704	70 <u>9</u>	71 <u>3</u>	71 <u>8</u>	72 <u>3</u>	72 <u>8</u>	73 <u>2</u>	73 <u>7</u>	74 <u>1</u>	746	75 <u>0</u>	75 <u>5</u>	75 <u>9</u>	764	76 <u>8</u>	77 <u>7</u>
3.0	63 <u>6</u>	64 <u>0</u>	644	64 <u>8</u>	65 <u>2</u>	65 <u>6</u>	66 <u>0</u>	664	66 <u>8</u>	67 <u>2</u>	67 <u>6</u>	68 <u>0</u>	68 <u>4</u>	68 <u>8</u>	69 <u>2</u>	70 <u>0</u>
3.2	57 <u>7</u>	58 <u>1</u>	58 <u>4</u>	58 <u>8</u>	59 <u>1</u>	594	59 <u>8</u>	60 <u>1</u>	60 <u>5</u>	60 <u>8</u>	61 <u>1</u>	615	61 <u>8</u>	62 <u>2</u>	62 <u>5</u>	63 <u>2</u>
3.4	527	53 <u>0</u>	533	53 <u>6</u>	53 <u>9</u>	54 <u>2</u>	545	54 <u>7</u>	55 <u>0</u>	55 <u>3</u>	556	559	56 <u>1</u>	564	567	573
3.0	482	485	488	490	493	496	498	501	50 <u>4</u>	507	509	512	515	517	520	525
3.0	4408	440	44/	44 <u>9</u> 414	401	400	40 <u>0</u> 710	400	40 <u>U</u> 122	40 <u>6</u>	40 <u>4</u> 197	400	40 <u>9</u> A 21	411	410	411
4.2	380	381	383	385	386	388	390	392	393	±6 <u>0</u> 395	397	398	400	402	404	407
4.4	350	351	353	354	356	358	359	361	362	364	365	367	369	370	372	375
4.6	327	329	330	331	333	334	335	337	338	340	341	342	344	345	346	349
4.8	30 <u>6</u>	30 <u>7</u>	30 <u>8</u>	30 <u>9</u>	31 <u>0</u>	31 <u>2</u>	$31\overline{3}$	31 <u>4</u>	31 <u>5</u>	$31\overline{7}$	31 <u>8</u>	31 <u>9</u>	32 <u>0</u>	32 <u>1</u>	32 <u>3</u>	32 <u>5</u>
5.0	28 <u>2</u>	28 <u>3</u>	28 <u>5</u>	28 <u>6</u>	28 <u>7</u>	28 <u>8</u>	28 <u>9</u>	29 <u>0</u>	29 <u>1</u>	29 <u>2</u>	29 <u>4</u>	29 <u>5</u>	29 <u>6</u>	29 <u>7</u>	29 <u>8</u>	300
5.5	24 <u>3</u>	24 <u>3</u>	2 <u>44</u>	24 <u>5</u>	24 <u>6</u>	247	24 <u>8</u>	24 <u>9</u>	24 <u>9</u>	25 <u>0</u>	25 <u>1</u>	25 <u>2</u>	25 <u>3</u>	25 <u>4</u>	25 <u>5</u>	25 <u>6</u>
6.0	207	208	209	209	210	211	212	21 <u>3</u>	213	214	21 <u>5</u>	215	216	217	217	21 <u>8</u>
6.5	182	182	183	183	184	185	185	186	186	187	187	188	188	189	190	191
75	109	142	100	101	101	162	162	163	163	164	164	164	165	165	166	167
8.0	$12\tilde{6}$	126	127	127	127	128	128	128	140 128	120	120	120	140 130	130	141	120
8.5	113	$11\overline{3}$	114	114	114	114	115	115	115	116	116	116	116	100	117	117
9.0	102	102	$10\overline{3}$	$10\overline{3}$	103	$10\bar{3}$	103	104	$10\frac{1}{4}$	104	104	105	105	105	105	106
9.5	9 <u>26</u>	9 <u>28</u>	9 <u>30</u>	9 <u>32</u>	9 <u>34</u>	9 <u>36</u>	9 <u>38</u>	94 <u>0</u>	9 <u>42</u>	944	9 <u>46</u>	9 <u>48</u>	949	952	952	9 <u>58</u>
10.0	8 <u>42</u>	8 <u>44</u>	8 <u>46</u>	8 <u>47</u>	8 <u>49</u>	8 <u>51</u>	8 <u>52</u>	8 <u>54</u>	8 <u>56</u>	8 <u>58</u>	8 <u>59</u>	8 <u>61</u>	8 <u>63</u>	8 <u>64</u>	8 <u>66</u>	8 <u>69</u>
11.0	7 <u>07</u>	7 <u>08</u>	7 <u>09</u>	7 <u>11</u>	7 <u>12</u>	7 <u>13</u>	7 <u>15</u>	7 <u>16</u>	7 <u>17</u>	7 <u>19</u>	7 <u>20</u>	7 <u>21</u>	7 <u>22</u>	7 <u>24</u>	8 <u>25</u>	7 <u>28</u>
12.0	6 <u>02</u>	603	6 <u>04</u>	6 <u>05</u>	6 <u>06</u>	6 <u>07</u>	6 <u>08</u>	6 <u>09</u>	6 <u>10</u>	6 <u>11</u>	612	6 <u>13</u>	6 <u>14</u>	615	6 <u>16</u>	618
14 0	9 <u>10</u>	0 <u>19</u>	0 <u>20</u> 157	5 <u>40</u> 457	5 <u>61</u>	562	5 <u>23</u>	5 <u>24</u>	524	525	526	527	528	528	529	5 <u>31</u>
15.0	307	4 <u>06</u> 308	4:00 308	4 <u>00</u> 300	4 <u>04</u> 300	4 <u>04</u> 300	400	400	401	402	4 <u>58</u>	4 <u>58</u>	459	460	460	461
16.0	351	351	352	352	353	353	$\frac{100}{354}$	± 01 354	<u>*01</u> 355	<u>+04</u> 355	<u>400</u> 355	4 <u>00</u> 356	4 <u>04</u> 356	4 <u>04</u> 357	4 <u>00</u> 357	4 <u>00</u> 358
17.0	314	314	314	315	315	316	316	316	317	3]7	317	318	318	318	310	320
18.0	282	282	283	283	283	284	284	284	284	285	285	285	285	286	286	287
19.0	2 <u>51</u>	2 <u>52</u>	2 <u>52</u>	2 <u>52</u>	2 <u>53</u>	2 <u>53</u>	2 <u>53</u>	2 <u>53</u>	254	2 <u>54</u>	254	255	2 <u>55</u>	255	255	2 <u>56</u>

р		'n	ิก
r.	•		υ

	•					[he]	Value	es of	Ý Vź	•	No	5.3			P	18
xa	• 34	• 36	• 38	•40	•42	•44	•46	•48	• 50	• 52	•54	•56	• 58	• 60	. 65	.70
0.02	154	139	126	114	104	95 <u>7</u>	880	813	75 <u>7</u>	704	65 <u>2</u>	60 <u>9</u>	57 <u>1</u>	53 <u>3</u>	45 <u>8</u>	39 <u>9</u>
0.04	275	250	228	209	192	177	$16\overline{4}$	152	142	132	124	116	109	102	88 <u>6</u>	77 <u>5</u>
0.06	368	338	311	287	265	247	230	214	200	188	177	166	156	147	128	113
0.08	439	406	377	350	326	304	285	267	251	236	223	210	199	188	165	146
0.1	493	460	430	402	376	353	332	313	295	279	264	250	238	226	199	178
0.2	*601×	*577 5775-	563	533	511	493	474	456	439	422	406	390	315	359	330	303
0.0	500	577	5000°	5002° 500	59412 595	5291 519	יסבסי רום	504 504	491 4084	-600 401	400 400	401 68779	9490 4604	400 (AG]	400	001 A22
0.5	489	480	100	400	488	486	485	483	480	476	473	469	465	4614	441 (LA8)	437
0.6	440	442	444	446	448	449	450	450	450	450	449	448	447	445	439	432
0.7	394	398	402	405	408	411	413	415	416	417	418	419	420	420	419	416
0.8	355	359	364	367	371	374	377	381	382	384	386	388	390	391	393	394
0.9	320	324	328	330	337	341	345	348	351	353	355	357	359	361	365	368
1.0	289	293	297	301	306	310	313	316	320	323	326	328	330	332	337	342
1.2	240	244	248	251	255	258	261	265	268	271	274	277	279	281	289	293
1.4	201	205	208	210	214	216	219	222	225	228	230	233	235	238	244	250
1.6	172	174	177	179	182	184	187	189	192	194	197	199	201	203	208	213
1.0	148	150	152	154	156	158	160	162	164	100	168	170	172	174	179	104
200	140	129	101	100	100	100	109	141	140	144	140	14/	149	101	104	100
5.6 9 A	112	100	102	102	104	105	107	100	100	110	1-11	112	129	112	197	120
2.6	878	889	800	000	010	920	940	950	960	972	984	995	101	102	104	106
2.8	788	795	804	813	821	830	838	847	855	865	874	882	890	898	919	940
3.0	708	717	725	733	740	747	754	761	768	775	783	790	798	805	824	842
3.2	639	646	653	660	666	672	678	684	690	697	703	710	716	723	740	756
3.4	57 <u>8</u>	$58\overline{4}$	58 <u>9</u>	59 <u>5</u>	60 <u>1</u>	607	$61\overline{4}$	62 <u>0</u>	62 <u>6</u>	63 <u>1</u>	637	64 <u>2</u>	64 <u>8</u>	65 <u>3</u>	66 <u>8</u>	68 <u>2</u>
3.6	53 <u>0</u>	53 <u>5</u>	54 <u>0</u>	54 <u>5</u>	55 <u>0</u>	55 <u>5</u>	56 <u>0</u>	56 <u>5</u>	57 <u>0</u>	57 <u>5</u>	57 <u>9</u>	58 <u>4</u>	58 <u>8</u>	59 <u>3</u>	60 <u>6</u>	61 <u>8</u>
3.8	48 <u>2</u>	48 <u>6</u>	49 <u>1</u>	49 <u>5</u>	50 <u>0</u>	50 <u>4</u>	50 <u>9</u>	51 <u>3</u>	51 <u>8</u>	52 <u>2</u>	52 <u>7</u>	53 <u>1</u>	53 <u>6</u>	54 <u>0</u>	55 <u>1</u>	56 <u>1</u>
4.0	<u>443</u>	<u>446</u>	<u>450</u>	4 5 <u>4</u>	45 <u>8</u>	46 <u>2</u>	46 <u>6</u>	47 <u>0</u>	47 <u>3</u>	477	48 <u>1</u>	48 <u>5</u>	48 <u>9</u>	49 <u>3</u>	50 <u>2</u>	51 <u>2</u>
4.2	410	414	417	42 <u>1</u>	42 <u>4</u>	42 <u>8</u>	431	43 <u>5</u>	43 <u>8</u>	441	445	<u>448</u>	45 <u>2</u>	455	464	47 <u>2</u>
4.4	318	381	384	387	390	393	396	39 <u>9</u>	403	406	409	412	415	418	42 <u>6</u>	433
4.0	304	330	220 220	225	20 <u>6</u> 777	240	200	310	010	240	31 <u>0</u> 752	20T	20生	30 <u>0</u> 750	393	40 <u>U</u>
5.0	303	305	307	310	312	314	316	310	291	<u>ुन्दुय</u> ४२ द	326	30 <u>⊈</u> 328	330	309	30 <u>0</u> 338	311
5.5	258	260	261	263	265	266	268	270	272	273	275	277	278	280	284	280
6.0	219	220	222	224	225	226	227	229	231	232	233	235	236	237	240	243
6.5	192	$19\overline{3}$	194	195	196	197	198	199	201	202	203	$20\frac{1}{4}$	205	206	209	211
7.0	16 <u>8</u>	16 <u>9</u>	169	17 <u>0</u>	$17\overline{1}$	172	$17\overline{3}$	$17\overline{4}$	$17\overline{5}$	$17\overline{6}$	$17\overline{7}$	17 <u>8</u>	$17\overline{9}$	$18\overline{0}$	182	184
7.5	14 <u>9</u>	14 <u>9</u>	15 <u>0</u>	15 <u>1</u>	15 <u>2</u>	15 <u>2</u>	15 <u>3</u>	15 <u>4</u>	15 <u>5</u>	15 <u>5</u>	15 <u>6</u>	15 <u>7</u>	157	15 <u>8</u>	16 <u>0</u>	162
8.0	13 <u>2</u>	13 <u>2</u>	133	13 <u>3</u>	134	13 <u>5</u>	13 <u>5</u>	13 <u>6</u>	137	13 <u>7</u>	138	13 <u>8</u>	13 <u>9</u>	14 <u>0</u>	14 <u>1</u>	14 <u>3</u>
8.5	118	118	119	119	120	120	121	121	122	12 <u>3</u>	12 <u>3</u>	124	124	12 <u>5</u>	12 <u>6</u>	12 <u>7</u>
. 9.0	106	107	107	108	108	108	109	109	110	110	111	111	112	112	113	114
9.0	9 <u>04</u> 873	900	909	973	977	981	985	989	993	9 <u>97</u>	100	100	101	101	107	103
11.0	730	733	735	738	741	0 <u>90</u> 743	0 <u>90</u> 746	0 <u>91</u> 7/9	9 <u>00</u> 751	9 <u>00</u> 754	9 <u>01</u> 756	910	9 <u>44</u> 701	911	920	9 <u>34</u>
12.0	620	622	624	626	628	630	632	634	636	638	640	642	644	EAE	651	656
13.0	533	534	536	537	539	541	542	544	546	5 <u>47</u>	549	550	552	554	558	562
14.0	463	464	465	467	468	469	470	471	$\frac{1}{473}$	474	476	477	478	479	482	486
15.0	407	408	409	410	4 <u>11</u>	412	413	414	415	416	417	418	419	420	423	425
16.0	3 <u>59</u>	3 <u>60</u>	3 <u>61</u>	3 <u>62</u>	362	3 <u>63</u>	3 <u>34</u>	3 <u>65</u>	366	3 <u>67</u>	3 <u>68</u>	369	3 <u>70</u>	$3\overline{71}$	373	375
17.0	3 <u>20</u>	3 <u>21</u>	3 <u>23</u>	3 <u>22</u>	3 <u>2 3</u>	324	325	3 <u>25</u>	326	327	3 <u>27</u>	328	329	3 <u>30</u>	3 <u>31</u>	3 <u>33</u>
18.0	2 <u>88</u>	288	2 <u>89</u>	2 <u>89</u>	2 <u>90</u>	2 <u>91</u>	2 <u>91</u>	2 <u>92</u>	2 <u>93</u>	2 <u>93</u>	2 <u>94</u>	2 <u>94</u>	2 <u>95</u>	2 <u>96</u>	297	2 <u>99</u>
19.0	2 <u>57</u>	2 <u>57</u>	2 <u>58</u>	2 <u>58</u>	2 <u>59</u>	2 <u>59</u>	2 <u>60</u>	2 <u>60</u>	2 <u>61</u>	2 <u>62</u>	2 <u>62</u>	2 <u>63</u>	2 <u>63</u>	2 <u>64</u>	2 <u>65</u>	2 <u>67</u>

The Values of \bigvee_x . No. 4

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 5 \\ 2 \\ - 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 5\underline{15}\\7 & 106\\0 & 16\underline{3}\\5 & 22\underline{2} \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 10 <u>6</u> 0 16 <u>3</u> 5 222
0.06 100 896 801 723 656 596 502 427 368 321 281 250 223 200 18	<u>)</u> 16 <u>3</u> 5 22 <u>2</u>
	<u>5</u> 22 <u>2</u>
0.08 130 117 105 953 867 792 671 573 495 433 382 338 302 271 24	
0.1 159 143 130 118 108 985 836 720 623 547 483 430 385 347 31	$\frac{1}{2}$ 28 <u>5</u>
0.2 278 256 236 219 203 189 164 144 127 113 102 913 827 752 68	<u>6</u> 62 <u>9</u>
	1 141
0.5 423 410 397 383 370 357 332 310 288 288 250 255 270 255 240 25	1 119 7 914
-0.0 $+4.24+4.0+400+391$ 300 311 300 339 320 302 203 210 233 240 22 -0.7 $\frac{1}{2}$ /13 400 40/+307+301+385+370 355 3/1 326 311 206 283 260 28	S 245
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	269
0.9 370 372 372 372 371 369 365*360*352*344*336 327 317 306 29	5 287
	5 298
1.2 298 302 306 310 312 315 319 322 322 321 319 316*313*30	9*304
1.4 254 259 264 269 273 277 281 285 289 292 294 296 296 296 29	5 294
1.6 218 223 226 230 235 240 245 250 255 260 264 267 269 271 27	2 273
1.8 189 194 199 204 208 212 216 220 224 228 232 236 240 243 24	6 250
2.0 162 166 169 172 175 179 185 190 196 201 206 210 214 218 22	1 224
2.2 141 144 147 150 153 155 161 167 173 176 181 185 189 193 19	6 200
2.4 123 126 129 132 134 136 141 146 151 155 159 163 167 171 17	4 178
2.6 109 111 113 116 118 120 124 129 133 137 141 144 148 151 18	5 158
2.8 97198010010210410711011411812112512813213513	8 141
3.0 858 876 894 913 932 948 980 101 105 108 111 114 117 120 12	3 126
3.2 773 789 805 820 835 850 880 908 940 967 992 103 106 108 11	0 113
3.4 69 <u>4</u> 708 722 735 748 763 791 818 843 866 891 918 943 965 98	8 101
3.6 631 645 656 667 679 691 714 738 760 781 801 826 849 869 89	1 91 <u>0</u>
0.0 014 000 094 004 010 041 044 000 000 100 140 140 100 10	<u>6 020</u>
4.0 322 331 341 331 300 310 300 010 020 023 041 039 010 094 112 12	<u>y</u> 14 <u>1</u>
4.4 44 44 44 457 465 472 480 494 509 523 571 580 602 510 553 549 60	
4.6 407 413 420 427 433 440 453 466 479 492 505 518 531 544 55	7 570
4.8 378 384 390 396 402 408 420 431 443 455 467 478 490 502 51	3 525
5.0 350 355 361 367 372 378 389 399 410 420 431 441 452 462 47	3 483
5.5 293 297 301 306 310 314 323 331 340 348 357 365 374 382 39	1 399
6.0 248 251 254 258 262 265 271 276 282 288 294 299 305 311 31	6 322
6.5 214 217 220 223 225 228 233 239 244 250 255 260 266 271 27	7 282
7.0 18 <u>7</u> 18 <u>9</u> 19 <u>1</u> 19 <u>3</u> 19 <u>6</u> 19 <u>8</u> 20 <u>2</u> 20 <u>7</u> 21 <u>1</u> 21 <u>6</u> 22 <u>0</u> 22 <u>4</u> 22 <u>9</u> 23 <u>3</u> 23	<u>8</u> 24 <u>2</u>
7.5 $164 166 167 169 171 173 177 180 184 188 192 195 199 203 20$	<u>6</u> 21 <u>0</u>
8.0 144 146 147 149 150 152 155 158 161 164 168 171 174 177 18	<u>)</u> 18 <u>3</u>
8.5 129 130 131 132 134 135 138 140 143 146 149 151 154 157 18	<u>9 162</u>
9.0 115 117 118 119 120 121 123 126 128 130 133 135 137 139 14	$\frac{2}{144}$
9.5 104 105 106 107 108 109 111 113 115 117 119 120 122 124 12	$\frac{6}{128}$
10.0 945 951 960 968 977 985 100 102 104 105 107 109 110 112 11	<u>4</u> 11 <u>6</u>
12 0 661 666 671 676 681 686 606 707 717 727 770 740 750 740 750	0.943
13.0 566 570 574 578 582 586 504 602 610 618 626 633 641 640 6	7 665
14.0 489 492 495 499 502 505 512 518 525 531 538 545 551 558 56	<u>1 571</u>
15.0 $4\underline{28}$ $4\underline{31}$ $4\underline{33}$ $4\underline{36}$ $4\underline{38}$ $4\underline{41}$ $4\underline{46}$ $4\underline{51}$ $4\underline{57}$ $4\underline{62}$ $4\underline{67}$ $4\underline{72}$ $4\underline{77}$ $4\underline{83}$ $4\underline{7}$	<u> </u>
16.0 377 379 381 384 386 388 393 397 402 406 411 415 420 424 42	9 433
17.0 335 337 339 340 342 344 348 352 355 359 363 367 371 374 37	8 381
18.0 300 302 303 305 306 308 311 314 317 320 323 325 328 331 33	4 337
$19.0 2\underline{68} 2\underline{69} 2\underline{71} 2\underline{72} 2\underline{74} 2\underline{75} 2\underline{78} 2\underline{81} 2\underline{83} 2\underline{86} 2\underline{89} 2\underline{92} 2\underline{95} 2\underline{97} 3\underline{6} 2\underline{89} 2\underline{95} 2\underline{95} 2\underline{97} 3\underline{6} 2\underline{89} 289$	0 303

The Values of Ψ_x . No. 5 P. 20

\sim	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0	3.2	3.4	3.6	3.8	4.0	4.2
1	4.67	426	390	360	331	307	284	264	247	231	203	180	161	145	131	118
0.04	963	880	808	742	687	635	590	549	514	480	423	375	336	302	273	248
0.06	149	136	125	115	106	985	916	854	798	747	6 <u>59</u>	5 <u>85</u>	5 <u>24</u>	471	426	3 <u>8</u> 7
0.08	203	186	17 <u>1</u>	158	146	13 <u>6</u>	126	118	110	10 <u>3</u>	9 <u>10</u>	8 <u>10</u>	7 <u>25</u>	6 <u>5</u> 3	5 <u>91</u>	5 <u>38</u>
0.1	26 <u>1</u>	239	22 <u>0</u>	20 <u>2</u>	188	175	16 <u>3</u>	<u>152</u>	14 <u>2</u>	13 <u>3</u>	118	10 <u>5</u>	9 <u>40</u>	8 <u>49</u>	767	700
0.2	57 <u>9</u>	53 <u>5</u>	494	45 <u>8</u>	42 <u>6</u>	39 <u>8</u>	<u>372</u>	34 <u>8</u>	$32\underline{7}$	30 <u>8</u>	27 <u>5</u>	24 <u>5</u>	22 <u>1</u>	20 <u>0</u>	18 <u>2</u>	16 <u>6</u>
0.3	93 <u>6</u>	869	80 <u>8</u>	75 <u>5</u>	70 <u>7</u>	66 <u>1</u>	621	58 <u>4</u>	551	52 <u>0</u>	465	419	37 <u>9</u>	34 <u>5</u>	314	28 <u>8</u>
0.4	131	123	115	108	101	954	89 <u>8</u>	8 4 <u>8</u>	80 <u>5</u>	760	68 <u>4</u>	62 <u>0</u>	564	515	.472	435
0.5	169	159	150	141	133	126	119	113	107	102	925	845	770	708	651	60 <u>2</u>
0.6	203	192	182	173	165	157	149	142	135	129	118	108	99 <u>5</u>	916	846	785
·0.7	234	223	213	203	194	185	177	169	102	177	143	156	122	113	105	98 <u>3</u>
0.0	200 277	268	400 250	250	212	611 971	200	210	200	204	100	178	167	157	147	120
1.0	201	283	275	267	250	251	200	237	230	293	211	100	197	176	166	157
1.2	*300x	205	2801	284	279	273	268	263	257	252	241	230	219	209	200	101
1.4	292	290	287	284	281	278	×275	*272*	268	\$265	256	248	240	232	224	216
1.6	274	274	274	274	273	272	270	268	266	264	260	255	249	243	237	231
1.8	251	252	253	254	255	256	256	256	255	254	253	251	248*	244,	*2 <u>4</u> 0*	236
2.0	226	2 28	231	233	235	236	237	238	239	240	240	239	238	237	235	233
2.2	203	205	208	210	212	214	216	218	219	221	223	225	226	226	226	225
2.4	181	184	186	189	192	194	196	198	200	202,	205	208	210	211	212	213
2.6	161	164	167	169	172	175	177	179	181	183	187	190	192	195	197	198
2.8	143	146	149	152	154	157	159	161	163	165	169	173	176	178	181	183
3.0	128	131	133	136	139	141	143	145	147	149	153	157	160	163	166	169
3.2	115	117	120	122	125	127	129	131	132	136	138	142	145	148	151	154
3.4	103	106	108	110	112	114	116	118	120	121	125	129	132	135	138	140
3.D 70	933	955	975	994	101	103	105	106	108	110	113	110	119	112	125	128
3.0	04 <u>4</u> 763	778	701	810	826	920	940	90 <u>0</u> 973	910	991	10.0	100	109	101	114	106
±•0	694	700	19 <u>4</u> 723	737	752	766	780	701	800	90 <u>±</u>	852	874	802	101	104	074
1.4	636	649	662	675	688	700	713	726	730	752	770	801	823	845	868	880
6.4	582	594	606	618	630	642	654	666	678	690	711	732	753	776	798	815
4.8	536	545	557	567	$57\overline{8}$	589	599	610	620	631	651	67Õ	690	712	732	754
5.0	493	503	512	522	532	542	552	561	571	581	599	618	636	655	673	691
5.5	407	415	$42\overline{3}$	431	$43\overline{9}$	$44\overline{6}$	$45\bar{4}$	$46\bar{2}$	47 <u>0</u>	$47\bar{8}$	493	508	$52\bar{3}$	$53\overline{8}$	$55\overline{3}$	568
6.0	33Q	33 <u>7</u>	345	35 <u>2</u>	360	368	37 <u>5</u>	38 <u>3</u>	39 <u>0</u>	<u>398</u>	410	4 2 2	43 <u>5</u>	44 <u>7</u>	45 <u>9</u>	47 <u>2</u>
6.5	28 <u>7</u>	.293	29 <u>8</u>	30 <u>3</u>	30 <u>9</u>	314	319	324	33 <u>0</u>	33 <u>5</u>	34 <u>5</u>	35 <u>5</u>	36 <u>6</u>	37 <u>6</u>	38 <u>6</u>	39 <u>6</u>
7.0	246	251	255	260	264	268	27 <u>3</u>	277	28 <u>2</u>	28 <u>6</u>	294	30 <u>3</u>	311	32Q	32 <u>8</u>	<u>336</u>
7.5	214	217	221	224	228	232	235	23 <u>9</u>	24 <u>2</u>	246	253	260	268	275	28 <u>2</u>	28 <u>9</u>
8.0	100	189	192	195	199	202	205	208	211	214	220	226	232	238	244	250
	100	101	151	157	110	1/8	180	183	102	188	193	198	204	209	214	219
9.5	130	132	101	120	120 120	120	10 <u>7</u>	102	104	100	110	1/0	150	104	188	193
10.0	117	118	120	122	124	125	197	120	140	14 <u>/</u> 129	122	120	142	102	140	161
11.0	956	969	982	995	101	102	103	105	106	107	110	112	146	117	120	107
12.0	799	809	818	828	838	84 8	858	867	877	887	908	930	951	973	994	າດາ
13.0	673	$6\overline{81}$	689	697	705	712	720	728	$7\overline{36}$	744	760	776	793	809	825	839
14.0	5 <u>78</u>	584	591	5 <u>9</u> 7	604	610	617	623	630	636	649	662	674	687	700	712
15.0	4 <u>98</u>	5 <u>04</u>	5 <u>09</u>	514	520	525	5 <u>30</u>	535	541	546	556	567	5 <u>77</u>	588	5 <u>98</u>	609
16.0	4 <u>37</u>	4 <u>42</u>	4 <u>16</u>	4 <u>51</u>	4 <u>55</u>	4 <u>59</u>	4 <u>64</u>	4 <u>68</u>	473	477	486	494	5 <u>03</u>	511	520	529
17.0	3 <u>86</u>	3 <u>89</u>	3 <u>93</u>	<u>396</u>	400	404	4 <u>07</u>	411	4 <u>14</u>	<u>418</u>	4 <u>26</u>	4 <u>34</u>	4 <u>4</u> 1	<u>449</u>	4 <u>57</u>	4 <u>63</u>
18.0	3 <u>40</u>	344	3 <u>47</u>	3 <u>50</u>	3 <u>54</u>	3 <u>57</u>	3 <u>60</u>	3 <u>63</u>	3 <u>67</u>	370	3 <u>76</u>	3 <u>82</u>	3 <u>88</u>	3 <u>94</u>	4 <u>00</u>	4 <u>06</u>
19•0	3 <u>06</u>	305	311	313	3 <u>16</u>	319	3 <u>21</u>	3 <u>24</u>	3 <u>26</u>	3 <u>29</u>	3 <u>34</u>	3 <u>40</u>	3 <u>45</u>	3 <u>51</u>	3 <u>56</u>	3 <u>61</u>

The Values of Ψ_{π} . No. 6 P. 21

.

x	4.4	4.6	4.8	5.0	5.2	5.4	5.6	5.8	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5
ð.02	109	990	908	838	777	720	669	625	584	498	429	374	329	292	260	234
0.04	2 <u>26</u>	207	190	176	162	1 <u>51</u>	1 <u>40</u>	131	122	104	<u>900</u>	785	<u>691</u>	613	<u>547</u>	492
0.06	3 <u>54</u>	<u>324</u>	2 <u>98</u>	2 <u>75</u>	2 <u>55</u>	2 <u>36</u>	2 <u>20</u>	2 <u>05</u>	192	164	142	124	109	<u>966</u>	861	775
0.08	4 <u>90</u>	4 <u>50</u>	415	383	354	329	306	286	268	229	198	173	152	135	120	108
0.1	639	586	540	498	461	429	400	374	349	299	258	226	199	177	158	142
0.2	152	140	129	120	111	104	967	903	8 <u>47</u>	130	112	002	490 877	4 <u>5</u> 0 781	3 <u>90</u> 701	0 <u>01</u> 632
0.0	401	44 <u>0</u> 372	345	21 201	200	280	262	246	232	200	175	154	137	122	110	994
0.5	558	517	481	450	52 <u>1</u>	394	371	348	329	286	249	220	196	$17\bar{6}$	158	143
0.6	730	680	635	596	559	524	493	465	439	383	336	298	266	239	215	196
0.7	917	857	801	753	707	665	628	593	561	494	435	387	346	312	282	256
0.8	111	104	98Õ	919	866	82Ō	775	735	697	$61\bar{3}$	$54\bar{3}$	$48\bar{5}$	$43\overline{6}$	$39\overline{2}$	35 <u>6</u>	324
• 0.9	130	122	$11\bar{5}$	109	$10\bar{3}$	<u>980</u>	927	881	840	745	66 <u>0</u>	59 <u>3</u>	53 <u>3</u>	483	$43\overline{8}$	401
1.0	149	141	133	126	120	114	108	103	98 <u>7</u>	87⊈	784	70 <u>7</u>	63 <u>8</u>	58 <u>0</u>	52 <u>7</u>	48 <u>3</u>
1.2	182	173	166	159	152	145	139	133	128	115	104	94 <u>5</u>	86 <u>2</u>	78 <u>9</u>	723	66 <u>6</u>
1.4	208	200	193	186	179	173	167	161	155	142	130	119	109	101	92 <u>8</u>	86 <u>0</u>
1.6	225	219	213	207	201	195	189	183	177	165	153	142	131	122	114	106
1.8 ;	*232	¥228	223	218	213	208	204	199	194	182	171	161	151	142	133	125
2.0	230	*228* 997	*225* 201	2223	*Z19 210.	215	211	207	204	194	185	175	100	158	149	141
2.1	564 917	423 912	421 917	220	210°	82104 010	200	508 KTT74	2061	*2013	193	100	10	178	179	100
26	100	201	201	202	202	202	209	201	200	log	105	FJ0]*	1864 •1864	×182	177	170
2.8	185	187	188	189	100	191	102	192	192	191	190	188	185	*182×	*179>	174
3.0	171	172	174	176	177	178	179	180	181	182	182	182	181	179	177	17 4
3.2	157	159	161	163	164	166	168	170	172	173	174	174	174	174	173	171
3.4	143	146	148	150	152	154	156	158	160	162	164	165	166	166	167	166
3.6	130	133	136	138	140	142	143	145	147	151	154	156	158	159	159	160
3.8	119	122	125	127	129	130	132	134	136	140	143	146	148	150	152	152
4.0	109	111	114	116	118	120	122	124	125	129	133	136	139	141	143	145
4.2	990	102	104	106	108	110	112	113	115	120	123	126	129	132	134	136
4.4	910	933	95 <u>2</u>	97 <u>3</u>	995	101	103	104	106	110	114	118	121	123	126	128
4.6	638	858	879	901	916	931	946	962	985	102	106	109	112	115	118	120
4.0	700	790	000	758	04U 773	780 780	804	830	900	944 872	917	101	104 060	107	102	114
5.5	582	597	611	624	637	650	663	676	600	721	751	770	80 <u>9</u>	99 <u>0</u> 832	260	884
6.0	485	497	511	519	530	541	552	563	574	600	626	651	677	701	725	747
6.5	405	516	427	435	445	454	464	473	483	506	$52\overline{8}$	550	57]	592	613	632
7.0	$34\frac{1}{4}$	354	362	369	377	$38\overline{5}$	394	$40\bar{2}$	410	429	448	467	486	504	521	539
7.5	29 <u>5</u>	302	308	$31\overline{6}$	$32\bar{3}$	<u>330</u>	-33 7	$34\overline{3}$	$35\overline{0}$	$36\overline{7}$	$38\overline{5}$	$40\overline{0}$	416	432	448	463
8.0	25 <u>7</u>	26 <u>3</u>	27Q	27 <u>3</u>	27 <u>9</u>	285	291	296	30 <u>2</u>	$31\overline{7}$	33 <u>1</u>	345	36 <u>0</u>	$37\overline{3}$	$38\overline{6}$	$40\overline{0}$
8.5	224	229	234	238	243	248	25 <u>3</u>	25 <u>9</u>	264	27 <u>6</u>	28 <u>8</u>	30 <u>0</u>	$31\overline{2}$	324	33 <u>6</u>	24 <u>6</u>
9.0	197	20 <u>2</u>	206	211	215	219	22 <u>3</u>	227	231	211	25 <u>2</u>	262	27 <u>3</u>	284	294	304
9.5	174	178	185	185	189	193	197	200	204	214	223	232	240	249	258	26 <u>7</u>
10.0	104	127	101	16生	167	171	174	1/2	181	189	197	205	213	221	22 <u>9</u>	237
12.0	102	104	10e T¢Ä	10c 797	エン生	112	14Q	143	100	105	120	164	170	176	195	188
13.0	852	10 <u>±</u>	870	700 700	411 911	050 ∓∓5	015 TTD	TTO	TCD VAD	100	10e	110	112	14 <u>4</u> 117	149 191	10 <u>3</u>
14.0	724	737	749	761	775	780	804	818	90 <u>4</u> 832	864	80E	770 770	461	002 TT	104	106
15.0	620	630	641	652	663	674	684	695	706	733	761	788	816	3 30 843	10 <u>2</u> 870	808 TOD
16.0	53 8	547	556	565	575	585	595	605	615	635	655	676	696	716	736	757
17.0	469	176	482	488	$4\overline{96}$	505	$5\bar{1}\bar{3}$	522	530	$5\overline{49}$	567	586	604	$6\overline{2}\overline{3}$	641	660
18.0	413	419	426	432	$4\overline{38}$	444	451	457	463	480	496	513	530	546	$5\bar{63}$	579
19.0	3 <u>66</u>	372	3 <u>77</u>	<u>3ି2</u>	3 <u>89</u>	3 <u>95</u>	402	408	415	4 <u>27</u>	440	452	4 <u>65</u>	477	4 <u>89</u>	5 <u>02</u>

			*****]	[he]	Value	s of	· Ψ	x •	No) . 7	*****	*****	P	. 22
xa	10	12	14	16	18	20	25	30	35	40	45	· 50	60	70	80	90
0.02	211	147	108	083	065	052	033	024	017	013	011	008	006	004	003	003
0.04	444	309	227	174	138	112	072	050	037	028	022	018	012	009	007	006
0.06	700	488	359	275	218	177	113	079	058	044	035	028	020	015	011	0.09
0.08	080	684	504	386	306	2/8	150	110	000	062	040	040	028	020	016	012
0.00	128	805	660	507	401	325	200	145	107	082	065	053	037	027	021	016
0.1	710	227	100	107	101	010	<u>509</u>	766	270	207	164	133	003	068	052	041
0.2	510	2 <u>60</u>	100	200	101	010	040	<u>300</u>	210	700	202	246	171	126	002	076
0.0	010	404	300	200	104	120	900	0/0	490	202	302 49 E	<u>240</u>	111	120	155	127
0.4	900	040	4 <u>10</u>	0 <u>00</u>	730 731	ん <u> 30</u> タビコ	204	100	190	010	400	590	407	200	220	100
0.5	100	929	090	009	429	201	6 <u>61</u> 710	<u>тоа</u>	170	900	101	010	<u>40(</u>	<u>300</u>	200	200
0.6	110	141	900	144	0 <u>90</u>	400	210	6 <u>66</u>	100	161		010	011	461	364	200
0.7	234	168	120	989	791	6 <u>49</u>	423	2 <u>91</u>	441	170	135	110	769	561	430	340
0.8	297	214	162	127	102	836	5 <u>49</u>	386	287	222	176	144	100	713	570	451
0.9	36 <u>7</u>	266	203	159	128	105	6 <u>93</u>	521	364	281	224	183	128	945	726	575
1.0	444	325	248	195	158	130	156	6 <u>07</u>	4 <u>53</u>	350	2 <u>79</u>	221	159	118	908	720
1.2	614	45 <u>6</u>	352	279	227	188	125	891	665	516	412	337	236	1/5	135	101
1.4	79 <u>9</u>	607	<u>473</u>	37 <u>9</u>	31 <u>0</u>	25 <u>8</u>	173	12 <u>4</u>	9 <u>28</u>	722	5 <u>78</u>	472	3 <u>34</u>	2 <u>46</u>	190	151
1.6	98 <u>9</u>	765	60 <u>6</u>	<u>490</u>	40 <u>4</u>	33 <u>8</u>	22 <u>9</u>	16 <u>5</u>	125	9 <u>70</u>	7 <u>78</u>	6 <u>38</u>	4 <u>50</u>	3 <u>35</u>	2 <u>58</u>	205
1.8	117	<u>928</u>	74 <u>5</u>	61 <u>1</u>	50 <u>9</u>	43 <u>0</u>	29 <u>4</u>	21 <u>3</u>	16 <u>1</u>	12 <u>7</u>	10 <u>1</u>	8 <u>35</u>	5 <u>91</u>	4 <u>41</u>	3 <u>40</u>	$2\underline{71}$
2.0	134	109	89 <u>0</u>	74 <u>0</u>	61 <u>8</u>	52 <u>5</u>	<u>366</u>	26 <u>8</u>	20 <u>4</u>	16 <u>0</u>	129	10 <u>7</u>	7 <u>56</u>	5 <u>64</u>	4 <u>38</u>	348
2.2	148	123	103	86 <u>4</u>	73 <u>3</u>	62 <u>8</u>	44 <u>6</u>	32 <u>8</u>	25 <u>0</u>	199	160	132	944	706	5 <u>49</u>	4 <u>37</u>
2.4	159	136	115	98 <u>7</u>	84 <u>6</u>	73 <u>1</u>	52 <u>6</u>	39 <u>4</u>	30 <u>4</u>	242	19 <u>5</u>	16 <u>2</u>	<u>116</u>	8 <u>70</u>	6 <u>75</u>	5 <u>40</u>
2.6	167	146	126	110	95 <u>8</u>	83 <u>3</u>	61 <u>1</u>	46 <u>2</u>	36 <u>0</u>	28 <u>8</u>	23 <u>4</u>	19 <u>4</u>	14 <u>0</u>	105	8 <u>20</u>	6 <u>55</u>
2.8	•171	153	135	120	106	94 <u>2</u>	<u>698</u>	53 <u>4</u>	42 <u>0</u>	33 <u>6</u>	27 <u>6</u>	23 <u>0</u>	16 <u>6</u>	12 <u>6</u>	9 <u>80</u>	7 <u>87</u>
3.0	•171	157	142	128	115	102	78 <u>0</u>	60 <u>8</u>	48 <u>1</u>	38 <u>9</u>	32 <u>1</u>	26 <u>8</u>	19 <u>5</u>	14 <u>8</u>	11 <u>6</u>	9 <u>30</u>
3.2	169*	159	144	134	122	110	86 <u>1</u>	68 <u>2</u>	54 <u>5</u>	<u>444</u>	<u>368</u>	30 <u>9</u>	22 <u>6</u>	17 <u>2</u>	13 <u>5</u>	10 <u>9</u>
3.4	165*	159	149	139	127	117	93 <u>1</u>	74 <u>9</u>	60 <u>6</u>	50 <u>0</u>	41 <u>6</u>	35 <u>2</u>	25 <u>9</u>	19 <u>8</u>	157	126
3.6	159	157*	×150	141	132	122	100	81 <u>3</u>	67 <u>0</u>	55 <u>6</u>	46 <u>6</u>	39 <u>6</u>	29 <u>5</u>	22 <u>6</u>	17 <u>9</u>	145
3.8	153	152	148	142	•135	126	105	87 <u>5</u>	73 <u>0</u>	61 <u>1</u>	51 <u>8</u>	44 <u>2</u>	<u>332</u>	25 <u>6</u>	20 <u>3</u>	164
4.0	145	148	146	141	135	128	110	93 <u>4</u>	78 <u>8</u>	67 <u>0</u>	56 <u>7</u>	48 <u>8</u>	36 <u>8</u>	28 <u>7</u>	22 <u>9</u>	186
4.2	138	142	142	139	×135×	130	114	98 <u>0</u>	84 <u>0</u>	715	61 <u>8</u>	53 <u>3</u>	407	31 <u>9</u>	25 <u>5</u>	20 <u>8</u>
4.4	130	135	137	136	134	129	116	102	88 <u>5</u>	766	66 <u>3</u>	57 <u>8</u>	44 <u>6</u>	35 <u>1</u>	28 <u>3</u>	23 <u>2</u>
4.6	121	129	131	133	131	128	118	105	922	809	708	62 <u>3</u>	485	38 <u>5</u>	31 <u>1</u>	257
4.8	114	122	125	128	128	126	118	107	955	85 <u>2</u>	750	661	52 <u>3</u>	419	34 <u>1</u>	281
5.0	107	115	120	123	124	123	118	×109	985	881	786	700	559	45 <u>1</u>	37 <u>0</u>	<u>308</u>
5.5	910	100	105	109	112	114	114	109	102	944	859	784	646	534	445	374
6.0	767	84 <u>6</u>	910	962	100	103	107	106*	102	×966	90 5	841	716	606	514	4:40
6.5	65 5	729	787	839	883	923	980	995	988	964,	×919	870.	767	669	579	503
7.0	559	630	$67\overline{7}$	730	775	811	$88\overline{4}$	92Ž	937	9 3Õ	$91\overline{2}$	875	796	$71\bar{3}$	632	557
7.5	47 <u>9</u>	53 <u>8</u>	59 <u>0</u>	636	67 <u>ē</u>	$71\overline{7}$	$79ar{4}$	845	875	884	879	×880×	810	$74\overline{0}$	67Ī	605
8.0	$41\overline{5}$	46 <u>4</u>	50 <u>8</u>	55 <u>3</u>	59 <u>6</u>	63 <u>3</u>	71 <u>0</u>	$76\overline{6}$	80 <u>5</u>	$82\overline{7}$	835	83 <u>5</u>	805	×755	698	639
8.5	35 <u>7</u>	40 <u>2</u>	<u>447</u>	48 <u>7</u>	52 <u>3</u>	55 <u>6</u>	$63\overline{1}$	6 89	$73\overline{4}$	$76\overline{4}$	$78\overline{2}$	$79\overline{3}$	$78\overline{4}$	754	⊧71 3	653
9.0	315	351	392	427	457	$49\overline{2}$	560	62Ž	667	702	730	$74\bar{3}$	756	74Ì	71Ō	$67\bar{3}$
9.5	27 <u>6</u>	310	34 <u>3</u>	376	$40\bar{6}$	$43\bar{6}$	50Ī	556	603	$64\overline{4}$	67Ī	$69\overline{3}$	716	715	70Ī,	•67 4
10.0	245	274	30 <u>2</u>	<u>332</u>	360	38Ē	446	501	549	587	618	644	$67\overline{5}$	685	681	664
11.0	$19\overline{3}$	21 <u>9</u>	240	262	$28\overline{4}$	309	358	407	447	$48\overline{4}$	515	544	589	615	626	628
12.0	158	$17\overline{6}$	$19\overline{3}$	$21\overline{4}$	232	249	29 2	$33\overline{1}$	366	401	$43\overline{2}$	458	506	538	566	576
13.0	$12\overline{8}$	$14\frac{-}{4}$	$16\overline{1}$	$17\overline{4}$	190	202	238	273	304	335	363	387	431	469	496	515
14.0	109	121	141	144	158	170	200	226	253	279	306	328	364	403	435	458
15.0	925	$10\overline{2}$	112	122	132	141	165	189	214	234	258	275	314	349	377	403
16.0	777	857	963	104	112	120	141	162	180	201	219	237	269	299	329	352
17.0	678	$74\hat{6}$	821	890	970	103	121	138	156	171	188	203	232	262	285	308
		040	707	R 00	0 00	007	105	110	100		101	176		000		000
18.0	596	046	101	186	838	006	TOD	T14	1.5.5	147	101	175	201	2.2h	2.4.7	- 2771

