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Abstract Neural networks have been widely used to model nonlinear systems
that are difficult to formulate. Thus far, because neural networks are a radically
different approach to mathematical modeling, control theory has not been applied
to them, even if they approximate the nonlinear state equation of a control object.
In this research, we propose a new approach - i.e., neural model extraction, that
enables model-based control for a feed-forward neural network trained for a non-
linear state equation. Specifically, we propose a method for extracting the linear
state equations that are equivalent to the neural network corresponding to given
input vectors. We conducted simple simulations of a two degrees-of-freedom pla-
nar manipulator to verify how the proposed method enables model-based control
on neural network forward models. Through simulations, where different settings
of the manipulators state observation are assumed, we successfully confirm the
validity of the proposed method.

Keywords Neural network · Model based control

1 Introduction

In contrast to the conventional approach where robots have been designed to sim-
plify their mathematical modeling, new approaches in robotics, such as biologically
inspired and soft robotics, do not prioritize ease of modeling. These approaches
aim to elucidate how material properties, actuator characteristics, and mechanical
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structures, which constitute components of a robot, contribute to simply achieving
a given task. [1–3].

Although many successful research results have been reported in this new
robotics field, the absence of a control theory applicable to these robots has been
shelved as a problem. The main reason for this is the difficulty in obtaining their
state equations as, in these new approaches, the robots are not typically designed
for simpler and more accurate mathematical modeling. Therefore, developing their
controllers and analyzing their properties cannot rely on well-established control
theory. Machine learning is one of the most promising approaches to develop con-
trollers for complex soft robots without relying on control theory [4–6]. However,
from the viewpoint of understanding, controlling, and analyzing the dynamic char-
acteristics of soft and bio-inspired robots, which are all needed to establish the
theory of soft and bio-inspired robotics, there is not yet a satisfactory alternative
to the role of the conventional control theory in robotics. The new approach deal-
ing with this shelved problem will play a key role in establishing the theory of soft
robotics.

Neural networks (NNs) have been used to approximate forward/inverse models
of robots based on data of their motions [7,8]. In addition, it is expected that recent
great strides in deep learning techniques will strongly enhance the applicability and
usefulness of NN [9,10]. NNs play an important role in controlling soft and bio-
inspired robots where mathematical modeling is difficult but for which it is easy
to gather data for learning. NNs have the potential to fully capture the complex
dynamic properties of these robots as a complete forward model. Conversely, the
comprehension of the features of the soft robots themselves is still lacking because
analysis of the NN is not typically available. Thus, even though the NN has a
function equivalent to that of a state equation, theories well-established in robotics
for state equations can still not be applied for controlling and analyzing systems
based on NN models.

Reconsidering why control theory is still not applicable, even if an NN is trained
to be functionally equivalent to a state equation, it is arguable that models ob-
tained via NNs are regarded as radically different expressions to classical mathe-
matical models. However, in principle, because an NN is just a parametric model
of a nested mapping consisting of a weighted sum and an activation function, the
NN model is a possible mathematical expressions of the state equation. Therefore,
the actual reason why an NN is not deemed as a mathematical model is thought
to be the complexity of the expression.

In this study, we propose a new approach - neural model extraction - that
extracts mathematical expressions from NNs to apply model-based theories. To
ensure the success of this approach, extracted mathematical expressions should be
formed that are easy to handle in the model-based theory, which will be applied.
Therefore, we propose a method that efficiently extracts linear models from a
basic fully connected feed-forward NN, in accordance with changes in the input
vector. The core idea is very simple. The method requires an NN using piece-wise
linear activation functions, such as the family of rectified linear units [11–13]. In
this case, the nonlinearity of the activation function comes from changing which
piece is applied to the weighted sum; i.e., once an input vector specifies which
piece is applied to the weighted sum for all hidden units, the mapping of the
NN can be written identically as a form of linear regression. We assume that the
NN was trained to learn the nonlinear state equation of a robot whose dynamics
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are extremely difficult to mathematically model, such as for soft and bio-inspired
robots. A linear state equation corresponding to an input vector can be obtained
in each step. The linear control theory can then be applied for controlling and
analyzing soft robots at that particular moment. This would greatly contribute to
the introduction of control theory for soft and bio-inspired robotics.

This paper is organized as follows: In the next section, related works concerning
applications of machine learning in robot control are introduced to clarify the nov-
elty of the neural model extraction approach. In Section 3, the proposed method,
which extracts linear state equations from an NN trained for a nonlinear state
equation, is explained in detail. To validate the proposed method, we conducted
several simulations that highlight the advantages. In Section 4, the simulations
results are presented. Section 5 discusses important future works and concludes
by considering how the proposed method applies to a wide variety of soft robots.

