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Abstract—We propose a brain-inspired neural network 

model consisting of the hippocampus, prefrontal cortex, and 

amygdala models for a navigation system that acquires specific 

knowledge in home environments from few experiences. The 

proposed model was evaluated in a home environment using a 

robot simulator. In the experiment, the robot determines a path 

for navigation based on the knowledge acquired by the brain-

inspired model. 

Keywords—brain-inspired neural network, reservoir 

computing, service robot, navigation 

I. INTRODUCTION 

Service robots that can support daily lives in home 
environments are attracting attention because of the falling 
birth rate and shrinking population in Japan. Service robots 
require two types of knowledge to work in home 
environments. One of them is common knowledge, which can 
be shared in any environment and is required for object 
recognition and voice recognition. The other is environment-
specific knowledge, such as family preferences and room 
layouts. We can share a large amount of training data to 
acquire such common knowledge using current artificial 
intelligence (AI) models, such as deep learning, but 
environment-specific knowledge must be acquired from the 
robot’s experiences, which comprise very little data. 
Acquiring environment-specific knowledge using a small 
amount of training data is difficult for current AIs. 

 Navigation is a typical task for service robots in which 
specific knowledge is required. Although the navigation 
systems currently implemented in robots can generate paths to 
avoid obstacles using temporary information obtained from 
sensors, introducing specific knowledge acquisition can 
improve the navigation performance of the system.  

In this study, we propose a novel system that can acquire 
episodic memories from experiences and generate actions 
based on those memories and their emotional values. We 
focused on three areas of the brain: the hippocampus, 
prefrontal cortex, and amygdala. The hippocampus is 

concerned with episodic memories. The prefrontal cortex 
predicts future behavior to plan actions. The amygdala is 
concerned with emotions. We integrated the functions of the 
three brain areas into a neural network, including reservoir-
computing and a self-organizing map (SOM) for the 
navigation system of robots. 

II. PROPOSED METHOD

Figure 1 illustrates the proposed model comprising the 

hippocampus, prefrontal cortex, and amygdala models. The 

model has two execution phases: training and inference. The 

blue arrows indicate the flow of the training phase, and the 

red arrows indicate the flow of the inference phase. 

A. Hippocampus model 

 We use a model inspired by the place cell found in the 
hippocampus that represents self-positions [1]. The model 
receives the self-position obtained by a robot through 
simultaneous localization and mapping and output location 
information 𝒙𝑡, where 𝑡 indicates a time step, that represents
the location of the robot. The self-position of the robot in a 
room in Fig. 2(a) is converted to the location information 
represented as a 2-dimensional Gaussian function by the 
model, as shown in Fig. 2(b). 

B. Prefrontal cortex model 

A prefrontal cortex model consisting of an echo state 
network (ESN) is concerned with the navigation path 
generation [2]. This model learns the time evolution of 
location information and generates a sequence of location 
information, 𝒚𝑡 (Fig. 1), without external input signals.
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C. Amygdala model 

An amygdala model [3] obtains location information 𝒙𝑡

from the hippocampus model and estimates the emotional 
value 𝑧̂𝑡 of the location. The amygdala model is composed of 
a SOM and a fully connected neural network (FCNN). The 
location information is classified at the SOM, and the FCNN 
outputs an emotional value using the SOM output. 

D. Integrated model 

1) Training phase

In the training phase, the location information from the 

hippocampus model 𝒙𝑡 is given to the prefrontal cortex and

amygdala models. The prefrontal cortex model is trained to 

output the time evolution of the location information that 

corresponds to the navigation path. The location information 

𝒙𝑡  as an input, and 𝒙𝑡+1as a target from the hippocampus

model is given. Since 𝒙𝑡  is represented as a Gaussian

function, a small difference of the place information does not 

affect the navigation path generation. 

When the robot experiences a predefined event that 

affects task accomplishment, the target emotional value 𝑧𝑡 is

given to the amygdala model shown in Fig. 1 (for example, 

when the robot arrives in front of a closed door and cannot 

pass through there, the negative target emotional value is 

given because the robot cannot accomplish the task). The 

amygdala model is trained to output the emotional value 𝑧𝑡

when a predefined event occurs.  

2) Inference phase
During the inference phase, the next-location information 

𝒚𝑡 is generated by the prefrontal cortex model. Next, location
information is fed to the prefrontal cortex model recursively 
to generate the path acquired during the training phase. Here, 
in the first time step, 𝑡 = 0, we must provide an initial input 
to the prefrontal cortex model, which is the output of the 
hippocampus model 𝒙0. The generated location information
𝒚𝑡  is also provided to the amygdala model. The amygdala
model estimates the emotional value 𝑧̂𝑡  of each location
information. In this manner, the model can generate the path 
and evaluate its emotional value to determine the next action. 

III. EXPERIMENT

In the experiment, we provided a map of a room with two 
open doors to the robot. We provide a goal position G to the 
robot in a room where only Door B was closed, as shown in 
Fig. 2(a). Without the proposed model, the robot missed the 
closed door when the robot rotated or moved because the door 
was outside the sensor range. The robot could not reach this 
goal because the navigation system processed only temporary 
sensor information. We evaluated whether the robot—with the 
proposed model—could avoid choosing Path 1 with a closed 
door in the room, as shown in Fig. 2(a). 

A. Training of the models 

First, we moved the robot from the start position S to the 
goal position G through Path 1 (Door B was open), and Path 
2 so that the robot can learn both paths. The robot acquires 
self-position at constant intervals. We trained the prefrontal 
cortex model with the location information generated by the 
hippocampus model at 𝒙𝑡 and 𝒙𝑡 + 1.

Next, we trained the amygdala model. We set a predefined 
event for the amygdala model as the robot was located in front 
of Door B, and we set its target emotional value as negative 
because the robot could not arrive at the goal through Door B. 
We provided an emulated output of the hippocampus model 
at Door B and provided 𝑧𝑡  =  −1.0 as the target emotional
value. After training, the amygdala model output 𝑧̂𝑡 ≤
 −0.70, which was close to the target value, when the robot 
was near Door B. We considered the emotional value of 
location to be low if the output emotional value 𝑧̂𝑡 was less
than or equal to a predetermined threshold, −0.70. 

B. Result 

The prefrontal cortex model generated a path using the 
previously acquired memory. The generated location 
information and estimated emotional values are shown in Fig. 
3. The trajectory of the location corresponding to the path is
shown as a colored line. The prefrontal cortex model 
recursively generated Path 1 and Path 2, respectively, by 
providing the initial input of each path. In Path 1, the 
amygdala model outputs a low emotional value when the 
location information at Door B is given. Because the 
emotional value of Path 1 was low, the robot chose Path 2, 
which was not the shortest path. 

IV. CONCLUSION

 We proposed a brain-inspired neural network for the 
navigation system and evaluated it using a robot simulator. In 
this study, we must set a threshold to determine whether the 
emotional value of the path was low. In a future study, we aim 
to introduce a determination system that does not rely on the 
threshold. By combining various information such as the 
distance to the goal and the time required to move in addition 
to the emotional value, the model would be able to determine 
the path without a predetermined threshold. 
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Fig. 2. Experiment environment 

(a) Robot in the simulator (b) Location in the hippocampus model 

Fig. 3. Generated place information and the estimated emotional values 