•

The Values of $\Psi \dot{a}$. No. 1

P. 23

x a	•00	.01	•02	•03	•04	•05	•06	.07	•08	•09	.10	•11	.12	.13	.14	.15
0.02*	<u>* 17</u> 8*	×874×	∗ <u>4</u> 59	265	173	<u>1</u> 07	740	531	391	298	230	183	147	120	99 <u>2</u>	83 <u>Q</u>
0.04	<u>8</u> 99	<u>6</u> 28	<u>4</u> 43	<u>₹</u> 21	236	<u>1</u> 77	<u>1</u> 36	<u>1</u> 06	845	680	555	459	383	323	275	235
0.06	<u>6</u> 05	<u>4</u> 77	<u>3</u> 77	<u>3</u> 01*	<u>₽</u> 42*	× <u>1</u> 97	161	<u>1</u> 33	111	932	791	676	582	502	438	382
0.08	<u>4</u> 56	<u>3</u> 84	<u>3</u> 24	<u>2</u> 73	230	196*	<u>1</u> 67	144	124	108	938	821	723	638	567	503
0.1	<u>3</u> 68	321	280	244	214	188	165	* <u>1</u> 46 [#]	·1294	<u>14</u>	102 101	910	812	730	558 709	596
0.2	109	102	107	100	$\frac{14}{110}$	106 1 00	700	±22	TTD	100	1011 1011	901* 840	8001	10401 770	710	720
0.0	121	1037	01V Ŧ10	801 801	710 710	846 10	#02	802	781	761	741	722	703	684	666	648
0.4	767	90r 753	730	725	712	609	686	673	660	647	635	623	611	599	587	576
0.6	635	627	618	610	601	593	584	576	567	559	550	542	534	526	518	511
0.0	539	533	527	521	515	510	504	498	492	486	480	475	469	464	458	453
0.8	463	459	455	451	447	443	439	435	431	427	423	419	415	412	408	404
0.9	406	403	400	397	394	391	388	385	382	3 7 9	376	373	370	368	365	362
1.0	358	35 6	354	352	349	347	345	343	341	339	337	334	332	330	328	326
1.2	286	285	284	282	281	280	279	277	276	275	274	273	271	270	269	268
1.4	234	233	232	232	231	230	229	229	228	227	226	226	225	224	223	223
1.6	196	196	195	195	194	194	193	193	192	192	191	191	190	190	189	189
1.8	166	166	165	165	165	164	164	164	163	163	163	162	162	162	161	161
2.0	142	142	142	141	141	141	141	140	140	140	140	139	139	139	139	139
2.2	123	123	123	123	122	122	122	122	122	122	121	121	121	121	121	121
2.4	107	107	10.1	107	107	106	106	106	106	106	106	100	100	100	100	109
2.0 2.0	954	953	952	957	951	950	949	94 <u>8</u>	941	940	940	940	94 <u>4</u> 049	940	944	94 <u>1</u>
2.0U	760	04 <u>9</u> 760	750	0 <u>40</u>	0 <u>4</u>	04 <u>1</u> 7 E 0	0 <u>40</u> 757	0 <u>40</u> 757	756	756	755	765	754	751	753	753
3.2	681	681	683	683	682	682	682	681	681	681	680	680	670	670	670	678
3.4	621	621	620	620	620	610	619	619	619	618	618	618	617	617	617	616
3.6	564	564	564	563	563	563	563	562	562	562	562	561	561	561	561	560
3.8	514	514	514	513	513	513	513	513	512	512	$51\overline{2}$	512	512	512	511	511
4.0	471	471	471	471	470	470	470	470	470	470	470	469	469	469	469	469
4.2	$4.3\overline{3}$	$43\overline{3}$	433	$43\overline{3}$	433	$43\overline{2}$	432	432	$43\bar{2}$	$43\overline{2}$	432	$43\overline{2}$	$43\overline{2}$	432	431	431
4.4	400	40 <u>0</u>	40 <u>0</u>	40 <u>0</u>	400	40 <u>0</u>	40 <u>0</u>	39 <u>9</u>	39 <u>9</u>	39 9	39 <u>9</u>	39 <u>9</u>	39 <u>9</u>	39 <u>9</u>	39 <u>9</u>	39 <u>9</u>
4.6	37Q	37 <u>0</u>	37 <u>0</u>	37 <u>0</u>	37 <u>0</u>	370	37 <u>0</u>	36 <u>9</u>	36 <u>9</u>	36 <u>9</u>	36 <u>9</u>	36 <u>9</u>	36 <u>9</u>	36 <u>9</u>	36 <u>9</u>	36 <u>9</u>
4.8	34 <u>3</u>	34 <u>3</u>	34 <u>3</u>	34 <u>3</u>	34 <u>3</u>	<u>343</u>	3 <u>4 3</u>	34 <u>3</u>	34 <u>3</u>	34 <u>2</u>	34 <u>2</u>	34 <u>2</u>	34 <u>2</u>	34 <u>2</u>	34 <u>2</u>	34 <u>2</u>
5.0	<u>320</u>	32 <u>0</u>	32 <u>0</u>	<u>320</u>	32 <u>0</u>	32 <u>0</u>	32 <u>0</u>	<u>320</u>	32 <u>0</u>	32 <u>0</u>	<u>320</u>	319	31 <u>9</u>	31 <u>9</u>	31 <u>9</u>	31 <u>9</u>
5.5	270	270	270	270	270	270	270	270	270	270	270	270	270	270	270	269
6.0 C E	231	231	231	231	23 <u>1</u>	231	231	231	231	231	231	231	231	231	231	231
0∙5 7-0	20 <u>0</u> 174	171	20 <u>0</u> 174	174	17/	200	174	174	174	171	200	20 <u>0</u> 174	200	174	174	200
7.5	153	153	153	153	153	153	153	153	153	153	153	153	153	153	153	153
8.0	136	136	136	136	136	136	136	136	136	136	136	136	136	136	136	136
8.5	122	$12\overline{2}$	122	122	122	122	122	122	122	122	$12\overline{2}$	$12\overline{2}$	122	$12\overline{2}$	122	122
9.0	110	110	110	110	110	110	110	110	110	110	110	.110	110	110	110	110
9.5	989	989	989	989	989	989	989	989	989	989	989	989	989	989	988	988
10.0	8 <u>97</u>	8 <u>97</u>	8 <u>97</u>	8 <u>97</u>	8 <u>97</u>	8 <u>97</u>	8 <u>97</u>	8 <u>97</u>	8 <u>97</u>	8 <u>97</u>	8 <u>97</u>	8 <u>97</u>	8 <u>97</u>	8 <u>97</u>	8 <u>97</u>	8 <u>97</u>
11.0	7 <u>49</u>	7 <u>49</u>	7 <u>49</u>	7 <u>49</u>	7 <u>49</u>	7 <u>49</u>	7 <u>49</u>	7 <u>49</u>	7 <u>49</u>	7 <u>49</u>	7 <u>49</u>	7 <u>49</u>	7 <u>49</u>	7 <u>49</u>	7 <u>49</u>	7 <u>49</u>
12.0	6 <u>35</u>	6 <u>35</u>	6 <u>35</u>	6 <u>35</u>	6 <u>35</u>	6 <u>35</u>	6 <u>35</u>	6 <u>35</u>	6 <u>35</u>	6 <u>35</u>	6 <u>35</u>	6 <u>35</u>	6 <u>35</u>	6 <u>35</u>	6 <u>35</u>	6 <u>35</u>
13.0	544	5 <u>44</u>	5 <u>44</u>	5 <u>44</u>	5 <u>44</u>	5 <u>44</u>	5 <u>44</u>	544	5 <u>44</u>	544	5 <u>44</u>	5 <u>44</u>	5 <u>44</u>	5 <u>44</u>	5 <u>44</u>	5 <u>44</u>
14.0	472	472	472	472	472	472	.4 <u>72</u>	472	472	472	4 <u>72</u>	472	472	472	472	4 <u>72</u>
15.0	415	415	4 <u>15</u>	415	415	415	415	415	415	415	415	415	415	415	415	415
	200	0 <u>00</u> 700	<u>ୁଚ୍ଚ</u>	0 <u>00</u>	200	0 <u>06</u>	0 <u>06</u>	0 <u>00</u>	200	000	366	366	5 <u>66</u>	366	3 <u>66</u>	3 <u>66</u>
18 0	202	202	<u>ಿ೭ರಿ</u> 202	202	202	0 <u>20</u>	202	202	3 <u>46</u>	ა <u>4ნ</u> ატე	3 <u>46</u> 202	360	360	346	326	365
19.0	261	261	261	~ <u>76</u> 261	261	261	261	261	261	261	261	261	261	261	2 <u>92</u> 261	261
- / • U	~ <u>\7</u>	いろち	~ <u>V</u> +	い <u>し</u> て	~ V T	~ ひも	с. Д. Т	ed t	4 <u>01</u>	<u> </u>	с <u>от</u>	с <u>От</u>	2 <u>2</u>	<u>لان</u> ہ	~ <u>01</u>	LQ2

• •					J	he T	Jalue	es of	Υά	L .	No	. 2			P. 2	24
x x	.16	.17	.18	.19	.20	.21	.22	•23	•24	.25	.26	.27	.28	•29	• 30	.32
0.02	702	597	513	445	38 <u>6</u>	<u>338</u>	299	264	23 <u>5</u>	210	18 <u>8</u>	170	15 <u>3</u>	139	12 <u>6</u>	10 <u>5</u>
0.04	203	$17\overline{7}$	154	135	120	106	94 <u>8</u>	85 <u>0</u>	761	68 <u>7</u>	62 <u>4</u>	56 <u>5</u>	51 <u>6</u>	<u>470</u>	43 <u>0</u>	36 <u>5</u>
0.06	337	297	264	235	211	190	171	155	141	128	117	107	97 <u>7</u>	89 <u>8</u>	82 <u>7</u>	70 <u>7</u>
0.08	449	403	363	327	296	269	246	224	205	188	173	159	147	136	126	108
0.1	538	488	445	405	371	339	313	288	265	245	227	210	195	182	169	148
0.2	*710*	×670	633	598	56 7	53 7	508	481	457	434	412	391	372	354	338	306
0.3	694	668×	*643 *	<619×	×596×	•575×	•555 ·	*535*	•515*	•496	478	462	446	430	415	386
0.4	631	614	598	582	566	551	536	522	508	495	482	*470*	458×	446	*435*	*414
0.5	565	554	543	532	521	511	501	491	481	471	462	453	444	435	420	409
0.6	503	495	487	479	471	464	457	450	443	436	429	444	410	410	404	396
0.7	447	442	436	431	425	420	415	410	405	401	396	391	200	201	310	2100
0.8	400	396	393	389	385	381	378	374	37 L	201	303	200	200	000 797	049 720	346
0.9	359	355	354	501	340 715	040	046	040 700	207	204	202	201	200	207	205	201
1.0 1.9	266	061 965	204	067 067	010 929	250	250	269	007 957	256	251	253	252	251	240	247
1 1	200	200 201	220	200	210	210	209	217	276	200	214	213	213	212	211	210
1•4 1 C	100	100	~~U 107	220 107	10C 77A	186	105	185	184	184	183	183	182	182	181	180
1.0	161	160	160	160	150	150	150	158	158	158	157	157	156	156	156	155
2.0	178	138	138	138	137	137	137	137	136	136	136	136	136	135	135	135
2.2	120	120	120	120	120	120	119	119	119	119	119	119	119	118	118	118
2.4	105	105	105	105	105	105	105	105	104	104	104	104	104	104	104	104
2.6	940	940	940	939	938	936	935	934	934	933	932	931	930	929	929	927
2.8	840	839	838	838	837	836	836	835	834	834	833	832	832	831	831	829
3.0	752	752	751	751	750	750	749	749	748	748	747	747	746	746	745	$74\overline{4}$
3.2	678	678	677	677	676	676	676	675	675	675	$67\overline{4}$	674	67 <u>3</u>	67 <u>3</u>	67 <u>3</u>	67 <u>2</u>
3.4	616	616	61 <u>5</u>	615	615	614	614	614	614	61 <u>3</u>	613	61 <u>3</u>	61 <u>2</u>	61 <u>2</u>	612	61 <u>1</u>
3.6	560	56 <u>0</u>	56 <u>0</u>	55 <u>9</u>	559	55 <u>9</u>	55 <u>9</u>	55 <u>8</u>	55 <u>8</u>	55 <u>8</u>	55 <u>8</u>	55 <u>8</u>	55 <u>7</u>	55 <u>7</u>	55 <u>7</u>	55 <u>6</u>
3.8	51 <u>1</u>	51]	51 <u>1</u>	51 <u>0</u>	51 <u>0</u>	51 <u>0</u>	51 <u>0</u>	51Q	509	50 <u>9</u>	50 <u>9</u>	50 <u>9</u>	50 <u>9</u>	50 <u>8</u>	50 <u>8</u>	50 <u>8</u>
4.0	46 <u>9</u>	46 <u>8</u>	46 <u>8</u>	46 <u>8</u>	46 <u>8</u>	46 <u>8</u>	46 <u>8</u>	46 <u>8</u>	46 <u>7</u>	46 <u>7</u>	46 <u>7</u>	46 <u>7</u>	46 <u>7</u>	467	46 <u>7</u>	46 <u>6</u>
4.2	43 <u>1</u>	43 <u>1</u>	43 <u>1</u>	43 <u>1</u>	43 <u>1</u>	43 <u>1</u>	43 <u>1</u>	43 <u>0</u>	43 <u>0</u>	43 <u>0</u>	43 <u>0</u>	43Q	43 <u>0</u>	43 <u>0</u>	43 <u>0</u>	42 <u>9</u>
4.4	39 <u>9</u>	39 <u>8</u>	39 <u>8</u>	39 <u>8</u>	39 <u>8</u>	39 <u>8</u>	39 <u>8</u>	39 <u>8</u>	39 <u>8</u>	39 <u>8</u>	39 <u>8</u>	39 <u>8</u>	39 <u>7</u>	397	39 <u>7</u>	39 <u>7</u>
4.6	36 <u>9</u>	36 <u>9</u>	36 <u>9</u>	36 <u>9</u>	368	36 <u>8</u>	368	36 <u>8</u>	36 <u>8</u>	36 <u>8</u>	368	36 <u>8</u>	368	368	36 <u>8</u>	367
4,8	342	342	34 <u>2</u>	342	34 <u>2</u>	342	342	34 <u>2</u>	34 <u>2</u>	34 <u>2</u>	341	341	341	341	341	341
5.0	319	319	319	319	े1 <u>9</u>	319	319	319	319	31 <u>9</u>	319	319	319	319	31 <u>9</u>	318
5.5	369	369	369	369	369	369	369	369	369	36 <u>9</u>	369	369	369	36 <u>9</u>	36 <u>9</u>	369
0.0	200	200	200	200	200	200	200	230	23 <u>0</u>	230	-23 <u>0</u> 100	~3 <u>∪</u> 100	230	230	23 <u>0</u>	230
70	174	174	174	171	174	174	174	200	199	199	199	174	199	199	199	199
7.5	153	153	159	153	153	153	153	153	153	152	153	152	157	152	152	114
8.0	136	136	136	136	136	136	136	136	136	136	136	136	136	136	136	10 <u>0</u> 136
8.5	122	122	122	122	122	122	122	122	122	122	122	122	122	122	122	122
9.0	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110
9.5	988	988	988	988	988	988	988	988	988	988	988	988	988	988	988	988
10.0	897	896	896	896	896	896	896	896	896	896	896	896	896	896	896	896
11.0	749	749	749	749	749	749	749	749	749	749	748	748	748	748	748	748
12.0	6 <u>35</u>	635	635	635	635	635	635	635	635	635	635	635	635	635	635	635
13.0	5 <u>44</u>	5 <u>44</u>	544	544	544	5 <u>44</u>	544	5 <u>44</u>	544	5 <u>44</u>	544	544	544	544	544	544
14.0	4 <u>72</u>	4 <u>72</u>	4 <u>72</u>	4 <u>72</u>	472	4 <u>72</u>	472	472	472	472	472	472	472	472	472	472
15.0	4 <u>15</u>	4 <u>15</u>	4 <u>15</u>	4 <u>15</u>	4 <u>15</u>	4 <u>15</u>	4 <u>15</u>	415	415	415	4 <u>15</u>	415	$4\overline{15}$	415	415	415
16.0	3 <u>66</u>	3 <u>66</u>	3 <u>66</u>	3 <u>66</u>	3 <u>6 6</u>	3 <u>66</u>	3 <u>66</u>	3 <u>66</u>	3 <u>66</u>	3 <u>66</u>	3 <u>66</u>	3 <u>66</u>	3 <u>66</u>	3 <u>66</u>	3 <u>66</u>	3 <u>66</u>
17.0	3 <u>26</u>	3 <u>26</u>	3 <u>26</u>	326	3 <u>26</u>	3 <u>26</u>	<u>326</u>	3 <u>26</u>	3 <u>26</u>	3 <u>26</u>	3 <u>26</u>	3 <u>26</u>	3 <u>26</u>	3 <u>26</u>	3 <u>26</u>	3 <u>26</u>
10.0	292	2 <u>92</u>	2 <u>92</u>	2 <u>92</u>	2 <u>92</u>	2 <u>92</u>	2 <u>92</u>	2 <u>92</u>	2 <u>92</u>	2 <u>92</u>	2 <u>92</u>	2 <u>92</u>	2 <u>92</u>	2 <u>92</u>	2 <u>92</u>	2 <u>92</u>
TA•0	5 7	۲ <u>61</u>	۲ <u>61</u>	۲ <u>61</u>	2 <u>61</u>	2 <u>61</u>	2 <u>61</u>	2 <u>61</u>	2 <u>61</u>	2 <u>61</u>	2 <u>61</u>	2 <u>61</u>	2 <u>61</u>	2 <u>61</u>	2 <u>61</u>	2 <u>61</u>

The Values of Ψ_a' .

]	[he]	Jalue	es of	Ύα	•	No	5.3			P	25
x	•34	•36	• 38	•40	•42	•44	•46	•48	• 50	• 52	• 54	•56	•58	.60	.65	.70
0.02	890	756	649	561	487	427	376	332	295	264	238	214	193	174	138	112
0.04	310	267	230	200	176	155	137	122	109	977	882	797	723	656	524	426
0.06	609	528	460	404	356	316	282	251	226	204	185	167	152	$1\overline{39}$	112	910
0.08	945	828	729	643	571	510	456	410	370	335	305	277	25 <u>3</u>	232	18 <u>8</u>	154
0.1	130	114	101	902	805	721	$65\overline{0}$	58 <u>8</u>	53 <u>3</u>	484	44 <u>1</u>	$40\bar{4}$	37 <u>0</u>	340	277	230
0.2	279	255	233	$21\overline{3}$	195	180	$16\overline{6}$	$15\overline{3}$	142	132	122	113	106	98 <u>3</u>	834	711
0.3	360	331	315	296	277	260	244	229	215	203	192	181	171	161	140	123
0.4 *	394	374	355	336	320	305	290	276	263	251	239	228	218	208	186	167
0.5	393	× 37 7 ×	× 36 3×	× 34.9×	×336	323	311	299	288	277	267	257	247	238	217	199
0.6	380	368	357	346	335	*325*	×315×	* 305*	296	*287*	⊧278	270	262	254	236	218
0.7	358	350	341	332	324	316	308	300	292	285	×278×	×271×	*264*	·258×	243	228
0.8	335	329	3 22	315	309	302	296	289	283	278	272	267	262	256	242*	*230
0.9	310	305	300	295	290	285	280	275	270	266	261	257	252	248	237	228
1.0	287	283	279	275	271	267	264	260	256	252	248	245	241	237	229	221
1.2	245	242	240	237	235	232	230	227	225	223	221	218	216	214	208	203
1.4	208	207	205	204	202	201	200	198	196	194	193	191	190	188	185	181
1.6	179	178	177	176	175	174	173	172	172	171	170	169	168	166	164	162
1.8	154	154	153	152	152	151	150	150	149	148	148	147	146	146	144	142
2.0	134	134	133	133	132	132	131	131	131	130	130	129	129	128	127	126
2.2	118	117	117	117	116	116	116	115	115	115	114	114	114	113	113	112
2.0	103	103	103	103	103	102	102	102	102	101	101	101	101	101	700	995
20	960	960	966	920	918	917	915	913	912	910	908	900	905	903	899	895
κ. 7 Ο	747	06 <u>1</u>	06 <u>0</u>	02 <u>4</u>	020	021 770	82 <u>0</u>	819	818	010	015	014	012	011	000	805
0•U 3 9	671	670	(4 <u>1</u> 670	14 <u>U</u>	139	100	131	100	130	10 <u>0</u> 664	(3 <u>4</u>	100	136	101	120	020
3 A	610	610	600	600 <u>9</u>	600 <u>0</u>	6001	607	600 606	600	00 <u>4</u>	600	600	60 <u>2</u>	001	601	500
3.6	556	555	555	55A	554	553	553	552	552	500 <u>0</u>	551	60 <u>4</u>	550	500	648 00T	547
3.8	508	507	507	506	506	506	505	505	505	504	504	504	503	503	502	501
4.0	466	466	465	465	465	464	464	464	464	463	463	463	462	462	461	461
4.2	429	429	429	429	428	428	428	428	428	427	427	427	427	426	426	425
4.4	397	397	397	396	396	396	396	396	396	395	395	395	395	395	394	394
4.6	367	367	367	367	367	366	366	366	366	366	366	366	365	365	365	364
4.8	341	341	341	341	340	340	340	340	340	340	340	340	340	339	339	339
5.0	318	318	318	318	318	318	318	318	318	317	317	317	317	317	317	317
5.5	26 <u>9</u>	269	269	269	269	268	268	268	268	268	268	268	268	268	268	268
6.0	230	23 <u>Q</u>	230	23 <u>0</u>	23 <u>0</u>	23 <u>0</u>	23 <u>0</u>	230	23 <u>0</u>	229	229	229	229	229	229	229
6.5	19 <u>9</u>	19 <u>9</u>	199	1 9 9	19 <u>9</u>	19 <u>9</u>	19 <u>9</u>	199	199	19 <u>9</u>	199	199	199	199	198	198
7.0	17 <u>4</u>	17 <u>4</u>	17 <u>3</u>	17 <u>3</u>	17 <u>3</u>	17 <u>3</u>	17 <u>3</u>	17 <u>3</u>	17 <u>3</u>	17 <u>3</u>	17 <u>3</u>	17 <u>3</u>	17 <u>3</u>	17 <u>3</u>	17 <u>3</u>	17 <u>3</u>
7.5	15 <u>3</u>	15 <u>3</u>	15 <u>3</u>	15 <u>3</u>	15 <u>3</u>	15 <u>3</u>	15 <u>3</u>	15 <u>3</u>	15 <u>3</u>	15 <u>2</u>	15 <u>2</u>	15 <u>2</u>	15 <u>2</u>	15 <u>2</u>	15 <u>2</u>	152
8.0	136	13 <u>6</u>	13 <u>6</u>	13 <u>6</u>	13 <u>6</u>	13 <u>6</u>	13 <u>6</u>	13 <u>6</u>	13 <u>6</u>	13 <u>6</u>	13 <u>6</u>	13 <u>6</u>	13 <u>6</u>	13 <u>6</u>	13 <u>5</u>	13 <u>5</u>
8.5	122	$12\underline{2}$	12 <u>2</u>	12 <u>2</u>	12 <u>2</u>	12 <u>2</u>	122	12 <u>2</u>	12 <u>2</u>	12 <u>2</u>	12 <u>2</u>	12 <u>2</u>	12 <u>2</u>	12 <u>2</u>	12 <u>2</u>	122
9.0	110	110	110	110	110	110	110	11 <u>0</u>	1 10	1 10	110	110	11 <u>0</u>	11 <u>0</u>	11 <u>0</u>	110
9.5	988	988	9 <u>88</u>	9 <u>88</u>	9 <u>87</u>	9 <u>87</u>	9 <u>87</u>	9 <u>87</u>	9 <u>87</u>	9 <u>87</u>	9 <u>87</u>	9 <u>87</u>	9 <u>87</u>	9 <u>87</u>	9 <u>87</u>	9 <u>86</u>
10.0	896	896	896	896	896	896	896	8 <u>96</u>	8 <u>96</u>	895	8 <u>95</u>	8 <u>95</u>	8 <u>95</u>	8 <u>95</u>	8 <u>95</u>	8 <u>95</u>
12 0	1 <u>40</u> 675	1 <u>40</u> 675	148	(<u>48</u> 677	748	148	748	748	748	748	7 <u>48</u>	7 <u>48</u>	7 <u>48</u>	7 <u>48</u>	7 <u>48</u>	7 <u>48</u>
1300	0 <u>00</u> 511	000	0 <u>00</u> 5/ /	0 <u>35</u> 5/4	6 <u>34</u>	6 <u>34</u>	6 <u>34</u>	6 <u>34</u>	6 <u>34</u>	6 <u>34</u>	6 <u>34</u>	6 <u>34</u>	6 <u>34</u>	6 <u>34</u>	6 <u>34</u>	6 <u>34</u>
14.0	472	0 <u>±</u> 4 479	0 <u>+4</u> 479	0 <u>44</u> 472	0 <u>44</u> 479	0 <u>44</u> 479	044	0 <u>44</u>	0 <u>44</u>	5 <u>44</u>	5 <u>44</u>	5 <u>44</u>	544	544	544	544
16.0	415	415	$\frac{1}{415}$	415	415	415	416	<u>። 4</u> ገፍ	416	4 <u>16</u> 175	416	4 <u>16</u>	412	412	412	472
16.0	366	366	366	366	366	366	366	366	366	<u>410</u> 366	7 <u>10</u> 7 6 6	410 366	475 200	410	410 410	410
17.0	326	326	326	326	326	326	326	326	326	326	300 306	320	0 <u>00</u> 394	0 <u>00</u> 0 596	200	200
18.0	292	292	292	292	292	292	292	202	202	202	202	202	202	0 <u>60</u> 202	0 <u>60</u> 202	200
19.0	261	261	261	261	261	261	261	$2\overline{61}$	261	261	261	261	261	261	261	261
Strange Manager									···	~	~ <u>~</u>	~	~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~ <u>~</u> {

-	7	•		
The	Values	of.	Ψa	٠

No. 4

P. 26

xa	•75	.80	•85	•90	•95	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
0.02	<u>911</u>	754	632	534	456	393	296	230	<u>181</u>	146	119	098	082	069	059	051
0.04	352	291	2 <u>45</u>	208	174	153	171	908	160	200	106	000	269	610	<u>601</u> 576	462
0.00	120	100	5 <u>55</u>	4 <u>04</u> 704	0 <u>90</u>	ა <u>ე</u> ნიუ	4 <u>5 0</u>	2 <u>00</u>	202	220	168 T <u>00</u>	157	132	112	060	827
	102	165	1 20	1 <u>04</u> 110	103	806 806	4 <u>01</u> 602	5 <u>04</u>	A37	356	203	245	206	176	151	130
0.2	411 49 <u>6</u>	520	102	103	<u>200</u> 255	314	240	2∩1	164	136	114	961	820	705	611	531
0.3	108	956	849	757	678	608	495	409	340	288	243	208	180	156	136	120
0.4	150	135	$12\overline{2}$	110	100	913	765	641	54.8	468	403	350	305	268	237	210
0.5	181	166	153	140	129	119	1.02	876	759	660	576	506	448	398	353	316
0.6	202	188	175	163	152	142	124	108	954	845	747	668	595	533	481	432
0.7	214	201	189	178	168	158	141	125	112	101	905	813	736	665	60 <u>5</u>	550
0.8 >	219	207	197	188	178	169	153	138	126	114	104	94 <u>4</u>	86 <u>1</u>	79 <u>1</u>	72 <u>3</u>	66 <u>4</u>
0.9	218	×208×	×200×	* 191	183	175	160	147	155	124	114	105	97 <u>1</u>	89 9	82 <u>7</u>	765
1.0	213	205	197	190*	×184*	×177*	·16 4	152	141	131	122	113	105	97 <u>9</u>	91 <u>4</u>	85 <u>3</u>
1.2	197	192	187	182	177	172	162	154	145	·137:	×129	122	115	109	103	97 <u>5</u>
1.4	178	174	170	167	164	160	154	147	141	135'	×129×	×123	*118 *	•113	×108	103
1.6	159	157	154	152	149	147	142	137	133	128	124	120	116	112	×108×	* 104
1.8	141	139	137	135	134	132	129	126	122	119	116	113	110	107	104	101
2.0	125	124	122	121	120	119	117	114	112	110	108	105	103	101	98 <u>3</u>	96 <u>0</u>
2.2	111	110	109	109	108	107	105	104	102	100	98 <u>5</u>	96 <u>8</u>	95 <u>1</u>	93 <u>4</u>	917	90 <u>0</u>
2.4	99 <u>0</u>	984	97 <u>9</u>	97 <u>4</u>	96 <u>8</u>	96 <u>3</u>	95 <u>0</u>	93 <u>7</u>	92 <u>5</u>	91 <u>2</u>	89 <u>9</u>	88 <u>6</u>	87 <u>3</u>	861	84 <u>8</u>	83 <u>5</u>
2.6	89 <u>0</u>	88 <u>6</u>	88 <u>2</u>	87 <u>8</u>	87 <u>3</u>	86 <u>9</u>	85 <u>9</u>	85 <u>0</u>	84 <u>0</u>	83 <u>0</u>	82 <u>1</u>	811	801	791	782	772
2.8	80 <u>1</u>	79 <u>8</u>	79 <u>5</u>	79 <u>2</u>	78 <u>8</u>	78 <u>5</u>	77 <u>8</u>	77 <u>0</u>	76 <u>3</u>	75 <u>6</u>	74 <u>9</u>	74 <u>1</u>	73 <u>4</u>	72 <u>7</u>	719	712
3.0	72 <u>3</u>	72 <u>1</u>	71 <u>8</u>	71 <u>6</u>	71 <u>3</u>	71 <u>1</u>	70 <u>5</u>	70 <u>0</u>	69 <u>4</u>	68 <u>9</u>	68 <u>3</u>	67 <u>7</u>	67 <u>2</u>	66 <u>6</u>	661	65 <u>5</u>
3.2	65 <u>6</u>	65 <u>4</u>	65 <u>2</u>	65 <u>0</u>	64 <u>8</u>	64 <u>6</u>	642	63 <u>8</u>	63 <u>3</u>	62 <u>9</u>	62 <u>5</u>	621	617	612	608	604
3.4	59 <u>8</u>	596	59 <u>5</u>	59 <u>3</u>	592	59 <u>0</u>	58 <u>7</u>	58 <u>3</u>	58 <u>0</u>	576	57 <u>3</u>	56 <u>9</u>	566	562	559	55 <u>5</u>
3.6	54 <u>6</u>	545	544	542	541	54 <u>0</u>	537	53 <u>5</u>	53 <u>2</u>	529	52 <u>7</u>	524	521	518	516	513
3.8	500	499	498	497	496	49 <u>5</u>	493	491	489	487	485	483	481	479	477	475
4.0	460	459	458	458	457	456	454	453	451	449	448	440	444	446	<u>441</u>	439
4.6	445	44 <u>4</u>	464	4:4 <u>0</u>	443	44 <u>7</u>	461	419	41 <u>0</u>	410	410	41 <u>4</u> 704	412	411	409	408
*•4 • A G	29 <u>0</u> 761	39 <u>3</u> 361	29 <u>6</u>	- 29 <u>4</u> - 262	09 <u>6</u> 769	09 <u>+</u>	09 <u>0</u> 721	209	00 <u>0</u> 750	201	20 <u>0</u> 760	00 <u>9</u> 757	00 <u>0</u> 756	00 <u>6</u> 755	201	252
18	320	30 <u>4</u> 372	20 <u>0</u> 772	20 <u>0</u> 270	00 <u>6</u> 277	227	226	276	30 <u>9</u> 375	50 <u>0</u> 774	200	372	30 <u>0</u> 332	- ออ <u>อ</u> - ซซา	งอ <u>น</u> รูรุโ	300
5.0	316	316	316	<u>00</u> 818	20 <u>1</u> 215	<u>งา</u> ราธ	330	<u>300</u>	<u>อออ</u> ชาช	30生	いつ生	<u>อออ</u> ราย	20 <u>2</u> 210	300	200	300
5.5	267	267	267	267	267	267	266	266	266	265	265	26A	264	264	263	263
6.0	229	229	228	228	228	228	228	227	227	227	227	226	226	226	225	225
6.5	1.98	198	198	198	198	198	198	197	197	197	197	196	196	196	196	196
7.0	173	$17\overline{3}$	173	173	173	$17\bar{3}$	172	172	172	172	172	172	172	171	171	171
7.5	15 <u>2</u>	15 <u>2</u>	$15\overline{2}$	$15\overline{2}$	$15\overline{2}$	$15\overline{2}$	$15\overline{2}$	$15\overline{2}$	152	152	152	151	151	151	151	151
8.0	13 <u>5</u>	135	135	135	135	13 <u>5</u>	135	135	135	135	135	135	135	135	134	134
8.5	12 <u>2</u>	12 <u>2</u>	12 <u>1</u>	12 <u>1</u>	12 <u>1</u>	12 <u>1</u>	12 <u>1</u>	121	121	121	121	$12\overline{1}$	121	$12\overline{1}$	$12\overline{1}$	121
9.0	110	110	<u>110</u>	11 <u>0</u>	11 <u>0</u>	11 <u>0</u>	11 <u>0</u>	11 <u>0</u>	10 <u>9</u>	10 <u>9</u>	109	10 <u>9</u>	10 <u>9</u>	10 <u>9</u>	109	109
9.5	9 <u>86</u>	9 <u>86</u>	9 <u>86</u>	9 <u>86</u>	9 <u>86</u>	9 <u>85</u>	9 <u>85</u>	9 <u>85</u>	9 <u>84</u>	9 <u>84</u>	9 <u>84</u>	9 <u>83</u>	9 <u>8</u> 3	9 <u>83</u>	9 <u>82</u>	9 <u>82</u>
10.0	8 <u>95</u>	8 <u>95</u>	8 <u>94</u>	8 <u>94</u>	8 <u>94</u>	8 <u>94</u>	8 <u>94</u>	8 <u>93</u>	8 <u>93</u>	8 <u>93</u>	8 <u>93</u>	8 <u>92</u>	8 <u>92</u>	8 <u>92</u>	8 <u>91</u>	8 <u>91</u>
11.0	7 <u>48</u>	7 <u>47</u>	7 <u>47</u>	7 <u>47</u>	7 <u>47</u>	7 <u>47</u>	7 <u>47</u>	7 <u>47</u>	7 <u>46</u>	7 <u>46</u>	7 <u>46</u>	7 <u>46</u>	746	7 <u>45</u>	7 <u>45</u>	7 <u>45</u>
15.0	6 <u>34</u>	6 <u>34</u>	6 <u>34</u>	6 <u>34</u>	6 <u>34</u>	6 <u>34</u>	6 <u>34</u>	6 <u>34</u>	6 <u>33</u>	6 <u>33</u>	6 <u>33</u>					
13.0	5 <u>44</u>	5 <u>44</u>	5 <u>43</u>	5 <u>43</u>	5 <u>43</u>	5 <u>43</u>	5 <u>4 3</u>	5 <u>43</u>	5 <u>43</u>	5 <u>43</u>	5 <u>43</u>	5 <u>43</u>	5 <u>43</u>	5 <u>43</u>	5 <u>4 3</u>	5 <u>43</u>
14.0	472	472	4 <u>72</u>	4 <u>72</u>	4 <u>72</u>	4 <u>72</u>	4 <u>72</u>	4 <u>72</u>	4 <u>71</u>	4 <u>71</u>	4 <u>71</u>					
10.0	415	415	415	415	415	4 <u>15</u>	415	415	4 <u>14</u>	4 <u>14</u>	4 <u>14</u>	4 <u>14</u>	4 <u>14</u>	414	4 <u>14</u>	4 <u>14</u>
10.0	366	366	366	3 <u>66</u>	3 <u>66</u>	3 <u>66</u>	3 <u>66</u>	3 <u>66</u>	3 <u>65</u>	3 <u>65</u>	3 <u>65</u>					
1/•U	325	326	3 <u>26</u>	3 <u>26</u>	326	3 <u>26</u>	326	3 <u>26</u>	326	<u>326</u>	326	3 <u>26</u>	3 <u>26</u>	326	326	3 <u>26</u>
10.0	201	292	292	292	292	2 <u>92</u>	292	292	2 <u>92</u>	292	2 <u>92</u>	2 <u>92</u>	2 <u>92</u>	2 <u>92</u>	2 <u>92</u>	2 <u>92</u>
72.0A	201	5 <u>01</u>	∠ <u>0</u> ↓	2 <u>0</u> 1	201	۲ <u>و</u> ۲	201	2 <u>61</u>	2 <u>61</u>	2 <u>61</u>	2 <u>61</u>	5 <u>61</u>	2 <u>61</u>	2 <u>61</u>	261	2 <u>61</u>