2 Related Work

Controlling a complex robot whose dynamics are nonlinear and difficult to for-
mulate mathematically has been a central issue in the fields of robotics, control,
and machine learning. Furthermore, the current emergence of new approaches in
robotics, such as bio-inspired robotics and soft robotics, will bring even more at-
tention and importance to this issue. So far, many studies have been conducted
and successful robotic applications have been demonstrated. In this section, we
introduce related works to clarify where the proposed method is placed relative to
other works in this field.

First, we would like to approximately categorize related works into two groups
by focusing on where, in the controlled system, a machine learning technique
was used. Machine learning techniques have been used as controllers/predictors in
controlled systems [7,14]; i.e., the categorization is retrieved from the viewpoint
of whether there is a functional approximation regarding a state equation in the
control theory. It would be summarized as follows:

1. A method that uses a parameterized controller, evaluates the control result,
and then computes the optimal control, without modeling the object itself.

2. A method that obtains a forward model of an object and then determining the
control input by another optimization process based on the model.

The first group of works focuses on deriving a controller directly through an
optimization process. In particular, this problem is well formulated in the typical
setup of reinforcement learning. Advanced reinforcement learning methods have
been applied to robot control problems, with remarkable results [15,16]. In ad-
dition, according to the recent advent of deep learning techniques, reinforcement
learning methods that can use images as a state by using a convolutional neural
network, have attracted increasing attention [17–19]. This type of robot control
problem, which directly optimizes the controller, can be deemed as a black-box
optimization problem. For instance, the covariance Matrix adaptation evolution
strategy has recently attracted attention[20,21]. Not only optimizing a controller
through trials but also constructing a controller from a dataset, was also inten-
sively studied. This approach is often referred to as inverse model learning [22,
23]. In this approach, regression methods play a crucial role in expressing inverse
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models. The Bayesian approach is a sound method for tackling this problem and
has shown its generality and applicability in several works[24,25]. Conversely, NNs
have also been widely employed. A distinctive feature of these studies is that the
NN is often adopted in parallel with a basic feedback controller. They were trained
for the inverse model, which can ideally fully implement feed-forward control of the
object [26–28]. Similarly, the approach referred to as active learning demonstrates
a method combining reinforcement learning and inverse model learning [29].

The second group of works is based on forward model learning. Forward mod-
els are typically limited to predicting future states and thus concurrent learning
of controllers based on these forward models has often been addressed [30,31].
A method that simultaneously learns both the forward and inverse models of a
robot is thus considered to be in this group of approaches[32,33]. These methods
use NNs and recent advancements in deep learning involve enhancing this type of
method [34]. A different approach for exploiting a forward model in robot control
is to use it as a stable and efficient evaluation of an inverse model under train-
ing. Model-based reinforcement learning is a typical method used in this class of
approaches[35]. In these methods, a forward model of a robot is expressed as a
probabilistic process and prediction of the robot with a given policy over a certain
period is used to evaluate the policy for numerical optimization. Similar to model-
free reinforcement learning techniques, model-based techniques have also attracted
increased attention in robotics [36,37]. Here, deep learning plays a key role in ex-
panding model-based reinforcement learning to a wider set of applications [38,
39]. Another type of method included in this approach is model predictive control
based on a forward model approximated by an NN [40,41]. Similar to model-based
reinforcement learning, these methods use forward models to predict future states
for several control inputs and compare their results with the desired states. In
addition, the impact of recent deep learning developments can be found in this
approach. For instance, deep convolutional autoencoders were exploited to extract
latent features from images [42,43] and deep convolutional neural networks were
used to directly approximate a forward model for model predictive control [44].

As explained thus far, a variety of approaches have been investigated and it
is expected that forward/inverse model learning will allow the control of complex
soft and bio-inspired robots. Despite this, understanding the properties of soft and
bio-inspired robots and reflecting the knowledge on robotic theory to design and
control them are still unaddressed problems. Hence, a theory is required corre-
sponding to control theory for conventional robotics; the approach proposed in
this paper, referred to as neural model extraction, focuses on this and can be cate-
gorized into the second group because an NN trained for a nonlinear state equation
of a robot is required. However, in contrast with the works described above, which
mainly focused on how to train an NN, the proposed approach focuses on how
to use the NN after training, namely how to extract mathematical models from
the NN to apply control theory. Therefore, the approach presented in this paper,
which aims at developing the theory and method for soft and bio-inspired robotics
based on well-established control theory, is considered to have a unique focus and
should be further categorized into a new group.
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Fig. 1 A schematic representation of the fundamental idea for the extraction of linear state
equations. If a piece-wise linear function consisting of N linear functions is employed as an
activation function, once an input vector is given, hidden units are equivalent to one of these
functions. For example, in this figure, ReLU is assumed to be employed and white and gray
circles indicate hidden units that output either zero or non-zero for a particular input, re-
spectively. In this case, white units and the connected weights, depicted by dashed lines, can
be ignored. Therefore, the remaining subnetwork governs the entire network at this moment,
and can be clearly written in the form of linear regression. This corresponds to obtaining the
first-order approximation of the nonlinear state equation around the given input.

3 Proposed Method

In this section, as a concrete example of neural model extraction, we propose a
method that extracts an input vector dependent linear state equation from an
NN trained over a nonlinear state equation. To achieve robot control using the
proposed method, three steps are required.

The first step is generally called forward model learning. In this study, we
assume that a forward model corresponds to a nonlinear state equation of a robot.
To enable the application of the proposed method, the NN is assumed to be fully
connected, feed-forward, and employing a piece-wise linear function as its nonlinear
activation function.

The second step aims to extract mathematical models from the NN, which
is the core of the proposed method. In particular, it is based on the fact that
the activation function can be deemed as a linear function when an input vector
determines which part of the piece-wise linear activation function transforms the
weighted sum. The term ”activation pattern” is used to indicate the pattern con-
sisting of which piece of the piece-wise linear activation function is currently used
in each of the units. Fig.1 shows the schematic of this step when the rectified linear
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Fig. 2 The structure of the network. To approximate a robot’s nonlinear state equation
ẋ(t) = f(x(t), u(t)) by a function g(x̂(t)) provided by an NN, definitions of the input and
the output vector of the NN are designed to be consistent with those of the nonlinear state
equation. In addition, the activation function is assumed to be a piece-wise linear function.

unit is employed as the activation function. Note that this process, which only re-
quires knowing the activation pattern, is simple and has a low computational cost
and is thus suitable for being run repeatedly at each variation of the activation
pattern.

The third step is to design the controller based on the extracted linear model
for a particular instance. In this step, a well-established control theory can be
used. For instance, we can use a linear quadratic regulator (LQR) to constitute
the feedback controller that determines the control input for a specific instant. In
the following subsection, these three steps will be explained in more detail.

3.1 Forward Model Learning

Let q(t) ∈ RN be a column vector that specifies the configuration of a robot. Using
q(t), the state is defined as a column vector x(t) = (q(t)T , q̇(t)T )T ∈ R2N . Defining
an input vector as a column vector u(t) ∈ RM , an NN for the forward model
learning is shaped as receiving a 2N +M dimensional column vector consisting of
the state and input vectors and outputting a 2N dimensional column vector that
represents ẋ(t).

Fig.2 shows the configuration of the network structure. We denote the input
vector concatenating x(t) and u(t) as x̂(t). Assuming an NN provides a mapping
g(·), the purpose of the learning is to approximate a robot’s nonlinear state equa-
tion ẋ(t) = f(x(t), u(t)) by the function g(x̂(t)) such that f(x(t), u(t)) ≈ g(x̂(t))
holds.

In general, the output of an NN y corresponding to an input x̂ is formulated
as follows:

y = hK+1 = WouthK + bout (1)

hi = φ(si)

si = Wihi−1 + bi

h0 = x̂



Neural Model Extraction for Model-based Control 7

where K, φ, and hi indicate the number of hidden layers, nonlinear activation
function, and outputs of the hidden layers, respectively. In addition, 0 < i ≤
K holds. As shown in Eq.1, a layer consists of a weighted sum and a nonlinear
mapping; g(x̂) provided by the NN is just the repetition of this operation. The
sole requirement for applying the proposed method is to employ a piece-wise linear
function as the activation function.