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						ſ	The V	Value	es of	Ψ_a	1.	No	5 • 5			P•	27
$\begin{array}{c} 0.02 0.44 0.88 0.33 0.25 0.26 0.23 0.21 0.19 0.17 0.16 0.12 0.10 0.09 0.07 0.06 0.05 \\ 0.06 4.01 1.13 0.05 0.94 0.94 0.96 0.76 0.62 0.51 0.25 0.26 0.21 0.26 0.28 \\ 0.06 4.01 51 0.05 2.24 1.15 1.24 1.15 1.26 1.11 0.98 0.82 0.71 0.63 0.52 \\ 0.06 4.01 0.13 0.26 7.2 0.26 0.24 0.26 0.24 0.26 0.77 0.26 0.25 \\ 0.06 4.01 0.13 0.26 0.27 0.26 0.24 0.26 0.24 0.26 0.27 0.26 $	x x	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0	3.2	3.4	3.6	3.8	4.0	4.2
$\begin{array}{c} \textbf{0.04} & 177 & 154 & 135 & 119 & 106 & 024 & 084 & 076 & 068 & 062 & 051 & 042 & 036 & 052 \\ \textbf{0.06} & 720 & 630 & 554 & 400 & 433 & 688 & 448 & 112 & 242 & 255 & 212 & 117 & 151 & 128 & 110 & 028 \\ \textbf{0.1} & 113 & 922 & 673 & 772 & 686 & 613 & 549 & 496 & 448 & 405 & 337 & 262 & 238 & 204 & 175 & 152 \\ \textbf{0.2} & 461 & 410 & 364 & 324 & 289 & 260 & 234 & 211 & 91 & 74 & 46 & 123 & 104 & 955 & 774 & 674 \\ \textbf{0.3} & 106 & 938 & 838 & 750 & 674 & 607 & 550 & 498 & 454 & 415 & 348 & 296 & 253 & 218 & 117 & 167 \\ \textbf{0.4} & 187 & 167 & 149 & 134 & 122 & 110 & 000 & 914 & 638 & 766 & 646 & 552 & 475 & 411 & 360 & 315 \\ \textbf{0.4} & 187 & 167 & 149 & 134 & 122 & 100 & 100 & 914 & 638 & 766 & 646 & 552 & 475 & 411 & 360 & 315 \\ \textbf{0.5} & 244 & 256 & 231 & 209 & 190 & 173 & 158 & 145 & 133 & 123 & 104 & 892 & 775 & 676 & 591 & 522 \\ \textbf{0.6} & 391 & 356 & 323 & 294 & 269 & 246 & 227 & 209 & 192 & 178 & 153 & 132 & 115 & 101 & 686 & 784 \\ \textbf{0.7} & 500 & 461 & 421 & 807 & 555 & 383 & 633 & 030 & 269 & 257 & 209 & 185 & 165 & 147 \\ \textbf{0.9} & 709 & 660 & 612 & 570 & 571 & 555 & 553 & 474 & 4467 & 473 & 375 & 252 & 262 & 234 & 209 & 188 \\ \textbf{1.6} & 976 & 943 & 901 & 663 & 827 & 717 & 775 & 575 & 771 & 630 & 586 & 546 & 104 & 776 & 438 & 406 \\ \textbf{1.6} & 965 & 957 & 922 & 901 & 873 & 883 & 813 & 794 & 774 & 754 & 711 & 668 & 631 & 574 & 630 & 528 \\ \textbf{2.0} & 389 & 917 & 896 & 874 & 853 & 833 & 913 & 794 & 774 & 754 & 711 & 668 & 651 & 649 & 652 & 628 & 576 \\ \textbf{1.8} & 965 & 957 & 922 & 901 & 873 & 838 & 813 & 794 & 774 & 754 & 711 & 668 & 651 & 656 & 556 & 556 & 556 & 556 & 566 & 566 & 566 & 566 & 566 & 566 & 566 & 56$	0.02	044	038	033	029	026	023	021	019	017	015	012	010	009	007	006	006
$\begin{array}{c} 0.06 \ \ \hline 101 \ \ 351 \ \ \hline 306 \ \ 272 \ \ 241 \ \ 216 \ \ 122 \ \ 173 \ \ 156 \ \ 141 \ \ 117 \ \ 086 \ \ 062 \ \ 070 \ \ 060 \ \ \ 052 \ \ 070 \ \ 060 \ \ \ 052 \ \ 070 \ \ 060 \ \ \ 052 \ \ 070 \ \ 060 \ \ \ 052 \ \ 070 \ \ 060 \ \ \ 052 \ \ 070 \ \ 070 \ \ \ 070 \ \ \ 070 \ \ \ 070 \ \ \ \$	0.04	177	154	135	119	106	094	084	076	068	062	051	042	036	031	026	023
$\begin{array}{c} \hline 0.08 \\ \hline 720 \\ \hline 0.1 \\ \hline 113 \\ 929 \\ 973 \\ 97$	0.06	401	351	308	272	241	215	192	173	156	141	117	098	082	070	060	052
0.1 $\overline{113}$ $\overline{922}$ $\overline{973}$ $\overline{772}$ $\overline{866}$ $\overline{613}$ $\overline{642}$ 949 448 405 $\overline{377}$ 282 238 204 895 774 674 0.2 461 410 364 322 239 260 234 211 191 174 146 123 104 895 774 674 0.3 106 938 838 750 674 607 550 496 454 415 548 296 253 218 189 166 0.4 187 167 149 134 122 110 100 914 838 766 646 552 475 411 360 315 0.5 284 256 231 209 190 173 158 145 133 123 104 899 775 676 591 522 0.6 391 356 323 294 269 246 227 209 192 178 163 132 116 100 866 784 0.7 502 461 421 387 355 328 302 280 259 241 209 182 159 140 124 110 0.8 610 561 519 490 445 4412 383 355 330 309 262 237 209 185 165 147 0.9 709 660 612 570 531 493 463 432 404 379 335 295 262 234 209 188 1.2 975 875 825 785 742 702 667 634 601 571 518 467 424 367 352 320 1.4 986 943 901 863 827 791 757 725 635 666 610 561 517 476 439 468 1.4 9966 943 901 863 827 791 757 775 775 7718 7718 786 666 677 639 660 612 570 552 2.2 883 678 506 348 517 801 792 774 577 547 711 686 665 6612 610 561 517 478 439 406 2.4 823 810 798 773 761 778 773 774 774 5754 7718 7718 660 629 602 658 558 2.2 8367 860 845 817 801 770 755 733 711 686 665 662 676 259 260 2058 556 558 2.4 823 810 798 793 773 761 778 773 765 575 555 548 539 529 520 620 502 558 2.4 872 479 469 682 674 666 659 651 6457 645 6457 459 260 605 589 579 2.4 823 816 363 822 822 822 824 84 444 436 431 436 442 444 44 44 44 44 44	0.08	720	630	554	490	434	388	348	312	282	255	212	177	150	128	110	095
0.2 461 410 364 324 289 260 282 211 191 174 146 123 104 867 174 674 0.3 106 938 838 750 674 607 550 498 454 415 348 296 253 215 180 165 0.4 167 167 149 134 122 110 100 914 838 766 645 552 475 411 360 315 0.5 284 256 231 209 190 173 188 145 133 123 104 899 775 676 591 522 0.6 391 356 323 294 269 426 227 209 192 178 153 332 115 10.1 866 784 0.7 502 461 421 387 355 328 302 280 259 241 209 182 159 140 124 110 0.8 610 561 519 440 445 412 883 355 330 309 262 237 209 185 165 147 149 866 945 901 863 827 702 867 634 404 397 354 317 284 256 2311.2 925 875 825 783 742 702 867 634 601 571 518 467 423 876 352 3201.4 986 945 901 863 827 791 757 725 655 676 6356 610 561 517 476 439 $4061.6 8 100^{\circ}970^{\circ}935^{\circ}901^{\circ}8673^{\circ}849^{\circ}824^{\circ}792^{\circ}775^{\circ}754^{\circ}711^{\circ}680 586 564 610 55852.883$ 867 860 834 817 801 786 770 775 737 716 868 653 1594 660 5585522.2 883 867 860 834 817 807 786 733 711 868 263 262 602 5762.6 762 753 743 734 724 714 705 695 686 676 657 639 620 602 585 564286 7662 752 573 433 734 724 714 705 695 685 674 627 625 650 550 539 520	0.1	113	992	873	772	686	613	549	<u>496</u>	<u>448</u>	<u>405</u>	<u>337</u>	282	238	<u>204</u>	<u>175</u>	<u>152</u>
0.3 106 938 838 750 674 607 550 498 454 415 348 296 253 216 189 165 0.4 187 167 149 134 122 110 100 914 838 766 646 552 475 411 360 315 0.5 284 256 231 209 190 173 158 145 133 123 104 899 775 676 591 522 0.6 391 356 323 294 269 246 227 209 192 178 153 132 115 101 866 784 0.7 502 461 421 887 355 328 302 260 259 241 209 182 159 140 124 110 0.8 610 561 519 480 445 412 383 355 330 309 269 237 209 185 165 147 0.9 709 660 612 570 551 493 463 432 404 379 335 295 262 234 209 186 1.0 796 674 697 652 610 571 535 503 474 446 397 354 317 284 255 231 1.2 925 875 825 783 742 702 667 634 601 571 518 467 424 387 353 230 1.4 986 943 901 863 827 791 757 725 695 666 610 561 517 476 439 406 1.6 *100*970*355*901 868 837 810 781 752 725 677 630 586 546 510 476 1.8 985 957 929*901*863 837 810 781 772 754 711 668 615 594 560 538 2.2 883 867 850 834 817 801 786 770 755 739 710 662*653*62*600576 2.4 825 610 796 785 533 613 770 756 738 711 686 665 624 619 565 559 2.2 883 867 850 834 817 801 786 770 755 739 710 662*653*62*600576 2.4 825 610 798 785 773 761 748 736 783 711 686 665 624 619 596 576 2.4 825 610 798 785 773 761 748 736 783 711 686 665 624 619 596 576 2.4 825 610 798 785 733 424 949 491 491 486 426 421 432 420 420 436 3.0 649 643 638 632 626 620 614 609 605 507 585 574 562 550 539 527 3.2 599 595 590 586 581 576 572 567 563 558 548 539 529 520 510 500 3.4 552 548 545 541 538 534 531 527 584 520 512 505 497 496 425 447 3.8 473 470 468 465 463 461 458 456 453 461 446 441 436 431 426 421 4.0 437 435 434 432 430 428 426 425 423 421 417 413 408 404 400 396 4.2 406 405 403 402 405 598 597 539 539 329 328 392 889 885 385 335 337 3.4 379 377 376 374 373 372 370 369 367 366 363 60. 357 355 553 542 4.8 329 328 327 326 325 324 323 322 322 322 322 322 322 322 322	0.2	461	410	364	324	289	2 <u>60</u>	234	211	1 <u>91</u>	174	146	1 <u>23</u>	104	895	774	674
0.4 167 167 149 134 122 110 100 914 638 766 646 552 475 411 360 315 0.5 284 256 231 209 190 173 158 145 133 123 104 899 775 676 591 522 0.6 391 356 322 294 269 246 227 209 192 178 153 132 115 101 886 754 0.7 502 461 421 387 355 328 302 280 259 241 209 182 159 140 124 110 0.6 610 561 519 480 445 412 383 355 530 302 269 273 209 185 165 147 0.9 709 660 612 570 531 493 463 432 404 379 335 295 262 234 209 188 1.0 796 744 697 652 610 571 535 503 474 446 397 354 317 284 256 231 1.2 925 875 825 783 742 702 667 634 601 571 518 467 424 387 352 320 1.4 986 943 901 863 827 791 757 725 695 666 610 561 517 476 439 406 1.6 *100*970*935*901 868 837 810 781 752 725 677 630 586 455 104 76 1.8 985 957 9229*01*873*49*824*92*775*74 711 668 663 594 560 528 2.0 939 917 896 874 853 833 813 794 774*754*718*684 650 619 588 559 2.2 883 867 850 834 817 801 786 773 751 716 62 663 654 631 594 560 528 2.0 939 917 896 874 853 833 813 794 774*754*718*684 650 602 576 2.4 823 867 850 834 817 801 786 773 751 716 68 66 516 542 619 588 559 2.4 823 867 850 834 817 801 786 773 751 168 665 263 622 600 553 564 2.6 762 753 743 734 724 714 705 695 686 676 657 639 620 602 575 2.6 762 673 743 734 724 714 705 695 686 676 657 639 620 602 575 2.6 764 697 689 682 674 666 659 651 646 638 551 491 489 482 474 3.6 610 507 505 502 499 496 493 491 488 485 479 472 466 489 453 447 3.8 473 470 468 465 463 461 465 453 451 446 441 436 431 426 474 3.6 473 470 468 465 463 389 397 395 394 392 389 385 385 382 378 375 371 4.4 379 377 376 374 373 372 370 369 367 366 363 360 357 355 552 349 4.8 329 328 327 326 324 323 322 321 322 318 316 314 312 310 306 4.2 406 405 403 402 405 408 304 342 434 343 341 338 336 333 31 329 4.8 329 328 327 326 324 323 322 322 322 322 222 221 221 220 229 219 219 5.5 263 262 262 261 261 260 260 259 259 259 257 256 255 255 252 251 5.0 307 307 306 305 305 304 334 347 345 334 1338 335 133 133 133 4.8 329 328 327 326 324 322 322 322 322 222 221 221 220 229 221 291 5.5 263 262 262 261 261 260 260 259 259 259 257 256 255 255 25	0.3	106	938	838	750	674	6 <u>07</u>	550	4 <u>98</u>	4 <u>54</u>	4 <u>15</u>	3 <u>48</u>	2 <u>96</u>	2 <u>53</u>	2 <u>18</u>	1 <u>89</u>	1 <u>65</u>
0.5 284 286 231 209 190 173 188 145 133 123 104 899 775 676 591 522 0.6 391 356 323 294 269 246 227 209 192 178 153 132 115 101 886 784 0.7 502 461 421 387 355 328 302 280 259 241 209 182 159 140 124 110 0.8 610 561 519 480 445 412 383 355 330 309 269 237 209 185 165 147 0.9 709 660 612 570 531 493 463 432 404 379 335 292 262 234 209 188 1.0 796 744 697 652 610 571 535 503 474 446 397 354 317 284 256 231 1.2 925 875 825 783 742 702 667 634 601 571 518 467 424 357 352 202 1.4 986 943 901 863 827 791 757 775 754 711 668 615 546 546 510 476 1.8 985 957 929 901 868 837 810 781 752 725 677 630 566 546 510 476 1.8 985 957 929 901 868 837 810 781 752 725 677 630 566 546 510 476 1.8 985 957 929 901 868 837 810 781 752 739 710 682 653 626 605 576 2.4 823 810 798 785 773 761 748 736 733 711 688 665 642 619 588 559 2.2 883 867 850 834 817 801 786 770 755 739 710 682 653 626 605 576 2.4 823 810 798 785 773 761 748 736 733 711 688 665 642 819 598 576 2.4 823 810 798 785 773 761 748 736 763 711 688 665 642 819 598 576 2.4 872 810 798 785 773 761 774 765 753 571 585 574 562 550 539 527 2.2 595 595 956 568 1576 572 567 563 558 543 539 522 550 539 527 2.2 595 595 950 560 586 531 576 572 567 563 558 543 539 522 550 539 527 2.2 595 595 950 586 581 756 572 557 553 558 543 539 522 550 539 527 2.2 595 595 950 586 581 576 572 557 553 558 543 539 522 550 539 527 2.2 595 595 950 580 449 349 496 493 491 486 465 479 472 466 458 453 447 3.6 473 470 468 465 463 463 464 458 453 451 446 441 436 431 426 421 4.0 437 435 434 432 430 428 426 425 425 423 421 417 413 400 404 400 396 4.2 406 405 403 402 405 398 397 395 394 392 386 382 332 333 333 299 4.8 329 387 376 376 374 373 372 370 376 374 373 332 332 322 221 221 220 220 120 120 120 120 120 1	0.4	187	167	14 <u>9</u>	134	12 <u>2</u>	110	100	914	8 <u>38</u>	7 <u>66</u>	6 <u>46</u>	5 <u>52</u>	4 <u>75</u>	4 <u>11</u>	3 <u>60</u>	3 <u>15</u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.5	28 <u>4</u>	25 <u>6</u>	23 <u>1</u>	209	19 <u>0</u>	17 <u>3</u>	15 <u>8</u>	14 <u>5</u>	13 <u>3</u>	123	10 <u>4</u>	8 <u>99</u>	7 <u>75</u>	6 <u>76</u>	5 <u>91</u>	5 <u>22</u>
0.7 502 461 421 387 355 328 302 260 259 241 209 182 159 140 124 110 0.8 610 561 519 480 445 412 383 355 330 309 269 237 209 185 165 147 0.9 709 660 612 570 531 493 463 432 404 379 335 295 262 234 209 186 1.0 796 744 697 652 610 571 535 503 474 446 397 354 317 284 256 231 1.2 925 875 825 783 742 702 667 634 601 571 518 467 421 387 352 320 1.4 986 943 901 863 827 791 757 725 695 666 610 561 517 476 439 406 1.6 $905 957 923 901 863 827 791 757 725 732 712 682 653 594 560 528 2.0 939 917 896 674 853 833 813 794 774 754 714 688 631 594 560 528 2.2 883 867 850 834 817 801 786 770 755 732 710 682 8653 6226 600 576 2.4 823 810 796 785 773 761 748 776 753 731 168 665 642 619 596 576 2.4 823 810 796 785 773 761 748 776 573 711 686 665 642 619 596 576 2.6 762 753 743 73 771 761 748 776 553 571 168 665 642 619 596 576 2.6 762 753 743 73 772 761 748 766 535 771 168 665 642 619 596 576 2.6 762 753 743 73 772 761 748 056 651 644 636 621 607 592 575 565 574 562 550 527 3.2 599 595 590 586 561 576 572 567 563 558 544 553 529 520 510 500 3.4 552 548 545 541 538 534 531 527 552 520 512 505 497 489 462 474 3.6 510 507 505 502 499 496 493 491 486 465 479 472 466 459 452 474 3.6 510 507 505 502 499 496 493 491 486 465 479 472 466 459 453 477 3.8 473 470 468 465 463 461 458 456 453 451 446 441 436 431 426 421 4.0 437 435 434 432 430 428 426 425 423 421 417 413 406 434 426 421 4.0 437 435 434 432 430 428 426 323 223 221 221 220 220 192 18 4.6 352 351 350 369 388 347 346 345 344 343 341 338 336 333 331 329 4.6 352 328 327 326 326 327 343 332 322 321 320 318 616 314 312 310 308 5.0 307 307 306 305 305 304 303 302 302 301 300 288 296 294 293 291 5.5 263 262 262 26 1261 260 260 259 259 258 256 255 253 252 251 252 4.6 352 242 242 242 242 242 322 222 221 221 220 220 120 120 1.9 171 171 171 171 170 170 170 170 170 170$	0.6	391	35 <u>6</u>	32 <u>3</u>	29 <u>4</u>	26 <u>9</u>	24 <u>6</u>	22 <u>7</u>	209	19 <u>2</u>	17 <u>8</u>	15 <u>3</u>	13 <u>2</u>	115	10 <u>1</u>	8 <u>86</u>	7 <u>84</u>
0.6 610 561 519 460 445 412 383 355 330 302 262 237 202 185 165 147 0.9 709 660 612 570 531 493 463 432 404 379 335 295 262 234 209 188 1.0 796 744 697 652 610 571 535 503 474 446 397 354 317 284 255 231 1.2 925 875 825 783 742 702 667 634 601 571 518 467 424 387 352 320 1.4 986 943 901 863 827 791 757 725 695 666 610 561 517 476 439 406 1.6 *100*970*935*901 868 837 810 781 752 725 677 630 586 546 510 476 1.6 985 957 922*901*873*849*224*792*775*754 711 668 631 594 560 528 2.0 939 917 896 674 853 833 813 794 774*754*718*684 650 619 588 559 2.2 883 867 850 834 817 801 786 770 755 732 710 682*653*6226*600*576 2.4 823 810 798 785 773 761 748 736 732 711 668 665 642 619 598*576 2.4 823 810 798 785 773 761 748 736 732 711 668 665 642 619 598*576 2.6 762 753 743 73 74 724 714 705 695 686 676 657 639 620 602 583 566 2.8 704 697 689 682 674 666 659 651 644 636 621 607 592 578 565 549 3.0 649 643 638 632 626 620 614 609 603 597 685 574 562 550 539 527 3.2 599 595 590 586 581 541 553 527 524 520 512 505 497 489 482 474 3.6 510 507 505 502 499 496 493 491 488 485 479 472 466 459 452 447 3.6 510 507 505 502 499 496 493 491 488 485 479 472 466 459 452 447 3.6 473 470 466 465 463 461 458 456 443 432 421 417 413 408 404 400 396 4.2 406 405 403 402 405 398 397 396 394 392 389 385 382 378 375 371 4.4 379 377 376 374 373 372 370 369 367 366 363 360 357 355 352 349 4.8 329 328 327 326 326 324 323 322 321 320 318 316 314 312 310 308 5.0 307 307 305 305 305 304 334 233 222 222 221 221 220 220 219 218 6.5 195 195 195 195 195 195 195 195 195 19	0.7	50 <u>2</u>	46 <u>1</u>	42 <u>1</u>	38 <u>7</u>	35 <u>5</u>	32 <u>8</u>	30 <u>2</u>	.28 <u>0</u>	259	24 <u>1</u>	20 <u>9</u>	18 <u>2</u>	15 <u>9</u>	14 <u>0</u>	124	110
0.9 709 660 612 570 551 493 463 432 404 379 375 295 262 234 209 188 1.0 796 744 697 652 610 571 535 503 474 446 397 354 317 284 256 231 1.2 925 875 862 783 742 702 667 634 601 571 518 467 424 387 352 320 1.4 986 943 901 863 827 791 757 725 695 666 610 561 517 476 439 406 1.6 *100*970*35*901 868 837 810 781 752 725 677 630 586 546 510 476 1.8 985 957 92*901*87**849*824*792*775*754 711 668 631 594 560 528 2.0 939 917 896 874 853 833 813 794 774*754*718*684 650 619 588 559 2.2 883 867 850 834 817 801 786 770 755 739 710 682*653*626*600*576 2.4 823 810 796 755 773 761 748 736 735 711 668 665 642 619 598 576 2.6 762 753 743 734 724 714 705 695 668 676 657 639 622 602 583 566 2.8 704 697 689 682 674 666 659 651 644 636 621 607 592 578 563 589 2.0 649 643 638 622 626 620 614 609 603 597 565 574 562 550 539 527 3.2 599 595 590 586 581 576 572 567 563 588 548 539 529 520 510 500 3.4 552 548 545 541 538 534 531 527 524 520 512 505 497 489 482 474 3.6 510 507 505 502 499 496 493 491 468 465 479 472 466 459 453 441 4.0 437 435 434 432 430 428 426 425 423 421 417 413 408 404 400 396 4.2 406 405 403 402 402 398 397 395 394 392 380 385 332 331 329 4.6 352 351 350 349 348 347 346 345 344 343 341 338 336 333 331 329 4.6 352 351 350 349 348 347 346 345 344 333 41 338 336 333 331 329 4.8 329 328 327 326 325 324 322 321 221 221 220 221 9 218 5.0 307 307 306 305 305 304 333 32 22 222 221 221 220 201 9 218 5.0 307 307 306 305 305 304 333 322 321 321 318 316 314 312 310 308 5.0 307 307 306 305 305 304 333 322 321 221 220 202 19 218 5.5 263 262 262 262 1261 260 260 259 259 256 257 256 255 255 252 551 5.0 307 307 306 305 305 304 333 322 321 221 220 202 19 218 5.5 151 151 151 151 150 150 150 150 150 15	0.8	61 <u>0</u>	56 <u>1</u>	51 <u>9</u>	<u>480</u>	44 <u>5</u>	41 <u>2</u>	38 <u>3</u>	35 <u>5</u>	33 <u>0</u>	30 <u>9</u>	26 <u>9</u>	23 <u>7</u>	20 <u>9</u>	18 <u>5</u>	16 <u>5</u>	147
1.0 796 744 697 652 610 571 535 503 474 446 397 354 317 284 256 231 1.2 925 875 825 783 742 702 667 634 601 571 518 467 424 387 352 320 1.4 986 943 901 863 827 791 757 725 695 666 610 561 517 476 453 406 1.6 $*100*970*935*901 863 837 810 781 752 725 677 630 586 546 510 476 1.8 985 957 929*901*873*849*824*799*775*754 711 668 631 594 560 528 2.0 939 917 896 674 853 833 813 794 774*754*718*684 650 619 588 559 2.2 883 867 850 834 817 801 786 770 755 739 710 682*653*622*600*576 2.4 823 810 798 785 773 741 714 705 695 686 676 657 639 620 602 583 556 2.8 704 697 689 682 674 666 659 651 644 636 621 607 592 578 563 549 3.0 649 643 638 632 626 620 614 609 603 597 585 574 562 500 539 527 2.4 552 548 545 541 538 534 531 527 524 520 512 505 497 489 482 474 3.6 510 507 505 502 499 496 493 491 488 485 479 472 466 459 453 442 4.0 437 435 434 432 430 428 426 425 423 421 417 413 408 404 400 396 4.2 406 405 403 402 405 398 397 395 394 392 389 382 378 375 371 4.4 379 746 645 403 502 632 532 527 356 554 548 541 431 626 421 4.6 512 507 305 302 499 496 493 491 488 485 479 472 466 459 453 441 4.6 352 351 350 349 348 347 346 345 344 343 341 338 336 335 331 329 4.8 329 328 327 326 325 324 323 322 321 320 318 316 314 312 310 308 5.0 307 307 306 305 305 304 303 302 302 302 301 300 298 292 929 292 292 291 291 43 4.6 352 351 350 349 348 347 346 345 344 343 341 338 336 335 331 329 4.8 329 328 327 326 327 326 325 324 323 322 321 320 318 316 314 312 310 308 5.0 307 307 306 305 305 304 303 302 302 302 301 300 298 692 92 292 292 291 291 91 5.5 151 151 151 151 150 150 150 150 150 15$	0.9	70 <u>9</u>	66 <u>0</u>	61 <u>2</u>	57 <u>Q</u>	53 <u>1</u>	49 <u>3</u>	46 <u>3</u>	43 <u>2</u>	40 <u>4</u>	<u>379</u>	33 <u>5</u>	29 <u>5</u>	26 <u>2</u>	234	209	18 <u>8</u>
1.2 925 675 625 763 742 702 667 634 601 571 516 467 424 387 352 360 1.4 986 943 901 863 827 791 777 725 695 666 610 561 517 476 439 406 1.6 *100*970*35*901 868 837 810 781 752 725 677 630 586 546 510 476 1.8 965 957 929*901*673*849*824*799*775*754 711 668 631 594 560 528 2.0 939 917 896 874 853 833 813 794 774*754*718*684 660 619 588 559 2.2 863 867 850 834 817 801 786 770 755 739 710 682*653*626*600*576 2.4 823 810 798 785 773 761 748 736 733 711 688 665 642 619 596*576 2.4 823 810 798 785 773 761 748 736 733 711 688 665 642 619 596*576 2.6 762 753 743 734 724 714 705 695 686 676 657 639 620 602 583 562 2.8 704 697 689 682 674 666 659 651 644 636 621 607 592 578 563 549 3.0 649 643 638 632 626 620 614 609 603 597 585 574 562 550 539 527 3.2 599 595 590 586 581 576 572 567 563 558 548 539 529 520 510 500 3.4 552 548 545 541 538 533 531 572 524 520 512 505 497 748 462 474 3.6 510 507 505 502 499 496 493 491 488 485 479 472 466 459 453 441 3.6 473 470 468 465 463 461 458 456 453 451 446 441 436 431 426 421 4.0 437 435 434 432 430 428 426 423 421 417 413 643 408 404 400 396 4.2 406 405 403 402 405 398 397 395 394 392 389 385 382 378 375 371 4.4 379 377 376 374 373 372 370 369 367 366 363 360 357 355 352 349 4.6 352 351 350 349 348 347 346 345 342 332 320 130 02 292 296 294 293 291 5.5 263 262 262 261 261 260 260 259 259 259 258 257 256 255 253 252 251 6.0 225 224 224 224 224 223 23 223 222 221 221 220 220 219 218 6.5 195 195 195 195 195 194 194 194 193 193 193 192 192 191 191 7.0 171 171 171 171 171 170 170 170 170 17	1.0	79 <u>6</u>	74 <u>4</u>	69 <u>7</u>	65 <u>2</u>	61 <u>0</u>	57 <u>1</u>	53 <u>5</u>	50 <u>3</u>	47 <u>4</u>	446	39 <u>7</u>	35 <u>4</u>	317	284	25 <u>6</u>	231
1.4 986 943 901 863 827 791 757 725 695 666 610 561 517 476 439 406 1.6 *100*970*935*901 868 837.810 781 752 725 677 630 586 546 510 476 1.8 985 957 929*01*673*842*822*792*775*754 711 668 631 594 560 528 2.0 939 917 896 874 853 833 813 794 774*754*718*684 650 619 588 559 2.2 883 867 850 834 817 801 786 770 755 739 710 682*653*622*6000*576 2.4 823 810 798 785 773 761 748 736 732 711 688 665 642 619 598*576 2.4 823 810 798 785 773 761 748 736 732 711 688 665 642 619 598*576 2.4 823 810 798 785 773 761 748 736 732 711 688 665 642 619 598*576 2.4 823 810 798 785 773 761 748 736 732 711 688 645 642 619 598*576 2.4 823 810 798 635 722 612 610 609 603 597 585 574 562 550 539 527 3.2 599 595 590 586 581 576 572 567 563 558 548 539 529 520 510 500 3.4 552 548 545 541 538 534 531 527 524 520 512 505 497 482 482 474 3.6 510 507 505 502 499 496 493 491 488 465 479 472 466 459 453 447 3.8 473 470 468 465 463 461 458 456 453 451 446 441 436 431 426 421 4.0 437 435 434 432 430 428 426 425 423 421 417 413 408 404 400 396 4.2 406 405 403 402 405 398 397 396 394 392 389 386 283 78 375 371 4.4 379 377 376 374 373 372 370 369 394 392 389 386 2378 375 375 3.6 350 307 307 306 305 305 304 303 203 1300 298 296 294 293 291 5.5 263 262 262 261 261 260 260 259 259 259 257 256 255 253 252 251 6.0 225 224 224 224 224 224 223 223 223 221 221 221 220 220 219 218 4.4 379 377 376 374 373 372 370 302 301 300 298 296 294 293 291 5.5 263 262 262 261 261 260 260 259 259 259 257 256 255 253 252 251 6.0 225 224 224 224 224 224 224 223 223 223 221 221 221 220 220 219 218 4.4 379 170 170 170 170 170 170 170 170 189 193 193 192 191 191 7.0 171 171 171 171 171 170 170 170 170 17	1.2	92 <u>5</u>	87 <u>5</u>	82 <u>5</u>	78 <u>3</u>	74 <u>2</u>	70 <u>2</u>	66 <u>7</u>	634	60 <u>1</u>	57 <u>1</u>	51 <u>8</u>	467	424	387	35 <u>2</u>	320
1.6 *100*970*955*901 868 837 810 781 752 725 677 630 586 646 510 476 1.8 985 957 929*901*873*849*824*799*7754 711 668 631 594 560 528 2.0 959 917 8896 874 853 833 613 794 774*754 711 668 663 614 519 596 576 2.4 823 810 798 785 773 761 748 736 733 711 688 665 642 619 596*576 2.4 823 810 798 785 773 761 748 736 733 711 688 665 642 619 596*576 2.4 823 810 798 785 773 761 748 736 733 711 688 665 642 619 596*576 2.4 823 810 798 785 773 761 748 736 733 711 688 665 642 619 596*576 2.4 823 810 798 785 773 761 748 736 733 711 688 665 642 619 596*576 2.4 823 810 798 785 72 714 714 705 695 686 676 657 639 620 602 583 566 2.8 704 697 689 682 674 666 659 651 644 636 621 607 592 579 565 574 3.2 599 595 590 586 581 576 572 567 563 558 548 539 520 510 500 3.4 552 548 545 541 538 534 531 527 524 520 512 505 497 482 462 474 3.6 510 507 505 502 499 496 493 491 488 485 479 472 466 459 452 447 4.0 437 473 470 466 465 463 461 458 456 453 451 446 441 436 431 426 441 4.0 437 437 436 465 465 398 397 395 394 392 389 385 382 378 375 371 4.4 379 377 376 374 373 372 370 369 367 366 363 360 357 355 352 349 4.6 352 351 350 349 348 347 346 345 342 3421 348 336 333 31 329 4.8 329 328 327 326 325 324 323 322 321 320 318 316 314 312 310 308 5.0 307 307 306 305 305 304 303 302 302 301 300 298 296 294 293 291 5.5 263 262 262 261 261 260 260 259 259 258 257 256 255 258 252 252 252 252 242 242 242 242 223 223 223 222 222 22	1.4	98 <u>6</u>	94 <u>3</u>	90 <u>1</u>	86 <u>3</u>	82 <u>7</u>	79 <u>1</u>	757	725	69 <u>5</u>	66 <u>6</u>	61 <u>0</u>	56 <u>1</u>	517	47 <u>6</u>	43 <u>9</u>	406
1.6 965 957 929*901*673*639*624*799*775*754 711 668 651 594 560 528 2.0 939 917 896 674 853 833 813 794 774*754*718*684 650 619 586 559 2.2 883 867 860 834 817 801 786 770 755 739 710 682*653*622*600*576 2.4 823 810 798 785 773 761 748 736 783 711 688 665 642 619 596*576 2.4 823 810 798 785 773 761 748 736 783 711 688 665 642 619 596*576 2.6 762 753 743 734 724 714 705 695 686 676 657 639 620 602 583 565 4.8 704 697 689 682 674 666 659 651 644 636 621 607 592 578 563 549 3.0 649 643 638 632 626 620 614 609 603 597 585 574 562 550 539 527 3.2 599 595 590 586 581 576 572 567 563 558 548 539 529 520 510 500 3.4 552 548 545 541 538 534 531 527 524 520 512 506 497 469 482 474 3.6 510 507 505 502 499 496 495 491 488 485 479 472 466 459 452 447 3.8 473 470 468 465 463 461 458 456 453 451 446 441 436 431 426 421 4.0 437 435 434 432 430 428 426 425 423 421 417 413 408 104 400 396 4.2 406 405 403 402 405 398 397 395 394 392 389 385 382 378 375 371 4.4 379 377 376 374 373 372 377 03 69 6376 366 636 635 362 378 375 371 4.4 379 377 376 374 373 372 372 363 282 321 320 318 316 314 312 310 308 5.0 307 307 306 305 305 304 303 302 302 301 300 298 296 294 293 291 5.5 263 262 262 261 261 260 260 259 259 257 256 255 255 252 252 251 6.0 225 224 224 224 224 223 223 223 222 222 221 221 220 220 219 218 6.5 195 195 195 195 195 195 195 194 194 194 193 193 193 192 192 191 191 170 171 171 171 171 170 170 170 170 170	1.6 >	*100*	k97 <u>0</u> ∗	•93 <u>5</u> •	₽901	86 <u>8</u>	83 <u>7</u>	81Q	78 <u>1</u>	75 <u>2</u>	72 <u>5</u>	677	630	58 <u>6</u>	54 <u>6</u>	510	47 <u>6</u>
2.0 939 917 896 674 853 835 815 794 774*754*718*684 650 619 588 559 2.2 883 867 850 834 817 801 786 770 755 739 710 682*653*622*600*576 2.4 825 810 798 785 773 761 748 736 723 711 688 665 642 619 598*576 2.6 762 753 743 734 724 714 705 695 686 676 657 639 620 602 583 566 2.8 704 697 689 682 674 666 659 651 644 636 621 607 592 578 563 549 3.0 649 643 638 632 626 620 614 609 603 597 585 574 562 550 539 527 3.2 599 595 590 586 581 576 572 567 563 558 548 539 529 520 510 500 3.4 552 548 545 541 538 534 531 527 524 520 512 505 497 489 482 474 3.6 510 507 505 502 499 496 493 491 488 485 479 472 466 459 453 447 3.8 473 470 468 465 463 461 458 456 453 451 446 441 436 431 426 421 4.0 437 435 434 432 430 428 426 425 423 421 417 413 408 404 400 396 4.2 406 405 403 402 405 398 397 395 394 392 389 385 382 378 375 371 4.4 379 377 376 374 373 372 370 369 367 366 363 360 357 355 355 352 349 4.6 352 351 350 349 348 347 346 345 344 343 341 338 336 333 331 329 4.6 352 52 62 261 260 260 259 259 259 259 256 255 253 252 251 6.0 307 307 306 305 305 304 303 302 302 301 300 298 296 294 293 291 5.5 263 262 262 261 261 260 260 259 259 258 257 256 255 255 252 251 6.0 325 224 224 224 224 223 223 223 222 221 221 220 220 219 218 6.5 195 195 195 195 195 194 194 194 193 193 193 192 192 191 191 7.0 171 171 171 171 170 170 170 170 170 17	1.8	98 <u>5</u>	957	92 <u>9</u>	•90 <u>1</u> •	87 <u>3</u>	84 <u>9</u>	824	•79 <u>9</u> •	•77 <u>5</u> •	•75 <u>4</u>	711	66 <u>8</u>	63 <u>1</u>	594	56 <u>0</u>	52 <u>8</u>
2.2 863 867 850 834 817 801 786 770 755 739 710 682*653*652*602*576 2.4 823 810 798 765 773 761 748 736 733 711 686 665 642 619 596*576 2.6 762 753 743 734 724 714 705 695 686 676 657 639 620 602 583 566 2.8 704 697 689 682 674 666 659 651 644 636 621 607 592 578 563 549 3.0 649 643 638 632 626 620 614 609 603 597 585 574 562 550 539 529 595 590 586 581 576 572 567 563 558 548 539 529 520 510 500 3.4 552 548 545 541 538 534 531 527 524 522 512 505 497 469 482 474 3.6 510 507 505 502 499 496 493 491 488 485 479 472 466 459 453 447 3.8 473 470 468 465 463 461 458 456 453 451 446 441 436 431 426 421 4.0 437 435 434 432 430 428 426 425 423 421 417 413 408 404 400 396 4.2 406 405 403 402 405 398 397 395 394 392 389 385 382 378 375 371 4.4 379 377 376 374 373 372 370 369 367 366 363 360 357 355 352 349 4.6 352 351 350 349 348 347 346 345 344 343 341 338 336 333 331 329 4.8 329 328 327 326 325 324 323 322 321 320 318 316 314 312 310 308 5.0 307 307 306 305 505 303 303 302 301 300 296 294 293 291 5.5 263 262 262 261 261 260 260 259 259 259 257 256 255 253 252 251 6.0 225 224 224 224 224 223 223 223 222 222 221 221 220 220 219 218 6.5 195 195 195 195 195 194 194 194 194 193 193 192 192 191 191 7.0 171 171 171 171 171 170 170 170 170 17	2.0	93 <u>9</u>	91 <u>7</u>	89 <u>6</u>	874	85 <u>3</u>	83 <u>3</u>	81 <u>3</u>	794	77 <u>4</u> ×	754	•71 <u>8</u> •	•68 <u>4</u>	65 <u>0</u>	61 <u>9</u>	58 <u>8</u>	55 <u>9</u>
2.4 $825 810 798 785 773 761 748 736 725 711 688 665 642 619 596*576$ 2.6 $762 753 743 734 724 714 705 695 686 676 657 639 620 602 583 566$ 2.8 $704 697 689 682 674 666 659 651 644 636 621 607 592 578 563 549$ 3.0 $649 643 638 632 626 620 614 609 603 597 585 574 562 550 539 527$ 3.2 $599 595 590 586 581 576 572 567 563 558 548 539 529 520 510 500$ 3.4 $552 548 545 541 538 534 531 527 524 520 512 505 497 489 482 474$ 3.6 $510 507 505 502 499 496 493 491 488 485 479 472 466 459 453 447$ 3.8 $473 470 468 465 463 461 458 456 453 451 446 441 436 431 426 421$ 4.0 $437 435 434 432 430 428 426 425 423 421 417 413 408 404 400 396$ 4.2 $406 405 403 402 405 398 397 395 394 392 389 385 382 378 375 371$ 4.4 $379 377 376 374 373 372 370 369 367 366 363 360 357 355 352 349$ 4.6 $352 351 350 349 348 347 346 345 344 343 341 338 336 333 331 329$ 4.8 $329 328 327 326 325 324 323 322 321 320 318 316 314 312 310 308$ 5.0 $307 307 306 305 305 304 303 302 302 301 300 298 296 294 293 291$ 5.5 $263 262 262 261 261 260 260 259 259 259 256 257 256 255 255 252 251 251$ 6.0 $225 224 224 224 224 223 223 223 223 222 221 221 220 220 219 218$ 6.5 $195 195 195 195 195 194 194 194 194 193 193 193 192 191 191 17$ 7.0 $171 171 171 171 170 170 170 170 170 170 $	2.2	88 <u>3</u>	86 <u>7</u>	85Q	83 <u>4</u>	81 <u>7</u>	80 <u>1</u>	78 <u>6</u>	77 <u>0</u>	75 <u>5</u>	739	710	682	65 <u>3</u>	•62 <u>6</u> *	60 <u>0</u>	*57 <u>6</u>
2.6 762 753 743 734 724 714 705 695 686 676 697 639 620 602 583 562 2.8 704 697 689 682 674 666 659 651 644 636 621 607 592 578 563 549 3.0 649 643 638 632 626 620 614 609 603 597 585 574 562 550 539 527 3.2 599 595 590 586 581 576 572 567 563 558 548 539 529 520 510 500 3.4 552 548 545 541 538 534 531 527 524 520 512 505 497 489 482 474 3.6 510 507 505 502 499 496 493 491 488 485 479 472 466 459 453 447 3.8 473 470 466 465 463 461 458 456 453 461 446 441 436 431 426 421 4.0 437 435 434 432 430 428 426 425 423 421 417 413 408 404 400 396 4.2 406 405 403 402 405 398 397 395 394 392 389 385 352 378 375 371 4.4 379 377 376 374 373 372 370 369 367 366 363 360 357 355 2349 4.6 352 351 350 349 348 347 346 345 344 343 341 338 336 333 331 329 4.8 329 328 327 326 325 304 303 302 302 301 300 298 296 294 293 291 5.5 263 262 2262 221 221 224 224 223 223 222 221 221 220 219 218 6.5 195 195 195 195 194 194 194 194 193 193 192 192 191 191 7.0 171 171 171 171 171 170 170 170 170 170 170 169 169 169 168 168 7.5 1151 151 151 151 150 150 150 150 150 150 149 149 149 149 149 8.0 134 134 134 134 134 134 134 134 133 133 133 133 133 133 133 8.5 121 121 121 121 121 120 120 120 120 120 120 120 120 120 120 120 119 9.0 109 109 109 109 109 109 109 109 109 109 109 109 109 109 108 108 8.68 86 86 86 86 86 86 86 8	2.4	82 <u>3</u>	81 <u>0</u>	79 <u>8</u>	785	77 <u>3</u>	761	74 <u>8</u>	73 <u>6</u>	78 <u>3</u>	711	68 <u>8</u>	66 <u>5</u>	64 <u>2</u>	619	59 <u>6</u> *	* 57 <u>6</u>
2.8 704 697 689 682 674 666 659 651 644 636 621 607 592 574 563 549 3.0 649 643 638 632 626 620 614 609 603 597 585 574 562 550 539 527 3.2 599 595 590 586 581 576 572 567 563 558 548 539 529 520 510 500 3.4 552 548 545 541 538 534 531 527 524 520 512 505 497 489 482 474 3.6 510 507 505 502 499 496 493 491 488 485 479 472 466 459 453 447 4.0 437 435 434 432 430 428 426 425 423 421 417 413 408 404 400 396 4.2 406 405 403 402 405 398 397 392 389 385 382 378 375 371 4.4 379 377 376 374 373 372 370 369 367 366 363 360 357 355 352 349 4.6 352 351 350 349 348 347 346 345 344 343 341 338 336 333 331 329 4.8 329 328 327 326 325 324 323 322 321 320 318 316 314 312 310 308 5.0 307 306 305 305 304 303 302 302 302 301 300 298 296 294 293 291 5.5 263 262 262 261 261 260 260 259 259 256 257 256 255 253 252 251 6.0 225 224 224 224 224 223 223 223 222 222 221 221 220 220 219 218 6.5 195 195 195 195 194 194 194 193 193 193 192 192 191 191 7.0 171 171 171 171 170 170 170 170 170 17	2.6	762	75 <u>3</u>	74 <u>3</u>	734	724	714	70 <u>5</u>	69 <u>5</u>	68 <u>6</u>	67 <u>6</u>	657	639	620	60 <u>2</u>	583	56 <u>6</u>
3.0 $649 643 638 632 626 620 614 609 603 597 585 514 562 560 539 527 3.2 599 595 590 586 581 576 572 567 563 558 548 539 529 520 510 5003.4 552 548 545 541 538 534 531 527 524 520 512 505 497 489 482 4743.6 510 507 505 502 499 496 493 491 488 485 479 472 466 459 453 4473.8 473 470 468 465 463 461 458 456 453 451 446 441 436 431 426 4214.0 437 435 434 432 430 428 426 425 423 421 417 413 408 404 400 3964.2 406 405 403 402 405 398 397 395 394 392 389 385 382 378 375 3714.4 379 377 376 374 373 372 370 609 367 366 363 360 357 355 352 3494.6 352 351 350 349 348 347 346 345 344 343 341 338 336 333 331 3294.8 329 328 327 326 325 324 323 322 321 320 318 316 314 312 310 3085.0 307 307 306 305 305 304 303 302 302 301 300 298 296 294 293 2915.5 263 262 262 261 261 260 260 259 259 259 257 256 255 255 252 251 2616.0 225 224 224 224 224 223 223 223 223 222 221 221 220 220 219 2186.5 195 195 195 195 195 194 194 194 194 193 193 193 192 192 191 1917.0 171 171 171 171 171 170 170 170 170 170 $	-2.8	704_	69 <u>7</u>	68 <u>9</u>	682	674	66 <u>6</u>	65 <u>9</u>	65 <u>1</u>	644	63 <u>6</u>	621	607	59 <u>2</u>	578	56 <u>3</u>	54 <u>9</u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.0	64 <u>9</u>	64 <u>3</u>	63 <u>8</u>	632	62 <u>6</u>	62 <u>0</u>	614	60 <u>9</u>	60 <u>3</u>	597	585	574	562	550	53 <u>9</u>	52 <u>7</u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.2	59 <u>9</u>	59 <u>5</u>	59 <u>0</u>	58 <u>6</u>	581	57 <u>6</u>	572	567	563	558	54 <u>8</u>	539	529	520	510	500
5.65105075025024994964934914884794724664634314264213.84704664654634614584564534514444364314264214.04374354344324304264254234214174134064044003964.24064054034024053983973953943923893853823783753714.43793773763743733723703693673663633603573553523494.63523513503493483473463453443433413383363333313294.63523513503493483473463453443433413383363333313294.83293283273263223223213203002982962942932915.52632622622612	3.4	55 <u>2</u>	54 <u>8</u>	54 <u>5</u>	541	538	534	531	527	52 <u>4</u>	520	512	50 <u>5</u>	497	489	48 <u>2</u>	474
5.6 4^{7}_{5} 4^{7}_{6} 4^{6}_{5}	3.0	51 <u>0</u>	507	50 <u>5</u>	502	499	496	49 <u>3</u>	491	488	485	479	412	466	459	453	441
4.0 $431 432 432 432 430 428 425 425 421 417 413 408 404 396$ 4.2 $406 405 403 402 405 398 397 395 394 392 389 385 382 378 375 371$ 4.4 $379 377 376 374 373 372 370 369 367 366 363 360 357 355 352 349$ 4.6 $352 351 350 349 348 347 346 345 344 343 341 338 336 332 331 329$ 4.8 $329 328 327 326 325 324 323 322 321 320 318 316 314 312 310 308$ 5.0 $307 307 306 305 305 304 303 302 302 301 300 298 296 294 293 291$ 5.5 $263 262 262 261 261 260 260 259 259 259 256 257 256 255 253 252 251$ 6.0 $225 224 224 224 224 225 223 223 222 222 221 221 220 220 219 218$ 6.5 $195 195 195 195 195 194 194 194 194 193 193 193 192 192 191 191$ 7.0 $171 171 171 171 170 170 170 170 170 170 $	3.0	41 <u>3</u>	470	400	465	463	461	458	456	453	451	440	44 <u>1</u>	436	43	420	42
4.2 $400, 405, 403, 402, 405, 336, 397, 395, 394, 392, 389, 385, 382, 376, 377, 376, 374, 373, 372, 370, 369, 367, 366, 363, 360, 357, 355, 352, 349, 4.6 352, 351, 350, 349, 348, 347, 346, 345, 344, 343, 336, 336, 333, 331, 329, 4.8 329, 328, 327, 326, 325, 324, 323, 322, 321, 320, 318, 316, 314, 312, 310, 308, 50, 307, 307, 306, 305, 304, 303, 302, 302, 301, 300, 298, 296, 294, 293, 291, 5.5 263, 262, 262, 261, 261, 260, 260, 259, 259, 256, 257, 256, 255, 253, 252, 251, 6.0 225, 224, 224, 224, 224, 223, 223, 223, 222, 222$	4.0	431	400	404	404	4 SQ	42 <u>8</u>	420	425	420	421	411	413	400	404	40 U	39 <u>0</u>
4.4 379 371 370 374 373 370 370 369 361 360 361 360 361 351 350 351 350 349 4.6 352 351 350 349 348 347 346 345 344 343 341 338 336 333 331 329 4.8 329 328 327 326 325 324 323 322 321 320 318 316 314 312 310 308 5.0 307 307 306 305 305 304 303 302 302 301 300 298 296 294 293 291 5.5 263 262 262 261 261 260 260 259 259 258 257 256 255 253 252 251 6.0 225 224 224 224 224 223 223 223 222 222 221 221 220 220 219 218 6.5 195 195 195 195 195 194 194 194 193 193 193 192 192 191 191 7.0 171 171 171 171 170 170 170 170 170 169 169 169 168 168 7.5 151 151 151 151 151 150 150 150 150 150 150 149 149 149 149 8.0 134 134 134 134 134 134 134 134 134 133 133 133 133 133 133 133 8.5 121 121 121 121 121 120 120 120 120 120 120 120 120 120 119 9.0 109 109 109 109 109 109 109 109 109 109 109 109 109 109 108 108 9.5 981 981 980 980 980 979 979 979 978 978 977 976 975 975 974 10.0 891 890 890 890 889 889 889 888 888 887 886 886 886 886 886 886 841 1.0 745 745 744 744 744 744 743 743 743 743 742 742 742 742 741 741 12.0 632 632 632 632 632 632 632 632 632 632 631 631 631 631 631 630 $63013.0 543 543 543 543 543 542 542 542 542 542 542 542 542 542 542 542 541 541 54114.0 471 471 471 471 471 471 471 471 471 471 471 471 471 470 470 47015.0 414$	4.4	406	405	403	402	405	398	397	395	394	392	389	385	382	378	375	371
4.6 352 351 350 349 346 341 340 341 340 344 342 341 350 350 350 351 329 4.8 329 328 327 326 325 324 323 322 321 320 318 316 314 312 310 308 5.0 307 307 306 305 305 304 303 302 302 301 300 298 296 294 293 291 5.5 263 262 262 261 261 260 260 259 259 258 257 256 255 253 252 251 6.0 225 224 224 224 224 224 223 223 222 222 221 221 220 220 219 218 6.5 195 195 195 195 195 194 194 194 194 193 193 193 192 192 191 191 7.0 171 171 171 171 170 170 170 170 170 160 169 169 168 168 6.5 151 151 151 151 151 150 150 150 150 150 150 150 149 149 149 149 8.0 134 134 134 134 134 134 134 134 134 134 133 133 133 133 133 133 8.5 121 121 121 121 121 120	4.4	31 <u>9</u>	377	375	314	313	316	370	369	367	365	363	350	351	355	356	349
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.0	220	200 00T	30 <u>U</u>	04 <u>9</u>	34 <u>8</u> 79日	34 <u>7</u>	34 <u>0</u>	34 <u>5</u>	04 <u>4</u>	340	341	330	33 <u>0</u> 714	00 <u>0</u>	201	329
5.0 301 301 302 302 302 302 302 302 302 302 301 302 292 292 294 294 295 291 5.5 263 262 262 261 261 261 260 259 259 259 256 257 256 255 253 252 251 6.0 225 224 224 224 224 224 223 223 223 222 222 221 221 220 220 219 218 6.5 195 195 195 195 195 194 194 194 193 193 193 192 192 191 191 7.0 171 171 171 171 171 170 170 170 170 170 169 169 169 168 168 7.5 151 151 151 151 151 150 150 150 150 150 150 149 149 149 149 8.0 134 134 134 134 134 134 134 134 134 134 133 133 133 133 133 133 8.5 121 121 121 121 121 120 1	4•0 5 0	34 <u>9</u> 207	36 <u>0</u> 707	206	340	<u> ಎಜರಿ</u> ನಂಗ	364	34 <u>3</u>	364	32 <u>1</u>	ು <u>∠</u> ಶಂ]	310	200	206	204	307 <u>0</u>	201
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.5	263	262	262	261	261	260	260	250	250	201	20 <u>0</u>	256	255	ん9生 95マ	250 252	251
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.0	225	221	221	201	20 <u>1</u>	20 <u>0</u>	20 <u>0</u>	20 <u>9</u>	20 <u>9</u>	200	201	200	220	200	210	2010
7.0 171 171 171 171 171 170 170 170 170 170 170 170 169 169 169 169 168 168 7.5 151 151 151 151 151 151 151 151 151 150 150 150 150 150 150 149 149 149 149 8.0 134 134 134 134 134 134 134 134 134 134 133	6.5	105	105	105	105	105	104	101	10/	101	103	107	<u>ແມ່</u>	102	102	101	101
7.51511511511511501501501501501501601401491498.0134133<	7.0	171	171	171	171	171	170	170	170	170	170	170	160	160	160	168	168
8.0 $134 134 134 134 134 134 134 134 134 134 $	7.5	151	์เรา	151	151	151	150	150	150	150	150	150	150	149	149	149	140
8. 5 121 121 121 121 121 120 120 120 120 120	8.0	134	134	134	134	134	134	134	134	134	134	133	$13\overline{3}$	133	133	133	133
9.0 $109 109 109 109 109 109 109 109 109 109 $	8.5	121	121	121	121	121	120	120	120	120	120	120	120	120	120	120	119
9.5 981 981 981 980 980 980 979 979 979 978 978 977 976 975 975 974 10.0 891 890 890 890 890 889 889 889 888 888 887 887 886 886 885 884 11.0 745 745 744 744 744 744 744 743 743 743 743 742 742 742 742 741 741 12.0 632 632 632 632 632 632 632 632 632 632	9.0	109	109	109	109	109	109	109	109	109	109	109	109	109	108	108	108
10.0. 891 890 890 890 890 890 889 889 889 889 888 888 887 887 886 886 886 885 884 11.0 745 745 744 744 744 744 744 743 743 743 743 743 742 742 742 742 741 741 12.0 632 632 632 632 632 632 632 632 632 632 631 631 631 631 631 630 630 13.0 543 543 543 543 543 542 542 542 542 542 542 542 542 542 542 542 541 541 541 14.0 471 471 471 471 471 471 471 471 471 471 471 471 471 470 470 470 15.0 414 414 414 414 414 414 414 414 414 414 414 414 414 414 414 413 413 413 16.0 365 365 365 365 365 365 365 365 365 365 365 365 365 365 365 325	9.5	9 <u>81</u>	981	981	980	980	980	979	979	979	978	978	977	976	975	975	974
11.0 745 745 744 744 744 744 744 743 743 743 743 743	10.0.	891	890	8 <u>90</u>	890	8 <u>90</u>	889	889	889	888	888	887	887	886	886	885	884
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.0	745	745	744	744	$7\overline{44}$	744	744	743	$7\overline{43}$	$7\overline{43}$	$7\overline{43}$	742	742	742	741	741
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12.0	6 <u>32</u>	6 <u>32</u>	6 <u>32</u>	6 <u>32</u>	6 <u>32</u>	6 <u>32</u>	6 <u>32</u>	632	6 <u>32</u>	631	631	631	631	6 <u>31</u>	630	630
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	13.0	5 <u>43</u>	5 <u>43</u>	5 <u>43</u>	5 <u>4 3</u>	543	542	542	542	542	542	542	542	542	541	541	541
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	14.0	471	471	471	471	471	471	471	471	471	471	471	471	471	$4\overline{70}$	470	470
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.0	4 <u>14</u>	4 <u>14</u>	4 <u>14</u>	4 <u>14</u>	414	4 <u>14</u>	414	414	414	414	4 <u>14</u>	$4\overline{14}$	$4\overline{14}$	413	413	413
17.0 326 326 326 326 325 325 325 325 325 325 325 325 325 325	16.0	3 <u>65</u>	3 <u>65</u>	3 <u>65</u>	3 <u>65</u>	3 <u>65</u>	3 <u>65</u>	365	365	365	3 <u>65</u>	3 <u>6 5</u>	365	365	364	364	364
$18 \cdot 0$ 292 292 292 292 291 291 291 291 291 291	17.0	3 <u>26</u>	3 <u>26</u>	3 <u>26</u>	3 <u>26</u>	3 <u>25</u>	3 <u>25</u>	3 <u>25</u>	3 <u>25</u>	3 <u>25</u>	3 <u>25</u>	325	325	325	3 <u>25</u>	3 25	325
$19 \cdot 0$ 261 261 261 261 261 261 261 261 261 261	18.0	2 <u>92</u>	2 <u>92</u>	2 <u>92</u>	2 <u>92</u>	2 <u>91</u>	2 <u>91</u>	2 <u>91</u>	2 <u>91</u>	2 <u>91</u>	2 <u>91</u>	291	2 <u>91</u>	2 <u>91</u>	2 <u>91</u>	291	291
	19•0	2 <u>61</u>	2 <u>61</u>	2 <u>61</u>	2 <u>61</u>	2 <u>61</u>	2 <u>61</u>	2 <u>61</u>	2 <u>61</u>	2 <u>61</u>	2 <u>61</u>	2 <u>61</u>	2 <u>61</u>	261	2 <u>61</u>	2 <u>61</u>	2 <u>61</u>