Wout, Wi, bout, and bi, the so-called weight matrices and biases, are parameters
to be optimized. For the sake of a simpler explanation, we introduce Θ, which
indicates a set of parameters that sufficiently characterizes an NN, defined by the
following:

Θ = {Wout,W1, · · · ,WK , bout, b1, · · · , bK} (2)

Assuming that actual state transitions ẋ∗i , 0 ≤ i ≤ D were observed by feeding
inputs ui to a robot at states xi, the purpose of learning in the simplest case can
be written as follows:

Θ∗ = arg min
Θ

1

D + 1

D∑
i=0

(
g(x̂i)− ẋ∗i

)2
. (3)

where the input x̂i indicates (xTi , u
T
i )T in this case. To improve the accuracy

and generalization, additional cost function terms and standardizing coefficients
have often been introduced. The proposed method does not prevent using these
improvements. Similarly, no limitation on the optimization method is imposed by
the use of the proposed method. Therefore, learning can be conducted by using
state-of-the-art algorithms to obtain better accuracy and generalization. In the
next subsection, the procedure applied after learning, i.e., after solving Eq.3 with
adequate accuracy, will be explained.

3.2 Model Extraction

We propose a method that, for a given input vector, extracts an equivalent linear
model from an NN. Fig.3 provides a representation of the proposed method, which
is going to be explained in this subsection.

An NN is identical to a linear regression model if a linear function is employed
as the activation function. Therefore, if a neural network that employs a piece-
wise linear function as its activation function is used to approximate a nonlinear
state equation of a robot, hidden units must use different pieces of linear functions
over changes in the input vector. Let us introduce the term ”activation pattern”
to indicate the pattern consisting of which part of the piece-wise linear activation
function is currently used in each unit. The above can then be rephrased stating
that the activation pattern has to vary in accordance with changes in the input
vector to earn nonlinearity. From a different point of view, this means that the
neural network can be written down in the form of a linear regression once the
activation pattern is identified.

For the sake of explanation, we first specifically define the activation pattern
on the i-th layer φai as follows:

φai = (φai,1, φ
a
i,2, · · · , φai,Ni

)T (4)

φai,j =
∂φ(z)

∂z

∣∣∣∣
z=si,j
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Fig. 3 The schematic representation of the proposed method that, given an input vector,
extracts an equivalent linear model from an NN. a) Under a given input vector, the part of
the piece-wise linear activation function that each hidden unit belongs to is checked. Here, the
leaky ReLU is assumed and dark and light gray units indicate that they are in different parts.
b) Once the activation patterns are identified, activation functions are seen as linear functions
and interpreted as weights and biases. c) The equivalent linear model at the given input is
obtained in equation form

where Ni and si,j indicate the number of dimensions of si and the j-th element
of si, respectively. For instance, if the Leaky ReLU is employed as the activation
function, φai,j takes either 1 or α according to the sign of si,j . Piece-wise linear
functions typically only have a few kinds of derivatives, identifying the activation
pattern is straightforward, and can be conducted by simple conditional branching.
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Using the activation pattern, the second equation in Eq.1 can be identically written
as follows:

hi = φai � si (5)

where � indicates Hadamard product. Furthermore, Eq.5 is equivalent to:

hi = W ′ihi−1 + b′i (6)

W ′i =
[
W ′i,j φ

a
i �Wi,j , j = 1, · · · , Ni−1

]
(7)

b′i = φai � bi (8)

where Wi,j and W ′i,j indicate the j-th column of Wi and W ′i , respectively. Using
Eq.7 and 8, Eq.1 can be differently expressed in the following form:

y = g(x̂) = W̄ x̂(t) + b̄ (9)

W̄ = W ′out

K∏
i=1

W ′i (10)

b̄ =

K−1∑
i=1

W ′out K∏
j=i+1

W ′jb
′
i

+ bout. (11)

Eq.9-11 show the identical linear regression of the NN. Note that W̄ and b̄ vary
depending on the input x̂ because the activation pattern φai depends on si.

Considering that the NN was trained by feeding (xT , uT )T as the input x̂ and
by referring to ẋ∗ as the target, the NN actually expresses linear state equations
as follows:

ẋ(t) = Ax(t) +Bu(t) + b̄ (12)[
A B

]
= W̄ (13)

where A and B are submatrices of W̄ shaped 2N × 2N and 2N ×M , respectively.
The concrete algorithm of the linear model extraction is shown in Algorithm.1.
It is noteworthy that the fifth step is conducted by extremely simple conditional
branching if a piece-wise linear activation function is employed.

3.3 Controller Design

A linear model extracted by linear model extraction (LME), as shown in Algorithm
1 can be used to compute a control input. In this study, we simply constitute a
controller based on linear control theory every time a new linear state equation
is extracted. It is noteworthy that a new linear state equation is obtained almost
every time the LME runs with different parameters because the activation pattern
is very sensitive to changes in the parameters. Therefore, it could be considered
that constructing a controller is required at every control step, as is done for
nonlinear model predictive control.