					3	he '	Jalue	es of	Ψa	•	No	. 6			P.	28	;
x a	4.4	4.6	4.8	5.0	5.2	5.4	5.6	5.8	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5	
0 02	005	004	004	003	003	003	002	002	002	002	001	001	001	001	001	000	
0.02	020	0017	015	013	012	011	010	009	008	006	005	004	003	003	<u>002</u>	002	
0.04	046	040	035	031	028	025	022	020	018	014	011	009	<u>008</u>	006	<u>005</u>	005	
0.08	083	07.3	064	057	051	045	041	037	033	<u>026</u>	021	017	<u>014</u>	<u>012</u>	010	<u>008</u>	
0.1	133	117	103	091	<u>081</u>	073	<u>065</u>	<u>059</u>	<u>053</u>	<u>042</u>	<u>034</u>	<u>028</u>	<u>023</u>	<u>019</u>	016	014	
0.2	<u>590</u>	<u>519</u>	459	<u>409</u>	<u>364</u>	<u>327</u>	<u>294</u>	<u>267</u>	241	191	<u>154</u>	126	104	087	0/4	$\frac{063}{101}$	
0.3	1 <u>45</u>	1 <u>28</u>	1 <u>14</u>	101	<u>908</u>	<u>817</u>	<u>736</u>	<u>666</u>	<u>605</u>	<u>482</u>	389	320	265	223	189	101	
0.4	2 <u>77</u>	2 <u>46</u>	2 <u>19</u>	1 <u>96</u>	176	1 <u>59</u>	143	130	118	945	766	631	525	446	<u>515</u> 651	558	
0.5	4 <u>63</u>	410	3 <u>66</u>	3 <u>29</u>	2 <u>97</u>	2 <u>67</u>	2 <u>42</u>	220	201	101	101	170	142	120	103	884	
0.6	6 <u>98</u>	6 <u>22</u>	5 <u>58</u>	502	454	410	373	340	310	200	2 <u>00</u>	240	200	177	152	131	-
0.7	986	884	7 <u>94</u>	717	648	588	536	490	449	503	<u>300</u>	2 <u>49</u> 347	202	249	213	184	
0.8	132	119	107	972	001	8 <u>04</u>	104	0 <u>1 0</u> 885	815	670	554	4.64	393	$\frac{2}{336}$	288	250	
0,9	170	100	172	120	1/5	133	122	112	104	854	713	601	510	438	377	327	
19	202	220 797	210	208	210 740	100	180	167	155	129	109	927	795	687	596	521	
⊥•℃] /	690 371	346	~ <u>+0</u> 321	200	278	260	242	225	220	178	152	131	113	988	863	759	
1.6	445	416	390	365	342	321	301	$28\overline{3}$	266	230	198	$17\bar{3}$	15 <u>1</u>	13 <u>3</u>	117	104	
1.8	498	47]	444	419	397	375	355	336	317	277	243	$21\overline{4}$	190	168	15 <u>0</u>	134	
2.0	533	508	$48\overline{4}$	460	437	417	397	$37\overline{\overline{7}}$	36Q	319	284	25 <u>3</u>	22 <u>7</u>	20 <u>3</u>	18 <u>3</u>	16 <u>5</u>	
2.2	552	530	507	485	$46\overline{6}$	446	42 <u>7</u>	41 <u>0</u>	39 <u>2</u>	35 <u>5</u>	31 <u>9</u>	28 <u>7</u>	26 <u>0</u>	23 <u>5</u>	21 <u>4</u>	19 <u>4</u>	
2.4	* 55 <u>6</u>	*53 <u>6</u> *	×51€	498	48 <u>0</u>	46 <u>2</u>	445	43Q	414	37 <u>9</u>	34 <u>5</u>	31 <u>4</u>	28 <u>8</u>	26 <u>3</u>	241	222	
2.6	54 <u>9</u>	53 <u>3</u> *	×51 <u>6</u>	*50 <u>1</u> :	*48 <u>5</u> *	∗ 47 <u>0</u> ª	*45 <u>5</u>	44Q	42 <u>7</u>	39 <u>4</u>	36 <u>3</u>	33 <u>5</u>	309	28 <u>6</u>	264	245	
2.8	53 <u>5</u>	52 <u>1</u>	507	49 <u>3</u>	48 <u>0</u>	46 <u>8</u> :	*45 <u>5</u> *	•44 <u>3</u> ·	* 43 Q >	401	374	34 <u>8</u>	324	30 <u>3</u>	282	263	
3.0	51 <u>5</u>	50 <u>3</u>	49 <u>2</u>	48 <u>0</u>	46 <u>9</u>	45 <u>8</u>	44 <u>8</u>	437	426	*40 <u>1</u>	* 37 <u>8</u>	355	33 <u>4</u>	31 <u>3</u>	294	215	
3.2	49 <u>1</u>	481	47 <u>2</u>	462	45 <u>3</u>	44 <u>5</u>	436	428	419	397	376	* 35 <u>0</u> '	* 33 <u>(</u> ' 776.	・ ックヘ	00 <u>0</u> . 704 -	200	
3.4	46 <u>6</u>	458	451	443	436	429	421	415	400	00 <u>0</u> 776	361	30 <u>0</u> 346	332	220 - 318	k 304	290	
3.0	440	434	421	421	415	40 <u>9</u>	40 <u>4</u> 785	29 <u>0</u> 280	09 <u>6</u> 375	362	350	337	324	312	301	289	-
0.0 1.0	41 <u>0</u> 302	411	400 383	40 <u>1</u> 370	39 <u>0</u> 375	371	366	362	358	348	337	327	317	306	296	285	
4.2	368	364	361	357	354	350	347	343	340	331	323	314	305	296	288	279	
4.4	346	343	340	337	334	332	329	326	323	316	308	301	293	286	2 7 8	271	
4.6	326	324	321	319	317	314	$31\overline{2}$	309	30 <u>7</u>	301	294	288	28 <u>2</u>	27 <u>5</u>	26 <u>9</u>	26 <u>2</u>	
4.8	306	$30\overline{4}$	$30\overline{2}$	300	298	296	294	292	29 <u>0</u>	28 <u>5</u>	27 <u>9</u>	27 <u>4</u>	269	26 <u>3</u>	258	252	
5.0	289	28 <u>8</u>	28 <u>6</u>	28 <u>5</u>	28 <u>3</u>	281	279	27 <u>8</u>	27 <u>6</u>	27 <u>2</u>	26 <u>7</u>	26 <u>2</u>	257.	25 <u>3</u>	248	243	
5.5	25 Q	24 <u>9</u>	24 <u>8</u>	24 <u>7</u>	24 <u>6</u>	244	24 <u>3</u>	24 <u>2</u>	241	238	23 <u>5</u>	231	228	22 <u>5</u>	222	219	
6.0	21 <u>8</u>	217	217	216	215	214	214	213	212	209	20 <u>7</u>	205	203	201	199	196	
6.5	190	190	183	189	188	18 <u>8</u>	187	187	186	185	184	102	101	179	171	170	
(•() 7 =	140 168	T28	167	167	167	100	10 <u>6</u>	105	140 160	104	146	10 <u>2</u>	101	70 <u>0</u>	10 <u>9</u>	149	
G•1-	14 <u>9</u>	14 <u>0</u> 129	120	140 170	14 <u>0</u>	14 <u>0</u> 179	141	121	14 <u>1</u> 121	14 <u>0</u> 170	14 <u>0</u> 170	120	ユ生生 190	128	198	<u>⊥±≙</u> }27	
8.5	110 110	10 10	10 <u>6</u> 110	110	110	10 <u>4</u>]10	118	118	<u>דסד</u> און	<u>און</u>	117	117	117	116	116	115	
9.0	108	108	108	108	108	108	107	107	107	107	106	106	106	105	105	104	
9.5	973	972	972	971	970	970	969	969	968	966	963	961	958	956	953	951	
10.0	884	883	883	882	881	881	880	879	879	877	875	874	872	870	868	867	
11.0	740	740	739	739	739	7 38	738	737	$7\overline{37}$	736	735	$7\overline{34}$	732	731	$7\overline{30}$	729	
12.0	630	629	629	629	629	628	628	628	628	627	626	626	625	624	623	6 <u>23</u>	
13.0	5 <u>41</u>	$5\overline{41}$	541	$5\overline{41}$	5 <u>41</u>	541	540	540	5 <u>40</u>	539	539	5 <u>38</u>	5 <u>37</u>	5 <u>36</u>	5 <u>36</u>	5 <u>36</u>	
14.0	470	470	4 <u>70</u>	470	470	470	470	469	4 <u>69</u>	4 <u>69</u>	4 <u>69</u>	4 <u>68</u>	4 <u>68</u>	4 <u>67</u>	4 <u>67</u>	4 <u>66</u>	
15.0	4 <u>13</u>	413	4 <u>13</u>	4 <u>13</u>	412	4 <u>12</u>	4 <u>12</u>	4 <u>12</u>	4 <u>11</u>	4 <u>11</u>	4 <u>11</u>	410					
16.0	3 <u>64</u>	3 <u>64</u>	3 <u>64</u>	3 <u>64</u>	3 <u>63</u>	3 <u>6 3</u>	<u>363</u>	3 <u>63</u>	3 <u>6 3</u>	3 <u>62</u>	3 <u>62</u>						
17.0	3 <u>25</u>	<u>325</u>	3 <u>25</u>	3 <u>25</u>	3 <u>24</u>	3 <u>24</u>	3 <u>24</u>	3 <u>24</u>	3 <u>24</u>	3 <u>23</u>	3 <u>23</u>						
18.0	291	2 <u>91</u>	2 <u>91</u>	2 <u>91</u>	291	2 <u>91</u>	2 <u>91</u>	291	2 <u>91</u>	2 <u>90</u>	290	2 <u>90</u>	2 <u>90</u>	2 <u>90</u>	2 <u>89</u>	2 <u>89</u>	
19•0	2 <u>61</u>	2 <u>6</u> 1	2 <u>61</u>	2 <u>61</u>	261	2 <u>61</u>	2 <u>61</u>	2 <u>61</u>	2 <u>61</u>	2 <u>61</u>	2 <u>61</u>	2 <u>61</u>	2 <u>60</u>	2 <u>60</u>	2 <u>60</u>	2 <u>60</u>	

		-		5	l'he 1	Va lue	es of	ε Ψá e	•	No	. 7				P.	29
x x	10	12	14	16	18	20	25	30	35	40	45	50	60	7 0	80	90
0.02	000	000	000	000	000	0 <u>00</u>	000	000	000	000	000	000	000	000	000	000
0.04	002	001	001	000	000	000	000	000	000	000	000	000	000	000	000	000
0.06	004	002	001	001	001	001	000	000	000	000	000	000	000	000	000	000
0.08	007	004	003	002	001	001	000	000	000	000	000	000	000	000	000	000
0.1	054	072	004	000		001	001	000	000	000	000	000	000		000	000
0.2	139	082	052	035	025	001	009	005	003	001	002	000	001	000	000	000
0.4	278	164	105	071	050	037	019	010	007	005	$\overline{003}$	002	001	001	001	000
0.5	482	287	185	125	089	065	034	020	013	008	006	004	003	002	001	001
0.6	772	456	294	201	143	105	055	032	020	014	009	007	004	003	002	001
0.7	114	681	441	<u>302</u>	215	159	083	049	031	021	01 5	011	006	004	003	002
0.8	160	971	<u>632</u>	433	310	229	120	071	045	<u>031</u>	<u>022</u>	016	009	<u>Q06</u>	<u>004</u>	003
0.9	217	133	868	<u>597</u>	<u>428</u>	<u>318</u>	167	099	<u>063</u>	<u>043</u>	030	022	013	<u>800</u>	006	004
1.0	2 <u>86</u>	176	115	796	575	426	226	133	086	058	041	030	018	011	008	005
7.7	457	285	1 <u>50</u>	132	961	114	382	227	146	099	071	054	030	019	$\frac{013}{021}$	009
1.4	67	428	288	203	148	14	599	359	231	237	112	125	$049 \\ 074$	031	032	$\frac{010}{022}$
1.8	120	800	556	401	298	238	125	761	496	340	$\frac{103}{243}$	180	107	068	046	$\overline{033}$
2.0	149	102	720	528	394	303	170	104	684	471	339	$\frac{100}{251}$	149	096	065	046
2.2	177	124	898	665	505	392	224	138	909	6.32	455	339	202	130	088	063
2.4	$20\overline{3}$	147	108	817	626	490	284	179	119	830	597	446	267	172	118	083
2.6	227	168	127	970	757	5 <u>96</u>	354	224	151	106	767	574	345	223	153	109
2.8	24 <u>5</u>	187	14 <u>4</u>	112	887	7 <u>18</u>	4 <u>30</u>	2 <u>76</u>	1 <u>87</u>	1 <u>32</u>	<u>964</u>	<u>724</u>	<u>439</u>	<u>285</u>	<u>195</u>	139
3.0	260	203	16 <u>0</u>	12 <u>7</u>	102	8 1 5	5 <u>09</u>	3 <u>33</u>	2 <u>27</u>	1 <u>62</u>	119	<u>897</u>	<u>545</u>	<u>356</u>	244	<u>105</u>
3.2	270	216	174	140	114	9 <u>38</u>	592	3 <u>93</u>	2 <u>72</u>	195	144	109	<u>669</u>	<u>438</u>	<u>302</u>	216
3.4	276	226	185	152	125	104	674	4 <u>55</u>	319	231	172	131	808	531	370	264
3.8	10 10 10 10 10 10 10 10 10 10 10 10 10 1	220 220	19 <u>4</u>	104	130	114	761	520	370	270	202	100	900	638	<u>446</u>	320
4.0	275	228	206	176	140	121	839	507	446	311	260	701	114	158	220	301
4.2	270	*238	207	181	158	138	914	711	4 <u>10</u> 520	307	209 206	230	100	103	726	528
4.4	263	234	×208	184	162	143	105	772	580	442	342	270	174	118	838	612
4.6	256	231	206	185	165	147	110	826	628	485	379	302	197	135	957	705
4.8	247	226	203	185	167	149	115	875	675	528	417	333	221	152	109	803
5.0	23 <u>8</u>	219	201	183	166	·15]	11 <u>§</u>	917	721	569	452	3 <u>65</u>	245	170	123	910
5.5	21 <u>6</u>	20 <u>3</u>	18 <u>9</u>	17 <u>5</u>	163	·151	123	100	814	6 <u>60</u>	5 <u>39</u>	4 <u>45</u>	3 <u>08</u>	2 <u>20</u>	1 <u>60</u>	120
6.0	194	185	17 <u>5</u>	16 <u>6</u>	15 <u>6</u>	146	124	104	8 <u>70</u>	7 <u>30</u>	6 <u>11</u>	5 <u>15</u>	3 <u>69</u>	2 <u>69</u>	2 <u>01</u>	1 <u>53</u>
0.5	1:14	367	360	353	34 <u>6</u>	139	122	×105	905	779	666	572	4 <u>24</u>	319	2 <u>43</u>	188
7.5	10 <u>7</u> 1/1	127	146	141	135	130	117	103	'9 <u>15</u>	802	705	613	470	363	283	223
8.0	127	124	100	110	116	173	104	100	9051	8004 8004	720	6 <u>40</u>	5 <u>08</u>	406	341	200
8.5	114	112	110	108	106	104	075	902	843	780	716*	658	5/0	404	380	312
9.0	104	103	101	994	976	957	909	859	807	754	701	6501	×555	471	398	338
9.5	948	936	924	911	889	885	847	806	$7\overline{63}$	$7\bar{2}\bar{0}$	677	635	•5 <u>55</u> •	480	413	355
10.0	865	8 <u>56</u>	846	8 <u>36</u>	826	815	786	755	721	685	6 <u>50</u>	615	546	480	421	368
11.0	728	7 <u>23</u>	7 <u>17</u>	711	705	6 <u>98</u>	680	660	638	613	5 <u>90</u>	5 <u>66</u>	517	469*	423	379
12.0	622	619	615	611	607	603	5 <u>91</u>	5 <u>77</u>	5 <u>62</u>	5 <u>47</u>	5 <u>31</u>	5 <u>14</u>	4 7 9	444	409	3 <u>75</u>
13.0	535	5 <u>33</u>	5 <u>31</u>	528	525	522	514	506	4 <u>96</u>	4 <u>86</u>	4 <u>75</u>	4 <u>63</u>	4 <u>39</u>	4 <u>14</u>	3 <u>88</u>	3 <u>61</u>
14.0	400	465	4 <u>64</u>	462	460	458	453	446	440	4 <u>33</u>	425	417	399	381	3 <u>62</u>	342
16.0	74D	4 <u>09</u> 361	4 <u>01</u> 360	4 <u>0</u> 5 360	4 <u>04</u> 3E0	403	3 <u>99</u>	3 <u>95</u>	390	385	380	314	362	348	334	320
17.0	323	322	322	321	329	0 <u>00</u> 320	000 710	3 <u>92</u>	0 <u>49</u>	3 <u>45</u> 210	344	338	329	319	308	297
18.0	289	289	288	288	287	287	286	284	585 0 <u>70</u>	280	278	27A	271	2 <u>91</u>	260	610 252
19.0	2 <u>60</u>	260	260	259	259	259	258	257	256	254	252	250	246	242	238	233
k					***	··· ×.×.	~ ~ ~ ~	~ 52.1	~929	~ ¥7	~ \	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~=0	~16	~00	~22

AUXILIARY TABLE OF THE CYCLONE FUNCTION (I)

(1) Using the pressure profile, at first we determine the radius ratio R_n/R_m , and choose the suitable cyclone constant for the given profile.

(2) The unit radius r_o can be obtained by the relation $r_o = Rm/Xm_o$, where, Xm is the quantity tabulated under the radius ratio.

(3) If we want to know the critical values, the quantities α , β ; γ , δ ; ε , ζ are available. As shown below, α , γ , ε are the maximum values of $\Psi'_{x}, x \Psi'_{x}$, Ψ'_{a} , respectively. And β , δ , ζ are the values of x where the each maximum occurs.

a		•00	.01	•02	•03	•04	•05	•06	.07	•08	•09	.10	.11	.12	.13	.14	.15
Rn/I	(m	065	097	118	134	148	159	169	178	187	195	202	209	215	221	226	231
$\frac{\Lambda_I}{\Psi_{\pi}}$	$\frac{\alpha}{\alpha}$	1 0 <i>2</i>	••• 700	••• <u>†</u> 09	••• <u>7</u> 00	••• 1 00	••• 703	•••	•••	••• 794	•••	147	135	126	118	110	106
xV.	1 Y	192	195	198	201	204	207	210	213	216	219	222	225	228	231	234	238
Nr'	0 8 5	•••	<u>0</u> 90 <u>1</u> 02	<u>1</u> 60 048	$\frac{157}{313}$	<u>1</u> 54 <u>2</u> 50	<u>1</u> 50	147 167	143 147	129	115	106	1 30 09 8			<u>1</u> 22 <u>0</u> 79	075
чa	15		001	003	042	054	066	080	093	101	125	141	120	1/1	190	202	210
a		.16	.17	.18	.19	.20	.21	•22	.23	•24	•25	.26	.27	•28	•29	•30	• 32
a Rn/1	Rm	.1 6 236	.17 241	.1 8 246	.19 251·	•20 256	.21 260	•22 263	.23 267	•24 271	•25 275	.26 2 7 8	.27 281	•28 284	•29 287	•30 290	•32 297
a Rn/1 Xn	Rm n.	•16 236 204	.17 241 205	.18 246 207	.19 251. 208	•20 256 209	.21 260 210	•22 263 211	.23 267 213	•24 271 214	•25 275 <u>2</u> 15	.26 278 216	.27 281 217	•28 284 219	•29 287 <u>2</u> 20	.30 290 221	.32 297 223
a Rn/1 Xn ¥x	Rm n. β	•16 236 204 100 080	.17 241 205 095 085	.18 246 207 <u>0</u> 91 093	.19 251 208 <u>0</u> 87 100	.20 256 209 084 106	.21 260 210 081 114	-22 263 211 079 123	.23 267 213 077 129	•24 271 214 075 136	•25 275 215 073 144	.26 278 216 071 153	.27 281 217 069 160	•28 284 219 068 169	•29 287 <u>2</u> 20 <u>0</u> 66 177	.30 290 221 065 186	.32 297 223 062 207
a Rn/I Xn ¥ _x x ¥ _x	$\begin{array}{c} Rm\\ n\\ \alpha\\ \beta\\ \gamma\\ \delta\\ \end{array}$	•16 236 204 100 080 241	.17 241 205 095 085 244	.18 246 207 091 093 246	.19 251- 208 087 100 249	•20 256 209 084 106 252 108	.21 260 210 081 114 255	•22 263 211 079 123 258	.23 267 213 077 129 261	•24 271 214 075 136 264	-25 275 215 073 144 267	.26 278 216 071 153 270	.27 281 217 069 160 273	•28 284 219 068 169 276 098	•29 287 <u>2</u> 20 <u>0</u> 66 177 278 098	.30 290 221 065 186 280 098	•32 297 223 062 207 285
$ \begin{array}{c} a \\ Rn/I \\ Xn \\ \Psi'_{x} \\ x\Psi'_{x} \\ \overline{x} \\ \overline{y}'_{x} \\ \overline{y}$	Rm n. β γ δ ε	•16 236 204 100 080 241 117 072	.17 241 205 095 085 244 114 068	.18 246 207 091 093 246 112 065	.19 251 208 087 100 249 110 062	.20 256 209 084 106 252 108 060	.21 260 210 081 114 255 107 058	•22 263 211 079 123 258 105 056	.23 267 213 077 129 261 103 054	•24 271 214 075 136 264 101 252	•25 275 215 073 144 267 100 051	.26 278 216 071 153 270 099 490	.27 281 217 069 160 273 099 475	•28 284 219 068 169 276 098 462	•29 287 <u>2</u> 20 066 177 278 098 450	•30 290 221 065 186 280 098 438	.32 297 223 062 207 285 099 414

AUXILIARY	TABLE	OF	THE	CYCLONE	FUNCTION	(II))

a

 $\frac{\operatorname{Rm}/\operatorname{Rm}}{\operatorname{Xm}}$ $\frac{\operatorname{Ym}}{\operatorname{Ya}} \frac{\alpha}{\beta}$ $\frac{\operatorname{Ya}}{\operatorname{x}\operatorname{Ya}} \frac{\gamma}{\delta}$ $\frac{\varepsilon}{\operatorname{Ya}} \zeta$

a

 $\frac{\operatorname{Rn}/\operatorname{Rm}}{\operatorname{Vz}} \frac{\alpha}{\beta}$ $\frac{\sqrt{2}}{x\sqrt{2}} \frac{\gamma}{\delta}$ $\frac{\sqrt{2}}{\sqrt{2}} \frac{\varepsilon}{\sqrt{2}}$

a .

Rn/Rm Xm

a

Al	XIL]	IARY	TABI	E OF	THE	CYC	LONE	FUN	ICTIC)N (]	(I)			P.	31
•34	.36	. 38	•40	•42	•44	•46	.48	• 50	.52	• 54	•56	• 58	•60	.65	.70
302	307	311	315	319	32 3	3 2 8	3 32	336	339	342	345	349	352	359	365
225	<u>2</u> 27	229	231	233	<u>2</u> 35	237	239	<u>2</u> 41	243	245	247	249	250	255	259
<u>060</u>	058	Q57	Q56	Q54	Q53	Q52	<u>Q</u> 51	Q50	491	482	476	468	460	45 0	438
226	243	262	277	295	315	332	353	370	387	402	422	440	45 5	483	<u>0</u> 53
290	295	299	304	308	312	31 5	319	322	326	329	333	336	339	346	353
100	1 02	1 03	1 05	107	108	110]1 1	112	113	114	116	118	119	121	125
394	380	365	350	337	325	315	306	298	290	281	272	266	260	244	230
452	470	490	510	535	550	570	592	603	<u>0</u> 62	<u>Q</u> 64	<u>0</u> 66	<u>0</u> 68	071	074	Q78
•75	.80	.85	•90	•95	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
372	377	383	388	3 93	3 98	406	413	420	426	432	437	441	445	449	452
263	267	271	275	279	282	291	297	304	310	315	320	328	335	341	346
424	417	407	402	395	382	377	363	353	344	335	328	$\bar{3}22$	317	311	306
056	060	Q 63	066	Q 69	072	078	083	088	095	098	103	106	111	114	118
3 59	365	371	376	381	386	395	402	410	41 6	422	4 28	$\overline{4}34$	4 39	4 44	$\bar{4}49$
129	132	134	137	140	144	148	152	156	160	165	169	173	176	180	184
Ž1 9	209	1 98	1 90	182	176	1 65	1 55	$\mathbf{\tilde{1}}46$	1 38	131	Ī25	1 20	1 15	ī1 0	105
<u>0</u> 81	Q8 5	0 89	<u>0</u> 92	Q95	Q 99	1 05	<u>]</u>]]	117	1 23	<u>1</u> 28	1 32	1 37	1 42	<u>1</u> 47	151
2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0	3.2	3.4	3.6	3.8	4.0	4.2
456	459	462	465	468	471	473	475	477	478	482	486	490	494	497	500
<u>3</u> 52	<u>3</u> 57	<u>3</u> 62	<u>3</u> 67	<u>3</u> 72	<u>3</u> 77	<u>3</u> 82	<u>3</u> 87	<u>3</u> 92	<u>3</u> 96	405	41 7	423	$\frac{431}{2}$	<u>4</u> 40	$\frac{4}{4}$
303	297	294	289	285	281	277	274	271	267	262	256	252	246	243	238
122	126	129	1 35	132	<u>1</u> 38	1 43	1 45	1 48	152	157	1 63	1 69	173	178	182
454	458	462	466	470	473	476	480	483	486	493	499	504	508	512	516
188	1 92	<u>1</u> 96	<u>200</u>	<u>2</u> 04	<u>2</u> 09	21 3	<u>2</u> 17	220	$\underline{2}24$	232	<u>2</u> 39	<u>2</u> 46	252	<u>2</u> 59	<u>2</u> 64
101	097	094	091	088	085	082	080	078	076	072	068	065	063	060	058
1 56	1 60	1 64	168	172	176	180	183	186	190	197	204	211	217	222	228
4.4	4.6	4.8	5.0	5.2	5.4	5.6	5.8	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5
503	505	50 7	509	511	513	515	517	519	524	528	531	533	536	538	54 0
455	46 3	471	478	48 5	492	499	506	513	529	545	561	575	590	604	617
234	230	226	224	221	216	215	2 13	210	203	197	1 92	187	183	180	176
187	192	197	203	206	211	214	218	223	233	244	252	262	270	280	<u>2</u> 88
519	523	527	530	533	537	540	542	545	552	558	563	568	573	577	580
270	<u>2</u> 76	<u>2</u> 81	288	292	<u>2</u> 98	303	309	<u>3</u> 16	329	341	<u>3</u> 53	363	373	3 83	393
056	ō54	ō52	ō50	488	473	460	448	435	407	382	358	332	320	306	293
<u>2</u> 33	<u>2</u> 39	243	249	255	<u>2</u> 61	266	<u>2</u> 71	276	<u>2</u> 87	289	3 09	<u>3</u> 20	<u>3</u> 31	<u>3</u> 41	352 2
10	12	14	16	18	20	25	30	35	40	45	50	60	70	80	90
542	546	550	553	556	568	574	5 7 9	583	586	589	591	595	598	601	603

																	
Rn/	Rm	503	505	507	509	511	513	515	517	519	524	528	531	533	536	538	54 0
Xm		455	46 3	471	478	48 5	492	$\frac{499}{100}$	506	51 3	529	545	<u>5</u> 61	57 5	5 90	<u>6</u> 04	<u>6</u> 17
	α	234	230	226	224	221	216	21 5	213	2 10	203	1 97	1 92	187	183	180	176
Ψ x	ß	187	192	<u>1</u> 97	203	206	<u>2</u> 11	<u>2</u> 14	<u>2</u> 18	223	233	$\frac{244}{2}$	252	<u>2</u> 62	270	280	288
	Y	519	523	527	530	533	537	540	542	545	552	558	563	568	573	577	580
\$¥¥3	δ	270	<u>2</u> 76	<u>2</u> 81	<u>2</u> 88	<u>2</u> 92	<u>2</u> 98	<u>3</u> 03	309	<u>3</u> 16	<u>3</u> 29	341	3 53	363	<u>3</u> 73	3 83	<u>3</u> 93
,	8	056	054	052	050	48 <u>8</u>	47 <u>3</u>	46 <u>0</u>	448	435	407	<u>382</u>	<u>358</u>	332	<u>3</u> 20	<u>306</u>	293
Ψ_a	ζ	233	239	243	<u>2</u> 49	<u>2</u> 55	<u>2</u> 61	266	<u>2</u> 71	27 6	<u>2</u> 87	28 9	3 09	<u>3</u> 20	<u>3</u> 31	<u>3</u> 41	$\frac{3}{2}5\overline{2}$
0		10	12	34	16	10	20	25	80	75	40	A E	50	60	70	80	00
		10	<u> </u>	7 .1				20			<u>40</u>						90
Rn/	Rm	542	546	550	553	556	568	5 7 4	5 7 9	583	586	589	591	595	598	601	603
Xm		631	<u>6</u> 91	727	770	810	849	933	102	109	116	122	129	140	150	160	169
	α	173	160	151	1 43	1 36	131	1 19	Ĩ Ì0	103	097	092	088	082	076	072	068
Х Х	ß	295	324	<u>3</u> 53	38 0	405	426	479	053	058	061	064	068	075	080	087	092
	γ	584	596	605	613	620	627	639	648	656	663	669	674	681	685	689	690
з¥з	8	402	430	4.58	485	512	537	595	651	705	757	805	850	937	102	110	118
	1					<u> </u>	2.						200	00.			
	8	280	24Q	21 0	18 <u>5</u>	16 <u>7</u>	15 <u>2</u>	12 <u>5</u>	10 <u>5</u>	09 <u>3</u>	0 81	07 <u>3</u>	06 <u>7</u>	05 <u>6</u>	484	425	3 <u>80</u>
In the case where the formula is applied for the height of the constant pressure level, P_{∞} and ΔP are changed into H_{∞} and ΔH , respectively. They may be called thus:

$$H_{\infty}$$
 Undisturbed Height ΔH Height Depth

The values of Ψ , $\frac{\partial \Psi}{\partial x}$, and $\frac{\partial \Psi}{\partial a}$ were computed for about 100 different values of a. The results are tabulated on pages 9 to 29, for the range of x from 0.02 to 19.0. The table is available when we desire to compute the typhoon curves, their gradients, winds, and temperatures.