In addition, because the parameters contain the input vector itself, updating
the input vector by the constructed controller is likely to change the result of
the LME. Algorithm.2 shows the procedure to deal with this problem. In this
algorithm, the control input is initialized by that at the previous time step and
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Algorithm 1: Linear Model Extraction (LME)

Data: x(t) and u(t)
Result: A, B, and b̄

1 h0 ← (x(t)T , u(t)T )T

2 K ← the number of hidden layers
3 for i← 1 to K do
4 si ←Wihi−1 + bi

5 φai ←
∂φ(z)
∂x

∣∣∣
z=si

6 Ni ← the number of units on the i-th hidden layer.

7 W ′i ←
[
W ′i,j φ

a
i �Wi,j , j = 1, · · · , Ni−1

]
8 b′i ← φai � bi
9 W̄ ←W ′out

∏K
i=1W

′
i

10 b̄←
∑K−1
i=1

(
W ′out

∏K
j=i+1W

′
jb
′
i

)
+ bout

11 A← the 2N × 2N submatrix at the left side of W̄

12 B ← the rest 2N ×M submatrix at the right side of W̄

13 return A, B, and b̄

Algorithm 2: Control based on LME

Data: x(t) and u(t−∆t)
Result: u(t)

1 n← 0
2 NL ← an integer indicating the limit of loop
3 repeat

4 if Ã, B̃, b̃ exist then

5 A,B, b̄← Ã, B̃, b̃
6 else
7 A,B, b̄← LME(x(t), u(t−∆t))
8 Constitute a controller based on ẋ(t) = Ax(t) +Bu(t) + b̄
9 Update u(t) based on the controller

10 Ã, B̃, b̃← LME(x(t), u(t))
11 if n ≥ NL then
12 u(t)← average of the past few candidates of u(t)
13 break

14 else
15 un ← u(t)
16 n← n+ 1
17 continue

18 until A,B,D = Ã, B̃, D̃ holds
19 return u(t)

repeatedly updated based on the results of the LME until a consistent linear model
is obtained. Although the loop normally ends in a few iterations, a limit NL is set,
and the average of the past few candidates of u(t) is used if the loop reaches this
limit.

Once a linear state equation is obtained, a variety of methods can be applied
to derive the controller. Specifically, in this study, we employ optimal feedback
control, namely, a linear quadratic regulator (LQR). Here, we would like to briefly
explain the procedure.



Neural Model Extraction for Model-based Control 11

Let xd be the desired state. Assuming that the extracted linear state equation
ẋ(t) = Ax(t) + Bu(t) + b̄ globally governs the system, Axd + Bud + b̄ = 0 holds
when the system converges to the desired state. By defining e(t) = x(t)− xd and
v(t) = u(t) − ud, the state equation is transformed to ė(t) = Ae(t) + Bv(t). In
particular, ud = −B†(Axd + b̄) is a constant input vector necessary to keep the
state at xd, where B† indicates the Moore-Penrose pseudo-inverse matrix of B.

Let us define a linear quadratic cost function as follows:

J =

∫ ∞
0

e(t)TQe(t) + v(t)TRv(t)dt (14)

where Q ≥ 0 and R > 0 hold. The state feedback controller that minimizes the
cost function is given by:

v(t) = −Ke(t) (15)

K = (R+BTPB)−1BTPA (16)

where P is the solution of the following Riccati equation:

P = Q+ATPA−ATPB(R+BTPB)−1BTPA. (17)

Substituting the result, the control input at the moment u(t) is given by:

u(t) = −Ke(t) + ud. (18)

Again, this process for constituting the controller and obtaining u(t) is required
at almost every control step.

4 Simulation

As explained thus far, the proposed method does not require a mathematical model
of a robot but it is still possible to construct a controller based on well-established
control theory. This is thought to be a big advantage for controlling and analyzing
soft robots. In this section, we conduct a simulation of a simple two degrees-of-
freedom (DOF) planar manipulator to validate the proposed method. Although
the robot is simple, by assuming several different sensing setups of the robot, the
advantage of the approach is successfully highlighted.

In the following subsections, we explain the dynamics of the robot that we
simulate, how different types of training data are sampled, and the control results
obtained by the proposed method.

4.1 Dynamics of the 2 DOFs planar manipulator

Fig.4 shows the configuration of the 2 DOFs planar manipulator to be simulated.
Thanks to its simplicity, the dynamics can be shortly formulated as follows:

θ = (θ1, θ2)T (19)

τ = (τ1, τ2)T (20)
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Fig. 4 The configuration of the 2 DoFs manipulator focused in the simulations. Although the
end-effector is illustrated, it is not considered in the dynamics. Linkages are assumed to be
bars of uniform density.

M(θ)θ̈ + h(θ, θ̇) + g(θ) = τ (21)

M(θ) =

[
M1 M2

M2 M3

]
(22)

M1 = m1l
2
g1 +m2l

2
1 +m2l

2
g2 + I1 + I2

+2m2l1lg2C2

M2 = m2l
2
g2 + I2 +m2l1lg2C2

M3 = m2l
2
g2 + I2

h(θ, θ̇) =

[
−m2l1lg2(2θ̇1 + θ̇2)θ̇2S2

m2l1lg2θ̇
2
1S2

]
(23)

g(θ) =

[
(m2gl1 +m1glg1)C1 + m2glg2rmC1,2

m2glg2C1,2

]
(24)

where Ii is the moment of inertia of the i-th link, and lgi is the distance from
the i-th joint to the center of gravity of the i-th link. In addition, C1, C2, C1,2,
and S2 are abbreviations of cos θ1, cos θ2, cos (θ1 + θ2), and sin θ2, respectively.
Specifically, the physical parameters were configured as mi = 1.5 [Kg], li = 0.35
[m], lgi = li/2 [m], and Ii = (1/12)mil

2
i [Kg · m2] for all i = 1, 2. The simulation

is conducted based on these equations via the Euler method.

4.2 Forward Model Learning

To highlight the advantage of the proposed method, we assumed three different
sensing setups for the robot:

1. Assuming encoders in each joints so that the posture is specified by θ =
(θ1, θ1)T .

2. Assuming that the position of the end-effector is measured so that the posture
is specified by p = (px, px)T .
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Fig. 5 A top-view image of the 2 DOFs planar manipulator. The image is an 8-bit grayscale
64×64 sized image generated from joint angles θ1 and θ2 through OpenGL.

3. Assuming that only the top-view camera image is available so the posture is
specified in an unobvious way.

As for the control input, we assume that u = (τ1, τ1)T for all three setups.
If joint angles are available by encoders implemented in all joints, the state

vector can be defined as x = (θT , θ̇T )T . Therefore, an NN forward model trained
in this state space provides a mapping from points in the six dimensional input
space x̂ = (θT , θ̇T , uT )T to the corresponding points in the four dimensional output
space ẋ = (θ̇T , θ̈T )T , i.e., the same configurations as those shown in 4.1. For the
training, 106 points were sampled from a uniform distribution defined in intervals
θi ∈ [0, 135] [deg], θ̇i ∈ [−300, 300] [deg/s], and τi ∈ [−10, 10] [N·m] for all i = 1, 2.
This means that the data is sampled assuming that the robot arm is a right arm
to avoid the appearance of the kinematics redundancy. By initializing θ, θ̇, and τ
in Eq.21 using these points, the resultant θ̈ is computed so that the corresponding
target output ẋ∗ = (θ̇T , θ̈T )T can be obtained. Hereafter, let DJ be the training
data obtained in the state space using joint angles, i.e., DJ =

{
x̂i, ẋ

∗
i |0 ≤ i < 106

}
.

DJ does not have redundancy and hence the state vector can be defined dif-
ferently by using the position of the end-effector as (pT , ṗT )T . The transformation
from DJ to the training data employing a different state vector is conducted based
on the following kinematic relationship:

p =

[
px
py

]
=

[
l1cos(θ1) + l2cos(θ1 + θ2)
l1sin(θ1) + l2sin(θ1 + θ2)

]
. (25)

Note that the temporal differentiation of Eq.25 was used for converting θ̇ and θ̈ into
ṗ and p̈, respectively. We use DT to indicate the data obtained by transforming
DJ as the second setup of the robot.

In addition, as a third setup, we limited the observation to images, thus making
the mathematical modeling extremely difficult. Fig.5 shows one of the images
taken when the robot arm was randomly driven in the same way as the other
setups. A data point in DJ and DT includes acceleration information θ̈ and p̈ so
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at least three images are required to express the point. In particular, for each
point in DJ , three kinds of configurations θ − ∆θ̇, θ, and θ + ∆θ̇, where ∆ was
set to 0.001, were obtained to transform into three images. Therefore, 3 × 106

images were generated in total. These images were used for training a convolutional
autoencoder to derive a two dimensional latent space where the posture of the
robot is uniquely expressed and the dynamics can be modeled. To this end, we
used a method that trains a convolutional autoencoder with a regulation cost based
on a simultaneous forward modeling error of an NN (see [38,45] for the details).
By using the trained convolutional autoencoder, encoding and decoding between
images and 2 dimensional vectors were made possible.