When x is small, the cyclone function is expanded into the power series,

$$\Psi = \frac{1}{\sqrt{1 + \left(x \frac{x+i}{x+a}\right)^2}} = i - \frac{i}{za^2} x^2 - \frac{a-i}{a^3} x^3 \quad (x < a) - (8c)$$

It is clear that the pressure near the center increases parabolically. In the case where x is very large, the function is reduced to

$$\Psi = \frac{1}{\sqrt{1 + (x \frac{x+1}{x+a})^2}} = \frac{1}{x} + \frac{a-1}{x^2} \quad (x > 1)$$
(8d)

The cyclone function can be differentiated partially with respect to x and a. The results are given by

$$\frac{\partial \Psi}{\partial x} = \Psi'_{x} = -\Psi^{3} \frac{x^{4} + (1 + 2a)x^{3} + 3ax^{2} + ax}{(x + a)^{3}}$$
(9a)

$$= -\frac{x}{a^2} - s \frac{a-1}{a} x^2 \qquad (x \le a) \qquad (9b) = -\frac{1}{x^2} + \frac{s(a-1)}{x^3} \qquad (x > 1) \qquad (9c)$$

$$\frac{\partial \Psi}{\partial a} \equiv \Psi_{a}' = \Psi_{a}^{3} \frac{x^{2} (x+1)^{2}}{(x+a)^{3}}$$
(10a)
$$= \frac{x^{2}}{a^{3}} - \frac{x-8a}{a^{4}} x^{3}$$
(x < a) (10b)
$$= \frac{1}{x^{2}}$$
(x > 1) (10c)

In order to know the change in shape of the curve, represented

by the function with different values of a, three-dimensional feature of the curves is presented in Fig. 4, in which the value of Ψ in-

Fig. 4. Showing the curves for different cyclone constants. creases upward, and at the top it reaches the value, 1.000. The figure shows that the radius of curvature near the top becomes larger as the cyclone constant increases. When x = 0, we have $\Psi = 0$, $\Psi'_{x} = 0$ and $\Psi_{z} = -1/a^{2}$, then the radius of curvature at the top is given by

 $\frac{(1 + \Psi_{\mathbf{x}}^{\prime 2})^{\frac{3}{2}}}{\Psi^{*}} = a^{2}$ (11) When a is very small, the curve has a pointed top rather than rounded If the value of a in the cyclone function be zero, the ourve

changes into inverted-Y shape shown in Fig. 5. T is the triple point at which the three lines meet, and it is located at the altitude of 0.707 or $1/\sqrt{2}$. It is evident that all the curves must occupy the space above the hatched area in the figure.

one.

P. 33

The shape of the for $_{G} = 0$ will curve change if we introduce one more constant b into the cyclone function, thus: $\sqrt{1 + \left(z \frac{z+b}{z+a}\right)^{g}} (12a)$ When a = 0, it will be

Fig. 5. The triple point which appears when a = 0. The area where no curve exists is shown by hatched area. $\Psi^*_{a=0} = \frac{1}{\sqrt{1 + (x+b)^2}}$

reduced to

The values of this formula are tabulated and shown in Fig. 6.

b	0.0	0.1	0.2	0.5	1.0	1.5	2.0	2.5	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10
<u> </u>	000	005		004		FCA					100	104	343	104	110	100
0.0	000	995	98T	894	707	554	447	371	316	242	196	164	141	124	110	100
0.1	995	981	958	857	672	530	429	359	306	236	T 85	162	139	123	109	099
0.2	981	958	928	819	640	507	413	347	298	231	188	159	137	121	108	098
0.3	958	928	894	781	610	486	399	336	290	226	186	157	136	120	107	097
0.4	928	894	85 7	743	581	466	384	326	282	221	182	154	134	118	106	096
0.5	894	857	819	707	554	447	371	316	274	217	179	152	132	117	105	095
0.6	857	819	781	672	530	429	359	306	268	212	175	150	130	116	103	094
0.7	819	781	743	640	50 7	413	347	298	261	208	172	147	129	114	102	093
0.8	781	743	707	610	486	399	336	290	254	204	170	145	127	113	102	092
0.9	743	707	672	581	466	384	326	282	248	200	167	143	126	112	101	091
1.0	707	672	6 40	554	447	371	316	274	242	196	164	141	124	110	100	091
2.0	447	429	413	371	316	274	242	217	196	164	141	124	110	100	091	083
3.0	316	306	298	274	242	217	196	179	164	141	124	110	100	091	083	077
4.0	242	237	231	217	196	179	164	152	141	124	110	100	091	083	077	071
5.0	196	192	188	179	164	152	141	132	124	110	100	091	083	077	071	066
6.0	164	161	159	152	141	132	124	117	110	100	091	083	077	071	066	062
7.0	141	141	137	132	124	117	110	104	100	091	083	077	071	066	062	059
8.0	124	123	121	117	110	104	100	095	091	083	077	071	066	062	050	055
9.0	110	109	108	104	100	095	n91	088	083	077	071	066	062	050	055	053
10.0	100	099	008	095	na1	088	083	080	077	071	066	062	050	009	055	000
			0.00	000	001	000	000	000	UT1	011	000	004	003	000	000	000

Table 2. Showing the values of $\Psi^*_{a=0}$.

It will be seen that the space, cocupied by the curves with various cyclone constants, increases downward when b becomes smaller.

It is important problem to determine the value of b suitable to

Fig. 6. Showing the cyclone function with the value of a = 0, and the different values of b.

the typhoon curves. After the analyses of many typhoon curves, the writer concluded that b = 1 is better.

Fig. 7. Showing the pressuretraces recorded when the Makurazaki Typhoon attacked Kyushu.

According to the traces shown in Fig. 7, for example, the pressure drops rapidly in the vicinity of the center. This fact had been noticed by T. Namekawa and Z. Aoki(1), together with their notion of "Secondary Typhoon" imaginable inside the area of main typhoon" On the other hand, however, the writer's function is capable of representing the pointed curve that they noticed.

§ 5 Deepening and Filling

In this section, the deepening and filling of typhoon pressure observed from the system moving with the typhoon are studied. When the pressure field is represented by the formula,

the deepening and filling taking place inside the typhoon areas may be known by differentiating the equation partially with respect to time, thus we have

 $\left(\frac{\partial P}{\partial t}\right)_{r} = \frac{d P_{a}}{d t} - \Psi \frac{d \Delta P}{d t} - \Delta P \frac{\partial \Psi}{\partial a} \frac{d a}{d t} - \Delta P \frac{\partial \Psi}{\partial x} \frac{\partial x}{\partial r_{0}} \frac{d r_{0}}{d t}$ (13a)

Replacing the rate of change in the four constants by the notations with single dot, we have more simple formula,

 $\left(\frac{\partial P}{\partial t}\right)_r = \dot{R} - \Psi \dot{\Delta P} - \Delta P \Psi_a' \dot{a} + x \Delta P \Psi_x' \log r_0$ (13b) (I) The undisturbed pressure R increases gradually as a typhoon enters the high pressure area in the middle latitude. The rate of change is about 20 mb/week, namely 1/5 mb/hr, which is negligiblly small in the ordinary case.

(II) As shown in Fig. 8, the rate of filling or deepening due to the change in ΔP is very large in the central area. Because it is multiplied by the value of Ψ , the cyclone function.

Fig. 8. The value of $-\Psi \Delta P$ when ΔP is negative (right), and the value of $-\Psi \Delta P$ when ΔP is positive.

(III) The change in a, the cyclone constant with respect to time produces the deepening or filling of $-\Delta P \Psi'_{a} \dot{a}$, whose value is zero both at the center and infinite distance. It is known that, in the development stage, the sign of \dot{a} is negative, and that it changes into positive in earlier decaying stage. In decaying stage, usually \dot{a} is about 0.1 per hour. This amount results in the value of $-\Delta P \Psi'_{a} \dot{a}$ of about 1 mb/hour when $\Delta P = 50$ mb., a = 0.8, and Ψ'_{a} is maximum. The shapes of the curves for deepening and filling cases are shown in-Fig. 9.

Fig. 9. Showing the value of $-\Delta P \Psi'_{a} \dot{a}$ in the development (left) and the decaying(right) stages.

(IIII) The unit radius r_0 increases from zero up to several hundred kilometers through formation, development, mature, and decaying stages. Therefore, $\dot{r_0}$ is positive showing that the value of $\Delta P \Psi_{x} \log r_0$ is always negative. The deepening caused by the change in r_0 is

Fig. 10. Showing the value of $\Delta Px \Psi_{x} \log \tau_{0}$, which is usually negative in any stage of typhoon. shown in Fig. 10. It must be noticed here that the amount of deepening does not decrease in the outer area so rapidly as we have seen in the case of \dot{a} , because $x\Psi'_x$ decreases pro-

portional to the reciprocal of the larger value of s.

In the formation and development stage, the effect of filling

caused by \dot{a} is partly cancelled by that of the deepening by $\dot{r_0}$. Therefore, the deepening due to $-\Psi \Delta P$ is most prominient before a

Fig. 11. Showing the distribution of filling and deepening for a decaying typhoon.

typhoon reaches its mature stage. On the other hand, in the decaying stage, values of \vec{r}_0 and \vec{a} produce a pronounced deepening in the outer area, showing a remarkable contrast with the filling taking place in the vicinity of the center. The typical example of the pressure change inside a decaying typhoon is shown in Fig. 11.

There are two significant studies concerning the pressure changes. One was carried out by Z. Aoki(1) being suggested by T. Namekawa in Kyoto University. He paid much attention to the fact that the center of typhoon decays rapidly, while the outer area remains almost unchanged. That fact led him to the conclusion that a well-developed typhoon must be consisted of two typhoons, the main and the secondary typhoon, and that the latter which is to be in the central area is rather small in area but very deep in pressure. To explain the rapid filling in the central area, he assumed that the secondary typhoon has the characteristic to decay rapidly.

The writer's function, however, would explain the fact that Z. Aoki had noticed. Because, when the cyclone constant is very small,

the shape of the funnel, as shown in Fig. 12, is supposed as if it

Fig. 12. The profile of typhoon with the cyclone constant a = 0.02.

were consisted of two profiles for the main and the secondary typhoon. The other study was completed by A. Kasahara. He introduced the filling-up index, a quantity showing the mass convergence inside a decaying typhoon. According to his study, the index is to be computed as the summation of the values of $\zeta_{s}/\sqrt{\lambda+\zeta}$ multiplied by each of the four annular areas which are separated by the cirches with the radii, 20km, 40km, 60km, and 80km from the center, where $\overline{\xi}$, ζ_{s} , and λ denote the mean vorticity inside the frictional layer, relative vorticity at the surface, and the Ceriolis' parameter, respectively. The filling-up index by Kasahara is supported also by the writer's theory, because it is evident that the filling-up takes place in the vicinity of center where the verticity shows a large positive value.

The mass convergence inside a typhoon can be computed by integrating the rate of pressure rise around the center with respect to the area, thus:

Rate of mass convergence =
$$\int_{center}^{pivot} dA = \int_{center}^{pivot} p 2 \pi r \, dr \dots (14a)$$

where, the pipot is the point noticed by Kasahara, at which the filling changes into deepening.

Replacing r by
$$xr_0$$
, we have
Rate of mass convergence $= \int_{2\pi x}^{2\pi x} r_0^2 \dot{P} dx = 2\pi r_0^2 \int_{x}^{y} p dx$
 $= 2\pi r_0^2 (-\Delta \dot{P} \int_{x} \Psi dx - \Delta P \dot{a} \int_{x} \Psi'_{u} dx + \Delta P \log r_0 \int_{x}^{x} \Psi'_{x} dx) \dots (14b)$
whence, $\dot{P} = -\Psi \Delta \dot{P} - \Delta P \Psi'_{0} \dot{a} + \Delta P x \Psi'_{x} \log r_0$
In order to carry out the integration from center to the pivot,

graphical integration is preferable.

The pipot noticed by A. Kasahara may be re-emphasized here. It is the point or circle at/on which the filling or deepening is not taking place. Therefore, the value of x at the pivot must satisfy the formula, $\partial P/\partial t = 0$, namely,

 $\vec{P}_{a} - \Psi \Delta \vec{P} - \Delta P \Psi_{a} \dot{a} + \Delta P x \Psi_{x} \log r = 0$

It is evident that the several values of x would satisfy the equation. The smallest value of x, however, shows the most important point as the pivot.

§6 Expansion and Shrink of Isobars.

This is the rate of change in the isobar radii. If the pressure r km. from the center changes -dP, as shown in Fig. 13, the radius will expand dr, and there exists a relation.

 $-\frac{dP}{dt} / \frac{dr}{dt} = \operatorname{grad} P - \dots - (15)$ therefore,

$$\frac{dr}{dt} = -\frac{dP}{dt} / \text{grad} \cdot P = \frac{b}{\Psi'_x \Delta P} \dot{P}$$

Using the formula(13), we have

dr dP t+dt

Fig. 13. In order to obtain the rate of expansion. $\frac{dr}{dt} = \frac{r_0}{\Delta P} \frac{1}{\Psi_a'} \dot{P}_a - \frac{r_0}{\Delta P} \frac{\Psi_a'}{\Psi_a'} \dot{\Delta P} - r_0 \frac{\Psi_a'}{\Psi_a'} \dot{a} + x \dot{n} - \dots (16a)$

The shape of each term in the right side is shown in Fig. 14.

In the vicinity of the center, the formula can be reduced to

Fig. 14. Showing the effect of the positive rate of the four constants.

or appear abruptly.

It is true, from these equations, that the radius of the isobar at the center changes quickly, when $P_{\infty} - \Delta P$, the central pr soure, changes. And the smallest isobar

 $\left(\frac{dr}{dt}\right)_{\mathbf{x}\ll\mathbf{\overline{1}}} - \frac{r_0 a^2}{\Delta P} \frac{d}{dt} (P_{\infty} - \Delta P) \frac{1}{x} \quad (16b)$

 $\left(\frac{dr}{dt}\right)_{x\gg1} = -\frac{r_0}{\Delta P} x^2 \dot{P}_{\omega} + r_0 x \log \Delta P + x \dot{r}_0 (16c)$

In the outer area, we get

enclosing the center would vanish

When \mathbf{x} is very large, the value of \dot{P}_{∞} multiplied by \mathbf{x}^2 may play an important rôle to change the radius of isobars, however, in the outer areas, this effect is not clear, since those areas are influenced by the other pressure systems.

The schematical figure showing the shrink and expansion taking place inside a typhoon is presented in Fig. 15. The most impor-

Formation	Development	Mature	Decaying	Re – develop		
-P	ΔΡ					

Fig. 15. Shrink and expansion of isobars for a typhoon in various stages(upper) and the change in four constants.

tant fact seen in the figure is the expansion of the isobars in the outer areas, which is seen in any stage of a typhoon.

§ 7 Pressure Tendency

The pressure tendency for a moving typhoon is given by the formula, $\frac{dP}{dt} = \frac{\partial P}{\partial t} - (V \cdot grad P)$ (17) which means that the tendency is produced by the change of the typhoon itself and also by its movement.

(A) TENDENCY DUE TO THE TYPHOON MOVEMENT

Fig. 16. To obtain the pressure tendency caused by the typhoon movement.

It is known that the tendency due to the typhoon movement is given by the inner product of two vectors; V, the relative velocity of a station to the typhoon center, and grad P, the pressure gradient at the station in discussion. If we measure the time from the moment when the station has passed across the line XX', at a time i the station must be located at the distance r km. from the center and V_i km.

from XX' axis. Now, we call the station in discussion Station A, and the other one located on YY' axis r km. from the center Station B. It will be seen that there exists a simple relation between the tendencies at the Station A and B. Because the tendency at A is

$$-(V \cdot \operatorname{grad} P) = -V \frac{\Delta P}{r_o} \Psi'_{X} \cos \theta \qquad (18a)$$
$$= -V \frac{\Psi \Delta P}{r_o} \cos 0 \times \cos \theta$$
$$= \operatorname{Tendency at } B \times \frac{V_{L}}{r_o} \qquad (18b)$$

which tells us the relation,

Tendency at A = Tendency at B $\times \frac{V_t}{r}$ (18c) On the other hand, the tendency at B given by

$$-\frac{\Delta P}{r_0} \Psi_{\mathbf{x}} V$$
 (18d)

would easily be computed using the table of $\Psi_{\mathbf{x}}$. The tendency for the different values of \bullet are presented in Fig. 17.

Fig. 17. Tendencies for the station on the axis YY. It should be noticed that the curves have three inflexion points when a > 1.0.

Fig. 17. Isallobars of the typhoon with a = 0.5(left) and those of the cyclone with a = 5.0(right).

Making use of the formulas (18), the isallobars in Fig. 18 were drawn. The most interesting and important difference between the isallobars for typhoon and continental cyclone is their shape in the inner area. As will be seen in the figure, the isallobars of the typhoon with the cyclone constant smaller than 1.0, have their shape of the left, and the cyclone with the constant larger than 1.0 are something like that of the right. This fact is very helpful in drawing the isallobars of moving system.

(B) TENDENCY DUE TO $\partial P / \partial t$

The other tendency represented by $\partial P/\partial i$ is caused by the deepening and filling of typhoon. This effect is prominent when the typhoon speed is rather slow. Especially when a typhoon stays at a constant location and deforms, whole tendency is given by this value.

According to the equation(13b), we know

 $\left(\frac{\partial P}{\partial t}\right)_{r} = \dot{P}_{\infty} - \Psi \dot{\Delta P} - \Delta P \Psi_{a}' \dot{a} + \Delta P x \Psi_{x}' \log r_{0}$ The first term \dot{P}_{∞} gives the constant tendency throughout the areas.

Fig. 19. Isallobars due to the change in ΔP ($-\Psi \Delta P$)

Fig. 20. Isallobars due to the change in \dot{a} . $(-\Delta P \psi_{\alpha} \dot{a})$

The second and third ones form the isallobars shown in Figs. 19 & 20. Similar to the third one, the last term gives the tendency with the

maximum amount encircling the center. Its shape will be seen in Fig. 21.

In the practical case, the isallobars in Figs. 19, 20, and 21 must be superimposed upon those in Fig. 18. In her mature stage the effect of $\partial P/\partial t$ is very small, but when she enters the middle latitude, according to the rapid change in ΔP , a,

Fig. 21. Isallobars due to the change in $r_0 \cdot (+\Delta P x \Psi'_x \log r_0)$

and to, the isallobars deform appreciablly.

PROBLEM OF MINIMUM PRESSURE

One might consider that the minimum pressure at a station would occur when a typhoon passes the nearest distance from the station. This assumption, however, is not always accurate. Now we consider the case where a typhoon passes in the vicinity of a station, the tendency.

$$\frac{dP}{dt} = \frac{\partial P}{\partial t} - (V \cdot \operatorname{grad} P)$$

can be reduced to

$$\frac{dP}{dt} = (P_{\alpha} - \Delta P) + \frac{V^2 \Delta P}{a^2 r_0^2} t \qquad (\because x \ll 1) \qquad (19a)$$

The time of the occurrence of the minimum pressure is obtained, thus: $i = \frac{-a^2 r_0^2}{V^2 \Delta P} \left(\dot{P_{\infty}} - \Delta \dot{P} \right) = -\frac{a^2 r_0^2}{V^2 \Delta P} \dot{P_0}$ (19b)

where, P_0 is the change in the rate of the central pressure. The

result shows that the minimum pressure for a decaying typhoon ($\dot{E} > 0$) appears prior to the passage of the center.

If the central pressure of a typhoon, having the values, a = 0.5, $r_0 = 100$ km, $\Delta P = 50$ mb, and V = 50 km/hr, increases at the rate of 5 mb. per hour, the minimum pressure would appear 1/10 hour before the passage of the center, namely, it occurs 5 km. ahead of the center. When the cyclone constant is two times larger, it will be seen about 10 km. ahead.

In the practical analyses of typhoon, we must always consider the fact that the minimum pressure and the passage of the center do not occur at the same time. For the illustration of this fact, an example of isallobars for a rapidly decaying typhoon is shown in

Fig. 22. It will be understood that the $\partial P / \partial t = 0$ line, on which the minimum pressure is to be observed does not pass through the center.

Fig. 22. Showing the isallobars of a typhoon when her central pressure increases rapidly.

§ 8 Standard and Anomalous Pressure (I) STANDARD PRESSURE

To obtain the standard pressure, we must compute the mean pressure defined by the formula (6). We plot the pressure for the

different radii on the section paper and draw the reasonable pressure profile satisfying the plotted points. As will be seen in Fig. 23. the pressures for the reporting stations are very helpful in drawing the profile; however, it should always be kept in mind that the stations concentrated inside a local area indicated by the arrow have

sometimes a bad influence for drawing the profile.

After drawing the profile. we determine the horizontal line for g making use of the characteristic of the pressure profile that approaches to P_{∞} line inversely proportional to the distance from the center.

Fig. 23. Drawing the pressure profile of a typhoon. • mean pressure, • ---- pressure for reporting stations.

Then we read the depth of the funnel ΔP_{\bullet}

Next we compute the radius ratio Rm/Rn and find out the suitable cyclone constant using the tables in pages 30 and 31.

The unit radius r_0 is given by the relation.

$$r_0 = Rm / Xm$$

where, Xm is the parameter tabulated on the same pages.

Using the four constants P_{α} , ΔP_{α} a, r_{α} , and also the table of Ψ . the pressure; $P = P_{\infty} - \Psi \Delta P$ can be computed, which is the standard pressure for the typhoon under discussion.

(II) ANOMALOUS PRESSURE

The observed pressure subtracted by the standard pressure may be called the anomalous pressure. The characteristic of the anomaly becomes evident by drawing the isallobars for the anomalous pressure.

Should the anomaly chart be drawn on the steering level of typhoon, it would show the general current by which the storm is to be

steered. To know the general current. the surface anomaly chart is not always suitable. but in the case where the storm areas are not occupied perfectly by cold air-masses, surface anomaly isobars are something like those of the steering level.

The anomaly chart for Typh.Jane of 3 Sep. 1950 is presented in Fig. 24a. And at that time she had the profile shown in Fig. 24b. It will be seen that the isobars show the general current especially in the warm sector. In the cold sector, however, the general

Fig. 24. Anomalous pressure chart(a) for Typhoon Jane of 3 Sept. 1950, and her profile(b) at the same time.

tor, however, the general current is screened by the cold air-masses north west of the typhoon. The pronounced positive anomaly over West Japan is produced by the shallow cold air-masses caused by the heavy rains in that area.

In the mountain areas such as Japan and Philippines see sometimes positive we anomaly. In Fig. 25 the typical anomaly over Japan is Such anomaly is supshown. posed to be caused by the convergence of the circulating airs which results in the topographical filling. On account of the topograph-

Fig. 25. Positive anomaly caused by the mountains over Japan Islands. Continental cyclone at 9h Oct.30 1949

ical positive anomaly, a travelling cyclone over Japan Islands, in

Fig.26. Negative anomaly (Typh. Muroto in 1934)

many cases, has split into two depressions on both offings of the Islands.

Negative anomaly is seen in föhn regions in typhoon areas. An example in North Japan at the time of the Muroto Typhoon

P. 49

of 21 Sept. 1934 is represented in Fig. 26. The insolation reaching the carth's surface through the fine weather inside the föhn area sometimes heats the ground, consequently promoting the negative anomaly in the daytime. Similar to the topographical anomaly, this anomaly does not reach the higher altitude, vanishing usually below the level of 700 mb.

It must be pointed out here that the small depressions which are used to be drawn on the isobar chart of the typhoon over a complicated topography are not the small secondary typhoons followed by cyclonic winds but the apparent lows without any relation to the profound nature of the storm. Thus, the pressure anomaly tells us of many interesting problems on the pressure field, but there exist other anomalies caused by a travelling depression. It will be discussed in section 10 in detail.

§9 Pressure Oscillations

"This section has been studied in cooperation with K. Otani(19) in Fukuoka Meteorological Observatory."

In this section we only discuss the case where the density of the air is approximately equal in horizontal directions. Under this assumption, the air pressure in horizontal flow coincides with the weight of the air column.

At the time of a storm passage, sometimes it happens that barometers oscillate about several millimeters so that we can not read the pressure accurately. In reading the scale it has been taught to read the mean position of the mercury meniscus oscillating up and down. We have long been desiring to know the nature of the oscillations, and recently we have studied the traces of wind and pressure at the top of Mt. Seburi, leading us to the conclusion that the oscillations are closely related to the suction of air in the barometer room, and that the mean position of the mercury top does not indicate the pressure in the open air.

As shown in Fig. 27. the pressure oscillates whenever the wind speed is higher than 15 m/sec. meanwhile the pressure itself decreases proportional to the square of the speed. The other example recorded at the time of Typhoon Kezia is also shown in the next page. These figures do not always suffice our need, therefore, one of us has made the traces of wind and pressure recorded on a rapidly rotating drum, by using Dines' pressure tube anemometer, the optical lever connected to the axis of aneroid pressure recorder, and statoscope. The results thus obtained are presented in Figs. 29 and 30, in which the squares of the wind speeds multiplied by half of air density are compared with the pressure drawn upside down. As will be seen in the figure, there exist long period oscillation(order of minutes) and short period one(order of seconds), which may be called the long and the short period gustiness, respectively. The long period gusts in wind are correlated to the pressure gusts, but the shorter ones are not always correlated with them.

Now we consider the causes of pressure oscillation from various angles.

(A) TOPOGRAPHICAL EFFECT

The pressure within a current prevailling over a hill does not coincide with the weight of the air column, because, as shown in Fig. 31, the horizontal upstream currents are accelerated along the hillside, meanwhile the pressure drops untill they reach the maximum speed. Isobars for the practical pressure subtracted by the net

Fig. 27. Pressure drops associated with the long period wind gusts occurring at the time of the cold-frontal passage on 12 May 1949. It will be seen that the barometter oscillated when the wind speed is higher than 15 my/sec. (Mt. Seburi Weather Station, 1954 m)

P. 5'2

13-14 Sept, 1950

Fig. 28. Gusty winds and the short period pressure oscillations recorded at the time of Typhoon Kezia. This type of oscillations were recorded, without exception, by the pressure recorder. (Mt. Seburi Weather Station, 1054 m)

Fig. 29. Comparison of the pressure oscillations and the wind gusts transcribed in the $\frac{1}{2}\rho V^2$ scale. Fukuoka Meteorological Observatory. recorded by Statoscope.

Fig. 30. Comparison of the pressure oscillations and the wind gusts transcribed in the $\frac{1}{2}\rho V^2$ scale. Mt. Seburi Weather Station, 1054 m.

weight of the air column are drawn schematically in the figure.

low pressure area on the hill is always screened by the centrifugal force of the airs passing over along the convex paths. If the stream is irrotational, the pressure drop is to be computed, but in the practical case, the drop in the leeward side is rather difficult to be computed.

In the case where the sta-

Fig. 31. Stream lines and the low pressure field caused by a small hill.

tion is located in the low pressure area on the hill, the observed pressure would be lower than the net weight appreciably. The decrease in pressure can be written, thus:

 $P_{\alpha} = \alpha \frac{1}{3} \rho V^2$ (20) where, V is the wind speed at the station under consideration, ρ the density, α the coefficient decided by the shape of the hill and the location of the barometer room. The wind oscillation with the wave length comparable to the scale of the hill will produce such a decrease in pressure. Typhoon winds of 30 m/sec with the period of 1 minute has the wave length of about 2 km., which is enough for the present case.

(B) SUCTION EFFECT

This effect occurs in the manner similar to that we see in the suction tube of Dines' anemometer. In the present case, the building of the weather station with doors and windows acts as if it were the suction tube. The pressure inside the room can, therefore, be given

The

by the formula: $P_{\beta} = \beta \frac{1}{2} \rho V^2$ (21) where, β is the constant determined by the way of presentation of the building in the storm. The pressure drop must be proportional to the square of the wind speed strictly.

The resultant effect of the above-mentioned pressure drop is written thus:

$$P_{\alpha} + P_{\beta} = \alpha \frac{1}{2} \rho V^{2} + \beta \frac{1}{2} \rho V^{2}$$
$$= (\alpha + \beta) \frac{1}{2} \rho V^{2} - \dots$$
(22)

in which the coefficient α and β have each frequency character de-

Fig. 32. Showing the frequency character of α and β (left), and the increase of gust when the door of barometer room is opened. creasing for higher frequency. Schematically, the change in β and α with frequency is shown in Fig. 32 together with the practical example showing the increase of gust when the door of the barometer room is opened.

(C) EFFECT OF TURBULENCE

The shape of the eddies imbedded inside a typhoon current is not so evident, but it is reasonable to consider that the vortices develop, deform, or decay as they travel along their courses. On account of the internal friction or the resistance of the obstacles, eddies will be initiated successively inside the frictional layer. The long-lived vortices must have long eddy line which is shown in Fig. 33.

How much would the pressure decrease when a vortex passes across a weather station ? This question can be answered by computing the pressure decrease in the model vortex shown in Fig.34. If the speed of the air with respect to the moving vortex center be ΔV , the speed V of the actual wind that would be recorded by the Dines' anemometer is ob-

-- 0

Fig. 33. Three-dimensional feature of practical vortices within typhoon wind. The airs enter inside the vortex from both ends of the vortex, where the centrifugal force of circulating air is not enough to prevent the entering air.

tained superposing the speed of the vortex center upon the speed ΔV .

Fig. 34. Showing the distribution of wind relative to the vortex center (ΔV) , and wind speed (V), and the pressure decrease inside the vortex.

The pressure decrease in the vortex is obtained, thus:

$$\frac{\Delta V^2}{r} = \frac{-1}{\rho} \frac{dP}{dr} \qquad \therefore dP = -\rho \Delta V^2 d(\log r)$$

Therefore, $P_{\gamma} = -\rho \int_{\infty}^{r} \Delta V^2 d(\log r)$ (23)

In the case where the wind speed within a vortex, having the diameter of 40 m., is proportional to the radius, with the proportional constant of $\frac{1}{2}$ per second, pressure at the center is

 $-\rho \int_{g000}^{0} \frac{r^2}{r} \frac{dr}{r} = -\frac{1}{3} \rho \left(r^2 \right)_{g000}^{0} = \frac{1}{2} \times 10^3 \, dyne/cm^2 + 0.5 \, mb.$ This value is conceivable in the practical cases.

In the turbulent layer, in which many vortices of various sizes exist, the pressure is different from the weight of air column which would increase homogeneously downward. The schematical pressure distribution is shown in Fig. 35. As the airs in the turbulent layer flow horizontally supporting the weight of the over-

lying atmosphere, the pressure free from the perturbation must satisfy the condition of static equilibrium. We must. therefore, consider the fact that there exist the positive and negative pressure perturbations inside the frictional The most important layer. characteristic of the pressure variation is that it does not wary parallel to the wind

Fig. 36. Pressure decrease $(P_{\alpha}+P_{\beta}+P_{\gamma})$ caused by the successive vortices circulating in the same direction. It will be seen that there is no good correlation between the speed and the pressure decrease.

speed. The short period pressure oscillations uncorrelated to those

of the wind are supposed to be caused by these vortices. The pressure oscillation due to the vortices circulating . in the same direction is shown in Fig. 36. It will be understood that the pressure variations are not to be connected with those of the wind.

The pressure oscillations of this type do not lower the mean value of the pressure traces but they make the short period pressure oscillation more random.

Thus the pressure variation due to high winds can be represented by the formulas.

$$P = wP - \frac{1}{s}\rho(\alpha+\beta)V^{s} - P_{\gamma}$$
(24a)

$$\overline{P} = \overline{wP} - \frac{1}{s}\rho(\alpha+\beta)\overline{V}^{s}$$
(24b)

where, P is the pressure inside the barometer room, wP the weight of the air column, the values \overline{P} , \overline{wP} , \overline{V}^{S} show the mean. DETERMINATION OF THE CONSTANT $(\alpha + \beta)$.

The constant we now want to determine is very important, because wP can be computed by the relation,

$$\overline{wP} = \overline{P} + (\alpha + \beta) \frac{1}{8} \rho \overline{V}^{8}$$
(24c)

Should there be two stations at the foot and at the top of a hill which is not so high, it is

possible to get the value as follows: At the surface station far from hills, the pressure decrease Fig. 37. due to high wind is caused only wind for two station A by the suction of the station building, therefore, $\alpha = 0$. examination of pressure traces at Fukuoka Meteorological Observatory, the value of β for such station is known to be about 0.1 - 0.2. Then, we have, $\overline{P}_{A} = \overline{wP} - 0.1 \times \frac{1}{2} \rho \overline{V}_{A}^{S}$

Showing the pressure and

and B.

After the

Ρ.

60

$\overline{Pc} = \overline{wP} - (\alpha_{\rm B} + \beta_{\rm B}) \frac{1}{g} \rho_{\rm B} \overline{V_{\rm B}}^2$

where, P_A , P_C , and V_A , V_B are used in the meanings in Fig. 37. Thus we have, $\overline{P_A} - \overline{P_C} = (\alpha_B + \beta_B)^{\frac{1}{2}} \rho_B \overline{V_B}^2 - 0.1 \frac{1}{2} \rho_A \overline{V_A}^2$(25a) If the second term in the right side, which is about one tenth of the first one, can be neglected, we get

$$\overline{\overline{P}_{A}} - \overline{\overline{P}_{C}} = (\alpha_{B} + \beta_{B}) \stackrel{\perp}{=} \rho_{B} \overline{\overline{P}_{B}}^{2}$$
(25b)

This formula shows us that the value of $(\alpha + \beta)$ is computed by pressure and wind for the two stations in Fig. 37.

EXAMPLE (]) Hosojima(top) and Nobeoka. (Typhoon Della of 1949)

As shown in Fig. 38, the constant $(\alpha + \beta)$ for Hosojime lighthouse weather station is about 0.6.

Fig. 38. Showing the coefficient $(\alpha + \beta)$ obtained by the pressure traces from Nobeoka and Hosojima.

EXAMPLE (]) Muroto-misaki(top) and Tsuro (Typhoon Jane of 1950)

Using the data in Fig. 39, the constant $(\alpha + \beta)$ for Murotomisaki Station was computed; it is about 0.5.

In the case where there are no surface stations, the pressure of which could be compared with that of the hill or meuntain station, we correlate the long period pressure oscillations to the wind oscillations plotted in $\frac{1}{E} \rho V^3$ scale.

EXAMPLE (]) Mt. Fuji Weather Station (Typhoon Della of 1949)

wind were observed at the top of Mt. Fuji Weather Station. Assuming the pressure indicated by the broken line in the figure, we obtain the value of

 $(\alpha + \beta)$ for Mt. Fuji. The result, 0.7 is not so large comparing with the value in the two examples presented before. Therefore, it can be concluded that $(\alpha + \beta)$ for lighthouses and mountain stations are roughly 0.5 - 0.7.

Now it is possible to carry out the new correlation by which the weight of the air column, which may be called the "weight pressure," is obtainable. The pressure differences, which must be added to the observed pressure in order to obtain the weight of the air column are tabulated as the function of the constant $(\alpha + \beta)$ and wind speed.

Remarks	$(\alpha + \beta)$	10	15	20	25	30	35	40	45	50 m/
Station in town	0.1	0.0	0.1 0.2	0.2	0 •3 0•6	0. 4 0.9	9.6 1.2	0.8 1.5	1.0	1.2 2.4
Station on	0.3	0.1	0.3	0.6	0.9	1.3	1.8	2.3	2.9	3.6
hill	0.4	0.2	0.4	0.8		1.7	2.4	3.1	3.9	4.9
Lighthbughth	ou Sa 5	0.2	0•5	1.0	1.5	2.2	$3.0 \\ 3.5 \\ 4.1$	3•9	4.9	6.1
or mount-	0•6	0.3	0•7	1.2	1.8	2.6		4•6	5.9	7.3
ain stat.	0•7	0.3	0•8	1.4	2.1	3.1		5•4	6.9	8.5

Table 3. Showing the correction of pressure due to high wind. The table is computed for 0°C, 760 mm. Hg.

The value of $(\alpha + \beta)$ for the station that needs the correction, is not always known, however, it will be assumed, according to the remarks in the table. We must not be nervous in the selection of the value of $(\alpha + \beta)$, because, even if the suitable value could be determined, there would remain unknown errors which can be known by the fact that the dots on the $P - \frac{1}{2} \rho V^2$ diagram are widely scattered. Thus we must recognize that there are numerous errors in pressure inside a storm area which are inevitable, and that there is no reason why we must draw the isobars within typhoons believing the o.1 mb. of the reported pressures to which the correction discussed here was not made yet.

§ 10 Pressure Dips

The negative pressure anomaly supposed to occur in connection with the structure of typhoon is the pressure dip which has been pointed out by the writer. Pressure dip is a small travelling depression satisfying the following definition presented by the writer.

- a. Pressure dip is a small trough-like depression,
- b. which is not accompanied by cyclonic winds,
- c. nor a sharp drop in temperature at the time of passage;
- d. and the propagation of which must be recognized by reffering to the pressure traces.

The mechanism of dip initiation was presented by Dr. Syono(23) early in 1940 in his study of the thunderstorms in the vicinity of Tokyo. The idea of the decrease in pressure due to a localized heavy rain had lead him to the conclusion that the heavy rains in the intertropic frontal zone which could lower the pressure could play an important role to the initiation of tropical cyclones.

Fig. 42. Pressure dip and rain. (Typhoon Della of 21 June 1949)

Fig. 43. Pressure dip and rain. (Typhoon Kezia of 13 Sept. 1950)

seen, which passed across central Japan from Shimonoseki to Aikawa. It was known that the weight of the precipitated rain was comparable to the weight decrease of air column, suggesting that the dip could be initiated by heavy rains. As has been analysed by K. Hashimoto (10), the pressure dip in the center of typhoon Kezia of 13 Sept. 1950 was accompanied by heavy rain shown in Fig. 43.

Thus, in many cases, dips are followed by heavy rains which would have initiated them. Sometimes, we come across the dip free

from the rain. The largest dip within Typhoon Della shown in Fig. 44 was not followed by appreciable rain. At Iki station, the pressure drop by the dip was 6.7 mb., which might be the deepest one ever known. The in-

Fig. 45. Movement of the dips within Typhoon Della of 20 June 1949. In the right figure, the winds at the 500 mb. and 300 mb. levels are shown.

Fig. 44. Pressure traces showing the passage of Dip Z.

itiation of this dip is not evident, but the writer presented the idea that a kind of dip can be initiated by the large mass of air inside the typhoon which gets out when the pressure gradient decreases according to the rapidly filling typhoon area. Of course, it is possible to

that the rain which had produced the dip had already disapsuppose The movement of dips is shown in Fig. 45. It will be seen peared. that the speed of dip movement is larger in the right side of the ty-The most mysterious fact of the movement is that dips phoon center. move along the steering current of the typhoon affected not by the surface topography, and that they do not stray as the center of the main storm does.

Comparing the speed of the dips with that of the current at the 500 mb. and 300 mb. levels. it is evident that the current of 300 mb.

level is about two times in speed while larger the 500 mb. level speed on is quite similar to that of the dip.