Fig.6 shows the latent feature figured out from images. Three two dimensional
vectors q(θ−∆θ̇), q(θ), and q(θ+∆θ̇) are obtained from each point in DJ . The third
training data DL consists of inputs x̂ = (qT , q̇T , τT )T and outputs ẋ∗ = (q̇T , q̈T )T

where q(t), q̇(t), and q̈(t) were obtained through numerical differentiation. In addi-
tion, in parallel with generating training data, corresponding validation data that
includes 105 points were newly generated in the same manner.

Three kinds of NNs, whose structures are identically configured to have one
hidden layer containing 24 units with the leaky ReLU as the activation function,
were trained using each of DJ , DT , and DL. As shown in Eq.3, the loss function
is defined as a simple mean squared error.

Fig.7 shows the history of decreasing loss values in training for both the train-
ing and validation data. As a result of training, all NNs were sufficiently trained
to show less than 1% in terms of standardized prediction errors. In addition, be-
cause loss values evaluated on the validation data appear monotonically decreasing,
the learning processes are considered to occur without over-fitting. Therefore, we
deemed that each of the NNs were sufficiently trained to approximate the nonlin-
ear state equation of the robot, even if they were based on data employing different
expressions.

It is not obvious from Fig.7 but let us roughly consider that the three NNs
have almost the same errors in their predictions, i.e., less than 1 %. However,
some observations should be made. First, it can be seen that despite all data
being generated from systems governed by the same dynamics, these learning
processes are largely different. Specifically, learning using DT , shown as the second
subfigure, is slower and takes more than twice the time taken by the other input
settings. Second, the validation errors shown in the second and third setup appear
to oscillate much more strongly than for the first setup. This implies that the
difficulty of forward model learning is strongly dependent not only on the dynamics
of the system itself but also on how the dynamics is observed. This observation is
strongly relevant for soft robots so will be further discussed in the next section.

4.3 Control by the proposed method

We control the manipulator based on three different NN forward models using
the proposed method. To constitute an LQR based on an extracted model, as
explained in 3.3, it is necessary to set parameters Q and R. In particular, QJ , RJ ,
QT , RT , and QL, RL, defined as follows, were used as Q,R to constitute LQRs
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Fig. 6 The latent feature derived from images. For all figures, the horizontal and vertical
axes indicate θ1 and θ2, respectively. Top-Left: The gradient of the first element of the latent
feature. Top-Right: The gradient of the second element of the latent feature. Bottom: Contours
of the latent feature q = (q1, q2)T . It can be seen that q1 and q2 do not directly express θ1
and θ2 but q can uniquely specify the posture instead of θ.

based on NNs trained for DJ , DT , and DL, respectively.

QJ = diag(5× 104, 5× 104, 10, 10)

QT = diag(4× 104, 4× 104, 10−3, 10−3)

QL = diag(6× 102, 6× 102, 10, 10)

RJ = diag(10−1, 10−1)

RT = diag(10−2, 10−2)

RL = diag(1, 1)

These parameters were empirically configured through trial and error.
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Fig. 7 Learning processes of three kinds of NNs. The first, second, and third subfigures show
thee training histories of NNs on DJ , DT , and DL, respectively. The horizontal and vertical
axes indicate the number of updating steps and the loss value that remains, respectively. A
simple mean squared error was adopted as the loss function. The mini-batch size was 64 and
the optimization was conducted by the Adam algorithm. The loss values that converged at the
end of the training processes reached less than 1% of standard deviations for each data point.
As the validation errors showed, over-fitting was not observed.

Fig.8 shows the results of reaching control using the proposed method based
on the three NN forward models. Here, the desired and initial postures were set
to θd = (40, 50)T and θ(0) = (15, 15)T [deg] for all cases while the results were
depicted in the different spaces that were used to specify the posture of the ma-
nipulator in the corresponding training data. Therefore, they are all focusing on
the same reaching task of the manipulator.