The relative velocities of the dips to the typhoon center and to the ground are shown in Fig. 46. It is evithe typhoon is superposed.

Speed with respect to the typhoon center

Fig. 46. Showing the steering speed of dips, X, Y, Z and W. bution shows us that The speed distridips move at the steering velocity given by both typhoon circulation and general circulation. dent that the dips under discussion had moved together with the general current of 30 knots, upon which the circulating wind around

These results show that a dip near the center must move with the similar speed to that of the typhoon center. This fact seems to be true, since we know examples of dip which moved together with the main depression forming two pressure minima in the bottom. The two minima in Typhoon Kezia are the good example.

As has been introduced, the pressure dips tell us great deal about the unknown feature and the structure of typhoons, therefore, it is desirable to analyse the pressure field within typhoons using as many pressure traces as possible.

LITERATURES

- Aoki Z. Theory of Main and Secondary Typhoons. Report on Akune and Makurazaki Typhoons. C.M.O. of Japan 1949
- (2) Aoki Z. Two Examples of Typhoons consisted of Main and Secondary Typhoons. Applied Physics of Japan Vol. 5 No. 9 1936
- (3) Aoki Z. Theory of Main And Secondary Typhoons. Applied Physics of Japan Vol. 10 No. 2 and 3 1941
- (4) Byers H. R. The Thunderstorm.
 U.S. Government Printing Office, Washington D.C. 1949
- (5) Deppermann C. E. Notes on the Origin and Structure of Philippine. Typhoons. Bull. Amer. Met. Soc. 28 1947
- (6) Fuchi H. Influence of Topography upon the Speed and Direction of Winds. Bull. of C.M.O. of Japan 1933
- (7) Fujita T. Micro-analysis of Typhoon Della. Lectured at the Met. Research Meeting in Tokyo Oct. 1949.
- (8) Fujita T. Micro-analytical Study of Cold-front. Geophysical Magazine of Japan Vol. 22 No. 3 1950
- (9) Fujita T. Study on Pressure Dips within Typhoon Della. Bull. of the Kyushu Institute of Technology. Vol. 2 1952
- (10) Hashimoto K. On the Internal Regions of Typhoon in South Kyushu. Report on Typhoon Kezia of Sept. 1949
- (11) Horiguchi Y. Feature of Muroto Typhoon when she passed over Kinki District. Report on Muroto Typhoon of Sept. 1934 C.M.O. of Japan Mar. 1935
- (12) Inoue E. On the Pressure Fluctuations in a Turbulent Fluid. Geophysical Notes, Tokyo Univ. Vol. 3 No. 33 1950
- (13) Kanaya K. On the Hydrodynamical Effect near the Center of Typhoon Jane. Report on Typhoon Jane of 1950. C.M.O. of Jap. 1951
- (14) Kasahara A. On the Distribution of the Amount of Rain-fall and Filling-up of the "Kitty Typhoon". Geophy sical Notes, Tokyo University Vol. 3 No. 30 1950
- (15) Kasahara A. On the Filling-up of a Typhoon. Geophysical Notes Tokyo University. Vol. 2 No. 13 1949
- (16) Masuda Y. and Takeuchi T. An Aerological Investigation of the Structure of Typhoon (Jane and Kezia) Papers in Meteorology and Geophysics. Vol. 2 Nos. 3-4 Dec. 1951
- (17) Miyamoto M. Warm Front inside Typhoon Della. Report of Kobe Marine Observatory Mar. 1950
- (18) Namekawa T. A View of the Structure of Muroto Typhoon Report of the University of Kyoto. 1936
- (19) Otani K. On the Pressure Oscillations caused by Gusty Winds. Proceedings of the Western-Japan Meteorological Meeting. 1950
- (20) Pierce C.H. The Meteorological History of the New England Hurricane of Sept. 21, 1938. Monthly Weather Review July 1939
- (21) Syono S. Relation between the Absolute Vorticity and the Absolute Angular Momentum and its Application. Geophysical Notes, Tokyo University Vol 2 No. 7 1949.
- (22) Syono S., Ogura Y., Gambo K., and Kasahara A. On the Negative Vorticity in a Typhoon. Journal of Meteor. Soc. Jap. Dec.1951
- (23) Syöno S. Structure of Thunderstorms occuring in the Vicinity of Tokyo. Bull. of the C. M. O. of Jap. Vol. 17 Sept. 1940
- (24) Syono S. On the Tendency Equations. Lectured at the Laboratory. The pressure drop caused by heavy rains had been emphasized. 1946
- (25) Syono S.
 (25) On the theory of the Formation of Tropical Storms. Completed in 1951 (Not yet published) In this paper, the effect of heavy rains is considered as a cause of the initiation of typhoons in earlier stages.
- (26) Takahashi K. On the Distribution of Wind Speed within Typhoons. Memoirs of the C.M.O. of Jap. Vol. 35. Mar. 1951.
- (27) Tepper M. A Proposed Mechanism of Squall-line; Pressure Jump Line. Journal of Meteorology Vol. 7 No. 1. 1950
- (28) Watanabe T. Dynamical Study on Typhoon Eyes. Memoirs of the C.M.O. of Jap. Vol. 35. Mar. 1951.
- (29) Watanabe T. Mechanism of Convergence inside Typhoon. Memoirs of the C.M.O. of Japan. Vol. 35. Mar. 1951.

CHAPTER II

TEMPERATURE DISTRIBUTION WITHIN TYPHOON

CONTENTS

1,	Height of Constant Pressure Levels	69
2,	Radial Distribution of Temperature	73
3,	Errors in the Reporting Upper-air Temperature	77
4,	ΔH - log P, ΔT - log P, and T - log P Diagrams	8 6
5,	Distribution of Surface Temperatures	91
6,	Temperature Associated with Föhn	96

CHAPTER II TEMPERATURE DISTRIBUTION WITHIN TYPHOON

§1 Height of Constant Pressure Levels

(I) Height of 1000 mb. level

Let P be the surface pressure within a typhoon, it is written, thus: $P = P_{\infty} - \Psi \Delta P$ where, P_{∞} is the undisturbed pressure, Ψ the cyclone function, and ΔP the pressure depth. This formula can be changed into the one showing the height of the 1000 mb. level.

The air-temperature within a typhoon may be different from place to place. As shown in Table 4, the height of 1000 mb. level, corresponding to the given surface pressure, is not influenced too much by the temperature.

T°C Pmb.	20	21	22	23	24	25	26	27	28	29	30	31
1020 1000 980 960 940 920	+\$56 0 - 57 -116 -174 -236	+ 56 0 - 57 -116 -174 -236	+ 56 0 - 57 -116 -175 -237	+ 56 0 - 57 -117 -176 -238	+ 57 0 - 58 -117 -176 -238	+ 57 0 - 58 -118 -177 -239	+ 57 0 - 58 -118 -177 -240	+ 57 0 - 58 -119 -178 -241	+ 57 0 - 58 -119 -178 -241	+ 57 0 - 58 -119 -179 -242	+ 57 0 - 58 -120 -180 -243	+ 58 0 - 59 -120 -180 -243
900	-297	-298	-299	-300	-301	-302	- 303	-304	-305	- 306	-307 -	- 308

Table 4. Height of 1000 mb. level in 10 feet unit. The change in height due to the difference in temperature is so small that it could be neglected.

According to the observation by drop-sonde, the temperature in the eye at 1000 mb. level can be extrapolated to about 30°C. Therefore, it seems to be reasonable, in order to compute the height of 1000 mb. level, to assume that the air-temperature between sea and 1000 mb. level is 30°C. Because the maximum error for the height would occur only in the central area; while in the outer area, with the pressure nearly equal to 1000 mb., the temperature difference of

about 10°C is out of the question.

Now, we try to change the pressure formula into the height formula. Let ρ be the density of the air, g the gravity, R the gas constant, and T the air temperature, we have,

$$dH = \rightarrow \frac{RT}{g} \frac{dP}{P}$$
 (26)

whence, $dP = -\rho g dH$, $P = \rho R T$.

Integrating both sides, we obtain

$$H^{1000} = \frac{RT}{g} \log \frac{P}{1000}$$
(27a)

where, H^{1000} is the height of 1000 mb. level.

Substituting $P_{\alpha} - \Psi \Delta P$, into P, we have

$$H^{1000} = \frac{RT}{g} \log \frac{P_{\infty} - \Psi \Delta P}{1000}$$
(27b)

The right side can be expanded into the series,

$$H^{1000} = \frac{RT}{g} \log (1+y) = \frac{RT}{g} \left(y - \frac{y^{2}}{2} + \frac{y^{3}}{3} - \cdots\right)$$

In many cases, the value of y is less than 4/50, therefore, the square and the cube term in the parentheses are negligible. And the formula can be reduced to

$$H^{1000} = \frac{RT}{g} \frac{P_{\infty} - 1000}{1000} - \frac{RT}{g} \frac{\Psi \Delta P}{1000}$$
(27c)
= $H^{1000}_{\infty} - \Psi \Delta H^{1000}$ (27d)

where, H_{∞}^{1000} and ΔH^{1000} are the undisturbed height and the height depth of 1000 mb. level. Using the values: $R = 2.87 \times 10^6 \text{ erg/g} \cdot \text{deg}$, g = 980 dyne/g, and $T = 303^6 \text{K}$, we have

$$H_{\infty}^{1000} = 8.87 \left(\frac{P_{\infty}}{1000} - 1\right) \times 10_{m}^{3} = 2.91 \left(\frac{P_{\omega}}{1000} - 1\right) \times 10^{4} ft - (27e)$$

$$\Delta H^{1000} = 8.87 \frac{\Delta P}{1000} \times 10^{8} m = 2.91 \frac{\Delta P}{1000} \times 10^{4} ft - (27f)$$

Thus the pressure formula can be changed into the height formula on 1000 mb. level.

(II) Height of Constant Pressure Level

Let us consider the typhoon on the P mb. pressure level, travelling along the straight line DD' at the speed of V km/hr.

The height at p, r km from the center is not only the function but also of the angle p O D in Fig. 47. It is represented by the formula.

 $H^{p} = H^{p}_{m} + \Psi^{p}_{d}H^{p} - G^{p}_{rsin\theta}$ (28) where H_{∞}^{p} is the undisturbed height along the straight line DD and G^{P} the height gradient of the general current. It is clear that the height H^p varies as much as $2G_r^p$ along the circle, but the mean height defined by the formula,

Fig. 47. Contours for a cyclone in a general current.

$$\overline{H}_{r} = \frac{1}{8\pi} \int_{0}^{8\pi} H_{r} d\theta - (29a)$$

is given by the function of r. that is:

$$\overline{H_r}^{\rm p} = \frac{1}{2\pi} \int_0^{2\pi} \left(H_{\infty}^{\rm p} - \Psi^{\rm p} \Delta H^{\rm p} - G_r^{\rm p} \sin \theta \right) d\theta$$
$$= H_{\infty}^{\rm p} - \Psi^{\rm p} \Delta H^{\rm p} \qquad (29b)$$

It must be noticed here that the center from which the distance is to be measured is not the isobaric center but the tornado center that is not always seen on the chart.

Next we consider the distribution of mean temperature between two levels with the pressure P_i and P_2 ($P_i > P_2$). The height difference is given by subtracting

$$H^{\mathbf{p}_{i}} = H_{\infty}^{\mathbf{p}_{i}} - \Psi^{\mathbf{p}_{i}} \Delta H^{\mathbf{p}_{i}} - G^{\mathbf{p}_{i}} r \sin \theta$$

from

We have,
$$H^{P_i} - H^{P_i} = (H_r - \Psi \Delta H)_{P_i}^{P_i} - (C)_{P_i}^{P_i} r \sin\theta$$
 (30a)
The height can be replaced by the mean temperature on Emagram, using the relation, $\frac{R}{g}T \log \frac{P_i}{B} = H^{P_i} - H^{P_i}$

of r

If the shape of the typhoon is equal on two levels, the equation (30a) is reduced to

$$T = \left(H_{\omega} - rG\sin\theta_{P,R}^{P,g} / \log\frac{P_{i}}{P_{2}} \right)$$
(30b)

The formula shows that, if $G^{P_0} > G^{P_0}$, the temperature between the levels decreases toward the left (facing to the direction of movement) proportional to the distance from the path of the tornado center. And the value given by (30b) is the temperature not for the typhoon but for the steering current.

The temperature field for typhoon can be given by equating the values, $(H_{\infty} - \Psi \Delta H)_{p}^{p}$ and $\frac{R}{\sigma} T \log \frac{p}{p}$, we have,

$$T = \frac{g}{R} \left[H_{\infty} - \Psi \Delta H \right]_{p}^{p_{*}} / \log \frac{P_{*}}{P_{*}}$$
(30c)

When Typhoon Kezia of Sept. 1950 was on the southern ocean of Japan, the heights for 1000 and 700 mb. levels were shown by the constants: $H_{\infty} = 10230$ ft, $\Delta H = 1640$ ft, a = 0.52, $r_{e} = 67$ km....700 mb.

 $H_{\infty} = 380 \text{ ft}, \Delta H = 1790 \text{ ft}, a = 0.20, r_0 = 67 \text{ km} \dots 1000 \text{ mb}$

Fig. 48. Distribution of mean temperature computed by the heights of the 1000 and 700 mb. levels.

The height and the temperature computed by the cyclone function are shown in Fig. 48. The utmost interest seen in the figure is the high temperature in the eye which is surrounded by the low temperature area where the ring-shaped heavy rain would exist.

2 Radial Distribution of Temperature.

If the pressure inside a typhoon is in the condition of static equilibrium, using the relations

$$dP = -\rho g dH \qquad \rho = \frac{P}{RT}$$

we obtain the temperature, thus:

U

$$T = -\frac{g}{R}P\frac{\partial H}{\partial P} = -\frac{g}{R}\frac{\partial H}{\partial(\log P)}$$

Introducing the notation: $H = \frac{\partial H}{\partial'(\log P)}$
we write, $T = -\frac{g}{R}\frac{H}{R}$ (31a)
When the height of the constant pressure level is represented by the
equation, $H = H_{\infty} - \Psi \Delta H$
we obtain, $T = \frac{g}{R}\left(-H_{\infty}^* + \Psi \Delta H + \Delta H \Psi_a^{'*} - \Delta H_x \Psi_x \log^* r_c\right)$ (31b)
which shows that the temperature consists of four terms.
(1) $-\frac{g}{R}H_{\infty}^*$

This term shows the temperature in the environment free from typhoon. Because when x is very large, the other terms in the parentheses are reduced to zero. Therefore, this term shows the temperature upon which the typhoon temperature is to be superposed. Thus we $T_{\infty} = -\frac{g}{R} H^*$ (31c) know. (11) $\frac{g}{R} \Psi \Delta H$

The temperature at the center obtained by substituting x = 0 in $T = -\frac{g}{R} H_{\infty}^{*} + \frac{g}{R} \Delta^{*}H$ (3lb) is - $T_{\infty} + \frac{g}{R} \Delta_H^*$ Therefore,

where, ΔT is the temperature difference between the center and the environment. Now, we write the present term as:

$$\Psi \frac{g}{R} \Delta H - \Psi \Delta T$$
 (31e)

And the temperature can be written thus:

$$T = T_{\infty} + \Psi \Delta T + \frac{g \Delta H}{R} \left(\Psi_a' a^* - x \Psi_x' \log^* r \right)$$
(31f)

In the case where the values of τ_0 and a do not change along the vertical, the last two terms in the parentheses are reduced to zoro, viz., $T = T_m + \Psi \Delta T$ (31g) having somewhat similar distribution to that of the pressure or height. The distributions of temperature and height within such depressions are drawn in Fig. 49 & 50.

Fig. 49 & 50. Showing the distribution of height and temperature on constant pressure levels within the depression, the constants r_{a} and a of which do not change along the vertical.

(111) In the practical case, r, and a change along the vertical direction, and " $log^{\pm} r$," plays a role to change the temperature in the annular area around the center. Because the value of $-x \Psi'_x$ is zero both at the center and the infinite distance. The temperature surve for this term is shown in Fig. 51. " a^{\pm} " plays the role similar to that of the previous term, and the curve of $-\Psi'_a$ is shown in Fig. 52.

Temperature distributions computed for various ΔT , a and π are shown in Fig. 53, in which the resultant disturbances produced by the

vertical change of a and r, are represented by the stippled areas.

Fig. 53. Showing the possible temperature distribution within typhoon and cyclone, when they are represented by the formula(31b). The T_{∞} is shown by the line passing through the center of each figure. The disturbance by $\log r$ and $\frac{1}{2}$ is shown as the stippled areas.

2 Radial Distribution of Temperature

Fig. 54. Distribution of temperature and height in decaying stage.

Fig. 55. Distribution of temperature and height in mature stage.

Fig. 56. Distribution of temp. and height in development stage.

P. 76

3 Errors in the Reporting Upper-air Temperatures

According to the vertical section of model typhoons in Fig. 54. 55 and 56, which were drawn by the writer having basis on the observational facts, each of the temperature curves in Fig. 53 is to be found in them. In the figures, the cloud systems are represented by the hatched areas, height of constant pressure levels by black lines. and isotherms by red ones. In the lower level of typhoon, where the central temperature higher than those of the far environments is surrounded by colder areas caused by the ring-shaped heavy rains. the distribution is similar to that of the temperature curve E2. The curves Cl and C2 are seen in the middle levels with the pressure of 700-500 mb. In the mature stage, the upward currents around the center are very intense, and the temperature involved is sometimes much higher than that in the center, which is higher than the environments. This is the case that we call "cold-core cell", which is usually seen in the upper layers. In the middle or lower level, however, we see "warm-core cell" in which the depth of constant pressure levels becomes shallower along the vertical.

§ 3 Errors in the Reporting Upper-air Temperatures.

We are apt to consider that the temperatures observed by radio sonde are accurate so that they can be used in our study without correction; but this is not the case. Meteorologists who have had chances to analyse the practical upper air charts using abundant data, are wondering if the temperatures could be used without being corrected. Because such a case sometimes happens that we cannot draw height contours or isothermal lines after entering the materials received.

In their study "on an Aerological Investigation of the Structure of Typhoons", Y. Masuda and K. Takeuchi(4) have corrected the

temperatures and heights for constant pressure levels in order to eliminate diurnal variation in pressure and temperature. They used the anomalies defined as the difference of observed temperature and height from those of the monthly mean values for each time of observation. The errors coming from the difference between insolations at noon and midnight are eliminated in that way, however, there remain still appreciable errors which should be corrected in order to carry out the further studies.

(I) RANDOM ERROR

In the vicinity of Tokyo we have three sonde stations. Tokyo, Haneda, and Tateno; therefore, it is possible to compare the reporting temperatures. 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 June 1949. Fortunately. Mt. Fuji Weather Sta-Min ì Mt. Fujt 640 mb. tion in the vicinity reports the temperatures at about 700 Tokyo 640 mb. level. then the writer compared 7b 0 Haneda the reports with of those stations in Fig. 57. The tem-700 Tateno peratures at Fuji Fig. 57. Reporting temperature from areplotted for Mt. Fuji and three zonde stations.

every 3 hrs, while those from sonde stations for every 6, 12, or 24 hrs. It will be seen that the temperatures at Fuji contain much perturbations, some of which might be caused by the insolation in the daytime. The amplitude of oscillation, except the diurnal variation,

According to the trace in Fig. 58 showing the detailed is 1 - 2°C. variation at Fuji Station 22 JUN ł 21 JUN. 1949 for the middle period in °C 5 Fig. 57. temperature at that level fluctuated at random Fig. 58. Variation of temperature at Mt. Fuji Weather Station. with higher frequency than those of sonde observations. Another example of temperature measured by thermister attached to the airplane of the Thunderstorm Project

thundercloud in earlier dissipating stage. It will be seen that the plotted points are scattered about 2 desuggesting that grees the perturbations of that order are superposed. . From these examples. it is natural

Fig. 59. Temperature of thundercloud measured by the airplane of Thunderstorm Project in U.S.A. 14 August 1947

to conclue that the temperature observed by radio sonde must contain the error of this range. The temperatures observed for every 12 hrs do not always result in the unique curve, since we get different temperature curves by shifting the time of observation. The temperatures at Fuji plotted for every 3 hrs are shown in Fig. 60, together with the curves based upon the two observations a day, namely, (Oh 12h) (3h 15h), (6h 18h), and (9h 21h). The four curves, in the ideal case. must coincide, but as will be seen in the figure smaller disturbances

Í

Sepi 1934

Fig. 60. The temperature at Mt. Fuji Station plotted for every 3 hrs, together with the curves based upon the two observations a day, viz., (Oh 12h), (3h 15h), (6h 18h), (9h 21h).

to not give the similar feature, but the long period variations are quite similar. Thus, we must always expect to know the feature of the long period variations only, instead of the short ones.

At any time we should consider that the shape of one wave must be fixed by several observed points endorsing the shape of variation. That is to say, it would require more than 5 reliable observations in

order to realize a variation of diurnal amplitude. The connection of the observed points, 1, 2, 3, 4 and etc. using a wavy line in Fig. 61 is not reasonable so long as the existence of the variation is not supported by other independent fact. The

Fig. 61. Bad connection of observed points(B), and better one(A).

expected change in temperature is the line A in the figure. It is because the other observations, which were to be made between the times of present observations, would be located on both sides of the line A at random, as shown by the open circles. There would be no reason why the circles should be arranged just on the wavy line B in question.

(II) EFFECT OF DIURNAL TEMPERATURE VARIATION

Previously, the writer pointed out the fact that there occurs a scattering of the observed temperatures, which are supposed to be measured accurately. The other cause of error due to the solar radiation in the daytime is very important.

Usualy, the temperature for 12h MST is higher than that for Oh. The high temperature at noon may be caused partly by the warming of the air column; but if it absorbs the 20 per cent of the insolation, $2 \text{ cal/cm}^2 \cdot \text{min}$, after 10 hours the total accumulated heat 200 cal. would raise the temperature only about 0.8°C. Of course, this is the maximum rise occurring when the heat is all accumulated. In the practical case, on the other hand, the heat must be radiated always. Therefore, the temperature rise will be less than 0.5 degrees.

The difference of the monthly mean temperature at 12h from that at Oh for each Japanese sonde station is plotted in Fig.62. The plotted difference δT is the mean value. but if we examine the individual case. ST more than 2 times larger than the mean value would be seen. The change of ST along the vertical is

Fig. 62. Vertical distribution of the rise of temperature(left) and the upheaval of constant pressure level(right) due to the expansion of air by insolation.

shown by the thick line, and the possible mean maximum of δT is limited by the broken line. If we consider the case where δT is very large, it will reach about 2°C at 700 mb. level, 4 C at 300 mb., 6°C at 200 mb. and 10°C at 100 mb. An example of very high temperature 200

observed on the weather ship Tare at noon is shown in Fig. 63.

is

in the constant

sideration of this problem are then not trustworthy.

(III) INSTRUMENTAL ERROR

The rise

pressure levels caused by the

computed for both mean and max-

imum values of δT at the re-

high temperatures at noon

causes is the instrumental error. This is also very important, but difficult to be taken off. According to the writer's experience, the temperatures from American stations are compensated for the radiation error very well. Examples of heights and temperatures from Barrow Point in Araska, which were read in the microfilm copies(6), are presented in Fig. 64. It will be seen that the errors are mostly of instrumental or accidental origin.

(IV) TECHNIQUE IN CORRECTING THE ERRORS

As has been studied by Masuda and Takeuchi(4), part of the errors from radiation can be corrected by subtracting the amount of δT from the daytime observations. It is rather good, however, the amount of δT we desire to take off are different from day to day, so that the subtraction of average value from the noon temperature is

not always reasonable. The temperatures are presented in Fig. 65. Comparing the temperatures before and after the correction, we know the

rection, we know that there still remain the errors which should be eliminated.

The writer's correction is based upon the fact that a large amount of temperature must be subtracted from the noon temperature when it is too high, while if it is not, we need not subtract much. It is rather difficult to pursue such correction using the temperatures each of which contains individual error. As shown in Fig. 66, however, to plot the middle points of successive temperatures (middle point correction) 18T h gives better ref sult than subtract-A the average ing Fig. 66. Mean value correction(left) temperature differand middle point correction. ence (mean value correction). The middle point correction can be done again to the corrected temperatures. This process may be called the 2nd correction. by which the smaller perturbations of unknown origin is reduced.

An example of the middle point correction for the same data as in Fig. 65 is presented in Fig. 67. After the 1st correction, the upper data scattered in range ap-

Fig. 67. Middle point correction for the temwide range ap- perature of 200mb level at Wajima(Oct. 1950) proach to the curve we desire to obtain. As shown in the lowest distribution, by correcting 3 times, the long period variations do not vanish, while the short ones, the existence of which are not supported by the original data, decrease in amplitude. In the practical case, it will be better to use the result of 2nd or 3rd correction.

The middle-point correction can be applied not only to the temperature but also to the other elements such as heights, pressures, wind speeds and etc.

§ 4 ΔH -logP, ΔT -logP, and T-logP Diagrams

ø

According to the equation (31d), we know the relation,

namely,
$$\frac{\frac{\partial}{R} \Delta H}{\frac{\partial}{\partial (logP)}} = \frac{R}{g} \Delta T$$

Fig. 68. Three diagrams for cyclone analysis.

which shows that the derivative obtained by differentiating ΔH with respect to the logarithm of pressure is proportional to ΔT , the temperature difference between center and environment. The relations among $\Delta H, \Delta T$, and T are well understood by plotting the values in question in the diagrams in Fig. 68, in which the right one is the The temperature scale in the lower left is the rate at Emagram. which the value of ΔH in ΔH -log P diagram increases or decreases in correspondence with the value of ΔT in ΔT -log P diagram. Say. if ΔT is -20 °C. ΔH would change along the line L.

Using the three diagrams in Fig. 68, the relations between the vertical distribution of temperature, ΔH , and ΔT can be studied as follows:

In Fig. 69. vertical distribution of the three elements for a cold cyclone aloft, having no cyclonic feature on the 1000 mb. level, is presented. This cyclone is very simple because the value of ΔH is zero both at the 1000 mb. and 0 mb. levels, viz. Infinity $d(\Delta$

Surface

Fig. 69. Showing the change in ΔT , T, and ΔH for the cold cvolone with $\Delta H = 0$ at 1000 mb level.

$$d (\Delta H) = 0$$
arface
$$(32a)$$

re,
$$\frac{R}{g}\int_{1000\,\mathrm{mb}}\Delta T \ d(\log P) = 0 \qquad (32b)$$

This fact is very important, since it shows that the algebraic sum of the areas S_2 and S_3 in the ΔT -log P diagram is zero, namely, there must exist the equal areas on both sides of the $\Delta T = 0$ line. As shown in the figure, the largest ΔH is seen on the level where the temperatures at the center and the environment are equal, and at the altitude for the max. or min. values in ΔT , the vertical change rate of $\wedge H$ becomes the largest.

In the practical case, however, the definite height depth exists even at the 1000 mb. level, and the integrated value is

$$\int_{1000 \text{ mb}}^{0 \text{ mb}} d(\Delta H) = - \Delta H^{400}$$

It is desirable to make the algebraic sum of the areas in ΔT -log P

diagram just zero. The writer considered the case where the air 20°C lower than the environment is placed ed below the 1000 mb. level. In such a case, ΔH would decrease along a straight line AE, the direction of which can be decided by the lower left scale in Fig. 68. Therefore, the imaginary area KFGJ

Fig. 70. Vertical distribution of ΔH , ΔT , and T for a cold cyclone with a definite ΔH at the 1000 mb. level.

would be put below. Thus, the relations,

$$\int_{EFG}^{0 \text{ mb}} \Delta T \, d \, (\log P) = 0$$

$$\int_{EFG}^{0 \text{ mb}} \Delta T \, d \, (\log P) = 0$$

hold, changing the problem into that discussed before. Now, we have the relation.

 $\mathbf{S}_{0} + \mathbf{S}_{2} = \mathbf{S}_{3}$

The stages of tropical storms can be divided into four: viz.,

Formation, Development, Mature, and Decaying Stages. The four diagrams for each stage will be discussed here. In the formation stage, the height depth on 1000 mb. level is not too deep yet, and the area S_{\circ} is so small that it could be cancelled by the positive area in Fig. 71. The height of the storm does not reach the tropopause. A small storm not only in this stage but also in the development stage has the similar temperature distribution.

In the development stage, in which the storm develops rapidly into typhoons of various intensi-

ty, the depth of storm becomes deeper and deeper until the top reaches the tropopause, inducing dynamically a tropopause funnel. The

area S. in Fig. 72, which could not be compensated by the area S., is cancelled by the positive area S₃ in the stratosphere. As will be in the figure, the seen funnel depth decreases rapidly inside the stratosphere. Such a warm strato sphere is not observed yet, but in the practical upper-air observais very difficult tions, it to raise the Sonde Balloon, reliesed

Fig. 71. The case where the area s. is compensated inside the troposphere. The vortex does not reach up into the stratosphere. (formation stage)

Fig. 72. When ΔH or So is so large, it cannot be compensated inside the troposphere. (devel. st.)

inside the eye, directly up into the funnel aloft, preventing its out-going movement caused by the airs in the eye which entrain successively into the surrounding up-drafts.

When typhocns reach her mature stage, it is believed, according

to the observations made in U.S.A.(5), that the troposphere in the upper portion of the eye becomes colder than that of the environment. And the so-called warm-core cell in the lower portion lies under the cold-core cell aloft. If this is the case, the distribution can be

Fig. 73. Typhoon with cold-core Fig. 74. Typhoon in decaying cell aloft. (Mature stage)

stage.

drawn as Fig. 73, in which the areas must be balanced, thus:

 $S_0 + S_2 = S_1 + S_2$

This relation shows that a larger positive area in the stratosphere should exist in order to compensate the negative area in the coldcore cell.

In the decaying stage, most of the eye, except the lowest portion, becomes colder, and the area S_0 in Fig. 74 decreases. We see the largest amount of ΔH on the upper troposphere. In the later decaying stage, the typhoon re-develops into a cold cyclone, reducing the base area S_0 very small. And the appreciable circulation remains only on the upper layers.

The changes in ΔT and ΔH are summarized in Fig. 75. It must be noted here that the disturbances in both temperature and height depth in younger age propagate upward reaching the tropopause when the storm grows old. This fact is very interesting in the life history

of typhoons.

Theoretical distributions with much imagination are presented here in this section, but some day they will be observed in many typhoons.

§ 5 Distribution of Surface Temperatures

Surface temperatures observed at many stations are very helpful in analysing the temperature characteristics. The time section made

Fig. 76. Showing the traces from Hitoyoshi(left) and Mt. Aso. by the traces is also useful, however, some conclusions from the sections such as those in Fig. 76, might result in mistakes. According to the figure, one might suppose that the typhoon center consists of warm air forming warm-core cell, however, this is not the case.

To clarify the true characteristic of the temperature distribution, we should make the isothermal chart for each moment of analyses.

In the practical analyses, however, we scarcity of the data. The writer used the method, by which the temperatures observed at each station about one hour before and after the entered map time are on the same chart. The large letters in Fig. 77

are the data at the t 1 hr, which Fig. 77. Auxiliary stations. are followed with small letters at the ± 2 or 3 hrs. The small letters are not reliable because of the fact that typhoons deform even in 1 or 2 hrs. We must be careful in using the unreliable figures at any time, because they sometimes give bad influences upon judging the

The isotherms showing the frontal zone Fig. 78. within Typhoon Della OlOO June 21, 1949.

5 Distribution of Surface Temperatures

existence of smaller temperature disturbances. An example of surface temperature field is presented in Fig. 78. According to the ohart it is evident that the high temperature observed at the time when Typhoon Della passed over Hitoyoshi and Aso was not the appearance of warm eye but it can be explained by the fact that the warm areas in the east had reached as far as central Kyushu. Warm areas in Kinki dis. and north of Shikoku were initiated by topographical föhns which were not related to the nature of typhoon.

DETERMINATION OF PHASE VELOCITY

The velocity at which the typhoon fields propagate is the phase velocity for each weather element. As will be supported by the fact that isotherms do not travel together with the pressure field, the phase velocities are different not only from time to time but also from place to place. We usually see that they draw charts, as shown

Fig. 79. Showing the movement of isotherms of 22°C accompanied by Typhoon Della of 20-21 June 1949.

in Fig. 77, arranging the auxiliary stations along the same vectors as that of the movement of the typhoon center, however, such method must be revised. As will be seen in Fig. 79 showing the hourly locations of the isotherms for 22°C, the phase velocity is as much as of the center in the west, but in the east it is very small suggesting that the warm front there would be almost stationary. What will be happen if we arrange the temperature of auxiliary stations on the same interval as of the west ? Perhaps we can not use them. Thus the writer determined the phase velocities for the field in question before entering the temperatures.

Except the special case, the distribution charts for temperature drawn by mixing the data at the stations arranged at the relative locations to typhoon center, is not available. Of course, such charts would be useful if we want to know the average condition of the distribution.

ABSORPTION OF COLD AIR IN TYPHOON CENTER

As the typhoon in tropical area travels northwards it reaches the area of cold air masses. The schematical deformation of iso-

Fig. 80. Showing the isotherms within a typhoon absorbing a cold air in her center.

therms is shown in Fig. 80. It will be seen that typhoons are liable to carry warm tropic air in her center, and she usually pushes the isotherms towards the north or north-west. As soon as the front of

5 Distribution of Surface Temperatures

cold air reach⁵ the highest wind area indicated by the dotted circle, the cold air begins to deform quickly advancing along the dotted circle. If the wind speed be 40 m/sec along the dotted circle with its radius 200 km, the isotherms that would be transported by such winds reach the warm front within 4 hrs. Practically, however, the cold air involved outbreaks into the warm sector, meanwhile it mixes with the warm air locating in its way. Thus the isothermal lines move with a speed slower than of the wind. After several hours, which may be determined by the maximum circulation and the steering velocity of the typhoon, the isotherms from the cold front reach the warm front. Thus a small warm air mass is occluded which would still be connected to the warm sector in a high level.

The distribution of dew-point which is more conservative than air temperature shows such occulusion process accurately. Sometimes we see occuluded dew-point temperature while isotherms are still opened.

In the tropical area free from the cold air-mass, however, there are shallow cold airs produced by heavy rains in the storm area. They would be located over the sea surface under the pouring precipitations, and they must be involved around the eye making the temperature of the eye relatively higher at least in the lowermost level than the environment.

It is observed by the airplane observations made through the lower levels of towering cumulo-nimbi around the eye, that the temperature around is colder about sever? Lagrees than of the eye. In the upper levels, the temperature inside the towering cloud must be higher.

§ 6 Temperature Associated with Föhn

We observe two föhns in typhoon which are caused by the mountains and the cold dome interacting with typhoon. The former may be called topographical föhn which is usually seen in the leeward side of the currents prevailing over high mountains. Typical example of the isotherms in föhn area caused by typhoon Della is shown in Fig. 81.

Fig. 81. Showing the isotherms of föhn area. At 6h when the solar radiation was not effective, the surface temperature was about 20°C. After one hour, however, having been warmed by the insolation, the shallow cold airs on the earth's surface were mixed with föhn air eloft. Charts for $06 \rightarrow 09$ 22 June 1949.

Except the shallow layer on the surface, the downward current would be almost const. depending not upon the time of a day. But if we write the ohart using the temperatures observed at the altitude of about 1.5 m. above the surface, the high temperature by föhn does not always appear on the charts at night. But even at night, when the winds are so high that the cold air could be driven away, the rise in temperature occurs with an increasing wind. In the day time, however,

a marked föhn are sometimes observed in slow surface winds. The weather change at Takata is shown in Fig. 82. It will be seen that the amount of both high and low clouds decreased from about 3h in the morning, su the downward motion of the so begun to decrease and did so rise. After that, within on

about 3h in the morning, suggesting that the clouds had vanished by the downward motion of the air aloft. Meanwhile the temperature had begun to decrease and did so until it increased again after the sunrise. After that, within one hour, it was heated with the rate that could not be expected on an ordinary day. The winds in föhn are not so strong with the wind force of about 3.

LITERATURES

- Arakawa H. Aerological Observations made in the Kitty Typhoon by the Central Meteorological Observatory of Japan. Papers in Meteorology and Geophysics. 1, 1950.
- (2) Arakawa H. Analysis of the tropopause and the Stratospheric Field of Temperature of a Mature Typhoon. Papers in Meteorology and Geophysics, 2, 1951.

- (3) Byers H. R. The Thunderstorm.U.S. Government Printing Office. Washington D.C. 1949
- (4) Masuda Y. and Takeuchi T. An Aerological Investigation of the Structure of Typhoon (Jane and Kezia). Papers in Meteorology and Geophysics. Vol. 2 Nos. 3-4 Dec. 1951
- (5) U.S. Weather Bureau Training Note No. 1, Hurricane Note, 1948
- (6) U.S. Weather Bureau, Microfilm Copy of the Constant Pressure Charts for June and May 1949
- (7) Watanabe K. Typhoon Kezia observed by American Weather Planes. Report of Typhoon Kezia of Sept. 1950. C.M.O. of Japan, Oct. 1951.

CHAPTER III

NEW THEORY ON CONVECTION PROBLEMS

CONTENTS

1,	Introduction
2,	Equation of upward Acceleration 100
3,	Proposed Mechanism of Pressure Propagation 102
4,	Convection Pressure and Excessive Pressure 105
5,	Convection and Excessive Pressure in Frontal Zone. 108
6,	Vertical and Horizontal Acceleration 112
7,	Movement of the Air in the Field of Acceleration . 125
8,	Vertical Front with Infinite Straight Edge 130
9,	Approximation of the Formulas for Large Scale Phenomena
10,	Proposed Mechanism of Typhoon Initiation 136
11,	Buoyancy caused by Arbitrary Warm and Cold Area 141
12,	Application to Thunderstorm Convection 149

CHAPTER III NEW THEORY ON CONVECTION PROBLEMS

§1 Introduction

The studies on horizontal air flow due to the horizontal pressure gradient developed recently. On the other hand, the vertical motions playing an important rôle to produce various meteorological phenomena have not been solved satisfactorily. Especially the dynamics of the air movement capable of solving the nature of smaller disturbances is desired. To this purpose, the theory of buoyancy or vertical acceleration is indispensable.

It is known that the divergence of the three-dimensional motion defined by

$$div \mathbf{V} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}$$

shows the following relation.

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = \frac{\partial w}{\partial z}.$$

Concerning the equation it is possible to give two explanations:

(1) Horizontal convergence pushes the air upward and, as the result, the vertical movements develop. Such convergence in horizontal directions may be produced by temperature effect or solenoid effect, latitude effect, curvature effect, topographical effect, effect of changing pressure system, and etc., and they would produce vertical accelerations.

(2) On the other hand, it is known that an intense horizontal divergence which could be resulted by the change in the vertical velocity is observed in medium scale phenomena in which the effects mentioned above are not to be expected. It may be considered, therefore, that there are the cases where the horizontal divergence could be produced by a vertical acceleration. In the present chapter, the writer wants to clarify the cause of the horizontal convergence of this type.

§ 2 Equation of Upward Acceleration

Instead of the conventional buoyancy equation, the writer proposes an equation

$$\frac{dw}{dz} = -g - \frac{i}{\rho} \frac{\partial P}{\partial z} = -\frac{i}{\rho} \frac{\partial}{\partial z} \left(P - \int_{z}^{\infty} \rho g dz \right)$$

whence,

$$\frac{1}{\rho} \frac{\partial}{\partial z} \int_{z}^{\infty} \rho g dz = -g$$

Replacing the weight of the air column which may be termed "the weight pressure" by wP. namely.

$$\int_{z}^{\infty} \rho g dz = wP$$

we have

$$\frac{dw}{dt} = -\frac{1}{\rho} \frac{\partial}{\partial z} \left(P - wP \right)$$
(33a)

This equation shows that the vertical acceleration is to be caused by the deviation of air pressure from the weight pressure. The difference (P - wP), which would play an important role to initiate vertical motions, may be called "the convection pressure" with the symbol cP.

Thus, the vertical acceleration or buoyancy is given by

$$\frac{dw}{dt} = -\frac{1}{2} \frac{\partial}{\partial z} cP \qquad (33b)$$

It might be the question whether the air pressure is different from the weight of air column or not, however, it will become evident in the following discussions.

Dr. L. Prandtl(2) discussed the pressure on the ground exerted by a flying airplane, in the section "Übertragung des Flugzeuggewichts auf den Erdboden." Under the assumption that the vertical velocity at the surface is zero, he obtained the formula showing the surface pressure,

$$P = \frac{h}{2\pi R^3} W$$

where, W is the weight of the plane, h the altitude, R the distance from the plane. The maximum pressure on the ground.

$$P_{\max} = \frac{W}{2\pi h^2}$$

is proportional to the inverse square of the plane altitude. This fact shows that the pressure rise on the ground is negligibly small if the plane flies over with a considerable altitude.

The most interesting characteristic is that the pressure distribution does not depend upon the speed of the plane nor its direc-

tion. Therefore, it can be applied to the case where the plane flies along a very small circle. This shows us also that a helicopter floating at a constant location up in the air would exert the pressure on the surface repres

Fig. 83. Distribution of pressure caused by an airplane.

pressure on the surface represented by the same formula as of the airplane case.

The equation of statical equilibrium is based upon the fact that the weight of the air aloft is transported only downward exerting the pressure just on the surface below the weight. This is, however, not conceivable, if we imagine the transportation of the weight of a helicopter toward the earth's surface. The vertical propeller pushes the airs downward in order to get the reaction from the underlying airs.
The accelerated airs move downward while they are decelerated through

the mixing and collision processes which would transform the kinetic energy into heat. By the time when airs reach the dotted circle in Fig. 84, they would exert the force as pressure. Outside the circle, the pressure propagates not only downward but also toward the oblique directions

Helicopter

Raindrop

Fig. 84. Pressure exerted by solids in the air.

also toward the oblique directions. That is to say, the weight of the helicopter must be supported by the large mass of airs locating in the lower levels.

Using the similar consideration to that of the helicopter, we can imagine the propagation of pressure caused by the rain-drops falling at their terminal velocity. As will be seen in the figure the basic distribution of the pressure will remain unchanged.

\$3 Proposed Mechanism of Pressure Propagation.

The above-mentioned results lead us to the conclusion that the

propagation of air pressure must be explained by using the Huygens' Principle. As shown in Fig. 85, the primary pressure P_{σ} on an area-element $d\sigma$ would produce the secondary pressure propagating downward, with maximum intensity for vertical direction. The intensity of the secondary pressure in

Fig. 85. Showing the propagation of pressure.

1

oblique direction is multiplied by K, the direction function, which is 1.00 for the direction of gravity and decreases rapidly becoming sero for $\theta = \frac{\pi}{2}$.

We also assume that the pressure weakens proportional to the inverse square of the distance. This assumption is based upon the fact that the area which undergoes the pressure excitation increases proportional to the square of the distance from the primary pressure source, and it can be considered that the pressure may decrease in proportion to the inverse square of the distance that the pressure had been transported. Of course, the pressure we now want to discuss here must not vary so rapidly with time.

From these assumptions, we obtain the pressure on lower surface L, vis.,

$$dP = P_0 d\sigma \times \mathbf{K}_{(\theta)} \times \frac{C}{R^2}$$

where G is the constant determined by the fact that the integration $\iint dP \ dx \ dy$

must be equal to $P_0 d\sigma$, since the same amount of secondary pressure to that of the primary should be transported to the lower level.

The direction function K is still unknown, however, if the pressure formula we now want to obtain hereunder is capable of representing the same distribution as of the airplane, the form of the direction function is unique, that is

$$\mathbf{K}(\boldsymbol{\theta}) = \cos \boldsymbol{\theta}$$

which shows that the pressure spreads with the spherical distribution. The shape of the direction function is shown in Fig. 86. Thus we have

$$dP = \frac{CR}{R^2} \cos \theta \ d\sigma$$

Fig. 86. Showing direction function.

3 Proposed Mechanism of Pressure Propagation

If the height difference between upper and lower levels be h, we integrate the pressure after replacing $\cos \theta$ by h/R, thus:

$$P_0 d\sigma = \iint dP \, dx \, dy = \int \frac{C P_0 h}{R^3} \, 2\pi r \, dr \, d\sigma$$

where r is the distance from A to B in Fig. 85. Therefore, we have

$$1 = 2 \pi C h \int_{0}^{\infty} \frac{r \, dr}{(\sqrt{h^{2} + r^{2}})^{3}} = 2 \pi C \int_{0}^{\frac{n}{2}} s \, in \, \theta \, d\theta = 2 \pi C$$

And the constant must be

$$C = \frac{1}{2\pi}$$

Thus, the pressure received on the lower level is known to be

$$dP = \frac{CP_0}{R^2} \cos\theta \, d\sigma = \frac{1}{2\pi} \frac{P_0 \, d\sigma}{R^2} \frac{h}{R}$$
$$dP = \frac{hP_0 \, d\sigma}{2\pi R^3}$$
(34a)

It will be seen that the result is just the same as that of the airplane.

Now we consider the resultant pressure caused by the primary pressure shown in Fig. 87. Of course, the pressure at M is written as the summation P_1 P_2 P_3 P_4 P_2

$$P = \frac{hR\Delta\sigma_1}{2\pi R_1^3} + \frac{hR\Delta\sigma_2}{2\pi R_2^3} + \frac{hR\Delta\sigma_3}{2\pi R_3^3} + \cdots$$
$$= \frac{h}{2\pi} \sum_{n=1}^{\infty} \frac{P_n\Delta\sigma_n}{R^3}$$
(34b)

It is clear that the pressure at the point in question is very much different from the weight of the air column aloft. And if there be a heavy mass which is gradually subsiding over the vicinity of a point, the

value of p, which is not equal to P_3 .

pressure at that point must be larger than the weight pressure.

Such a summation is usually used in quantum theory or physical optics, when we obtain the intensity of material wave or light. And it is believed that even the excitation which is not directed toward a point induces a considerable excitation to the point. When we compute the air precsure at the location M(X, Y, Z), it is convenient to utilize the formula,

$$P = \frac{1}{2\pi} \int_{Z}^{\infty} \int_{-\infty}^{\infty} \int \frac{\rho g (z-Z) dz dy dz}{\{(z-X)^{2} + (y-Y)^{2} + (z-Z)^{2}\}^{\frac{3}{2}}}$$
(34c)

where, x, y, z are the coordinates of air element with density ρ and volume dx dy dz.

\$ 4 Convection Pressure and Excessive Pressure

We knew the method to compute the air pressure accurately, then we try to get the convection pressure, cP = P - wP, namely,

$$cP = \frac{1}{2\pi} \int_{Z}^{\infty} \int_{-\infty}^{\infty} \int \frac{\rho g (z-Z) dz dy dz}{\{(z-X)^{2} + (y-Y)^{2} + (z-Z)^{2}\}^{\frac{3}{2}}} - \int_{Z}^{\infty} g dz$$
(35a)

where, p is the density of the air given as the function of x, y, and z. If the atmosphere is uniform in horizontal direction and the density is written thus: $\rho_{z} = f(z)$, we know,

$$\frac{1}{2\pi} \int_{Z=\infty}^{\infty} \int_{\{(x-X)^2 + (y-Y)^2 - (x-Z)^2\}^{\frac{3}{2}}}^{\infty} - \frac{2}{\pi} \int_{Z=\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\rho_o g (z-Z) dy dz}{(y-Y)^2 + (z-Z)^2} = \int_{Z}^{\infty} \rho_o g dz \quad (35b)$$

Therefore, in such a case convection pressure must vanish. This fact shows us that, as long as the air density is homogeneous in horizontal directions, the pressure is just the same as the weight pressure. Subtracting the formula,

$$\frac{1}{2\pi} \int_{Z=\infty}^{\infty} \int_{0}^{\infty} \frac{\rho_{0} g (z-Z) dx dy dz}{\left\{(z-X)^{2}+(y-Y)^{2}+(z-Z)^{2}\right\}^{\frac{1}{2}}} - \int_{Z}^{\infty} \rho_{0} g dz = 0$$
(35c)

from the formula (35a), we have

$$cP = \frac{1}{2\pi} \int_{\mathbf{y} \to \infty}^{\infty} \int \frac{(\rho - \rho_o) g(z - Z) dz dy dz}{\{(z - X)^2 + (y - Y)^2 + (z - Z)^2\}^{\frac{3}{2}}} - \int_{\mathbf{z}}^{\infty} (\rho - \rho_o) g dz - (36a)$$

In the practical computation, therefore, it is very convenient to carry out the integration after subtracting the density ρ_{e} from the practical density ρ . We usually choose the density of warm air mass as ρ_{e} , so that the value ($\rho - \rho_{e}$) is positive. We term ($\rho - \rho_{e}$) "excessive density". And the pressure caused by the excessive density,

$$eP = \frac{1}{2\pi} \int_{Z}^{\infty} \int_{-\infty}^{\infty} \int \frac{(\rho - \rho_0) g (z - Z) dx dy dz}{\left\{ (x - X)^2 + (y - Y)^2 + (z - Z)^2 \right\}^{3/2}}$$
(36b)

can be called "the excessive pressure" with the symbol " eP". In the same way, the weight pressure caused by the excessive density,

$$ewP = \int_{Z}^{\infty} (\rho - \rho_{0}) g dz$$

may be called "the excessive weight pressure" with the symbol "em P".

Now the following relations

$$cP = P - wP$$
$$cP = eP - ewP$$

show that the computation of the convection pressure can be done by using the excessive pressure instead of the ordinary air pressure.

The vertical acceleration is given by

$$\frac{dw}{dt} = -\frac{1}{\rho'} \frac{\partial_c P}{\partial z}$$

where, ρ' is the density of the air, whose acceleration is in question. In the following discussion we obtain the accelerations upon the dry air at 0°C. 1000 mb. with the density.

$$\rho_{\odot} = 1.276 \times 10^3 \text{ g/cm}^3$$

The word of "acceleration" used in the following sections means the acceleration upon this air, and the practical acceleration in higher altitude must be obtained multiplying the ratio, $\rho_{\rm O}$ to the density of the air in question.

Thus the vertical acceleration

$$\frac{dw^{O}}{dz} = -\frac{1}{\rho_{O}}\frac{\partial}{\partial z}cP,$$

and the horizontal acceleration.

$$\frac{du^{\bigcirc}}{ds} = -\frac{1}{\rho_{\bigcirc}}\frac{\partial F}{\partial x} = -\frac{1}{\rho_{\bigcirc}}\frac{\partial}{\partial x}(cP + wP) = -\frac{1}{\rho_{\bigcirc}}\frac{\partial}{\partial x}(eP - ewP + wP)$$
$$= -\frac{1}{\rho_{\bigcirc}}\frac{\partial eP}{\partial x} \qquad (\because wP - ewP = \int_{Z}^{\infty}\rho_{e}g dz)$$

are obtained. Summarizing the result we write, thus:

$$\begin{aligned} \alpha^{\circ} &= \frac{du^{\circ}}{dt} = -\frac{1}{\rho_{\circ}} \frac{\partial eP}{\partial x} \\ \beta^{\circ} &= \frac{dv^{\circ}}{dt} = -\frac{1}{\rho_{\circ}} \frac{\partial eP}{\partial y} \\ \gamma^{\circ} &= \frac{dw^{\circ}}{dt} = -\frac{1}{\rho_{\circ}} \frac{\partial cP}{\partial z} \end{aligned}$$

$$(37)$$

where, α , β , and γ are the accelerations in x, y, and z direction respectively. It must be noticed here again that both vertical and horizontal accelerations vanish when the density is equal horizontally, therefore, we cannot expect to find any acceleration inside a homogeneous air-mass. Thus, an appreciable buoyancy could only be found in the so-called frontal zone or in the vicinity of convective clouds which are warmer or colder than their environments.

Principle of Superposition

We consider the pressure at M caused by the density inside the stippled area in Fig. 88. It can be obtained integrating throughout the volume. thus:

$$P = \frac{1}{2\pi} \oint \frac{\rho g h}{R^2} dV$$

It is possible to obtain the integration

after dividing the space by EF, and we have

$$P = \frac{1}{2\pi} \int_{C} \frac{\rho g h}{R^{3}} dV - \frac{1}{2\pi} \int_{C} \frac{\rho g h}{R^{3}} dV$$

= $\frac{1}{2\pi} \int_{C} \frac{\rho g h}{R^{3}} dV + \frac{1}{2\pi} \int_{C} \frac{(-\rho) g h}{R^{3}} dV$...(38)

Fig. 88 To obtain the integration using the principle of superposition

This is the formula showing that the pressure can be obtained by superposing the two pressures in (38).

This property is very important and it is used in the computation not only of pressure but also of the accelerations of various kinds. § 5 Convection and Excessive Pressure in Frontal Zone

As shown in Fig. 89. if the cold air-mass, extending from +oo to

- ∞ in y-direction, is located with its edge represented by the function of the altitude, the excessive pressure at the point M (X,Y,Z) is computed by the equation (36b). We have

$$eP = \frac{1}{2\pi} \int_{Z-\infty}^{H} \int_{-\infty}^{f(z)+\infty} \frac{(\rho_{z} - \rho_{w}) g(z-Z) dy dz dz}{\{(x-X)^{2} + (y+Y)^{2} + (z-Z)^{2}\}^{\frac{3}{2}}}$$

B = f(z)

f(z) = f(z)

М

(X,Y,Z)

where, ρ_{e} and ρ_{e} are the density of the warm and the cold air.mass, respectively. In the case where $(\rho_{e} - \rho_{e})$ is constant everywhere, we integrate at first with respect to y.

$$eP = \frac{(\rho_c - \rho_{\omega})g}{\pi} \int_{Z}^{H} \int_{-\infty}^{f(z)} \frac{(z-Z) \, dz \, dz}{(x-X)^2 + (z-Z)^2}$$

Integrating again with respect to x, we have

$$eP \approx \frac{(R-P_{w})g}{\pi} \int_{Z}^{H} \cos^{-t} \frac{X-f(z)}{z-Z} dz$$
 (39a)

H

The convection pressure is, therefore,

$$cP = \frac{(\rho_{e} - \rho_{w})g}{\pi} \int_{Z}^{H} cot^{-\prime} \frac{X - f(z)}{z - Z} dz - \int_{Z}^{H} (\rho_{e} - \rho_{w})g dz - \dots (39b)$$

where, the second term in the right side, the excessive weight pressure(ewP) must be subtracted only when M is located inside or beneath the cold air of density ρ_c .

INCLINED FRONT

We examine the case in Fig. 90, where the frontal surface extending from $y=-\infty$ to $y=+\infty$ is the plane represented by x = kz

The excessive pressure at M(X,Y,Z) is

Fig. 90. Definition of h, b, c. When we measure b or c leftward from the frontal surface, they are **ne**gative.

$$eP = \frac{(p-p_c)g}{\pi} \int_{Z}^{H} \cot^{-1} \frac{X-kz}{z-Z} dz$$

We integrate after replacing

$$\frac{X-k_{2}}{z-Z}$$
 by $t-k$

We obtain the excessive pressure

$$eP = \frac{(\rho - \rho)g}{\pi} \left\{ (z - X) \left\{ \left(\frac{k}{1 + k^2} - \frac{1}{t} \right) tan'(k-t) + \frac{1}{2(1 + k^2)} \log \frac{1 + (k-t)^2}{t^2} \right\}_{t_i}^{t_i} + \frac{\pi}{2} (H + Z) \right\}$$

where, if we use the values h, b, and c in the figure, $t = \infty$, and t = c/h. Thus, we get the excessive pressure

$$eP = \frac{(\underline{h} - \underline{h}_{a})g}{\pi} \left\{ \left(h - \frac{kc}{1+k^{2}} \right) tan^{-1} \frac{h}{b} - \frac{c}{2(1+k^{2})} \log \frac{h^{2} + b^{2}}{c^{2}} \right\}$$

The problem occurring here is the determination of the arctangent in

the formula, because, as shown in Fig. 91, it is two-valued function even in the domain of $-\pi \rightarrow +\pi$. In the discussion herein. we use thepositive branch when c is positive. But when c is negative we use the negative branch extending -0 to $-\pi$.

Showing the arctangent Fig. 91. branches for the computation. Using the different branches according to the sign of c, we have the excessive pressure,

$$eP = \frac{(\rho_{c}-\rho_{c})g}{\pi} \left\{ \left(h - \frac{kc}{1\cdot k^{2}}\right) tan^{\prime} \frac{h}{b} - \frac{c}{1+k^{2}} \log \sqrt{\frac{h^{2}+b^{2}}{c^{2}}} \right\} + \left(\rho_{c} - \rho_{c}\right)gh - (40a)$$

where, the last term is used only whom the point M is located inside the cold air. The convection pressure is obtained subtracting the value.

 $\int_{Z}^{H} (\rho_{c} - \rho_{w}) g \, dz = \begin{cases} (\rho_{c} - \rho_{w}) g \, h & \text{(inside cold air)} \\ -(\rho_{c} - \rho_{w}) g \, \frac{b}{k} & \text{(beneath cold air slope)} \end{cases}$ (inside cold air)

from the excession pressure. Thus we have

$$cP = \frac{(\rho - \rho)g}{\pi} \left\{ \left(h - \frac{kc}{1+k^2}\right) t_0 n' \frac{c}{b} - \frac{c}{1+k^2} \log \left/ \frac{h^2 + b^2}{c^2} \right\} + \left(\rho_c - \rho_c\right) g \frac{b}{k}$$
(40b)

According to the conventional treatment, the air pressures were computed by the formula of static equilibrium. The distribution of the excessive pressure, the pressure caused by the excessive density of the cold air-mass, is shown in Fig. 92. As the figures are drawn

Fig. 92. Distribution of excessive pressure by conventional idea.

after the conventional idea, the isobaric surface is parallel to the frontal surface or the direction of gravity. Looking at such figures we must consider that the cold air will subside by its weight until it spreads over the earth's surface as a shallow cushion, and that the overhang front in the right is quite unstable, since it must

Next we examine the pressure distribution represented by the new formula. Fig. 93 is computed for the frontal zone with the inclination of $\frac{1}{2}$, and the density difference, $(\rho_c - \rho_{er}) = 30$ g/m³ which will be produced by the temperature difference of about 10°C. The most interesting feature of the isobaric surface is that the height of constant pressure decreases even under the flat surface of cold air and that the pressure surface extends far into the warm sector showing that the weight of cold air exerts upon the warm air.

Fig. 94. Distribution of convection pressure.

Distribution of convection pressure in Fig. 94 is also computed by the formula(40b). In this case, there exists large positive convection pressure inside the warm sector, while the negative convection pressure is seen inside the cold air-mass. In the frontal zone, the equation of static equilibrium can be applied no more, and the deviation from that equation, which has long been neglected, must be closed up here in order to explain the meteorological phenomena.

As will be expected, the convection pressure becomes very small when the inclination of the front is small. Cases of the normal and overhang fronts with the inclination of 1/100 are shown in Fig. 95. It will be seen that the convection pressure is no more than 0.5 mb.,

which seems to be very small. This amount, however, is capable of

Fig. 95. Distribution of convection pressure.

producing the vertical speed of about 10 m/sec, and if we expect to produce such a speed of the warm air gliding upward the frontal surface in discussion, it would require the speed of 1 km/sec, which is impossible to be expected.

§ 6 Vertical and Horizontal Acceleration.

The acceleration upon the air of density ρ_0 is given by (37). Therefore, utilizing the formulas (40a) and (40b), we obtain the vertical acceleration in the frontal zone.

$$\gamma^{\circ} = -\frac{1}{\rho_{\odot}} \frac{\partial cP}{\partial z} = \frac{(\rho - \rho)g}{\rho_{\odot}\pi} \left(\frac{1}{1 + k^{s}} \tan^{-1} \frac{h}{b} - \frac{k}{1 + k^{2}} \log \sqrt{\frac{h^{s} + b^{s}}{c^{2}}} \right) - (41a)$$

and the acceleration in x-direction,

$$\alpha^{\circ} = -\frac{1}{\rho_{\circ}} \frac{\partial eP}{\partial x} = \frac{(\rho_{\circ} - \rho_{\star})g}{\rho_{\circ} \pi} \left(\frac{k}{1+k^{2}} \tan^{-1}\frac{h}{b} + \frac{1}{1+k^{2}} \log\sqrt{\frac{h^{2}+b^{2}}{c^{2}}}\right) - (41b)$$

These formulas show that the acceleration at any point is to be determined as the function of the inclination of the front and the direction of the point looked from the upper edge of the frontal surface.

In this section we desire to discuss the acceleration upon the imaginary air with the density ρ_0 . Because it depends only upon the oharacteristic of the field of acceleration. While the practical

acceleration upon the air is not so simple, because as shown by

$$\frac{dw}{dt} = \frac{\rho_{\cup}}{\rho'} \frac{dw^{\circ}}{dt}$$

it contains the density ρ' which varies in horizontal and vertical directions.

Using the formulas (41a) and (41b), the acceleration in the frontal zone are computed. The fronts studied herein are classified according to the value of k characterizing the inclination, thus:

k < 0	k = 0	k > 0
Normal Front	Vertical Front	Overhang Front

The accelerations for the normal front of k = -2 are plotted in Fig. 96. It will be seen in the upper figure that the buoyancy force, acting upon the air inside the warm sector, reaches long distance. While the acceleration increases up to infinity at the frontal surface. This is, of course, not conceivable, however, the infinity in question is originated by the fact that we have admitted the discontinuous density jump at the frontal surface. Therefore, if we solve the problem for the frontal surface at which the density increases gradually into that of the cold air, a finite acceleration could be expected. Such a case is discussed later.

The horizontal acceleration shown in the middle figure is appreciable only under the inclined frontal surface. In the warm sector or under the flat surface of the cold air mass, the acceleration is always negligible. The resultant accelerations are, therefore, almost vertical in the sectors far from the frontal surface.

This fact can be proved computing the tangent of the direction angle of the acceleration,

$$\tan \mathcal{U}(A) = \frac{\tan^{+}\frac{h}{b} - k \log\sqrt{\frac{h^{2} + b^{2}}{c^{2}}}}{k \tan^{-}\frac{h}{b} + \log\sqrt{\frac{h^{2} + b^{2}}{c^{2}}}}$$
(42a)

when we limit the value of b and c to infinity, thus:

$$\lim_{\substack{b \to \infty \\ c \to \infty}} \tan \mathcal{U}(\mathbf{A}) = \lim_{\substack{b \to \infty \\ b \to \infty}} \frac{hb}{h^2} \frac{(1+k^2)}{(1+k^2)} \to \infty$$

$$\lim_{\substack{k \to 0 \\ h \to \infty}} \tan \mathcal{U}(\mathbf{A}) = \lim_{\substack{k \to c \\ h \to \infty}} \frac{b^2}{hb} \frac{(1+k^2)}{(1+k^2)} \to \infty$$
(42b)

It will be seen that the accelerations are directed up or downward when b is very large or h is very small.

On the other hand, at the frontal surface where the value of c tends to zero, the direction of acceleration is perpendicular to the surface, since the value of log c decreases to $-\infty$, Thus we have

 $\lim_{c \to o} \tan \mathcal{U}(\mathbf{A}) = -k \tag{42c}$

It is evident that the acceleration at the surface is directed toward the warm air side perpendicularly to the surface. These characteristics should be kept in mind when we plot the accelerations in the frontal zone.

The accelerations for the overhang front of k = +2 are shown in Fig. 97. According to our direct consideration, such a overhang cold air is considered to be very unstable. The result of the computation shows us that, so long as the accelerations are concerned, there is no fundamental difference from the normal front.

As will be seen in the figure of vertical acceleration, the downward force to pull down the wedge of the cold air is similar in amount to the force by which the cold air under a normal frontal surface subsides downward. The conventional idea, that the heavy overrunning mass is liable to fall down quickly, must be revised, and we must remember that it is the gradient of the convection pressure

Fig. 97 Accelerations in the vicinity of the overhang front extending from $y = -\infty$ to $+\infty$. Constants are K = +2, $\rho_c - \rho_c = 3 \times 10^5$ g/cm³, and the height of the cold air-mass =10 km.

which accelerates the air in vertical direction. The force from the cold air wedge acts mainly upon the underlying warm air, as the result the airs are accelerated downward just under the surface and upward in the distant sector.

The dynamics of the overrunning cold air, which has not been evident according to the conventional idea, became very clear. The computation of the vertical and horizontal accelerations can easily be carried out by using the principle of superposition. Namely, we at first compute the case of normal or overhang front, after that we subtract the amount of acceleration for the warm air which must be replaced in order to eliminate the lower portion of the cold air-mass.

The schematical accelerations in the vicinity of overrunning overhang front are shown in Fig. 98. This is the pattern for k=2. It will be seen that the accelerations decrease as the altitude deoreases. Comparing the pattern with that of the overrunning normal front in Fig. 99, it will be seen that they are quite similar each other.

The most important problem occurring here is the stability of the overrunning front far from the frontal surface where the value of -b is very large. There we cannot expect to find any force accelerating the cold air downward showing that the stratification is very stable. Thus, the conventional stability problems should be re-examined in the following section.

ROTATION OF THE ACCELERATION FIELD

It is the question that the field of acceleration is rotational or irrotational, it is, however, easily seen by subtracting

Fig. 98. Acceleration patterns for an overruning cold front with overhang frontal surface. The constants are: thickness of cold air, 5 km., beta c = beta 30 g/m², inclination, 1/2.

Vertical Acceleration

KM

$$\frac{\partial}{\partial x} \left(\gamma^{\uparrow} \right) = \frac{\left(\rho - \rho_{\nu} \right) \varepsilon}{\rho_{0} \pi \left(h^{2} + b^{2} \right)} \times \frac{k h^{2} + k b^{2} - k b c - h c}{c \left(1 + k^{2} \right)}$$

from

$$\frac{\partial}{\partial z} \left(\alpha^{\circ} \right) = \frac{\left(\rho_c - \rho_c \right) g}{\rho_o \pi \left(h^2 + b^2 \right)} \times \frac{-k b c - h c + k h^2 + k b^2}{c \left(1 + k^2 \right)}$$

As the result we know the fact that the rotation of the vector field is zero. viz.

$$\frac{\partial}{\partial z} \left(\alpha^{\circ} \right) - \frac{\partial}{\partial x} \left(\gamma^{\circ} \right) = 0 \qquad (43)$$

Thus we know the acceleration field is irrotational and the acceleration must have the potential.

$$\frac{(\rho_c-\rho_w)g}{\rho_o\pi}\left\{\left(h-\frac{kc}{1+k^2}\right)\tan^{-1}\frac{h}{b}-\frac{c}{1+k^2}\log\sqrt{\frac{h^2+b^2}{c^2}}\right\}$$
(44)

DIVERGENCE OF THE ACCELERATION FIELD

Next we compute the divergence of the field of acceleration. Taking the relations.

$$\frac{\partial h}{\partial z} = -1$$
, $\frac{\partial b}{\partial z} = 0$, $\frac{\partial c}{\partial z} = -k$

into consideration, we compute the partial derivative with respect to z, and we have

$$\frac{\partial}{\partial z} \left(\gamma^{\circ} \right) = \frac{\left(\rho - \rho_{\omega}\right) g \left(khc - b_{c} - k^{2}h^{2} - k^{2}b^{3}\right)}{\rho_{\circ} \pi \left(1 + k^{2}\right) c \left(h^{2} + b^{2}\right)}$$

Next we obtain the other one,

$$\frac{\partial}{\partial x} \left(\alpha^{\circ} \right) = \frac{\left(\rho_{c} - \rho_{\omega} \right) g \left(b - khc - h^{2} - b^{2} \right)}{\rho_{o} \pi \left(1 + k^{2} \right) c \left(h^{2} + b^{2} \right)}$$

using the relations

$$\frac{\partial h}{\partial x} = 0 \quad , \quad \frac{\partial b}{\partial x} = 1 \quad , \qquad \frac{\partial c}{\partial x} = 1$$

The sum of them,

$$\frac{\partial}{\partial z} \left(\gamma^{\circ} \right) + \frac{\partial}{\partial x} \left(\alpha^{\circ} \right) = \frac{-\left(\rho_{c} - \rho_{o}\right) \vec{s}}{\rho_{0} \pi} \frac{1}{c} \qquad (45)$$

shows that the divergence is not zero but it is inversely proportional to the negative value of c, the horizontal distance from the frontal surface. Of course, the divergence must be positive infinity on the cold air side of the frontal surface, and negative infinity on the warm air side. When the density does not jump at the surface, we would have a finite divergence even at the surface.

The conclusion is very important, which shows that the accelerations are newly initiated inside the cold air, meanwhile they vanish inside the warm air. It is also clear that, in case of any overrunning front, there exists no divergence below the bottom of the cold air where the positive and negative divergences are cancelled.

Fig. 100. Distribution of divergence of acceleration. The distribution will be seen also in Fig. 100, in which the schematical distribution is illustrated.

MODEL OF PRACTICAL FRONTAL SURFACE

As a model of inclined frontal surface, the distribution of accelerations for the system with a finite density jump separated by an inclined surface with large absolute value of k is computed.

The acceleration pattern for k = -100 is presented in Fig. 101. Comparing with Fig. 102, it will be understood that the horizontal accelerations exist only beneath the frontal surface, and that the downward accelerations concentrate under the edge of the top of the frontal surface. On the other hand, when the cold air overhangs with k = +100, appreciable upward accelerations develop just under the edge, suggesting that the pre-frontal squall-line might be initiated there. This fact will be seen in the lowest figure showing the resultant

Fig. 101 Accelerations in the vicinity of the normal front extending from $y=-\infty$ to $+\infty$. k = -100, $\rho_c - \rho_r = 30$ g/m³, h = 10 km.

Fig. 103 Acceleration Patterns for overruning normal and overhang fronts. The height of the cold air base is 10 km, the thickness 5 km and the other constants are just the same as those of Figs. 101 and 102. Computed by (41a) and (41b).

accelerations.

Similar distributions for overrunning fronts are given in Fig. 103. The patterns are computed by using the accurate formulas (41a) and (41b).

§ 7 Movement of the Air in the Field of Accelerations.

When the air undergoes vertical accelerations in the field free from the horizontal acceleration, it does not move toward the direction of acceleration, according to the rotation of the earth. The velocity components for such a wind can be solved by the equations of motion.

> $\dot{u} + 2 \omega (\omega \cos \phi - \nu \sin \phi) = 0$ $\dot{v} + 2 \omega u \sin \phi = 0$ $\dot{w} - 2 \omega u \cos \phi = -\frac{1}{\rho} \frac{\partial cP}{\partial z}$ (46)

where the positive directions of x, y and z axes are chosen toward the east, north and vertical direction, respectively.

Differentiating the first equation with respect to time, we get $\ddot{u} + 2 \cdot \dot{w} \cdot co \cdot \phi + 2 \cdot \dot{v} \cdot sin \phi = 0$ en we replace \dot{w} and \dot{v} by these in the second and third equations

Then we replace \dot{w} and \ddot{v} by these in the second and third equations, so we obtain the differential equation,

 $\frac{d^2 u}{d t^2} + 4 \omega^2 u = 2 \omega \cos \phi \frac{1}{\rho} \frac{\partial c P}{\partial z}$

The velocity components for the boundary condition that the air starts to move at t=0 are obtained thus:

$$u = (1 - \cos 2 \omega t) \qquad \cos \phi \quad \frac{1}{2 \omega \rho} \quad \frac{\partial c P}{\partial z}$$

$$v = (\sin 2 \omega t - 2 \omega t) \sin \phi \cos \phi \quad \frac{1}{2 \omega \rho} \quad \frac{\partial c P}{\partial z}$$

$$w = -(2 \omega t \sin^2 \phi + \cos^2 \phi \sin 2 \omega t) \quad \frac{1}{2 \omega \rho} \quad \frac{\partial c P}{\partial z}$$

$$(47a)$$

The displacement components, obtained by integrating each velocity

component from t=0 to t, are

$$x = (2\omega t - \sin 2\omega t) \qquad \cos \phi \quad \frac{1}{4\omega^{2}\rho} \quad \frac{\partial cP}{\partial z}$$

$$y = (1 - 2\omega^{2}t^{2} - \cos 2\omega t) \sin \phi \cos \phi \quad \frac{1}{4\omega^{2}\rho} \quad \frac{\partial cP}{\partial z}$$

$$z = (\cos^{2}\phi \ \cos 2\omega t - 2\omega^{2}t^{2} \sin^{2}\phi - \cos^{2}\phi) \quad \frac{1}{4\omega^{2}\rho} \quad \frac{\partial cP}{\partial z}$$

(47b)

The wind represented by (47) is the new wind deviating from the gradient wind which is zero in this case.

When this wind develops in the field of gradient wind represented ed by the equations of motion.

$$2 \omega \ w' \cos \phi - v' \sin \phi = -\frac{1}{\rho} \frac{\partial P'}{\partial x}$$

$$2 \omega \ u' \sin \phi = -\frac{1}{\rho} \frac{\partial P'}{\partial y}$$

$$-2 \omega \ u' \cos \phi = -\frac{1}{\rho} \frac{\partial P'}{\partial z} - g$$

$$(48)$$

where P' is the pressure in order to develop the gradient wind with the velocity components u', v', and w'.

Adding the equations of motion in (48) to those in (46), we get, $(\dot{u} + \dot{u}') + 2\omega (w + w') \cos\phi - 2\omega (v + v') \sin\phi = -\frac{1}{\rho} \frac{\partial P'}{\partial x}$ $(\dot{v} + \dot{v}') + 2\omega (u + u') \sin\phi = -\frac{1}{\rho} \frac{\partial P'}{\partial y}$ $(\dot{w} + \dot{w}') - 2\omega (u + u') \cos\phi = -\frac{1}{\rho} \frac{\partial cP}{\partial z} - \frac{1}{\rho} \frac{\partial P'}{\partial z} - \frac{1}{g}$ (49)

where $\dot{u} = \dot{v} - \dot{w} = 0$, and we consider the wind by (48) far exceeds. The solution of the equations (49) is, therefore, given by the vector,

V = i (u + u') + j (v + v') + k (w + w')

= (i u + j v + k w) + (i u' + j v' + k w')-,--- (50) It is evident that the second term is the gradient wind balancing to the horizontal accelerations, and that the first term is the wind caused by the vertical acceleration. Here, the wind initiated by the vertical acceleration may be termed "the convection wind".

CONVECTION WIND

As has been seen before, the convection wind represented by (47)

superposes upon the geostrophic or gradient wind field. This wind is, of course, accelerational showing that the speed might increase up to infinity toward the vertical and northward directions. As shown in Fig. 104, the air of such a wind moves spirally around the curve of parabola drawn on the surface inclined toward the pole-star. It will

Fig. 104. Showing the trajectory of the convection wind, computed for the latitude of 45 degrees N and the acceleration field directed upward.

Fig. 105. Left: vertical component of the trajectory. Right: horizontal component of the trajectory.

be seen in the figure that the air moves upward, gradually changing its direction of movement westward while the northerly speed increases proportional to the time lapsed. The trajectories projected on the vertical and horizontal surfaces are shown in Fig. 105.

THE RESISTANCE UPON THE CONVECTION WIND

If the convection winds develop, according to the vertical acceleration; the horizontal convergence must be followed with. Or else, in the portion from which the airs have risen, there must start a low pressure which would pull back the ascending airs downward. On the other hand, the air converging into that portion should be resisted by the earth's surface, showing that the resistances of the earth's surface which act upon the converging airs are the force to prevent the development of the convection wind. Thus, the convection wind is accelerational no more, but it reaches the terminal velocity.

The time by which the convection wind reaches the terminal velocity is not known but it will depend upon the roughness of the earth's surface just as in the case where the horizontal winds are resisted.

If we assume that the convection wind balances to the resistance directed toward the opposite direction to the wind speed represented by (47a), the tangent of the direction of the horizontal wind vector must be

$$\frac{v}{u} = -\sin\phi \left(\frac{2\omega t - \sin 2\omega t}{1 - \cos\omega t}\right), \tag{51}$$

where the value in the parentheses depends upon the time by which the convection wind reaches its terminal velocity. From this, it can be said, when $-\frac{1}{\rho}\frac{\partial cP}{\partial z}$ is positive,

(1) the convection wind is directed westward on the equator, and

(2) as the latitude increases, the direction changes as follows:

 $W \rightarrow WNW \rightarrow NW$,

(3) while the air rises upward.

But when $-\frac{1}{\rho}\frac{\partial cP}{\partial z}$ is negative,

- (4) the convection wind is directed eastward on the equator, and
- (5) as the latitude increases, the direction changes as follows:

 $E \rightarrow ESE \rightarrow SE$,

(6) while the air subsides.

Each component of the convection wind velocity is proportional to the vertical acceleration, therefore, as shown in Fig. 106, the

Fig. 106. Convection winds in both sectors of a cold front. directions of the wind in both sectors of a cold front have quite different feature. In the warm sector, where the accelerations are usually upward, the prevailing winds shift north-westward resulting in the larger deviation angle than expected.

In the cold sector, the downward accelerations shift the gradient winds south-eastward. A great number of examples are seen in our dayly weather analyses. Replacing the value of k in (40a) & (40b) by zero, we have the excessive pressure.

$$eP = \frac{(\rho_c - \rho_w)g}{\pi} \left\{ h \tan^{-1} \frac{h}{c} - c \log \sqrt{\frac{h^2 + c^2}{c^2}} \right\} + (\rho_c - \rho_w) gh^{-1}$$
(52a)

where the last term is used only when c is negative.

The convection pressure.is

$$cP = \frac{(\rho_c - \rho_w)g}{\pi} \left\{ h \tan^{-\prime} \frac{h}{c} - c \log \sqrt{\frac{h^2 + c^2}{c^2}} \right\}$$
(52b)

At the boundary surface, according to the conventional idea, the pressure must be considered to be discontinuous. In the new treatment, however, if we approach the surface from the warm air side, we have the limiting value.

$$\lim_{c \to +0} e P = \frac{(\rho_c - \rho_w)g}{\pi} \frac{\pi h}{2} = \frac{1}{2} (\rho_c - \rho_w) g h \qquad (53a)$$

while that for the cold air side is

$$\lim_{c \to -0} e P = \frac{(\rho_c - \rho_w)g}{\pi} - \frac{\pi h}{2} - (\rho_c - \rho_w)gh = \frac{1}{2}(\rho_c - \rho_w)gh - (53b)$$

It is evident that the excessive pressure is continuous even at the boundary surface, with the air pressure of

$$P = e P + \int_{Z}^{\infty} \rho_{\omega} g \, dz = \frac{1}{2} \int_{Z}^{\infty} (\rho_{c} - \rho_{\omega}) g dz + \int_{Z}^{\infty} \rho_{\omega} g \, dz$$
$$= \frac{1}{2} \int_{Z}^{\infty} \rho_{c} g \, dz + \frac{1}{2} \int_{Z}^{\infty} \rho_{\omega} g \, dz - (54)$$

This is the mean value of the pressures inside the warm and cold air-

masses. The pressure distribution through the frontal surface is shown in Fig. 107.

The vertical and horizontal accelerations are known from the formulas (41a) and (41b). They are

It will be seen that the resultant accelerations are vertical at the frontal surface with infinite amount. In order to avoid the occurrence of such unreasonable value, we solve the problem of vertical front with gradually changing density distribution.

According to the infinite acceleration at the boundary, the vertical front must have the density distribution changing continuously in the frontal zone. Now we consider the front shown in Fig. 109.

To compute the acceleration caused by such a front, we make the sammation of the accelerations caused by the imaginary vertical front with the finite density jump for every Δc interval. Thus the

Fig. 109. To get the acceleration at M.

vertical acceleration at M is given by

$$\gamma^{\circ} = \frac{\Delta \rho}{\rho_{\circ} \pi} \left(t a n^{-\prime} \frac{h}{c_{\prime}} + t a n^{-\prime} \frac{h}{c_{\prime} + \Delta c} + t a n^{-\prime} \frac{h}{c_{\prime} + 2\Delta c} + \dots + t a n^{-\prime} \frac{h}{c_{2}} \right)$$

If the density gradient be $G\frac{g}{cm^3}/cm$, we substitute the relation

$$G = -\frac{\Delta \rho}{\Delta c} = -\frac{d \rho}{d c} = +\frac{d \rho}{d z}$$

into the above formula changing the sammation into integration, thus:

$$\gamma^{\circ} = -\frac{g}{\rho_{\odot}\pi} \int_{c_{i}}^{c_{2}} tan^{-i} \frac{h}{c} dc$$

= $\frac{g}{\rho_{\odot}\pi} \frac{G}{h} \left(+\frac{c_{2}}{h} tan^{-i} \frac{h}{c_{2}} + \frac{c_{i}}{h} tan^{-i} \frac{h}{c_{i}} - \log\sqrt{\frac{h^{2}+c_{2}^{2}}{h^{2}+c_{i}^{2}}} \right)$ (56a)

In the same way, the horizontal acceleration is known to be

$$\alpha^{\circ} = -\frac{g}{2} \frac{G}{\rho_{\circ} \pi} \int_{c_{i}}^{c_{i}} \log \frac{h^{2} + c^{2}}{c^{2}} dc$$

= $\frac{g}{\rho_{\circ}} \frac{G}{\pi} \left(h \ tan^{-1} \frac{c_{i}}{h} - h \ tan^{-1} \frac{c_{2}}{h} + c_{2} \log \sqrt{\frac{h^{2} + c^{2}}{c_{2}^{2}}} - c_{1} \log \sqrt{\frac{K + c^{2}}{c_{i}^{2}}} \right) \dots (56b)$

Using these formulas the vertical accelerations are drawn in Fig.110.

Fig. 110. Vertical accelerations around the vertical cold front with continuously changing density.

It is evident that the accelerations at the boundary are no more infinite. The most interesting features of the buoyancy pattern are that the largest values appear at the location where the density gradient changes abruptly, and that any appreciable acceleration is not expected in the zone of constant density gradient.

§ 8 Approximation of the Formulas for Large Scale Phenomena.

If we want to compute the vertical accelerations for the dayly synoptic situation. the density jump separated by a surface would not

be expected. Usually, as shown in Fig. 111. the density for a warm air-mass increases up to that for the cold air-mass continuously. It is necessary, therefore, to set up

Schematical distri-Fig. 111. bution of density anomaly.

the formula capable of computing the acceleration field for an arbitrary distribution. As the height of the atmosphere is very small comparing with the horizontal extension, the absolute values of b and c in the formulas are, in many cases, more than 10 times larger than h. namely

$$\left|\frac{h}{c}\right| < \frac{1}{10}$$
 , $\left|\frac{h}{b}\right| < \frac{1}{10}$

This fact shows us that the formulas (56a) & (56b) can be reduced to

$$\gamma^{\circ} = \frac{g G h}{\rho_{\circ} \pi} \log \left| \frac{c_{i}}{c_{2}} \right|$$

$$\alpha^{\circ} = -\frac{g G h}{\rho_{\circ}} \qquad (in the zone of changing density) ---(57b)$$

$$= 0 \qquad (in the other zones) ----(57c)$$

respectively.

Using the principle of superposition, the acceleration at the surface caused by a density gradient aloft can be computed. If we use the notations in Fig. 112. the vertical acceleration at M computed by (57a) 1s

Fig. 112. To compute the accelerations at M and M. $\frac{g \ G(h_1+h_2)}{\rho_0 \pi} \log \left|\frac{c_1}{c_2}\right| - \frac{g \ G \ h_2}{\rho_0 \pi} \log \left|\frac{c_1}{c_2}\right| = \frac{g \ G \ h_1}{\rho_0 \pi} \log \left|\frac{c_1}{c_2}\right| - (58a)$ According to (57), this is the vertical acceleration at M' just above the point M in the figure. It is obvious, therefore, that the acceleration is the same at any point on the line M M'. In the similar manner it can be proved that the formulas (25b) & (25c) can be applied in the same way.

HORIZONTAL ACCELERATION IN LARGE SCALE PHENOMENA

Differentiating the relation.

P = wP + cP

with respect to x, we obtain

$$\frac{\partial P}{\partial x} = \frac{\partial w P}{\partial x} + \frac{\partial c P}{\partial x}$$
$$= \frac{\partial w P}{\partial x} = g h \frac{\partial P}{\partial x} = g h G$$
(58b)

Namely, in the practical case, change in air pressure is caused only by the density gradient within the layer of the thickness h. The formula(57b) can be transcribed into

$$\alpha^{\circ} = -\frac{g G h}{\rho_{\circ}} = -\frac{1}{\rho_{\circ}} \frac{\partial P}{\partial x}.$$
 (58c)

This fact shows that the conventional formula,

$$\frac{du}{dt} = -\frac{1}{\rho} \frac{\partial P}{\partial x}$$

holds good for the case of horizontal accelerations.

VERTICAL ACCELERATION IN LARGE SCALE PHENOMENA

If the density is homogeneous in y-direction, the vertical acceleration can be computed. As shown in Fig. 113, we divide the zone where the density is different in x-direction into uniform distances of Δx that is larger than about 300 km so as to make $\frac{1}{2}\Delta x$ more than 10 times larger than the height of the zone. After numbering the vertical segments from the bottom, thus:

 $n = 1, 2, 3, 4, 5, 6, \dots \text{ etc.}$

and the horizontal segments, thus:

8

			- C-2			1		
Δπ	Δx	Δx	C,-	Δ \$	Δπ	Δχ	Δχ	1
G-31	G-21	G-11	Gai	G _t ,	· G21	G 31	G 41	/ :
G-32	G-22	G-12	Goz	G : 2	C 2 2	G 32	G 42	2
G-33	G-23	G-13	· G 0 3	G / 3	G 23	· G 33	G 43	3
= ~ 3	-2	~ /	6	1	2	3	4	
	3 G-33 G-32 G-3/ Δ x	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

Fig. 113. Segments of the atmosphere for computation of the acceleration.

we compute the vertical acceleration at M, the middle point of the bottom of the segment Go_i . Applying the formula(57a) for the segments in Fig. 113, we obtain the vertical acceleration at M.

$$\gamma^{\circ} = \frac{g}{\rho_{\circ}\pi} \sum_{-m}^{+m} \log \left| \frac{c_{m+1}}{c_{m}} \right| \sum_{1}^{n} G_{mn} h_{n}$$
$$= \frac{1}{\rho_{\circ}\pi} \sum_{-m}^{+m} \left(\frac{\Delta P}{\Delta x} \right)_{m} \log \left| \frac{c_{m+1}}{c_{m}} \right|$$
(59a)

whence, from (58b), we know

$$\left(\frac{\Delta P}{\Delta x}\right)_{m} = g \left(G_{m1}h_{1} + G_{mg}h_{2} + G_{m3}h_{3} + \cdots\right)$$

The practical acceleration is, therefore,

$$\gamma = \frac{1}{\rho \pi} \sum_{-m}^{+m} \left(\frac{\Delta P}{\Delta x} \right)_m \log \left| \frac{c_{m+1}}{c_m} \right|$$
 (59b)

This formula is very convenient since it gives the method by which the vertical acceleration is to be computed using our ordinary synoptic charts.

Using the approximate relation,

$$\frac{1}{\rho} \frac{\Delta P}{\Delta x} \stackrel{:=}{=} g \frac{\Delta H}{\Delta x}$$

we transcribe the formula(59a) into

$$\gamma = \frac{g}{\pi} \sum_{-m}^{+m} \left(\frac{\Delta H}{\Delta x} \right)_m \log \left| \frac{c_{m+1}}{c_m} \right|$$
(59c)

where *H* is the height of constant pressure level. Because of the fact that the height gradient not on a constant altitude must be used for the present computation, the results computed by this formula are not so accurate but the distribution of the vertical accelerations on high level chart can be known approximately.

To make the computation of the formula easier, the values of $\log \left| \frac{C_{m+1}}{C_m} \right|$ are tabulated in Table 5, which is available as long as we divide the zone into uniform horizontal segments Δx .

m	-20	-19	-18	-17	-16	-15	-14	+13
log	-0.050	-0.052	-0.054	-0.058	-0.061	-0.066	-0.071	-0.011
m	-12	-11	-10	- 9	- 8	- 7	- 6	- 5
log	-0.083	-0.091	-0.100	-0.110	-0.126	-0.143	-0.167	-0.200
m	- 4	- 3	- 2	- 1	0	1	2	3
log	+0.251	-0.333	-0.511	-1.100	0.000	+1.100	+0.511	+0.333
m	4	5	6	7	8	9	10	11
log	+0.251	+0.200	+0.167	+0.143	+0.126	+0.110	+0.100	+0.091
m	12	13	14	15	16	17	18	19
log	+0.083	+0.077	+0.071	+0.066	+0.061	+0.058	+0.054	+0.052
log	+0.083	+0.077	+0.071	+0.066	+0.061	+0.058	+0.054	+0.05

Table 5. The value of log $\left|\frac{Cm+1}{Cm}\right|$ as the function of m.

§ 9 Proposed Mechanism of Typhoon Initiation.

The accelerations upon the air of density ρ° in the intertropic zone with the pressure distribution represented by the top curve in Fig. 114 are computed by using (59a). The computations are carried out after assuming that the pressure gradient vanishes at the altitude of 10 km. As will be seen in the figure, this is the case where the pressure distribution is symmetrical with respect to the front, however, when the southern part of the zone is filled with the cold air-mass from the southern hemisphere, the distribution varies appre-

Fig. 114. Acceleration Pattern in the intertropic zone. The accelerations are computed for the pressure distribution of annual mean condition.
ciablly.

The vertical accelerations for such a case are presented in Fig. 115. The top curve shows the surface pressure distribution and the

```
Pressure Distribution
```


middle one the vertical acceleration. It will be seen that the cold air from the south results in a very large buoyancy in the frontal zone and downward acceleration south of the front.

INITIATION OF TROPICAL STORM

Using the fact that the buoyancy force in the intertropic frontal zone increases, it is possible to explain the initiation of a typhoon. As has been pointed out by Dr. Syono(5), decrease in pressure, especially in the lower levels, caused by heavy presipitation inside the cumulonimbi would develop into the tropical circulation. The cause of heavy showers can be explained by the present theory. As shown in Fig. 116-a, the maximum buoyancy inside the intertropic frontal zone is no more than 0.1 cm/sec². This amount is, however, not enough since, according to the formula,

$V = \sqrt{2ah}$

where a is the acceleration, h the altitude through which air is accelerated by a, V the terminal velocity; if the air on sea level were to be accelerated, without friction, up to 5 km level, the terminal velocity would be about 3 m/sec. It is known that, on an ordinary day when such amount of the buoyancy is expected, there develop intermittent squalls which pour in short duration with high intensity.

When the air pressure south of the intertropic front increases, the pattern of the vertical acceleration changes appreciablly, and as will be seen in Figs.ll3-b-c-d, the buoyancy inside the low pressure area increases up to several times, say 0.3 cm/sec². On the other hand, a marked subsidence zone develops along the south of the front. The cumulonimbi which would presipitate heavy shower continuously, that would make the pressure lower, will develop and the processes of typhoon initiation presented by Dr. Syono will begin.

It should be pointed out here that, though we require the existence of the cold air outbreaking from the southern hemisphere, the mechanism of the shower initiation is quite different from the idea of frontal theory which was established to explain the typhoon initiation by using the frontal wave. In the present explanation, the high density masses from the south play a role to increase the convection pressure, namely its vertical gradient. Thus we do not need the contact of warm and cold air-masses at the intertropic frontal surface which is very difficult to imagine.

- Fig. 116. Showing the initiation of heavy showers which would develop into a tropical storm.
 - (a) Ordinary day free from the cold air from the southern hemisphere.
 - (b) As the cold air south of the equator develops, the buoyancy force in the intertropic zone increases.
 - (c) If the cold air which might change into warm air enter the south of the intertropic front, the pressure unbalance results in the large buoyancy.
 - (d) The stage in which heavy showers develop.

The most interesting and important result which must be emphasized here is the fact that the airs from the south, which might be virtually colder, undergo buoyancy as well as the warm air locating before. It is evident that the heavy showers develop inside the airs reaching the frontal zone from the south, and that the cause is not the lifting effect of the cold air-mass that produces upward motion but the pressure or density distribution itself inside a large area in the vicinity.

Schematical chart showing the horizontal distribution of the vertical accelerations is presented in Fig. 117. The intensity of the accelerations is represented by the density of the negative and positive signs.

Fig. 117. Schematical figure showing the distribution of upward(+) and downward(-) accelerations.

\$ 10 Buoyancy Caused by Arbitrary Warm or Cold Area.

We compute the excessive pressure in the field with warm area surrounded by cold one. Let ρ_{e} be the density of the warm air-mass, and ρ_{c} be that of the cold, the excessive pressure can be computed using (36b) after changing it into that for the cylindrical coordinates.

In the following computation, when the point whose pressure or the acceleration is in question is located inside a warm area, we use the subscript 1, while the point is located inside a cold area, we use the subscript 2.

Fig.118. Computation of excessive Fig.119. Computation of excessive pressure at M_1 inside a warm area. Pressure at M_2 inside a cold area.

The excessive pressures for M, and M2 are, therefore,

$$eP_{1} = \frac{1}{2\pi} \int_{0}^{2\pi} \int_{Z}^{\pi} \int_{r}^{\infty} \frac{(\rho_{0} - \rho_{w}) g(z - Z) r dr dz d\theta}{\{r^{2} + (z - Z)^{2}\}^{\frac{3}{2}}}$$
(60a)

$$eP_{2} = \frac{1}{2\pi} \int_{0}^{2\pi} \int_{Z}^{\pi} \int_{0}^{r} \frac{(\rho_{0} - \rho_{w}) g(z - Z) r dr dz d\theta}{\{r^{2} + (z - Z)^{2}\}^{\frac{3}{2}}}$$
(60b)

where r is the distance of the point M from the boundary. Integrating the formulas, under the assumption that $(\rho_{c} - \rho_{w})$ is constant, we obtain

$$eP_{1} = \frac{(P_{c} - P_{w})g}{2\pi} \int_{0}^{2\pi} \frac{f}{Z} \frac{z - Z}{\sqrt{r^{2} + (z - Z)^{2}}} dz d\theta$$

$$= \frac{(P_{c} - P_{w})g}{2\pi} \int_{0}^{2\pi} (\sqrt{r^{2} + h^{2}} - r) d\theta \qquad (61a)$$

$$eP_{g} = \frac{(P_{c} - P_{w})g}{2\pi} \int_{0}^{2\pi} \frac{f}{Z} \left(1 - \frac{(z - Z)}{\sqrt{r^{2} + (z - Z)^{2}}}\right) dz d\theta$$

$$= (P_{c} - P_{w})gh - eP_{1} \qquad (61b)$$

where h = H + Z. Next we compute the convection pressures, by using the relations,

$$cP = eP - ewP$$
, $ewP_g = (\rho_c - \rho_w)gh$

The convection pressures are, therefore, written thus:

$$c P_1 = e P_1$$
 (:: $ew P_1 = 0$).....(61c)

$$cP_2 = eP_2 - (\rho_1 - \rho_2)gh = -eP_1$$
 (61d)

VERTICAL ACCELERATION

The vertical acceleration is given by differentiating the convection pressure with respect to z, namely,

$$\gamma_{1}^{\circ} = -\frac{1}{P_{\circ}} \frac{\partial cP_{1}}{\partial z} = \frac{B^{\circ}}{2\pi} \int_{0}^{2\pi} \frac{h}{\sqrt{r^{2} + h^{2}}} d\theta$$
$$= \frac{B^{\circ}}{2\pi} \int_{0}^{2\pi} \frac{1}{\sqrt{1 + x^{2}}} d\theta$$
$$= \frac{B^{\circ}}{2\pi} \int_{0}^{2\pi} \psi d\theta , \qquad (62a)$$

where h = H - Z, x = r/h, $B^{\circ} = \frac{\rho_c - \rho_w}{\rho_o}g$, and ψ the cyclone function for a = 1. We have also the vertical acceleration for the point M.,

$$\boldsymbol{\gamma}_{2}^{\circ} = -\frac{1}{\rho_{0}} \frac{\partial c P_{2}}{\partial z} = -\left(-\frac{1}{\rho_{0}} \frac{\partial e P_{1}}{\partial z}\right) = -\left(-\frac{1}{\rho_{0}} \frac{\partial c P_{1}}{\partial z}\right) = -\boldsymbol{\gamma}_{1}^{\circ} - (62b)$$

HORIZONTAL ACCELERATION

we obtain

е

To compute the horizontal accelerations at M_1 locating inside a warm air-mass of ρ_w , surrounded by ρ_c , we obtain first the excessive pressure at M_1 caused by the area element ABCD in Fig. 120. Using the formula(61a)

Fig. 120. To obtain the horizontal acceleration caused by ABCD.

$$e P_{1}' = (\rho_{c} - \rho_{w}) \frac{g}{2\pi} \left(\sqrt{r^{2} + h^{2}} - r \right) d\theta$$

$$P_{1}' + d e P_{1}' = (\rho_{c} - \rho_{w}) \frac{g}{2\pi} \left[\sqrt{(r + dr)^{2} + h^{2}} - (r + dr) \right] d\theta - \log \frac{r + \sqrt{r^{2} + h^{2}}}{2r} dI],$$

where the second term in the right side is the excessive pressure caused by the area DCEF, and $dI = dr d\theta$. Dividing the difference of these two formulas by dr, we obtain

$$\frac{\partial eR'}{\partial r} = (\rho_c + \rho_w) \frac{g}{2\pi} \left\{ \frac{\partial}{\partial r} \left(\sqrt{r^2 + h^2} - r \right) - \log \frac{r + \sqrt{r^2 + h^2}}{2r} \right\} d\theta$$

Replacing r/h by x, and $1/\sqrt{1 + x^2}$ by ψ , we have

$$-\frac{1}{\rho_0}\frac{\partial eR'}{\partial r} = \frac{B^0}{2\pi} \left\{ 1 - x\psi + \log \frac{1}{2} \left(1 + \frac{1}{x\psi}\right) \right\} d\theta$$
$$= \frac{B^0}{2\pi} \phi \ d\theta \qquad (63a)$$

where φ is the quantity in the braces. Thus we obtained the similar formula to (62a) used for the computation of vertical acceleration.

On the other hand, when the point is located inside the cold air using the relation(61), we have

$$-\frac{1}{\rho_{0}}\frac{\partial eP_{1}}{\partial r} = -\left(-\frac{1}{\rho_{0}}\frac{\partial eR_{1}}{\partial r}\right) - (63b)$$

The *x*-ward acceleration can be obtained by integrating the xcomponent of the acceleration element given by (63a), thus:

$$\alpha_1^{\circ} = -\frac{1}{\rho_0} \frac{\partial e P_1}{\partial x} = \frac{B^{\circ}}{2\pi} \int_0^{2\pi} \varphi \left(-\cos\theta\right) d\theta = \frac{B^{\circ}}{2\pi} \int_0^{2\pi} \varphi \left(-\sin\theta\right) - (64a)$$

In the same way, we integrate the y-component

$$\beta_1^{\circ} = -\frac{1}{\rho_0} \frac{\partial e P_1}{\partial y} = \frac{B^{\circ}}{2\pi} \int_0^{2\pi} \varphi \left(-\sin\theta\right) d\theta = -\frac{B^{\circ}}{2\pi} \int_0^{2\pi} \varphi d(\cos\theta) - --(64b)$$

The horizontal accelerations obtained here are the case where the point in question is located inside the warm air, but if it is inside the cold, we obtain them from (63b) which can be transcribed as:

$$\alpha_2^\circ = -\alpha_1^\circ$$
, $\beta_2^\circ = -\beta_1^\circ$ (64c)

DIAGRAMS TO COMPUTE α , β , AND γ .

The formulas (62a), (64a) and (64b) show the fact that the accelerations can be integrated using the acceleration diagrams in Fig. 118. To obtain the accelerations, it is convenient to carry out in the following way.

(A) If the point M is located in the warm-air side of the tangent

Fig. 121. Acceleration Diagrams for α , β , and γ . These diagrams are used when we want to compute the accelerations caused by an area having a temperature higher or colder than its environments. To compute the horizontal acceleration pattern, it is convenient to

utilize the excessive pressure diagram in Fig. 133.

at the boundary, we plot the curve so that θ increases, however, if the point is located in the cold air side, we do it as θ decreases.

(B) We put the arrow along the curves on the diagram in order to represent the plotted direction.

(C) It is evident, from (64a) (64b) and (64c), that the area under the curve directed rightward shows the positive acceleration. In the opposite case, the sign reverses.

(D) Usually the curves on the diagrams are closed, therefore, the area enclosed is proportional to the acceleration.

(E) When the point is located on the boundary, horizontal acceleration is infinite, and it is directed from cold to warm area.

The accelerations at M. inside the warm area are shown in Fig. 122. As was noticed above, the directions are always entered in the

Fig. 122. Representation of the accelerations on the diagrams when the point is located inside a warm area. figure, so that the acceleration directions can be determined easily. When the point is located outside the enclosed warm area, the curve on the vertical acceleration diagram closes, and the direction reverses. It will be understood, comparing the buoyancies inside and outside the warm area, that the downward acceleration is very small.

Fig. 123. Showing the curves on the acceleration diagrams when the point is located outside the enclosed warm area. This is the reason why the airs surrounding a cloud do not descend rapidly to compensate the ascending current. By using the diagram, it is not possible to obtain the resultant acceleration in horizontal direction directly, however, it can be obtained by adding the x- and y-components.

Fig. 124. Showing the acceleration at the boundary.

It might be peculiar to get the infinite acceleration at the boundary. This is true since we have assumed a density jump there. The curve on the vertical acceleration diagram in Fig. 124 shows that vertical accelerations at M_1 and M_2 are quite different in amount and direction. That is to say, the amount on the enclosed side is larger than that on the other, but the sum of the absolute values is just the same as the conventional buoyancy force.

ACCELERATION FAR FROM THE BOUNDARY

(1) Str	aight	Boundary.				
h						
Col	!d	<i></i> ∂∘M.				

Fig. 125. To obtain the accelerations far from a straight edge.

D	$\pi \alpha^{\circ}$	πγ ^Ο
5	0.020000	0.200000
10	0.005000	0.100000
20	0.001250	0.050000
30	0.000555	0.033333
40	0.000312	0.025000
50.	0.000200	0.020000
60	0.000139	0.016666
70	0.000102	0.014286
80	0.000078	0.012500
90	0.000062	0.011111
100	0.000050	0.010000
200	0.000012	0.005000
300	0.000005	0.003333
400	0.000003	0.002500
500	0.000002	0.002000
km	cm/	sec

Table 6. Decrease in acceleration far from a straight boundary.

The acceleration at M, in Fig. 125 is given by (55). When the distance is very large, comparing with the height of the air-mass of different density, they are reduced to

$$\alpha^{\circ} = \frac{B^{\circ}}{\pi} \log \sqrt{1 + \frac{h^2}{D^2}} = \frac{B^{\circ}}{8\pi} \left(\frac{h}{D}\right)^2 - (65a)$$

$$\gamma^{\circ} = \frac{B^{\circ}}{\pi} t a \bar{n}' \frac{h}{D} \rightleftharpoons \frac{B^{\circ}}{\pi} \left(\frac{h}{D}\right) - (65b)$$

It is obvious that the buoyancy γ° decreases inversely proportional to the distance from the boundary, while that of x-direction decreases more rapidly or proportional to the inverse square of the distance. In the case where the height of the cold air-mass with straight frontal boundary is 10 km, at the distance of 1000 km from the boundary, there still exists the vertical acceleration of 1/300 B. The horizontal acceleration is, however, only 5/300000 B which is about 1/200 smaller than the vertical one.

(2) Circular Boundary.

Fig. 126. To obtain the accelerations far from a circular boundary.

Fig. 127. Showing the ourve on the vertical acceleration diagram for the point far from the circular area. We consider the accelerations at M with distance D from the center of a circular warm or cold area. As the distance D is very large, the values of ψ and φ are reduced to

$$\psi \doteq \frac{1}{x}$$
, $\varphi \doteq \frac{3}{4} \frac{1}{x^2}$.

The area on the vertical acceleration diagram corresponding to the given circular area is to be obtained, by assuming the elliptic shape. Therefore, the vertical and horizontal accelerations are obtained approximately, thus:

$$\gamma^{\circ} = \frac{B^{\circ}}{2\pi} \pi \times \phi \times \frac{\partial \psi}{\partial x} \frac{R}{h} = \frac{B^{\circ}}{2} \frac{h^{2}}{D^{3}} \frac{R^{2}}{D^{3}}$$
(66a)
$$\alpha^{\circ} = \frac{B^{\circ}}{2\pi} \pi \times \frac{R}{D} \cdot \frac{3 \cdot 2}{4} \frac{h^{3}}{D^{3}} \frac{R}{h} = \frac{3}{4} B^{\circ} \frac{h^{3} R^{2}}{D^{4}}$$
(66b)

As the result, it will be seen that the vertical acceleration decreases in proportion to the negative 3rd power of the distance, and that the horizontal acceleration to the negative 4th power. Comparing this result with that of the straight edge case, it will be understood that the effect of the pressure unbalance caused by a enclosed system vanishes so rapidly that we cannot detect it at a considerable distance.

\$11 Application to Thunderstorm Convection

It was known, according to the Thunderstorm Project in U.S.A. (1), that there exist warm (up-draft) and cold (down-draft) areas inside a thundercloud. The temperature corresponding to the density of the air which would produce atmospheric pressure must be T_{yw} , the temperature presented by the writer(4). That is

$$T_{vw} = (1 - w) T_v$$

where w is the mass(gr.) of water droplets imbedded within a gram of air. Cunningham and Miller(3) reported the water amount as much as 6.5 g/m² at the 700 mb level which would lower the temperature about 2 degrees. It is valuable to clarify the acceleration pattern within such systems as develop on thunderstorm day.

VERTICAL ACCELERATION

with smaller density than of the environments was computed by the vertical acceleration diagrams in Figs. 128 & 129. Constants for the clouds are. h = 10 km. R = 5 km. $\rho_c - \rho_{\mu} = 3$ g/m² (temp. diff. of about 1°C), $P_{skm} = 710 \text{ g/m}^3$, $P_{bottom} = 1160 \text{ g/m}^3$.

UNIT OF ACCELERATION

To carry out the practical evaluation of the accelerations it is desirable to use a suitable unit. The gravity is too large for the present case. The writer, therefore, want to put forward the acceleration unit comparable to the acceleration caused by the pressure gradient of 1 mb/l'latitude. The acceleration given to the unit mass of surface air is

Acceleration
$$= \frac{1}{\rho_{\text{unface}}} \cdot \frac{1 \text{ Imb}}{1 \text{ I} \text{ km}}$$

The density of the surface air is different from place to place and from time to time; however, if we assume $P_{max} = 1.2 \times 10^{-3} \text{ g/cm}^3$. we have

Acceleration =
$$\frac{10^{3} \times 1000}{1.2 \times 11100000} = 0.075 \text{ cm/sec}^{2}$$

It is convenient, therefore, to introduce the unit of

$$0.1 \text{ cm/sec}^2 = 1 \text{ A.U.}$$

and it may be termed "the acceleration unit" (abbreviated as A.U.).

÷	1		1		the second se	the second s
	D	Cloud Bottom	5 km Level	D	Cloud Bottom	5 km Level
-	0	22.8	32.3	20	-0.35	-0.33
	2	22.9	32.9	30	-0.11	-0.10
	4	23.0	35.9	40	-0.05	-0.06
l	5	23.3	37.4	50	-0.03	-0.02
	5	-2.1	-7.9	60	-0.02	-0.01
	6	-1.8	-6.3	70	-0.01	-0.01
	8	-1.5	-3.9	80	-0.01	-0.00
	10	-1.1	-2.3	90	-0.00	-0.00
	15	-0.64	-0.76	100	-0. 00	-0.00
	Tabl	.0 7.	Buoyan	cy(A.	U.) in	and
					- · -	•

outside of a circular cloud.

The computed results are tabulated in Table 7. As will be seen in the table. within the cloud warmer 1°C than of the environments, there exists the acceleration of about 3 cm/sec² which would accelerate the air

to the speed

$$V = \sqrt{2 + 3 \times H}$$
 om/sec

where, if H be 5 km = 500,000 cm, the final speed would be 17 m/sec.

It will be understood that there is the gradient of convection pressure reaching as much as 30 A.U. which would be expected on the surface weather maps where the pressure gradient of 20 mb/l° latitude exists.

Outside the cloud, however, the downward acceleration is very small, and even at the boundary it is not more than 10 A.U. The dis-

Fig. 130. Distribution of buoyancy in and outside the circular cloud.

tribution of buoyancy is shown in Fig. 130. As we go away from the cloud the downward acceleration decreases rapidly, and at the place 5 km from the cloud edge, it is about 1 to 2 A.U. Therefore, it can be considered that the downward current to compensate the up-draft develops only in the vicinity of a thundercloud.

HORIZONTAL ACCELERATION (ENTRAINMENT AND DETRAINMENT)

The horizontal inflow of the surrounding air has been discovered by the Thunderstorm Project, however, the reasons are remained unsolved yet. So long as we believe the conventional idea that the air pressure propagates only downward, the horizontal force by which the surrounding airs entrain inte a thundercloud is very difficult to be stulied.

According to the new theory, the horizontal acceleration can be computed by using the horizontal acceleration diagrams in Fig. 118. And the entrainment process is the natural result which comes from the distribution of excessive pressure field formed by the extraordinary density distribution of thunderstorm.

As an example, the entrainment accelerations for the circular cloud mentioned before are computed by the diagram in Fig. 131. In contrast with the buoyancy force, it is known that the entrainment acceleration decreases almost to zero at the distance of about 10 km from the cloud. At the center of the cloud. where the distance from the cloud edge is equal in

every direction, the entrainment force is, of course, zero.

DETRAINMENT

If there be a cold cell, the direction of the horizontal acceleration reverses. Therefore, it is evident that a force to detrain the cold airs from the down-draft appered not only inside the cell but also in its environments. Such a process may be termed "detrainment"

The detrainment will be observed whenever a cold portion is located within a warmer environment. The detraining air from the top of a developed thundercloud is a good example of the detrainment. If we want an example in the large scale phenomena, we can see a large mass of cold air locating over the equatorial zone, which diverges gradually toward the poles.

In the similar reason, we must expect a detrainment process for a cold down-draft. This process will, however, be revealed by observations in future.

Next we consider the entrainment field within the system of cold and warm areas. Fig. 132, showing the acceleration patterns, is computed by the acceleration diagram. It will be seen the airs are given a force to get out

Fig. 132. Entrainment and detrainment within the system of cold and warm areas...

from the cold area and enter the warm one. The patterns are, however, somewhat different from those we see in the electric or magnetic lines of force; it is because, the entrainment force decreases proportional to the negative 4th power while the electric or magnetic force to the negative 2nd power.

Excessive Pressure Diagram.

When we compute the horizontal acceleration pattern of arbitrary system, it is rather troublesome to obtain it as vector field. Therefore, it is more convenient to draw the isobar for excessive pressure by using the formulas (61a) and (61b), which show that the excessive pressure can be obtained by graphical integration. Changing (61a), we write

$$e P_1 = \frac{(\rho_c - \rho_w)gh}{s\pi} \int_0^{s\pi} (\sqrt{x^2 + 1} - x) d\theta$$
, (67a)

where x = r/h. We also write eP_2 as

$$e P_{2} = (\rho_{c} - \rho_{w}) g h - e P_{1}$$

= $\frac{(\rho_{c} - \rho_{w}) g h}{s \pi} \int_{0}^{s \pi} \left\{ 1 - (\sqrt{x^{2} + 1} - x) \right\} d\theta$ (67b)

excessive pressure diagram has the scale of

$$\Phi = \sqrt{x^2 + 1} - x$$

We utilize the excessive pressure diagram as shown in Fig. 134, in which the examples of representation are illustrated.

The pressure distribution beneath a thundercloud warmer than the environment is obtained by the diagram in Fig. 135.

According to the conventional idea, it was only known that the pressure inside the cloud under discussion is lower 1.47 mb, however, as shown in Fig. 136, the pressure computed by the new theory is lower only 0.86 mb than the environments. This is because the pressure

Fig. 134 Representation of excessive pressures for the points A,B,C,D, and E. From (67a) and (67b) it is known that the areas on the diagram which correspond to the cold area on the density chart show the excessive pressure.

Fig. 135. Curves on the excessive pressure diagram. Numbers in km unit on the diagram represent the distance from the center of the cloud with diameter of 10 km and the height of 5 km.

caused by the heavy surrounding airs exerts pressure into the cloud through its boundary.

Thus, the structure and the process taking place within thundercloud can be clarified by using the new convection theory.

LITERATURES

- (1) Byers H.R. The Thunderstorm. U.S. Government Printing Office, Washington D.C. 1949
- (2) Prandtl-Tietjens Hydro-und Aeromechanik IIter Band 1931 Julius Springer, Berlin
- (3) Cunningham, R.M., and Miller, R.W., Five Weather Rader Flights: Measurement and Analysis, Technical Report No. 7, Weather Rader Reaearch, Massachusetts Institute of Technology. 1948.
- (4) Fujita T. Micro-analytical Study of Thunder-nose. Geophysical Magazine, Vol. 22 No. 3.
- (5) Syono S. On the Theory of Fermation of Tropical Cyclones. (not yet published)

CHAPTER IV

r

EXAMPLES OF ANALYSES

1,	Pressure Profiles of Typhoons
2,	Hourly Surface Charts of Typhoon Della (From 12h 20th to 08h 22nd June 1949)164
3,	Distribution of Wind Speed within Typhoon Della (From 21h 20th to 06h 21st June 1949)180
4,	Isallobars within Typhoon Della (From 21h 20th to 06h 21st June 1949)186
5,	Middle Point Correction for the Upper-air Data in Typhoon Kezia (From 10 to 18 Sept. 1950)
6,	Constant Pressure Charts for Typhoon Kesia at 300 mb Level (From 12h 12th to 18h 15th Sept. 1950)

EXAMPLE I

PRESSURE PROFILES OF TYPHOONS

(A) Typhoon Muroto of 21 Sept. 1934

- v - v	06	07	08	09	10	11	12	13	14	
$\frac{P_{\infty}}{\Delta P}$	1018	1018	1018	1018	1018	1018	1018	1018	1018	mb
	89.2	78.7	66.7	56.0	48.0	46.0	44.7	44.0	42.7	mb
	0.06	0.05	0.06	0.16	0.32	0.36	0.48	0.65	0.85	dimensionless
	126	172	222	245	245	248	251	243	236	km

(B) Typhoon Della of 20-21 June 1949

- 4	21	22	23	00	01	02	03	04
Peo	1018	1018	1018	1018	1018	1018	1018	1018
ΔP	56.0	50.6	49.3	46.7	44.0	42.7	40.0	38.6
a	0.50	0.70	0.95	1.2	1.1	0.90	0.90	0.80
ra	136	131	126	128	141	166	191	240

(C) Typhoon Jane of 3-4 Sept. 1950

	06	08	10	12	14	16	18	20	22	24	02	04	06
P _∞	1017	1017	1017	1017	1018	1018	1018	1018	1018	1019	1019	1019	1019
a	0.40	0.34	0.27	0.22	0.18	0.19	0.24	0.32	0.44	0.60	0.85	0.95	1.20
T _c	62	68	80	103	128	151	168	182	192	200	200	200	212

(D) Typhoon Kezia of 13-14 Sept. 1950

	12	• 15	18	21	24	03
P_{∞}	1014	1014	1014	1014	1014	1014
a	0.54	0.46	0.34	0.46	0.38	0.48
r ₀	99]	108	153	144	114	126

(E) Typhoon Ruth of 14 Oct. 1951

,	1.9	20	21	22	23	24
$\frac{P_{\infty}}{\Delta P}$	1014	1014	1014	1014	1014	1014
a ro	0.54 144	0.70	0.90	1.10 162	0.95	0.80

P. 158

Profiles of Typhoon Muroto

A

1

7.

•

Pressure Profile of Typhoon Della

2.25

T.

24

Pressure Profile of Typhoon Jane

P. 162

1

•

EXAMPLE

HOURLY SURFACE CHARTS OF TYPHOON DELLA

2

From 12h 20th to 08h 22nd

June 1949

"Isobars" are contoured for every 1 mm Hg by black curves. In the central areas of the typhoon where the relation of winds to isobars is not so evident, the isobars are drawn after referring to the pressure traces from each weather station. Especially the areas affected by the dips are contoured by using the traces only, since the angle between wind and isobar is quite different from the one we believed conventionally. Thus, the angles can be studied by the following map sequence.

"Isotherms" are contoured for every 1 degree centigrade. Before drawing the isotherms, the temperatures at those stations locating at the top of a hill or plateau had been corrected to sea level, and the lapse rate was assumed to be 6°C/km.

Before the typhoon reached the frontal zone locating over Japanese Islands, the temperature gradient near the front was not prominent, however, as she advanced northward, a marked warm front appeared along the Pacific side of Japanese Islands. The most interesting feature of the temperature distribution is the development of the warm area which has started to form west of Shikoku at Olh 21 June. The warm area spread over Chugoku and Shikoku Districts with the maximum temperature of about 30°C.

"Rain Intensities" are contoured for the values, 0, 1, 3, 5, 10, 30, 50 mm/hour. In order to make the precipitation pattern, the traces of rain at each station are differentiated carefully, and the values at each map time are entered.

It is found that the mederate rain south of Japan was intensified as the typhoon approached. This is the case for a decaying typhoon, and the precipitation pattern around the typhoon center is not concentric but the heavy rains are seen mainly in the cold sector. In the eastern areas of the typhoon far from the center there were observed heavy showers moving north-castward.

Ρ. 165

WEATHER MAPS OF TYPHCON DELLA

BY T. FUJITA

4

-1

WEATHER MAPS OF TYPHCON DELLA

BY T. FUJITA

SY T. FUJ

-{

BY T. FUJITA

P. 170

WEATHER MAPS 0.F BY T. FUJITA

BY T. FUJITA

WEATHER MAPS

BY T. FUJITA

WEATHER MAPS OF TYPHOON DELLA BY T.I

BY T. FUJITA

P. 176

*

-1

WEATHER MAPS 0F BY T. FUJITA

1

WEATHER MAPS OF TYPHOON DELLA

BY T. FUJITA

i.

-

WEATHER MAPS OF TYPHOON DELLA . BY T. FUJITA

P. 180

EXAMPLE 3

DISTRIBUTION OF WIND SPEED WITHIN TYPHOON DELLA

From 21h 20th to 06h 21st

June 1949

In the following charts, the wind speeds are contoured for every 5 knots, and the areas with the speed more than 30 knots are represented by stippled ones.

At 21h, when the typhoon has passed over Yakushima Island, the slow wind area in the center extended north-castward, but as the time passed on, the direction changed NNE to N. While the strong winds were observed, as expected, in the castern area.

At Olh, the strong winds surrounded the typhoon center perfectly. This is due to the fact that the wind speeds were not so high on Kyushu Island.

At O5h, the high wind speed is seen over the cold air push entering from the west of typhoon. In many cases the typhoon winds slow down when they enter the area of complicated topography, but in the present case, the cold northery winds were prevailing over north Kyushu without changing their speed, This is because the cold airs tend to subside carrying the large momentum on higher levels down to the ground, and the action would help the maintenance of the high speed.

After all, it can be said that an attempt to draw the wind speed pattern by entering the observed values at different time of observation to the same chart is not reasonable. Since the patterns change so rapidly even within one hour. Of course, in drawing the present charts, the auxiliary data observed 30 minutes before and after the map time are used for helping the main data.

It must always be kept in mind that the reporting wind speed for lighthouse weather station is usually one and half times higher than that for the surface station that is located below the hill, and that the speed at the station in a town is slower than expected, because the wind tower of such a station is sometimes located inside the appreciable turbulent layer caused by trees and buildings.

1.

.(

í

EXAMPLE 4

ISALLOBARS WITHIN TYPHOON DELLA

From 21h 20th to 06h 21st

Juno 1949

The following charts show the isallobars contoured for every 1 mm-Hg/hour. The tendencies for the map time were computed by differentiating the pressure traces with respect to time. The areas of positive tendencies are represented by stippled areas.

At 21h, the minimum pressure line extended from WSW to ESE passing through the typhoon center. A marked trough line travelled northward in the western sector resulting in a marked preasure rise south of the trough. As will be seen in the chart for 24h, at first the minimum pressure line bended southward but according to the northward movement of the trough the positive tendency area advanced northward rapidly.

At O2h, the marked trough reached Tsushima Island, meanwhile the isallobars concentrated near the trough line. It is known that the pressure traces at the stations north-west of Kyushu showed a pointed bottom at the time of the trough passage.

At O5h, the greater parts of the typhoon areas showed positive tendency, and especially in the region through which the cold air from the north-west was entering the southern sector of the typhoon, the rate of the pressure rise was very large.

Isallobars are very useful in distinguishing the dip from the topographical low pressure areas which do not move as a dip does. As will be seen in the charts, pressure drops appreciablly when a dip approaches, and sometimes it happens, even when the main storm is closing near, that the pressure rises after the passage of the dip center. On the other hand, there are no special pressure tendencies in the leeward side of a mountain where the pressure is sometimes lower 1 or 2 mbs. than of the undisturbed regions. This is because the topographical low stays almost at the constant location.

P. 188

-1

×.

-

EXAMPLE 5

MIDDLE POINT CORRECTION FOR THE UPPER-AIR DATA IN TYPHOON KEZIA

From 10 to 18 Sept. 1950

To eliminate the errors in the supper-air data, the middle point correction is very useful. The examples of the corrected results are shown in the following sheets.

The corrections were carried out for the heights and temperatures at the constant pressure levels of 1000, 850, 700, 500, 300, 200, 150, 100 and 80 mbs. The circles in the figure show the middle point of each line segment connecting the successive observed values. When the observation interval is larger than 12 hrs, the segment is represented by broken line.

INDEX OF STATIONS

YONAGO	35	26	N	133	21	E	7.9	m
SHIONOMISAKI	- 33	27	N	135	46	E	74.9	m
KAGOSHIMA	31	34	N	130	33	E	5.4	m
ITA ZUKE	. 33	35	N	130	27	E	7.0	m
TARE(W.S.)	29	00	N	135	00	E	0.0	m
X-RAY(W.S.)	39	00	N	153	00	E	0.0	m
TATENO	36	03	N	140	08	E	27.2	m
SENDAI	38	16	N	140	54	E	39.8	m
SAPPORO	43	04	N	141	20	E	18.1	m
WAKKANAI	45	25	N	141	41	Ε	3.2	773
WAJIMA	37	23	N	136	54	E	6.9	777
AKITA	39	43	N	140	06	E	9.9	m
					and the			

1. 1. 1.

•

F

-

12

e

P. 199

EXAMPLE 6

CONSTANT PRESSURE CHARTS FOR TYPHOON KEZIA AT 300 mb LEVEL

From 12h 12th to 18h 15th

Sept. 1950

To make the charts at 300 mb level of our area, the number of the available stations is not so large enough. In the present analyses, therefore, the values read from the red curves in the previous middle point corrections are also entered on the chart at the locations 6 hrs before and after the map time. At the same time the arrows showing the tendencies of temperature and height are entered.

In spite of the careful corroction of the original data, the values on the charts are not so accurate as we see on the surface maps. The height contours are drawn under such condition, but it is possible to know the approximate patterns.

It must be pointed out here that the time section at a station locating near the typhoon path does not always represent the similar pressure field to what we see on spatial chart. For instance, one might suppose, by looking at the time section at Wajima or Akita, that the constant pressure surface of the 300 mb in the typhoon center is higher than of the environments, however, it is not the case.

As will be seen in the typhoon pattern, in which only the -26°C lines are contoured, warm air surrounding the typhoon over southern ocean advanced northward together with her, until it formed a tongue which changed into an enclosed area. It must be pointed out also that the warm areas in question were accompanied by cold stratosphere in the levels higher than the 150 mb level.

j

-1

P202

V

V

-A-	Mean value correction 86
Acceleration 106	Middle point correction 85 192
Acceleration diagram 144 145	
Air pressure, formula of 105	-N-
computation of 104	Normal front 113 114 122
Anomalous pressure 47	_
_	-0-
=B≠	Overhang front 113 116 123
Buoyanoy 100	Overrunning front 118
-0-	-P-
Coefficient $(a + \beta)$ 60	Phase velocity 93
Cold-core_cell 77 90	Pivot 39
Convection pressure cP 100 142	Pressure depth AP 747
Convection wind 126	Pressure dip 64
Cvolone constant(a) 7 33 47 158	Pressure oscillation 50
Cyclone function($\mathbf{\Psi}$) 7 52 143	of long period 51 52
	of short period 51 59
-D-	Pressure profile 3 5 47 158
Deepening 36	Pressure tendency 42
4H-logP, AT-logP diagram 86	v
Detrainment 153	- <u>R</u>
Direction function(K) 103	Radius ratio 5
Divergence 99 120	Po 106
	Rotation of acceleration field 117
-E-	
Entra inment 152	-3-
Excessive density 106	Secondary typhoon 35 38 50
Excessive pressure(eP) 106 142	Steering level or current 46 66
Excessive pressure diagram 154	Standard pressure 46
Excessive weight pressure 106	-
Eye of typhoon 72 77 93	
67	Thunderstorm convection 149
	Time section 91 199
Filling 36	Typhoon initiation 136
Film of	ŤŤ.
romi 90 Frontal roma 100	mijm Thalfahanhad hafahk 77 ma
rionical some 100	Undisturbed neight Ha 32
-14-	Undisturbed pressure Po 747
Hetabe donth AB 20	Unit of Roberteration(A.U.) 151
Horizontal acceleration	
106 112 134 14A	- 17
*00 FT: 101 FIL	Vention] anologetim
. 	101 110 100 100 100 100 100 100 100 100
Inclined front 108	Vertical front 112 120
Intertropio zone 137	Vortex
Isallobar 43 186	
	•
	- W -
-M-	-W- Warm-core cell 77 96
-M- Mass convergence 59	-W- Warm-core cell 77 90 Weight pressure(wP) 100 63