First, from the figure, it can be seen that all results exhibit convergence, in-
dicating that the proposed method can successfully control the manipulator. This
provides evidence for the validity of the proposed method, i.e., controllers were
achieved in all cases based on linear control theory. For the case where only the
end-effector’s position is observed and the case where the posture is observed as
a top-view image, it is difficult to mathematically describe the dynamics of the
manipulator. Therefore, the results shown in the second and third plots clearly
show the advantage claimed in this paper.

Second, it can be seen that these results, shown in the second and the third
subfigures, are neither as smooth nor as accurate as those obtained by the NN
trained for DJ . This may be explained in terms of the aforementioned observation
that the validation error histories shown for the second and third input settings
appear to oscillate strongly, much more than for the first input setting. The os-
cillations would imply that the NN forward models do not generalize well and
that their control was sometimes conducted based on inaccurate linear state equa-
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Fig. 8 Results of reaching control by the proposed method. The horizontal and vertical axes
indicate the time and values that were employed to express the posture of the manipulator in
each training dataset. The desired and initial postures were identically set to θd = (40, 50)T and
θ(0) = (15, 15)T [deg] for all cases. The first, second, and third plots show the results of reaching
control performed using the NN trained for DJ , DT , and DL, respectively. Convergence was
confirmed in all cases, validating the proposed method.

tions. Therefore, this suggests that together with the simple loss function some
regularization terms will be required to improve the performance of the proposed
method.

Third, it should be noted that the cost functions of LQR did not evaluate
errors in the joint angles when different state space definitions were employed. For
instance, because the NN forward model trained for DT employs the definition
x = (pT , ṗT )T , the cost function of the LQR shown in Eq.14 in this case did not
evaluate errors in the joint angles and angular velocities space, but errors in the
end-effector’s positions and its velocities space. Fig.9 shows how results shown in
the second and the third plot of Fig.8 appear in the joint angles space. In particular,
the first plot in Fig.9, which corresponds to the second plot of Fig.8, exhibits larger
joint angle errors. Not only is the generalization of the NN forward model not good
enough but also setting the parameters QT and RT was difficult compared to
setting QJ and RJ ; this is thought to be the reason for the reaching performance
degradation. In the case where latent features of images were employed to define
the state space, it is clear that this problem becomes crucial and QL and RL
are difficult to configure to obtain the desired behavior of the manipulator. To
address this problem, the method used for finding the latent feature from images,
namely the methods proposed in [38,45], would be required to include additional
cost functions for training a convolutional autoencoder that remains the intuitive
meaning of distances in the latent space. Conversely, this would constitute an
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Fig. 9 Time-series of joint angles in reaching control corresponding to the second and third
plot of Fig.8. The horizontal and vertical axes indicate the time and angular values, respectively.
The first and second plots correspond to the results shown in the second and third subfigures
of Fig.8. Errors are larger than those of the corresponding figures in Fig.8 because their cost
functions for the LQR did not evaluate errors in the joint angles.

important aspect of the future work of this study, which will be discussed in the
next section.

5 Discussion

In Fig.7, the learning processes of the three NNs were largely different, despite
all the data being generated from systems governed by the same dynamics. This
means that the difficulty of the forward model learning was strongly dependent
not only on the dynamics itself but also on how the dynamics were observed to
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generate the training data. In contrast to the fact that using an encoder is a typical
setup to measure the state of a conventional robot, there is still no standard setup
for measuring the state of a soft robot. Therefore, evaluating what kind of sensor
information is useful for a soft robot will be an important question in this field.
The results shown in Fig.7 would imply the possibility of an evaluation in terms
of how easy it is to approximate the dynamics.

From this perspective, it is interesting that the learning process on DL is faster
than that on DT . In contrast to DJ and DT , which have a physical meaning in
each element, DL does not have any physical meaning because it was artificially
generated through images compressions. On the other hand, as explained, three
training data basically contain the same information concerning the posture of
the manipulator. Therefore, in principle, converting DT to DJ , DJ to images, and
images to DL is possible. This means that DL can perform as well as DJ or DT ,
regardless of whether it was achievable through training the convolutional autoen-
coder. In other words, it may be possible to convert sensor signals for defining the
state space in a form that is suitable for forward modeling. As mentioned in the
previous section, obtaining a latent feature space still provides difficulties in terms
of introducing a metric that represents what we intended. However, the above
reasoning should suggest an important aspect of future work for expanding the
advantages of the proposed approach and method described here.

In this study, we modeled the nonlinear state equation of the robot in continuous-
time space. The reason is that a mapping from a current state to the next state
x(t) → x(t + 1) could be almost an identity mapping in the discrete-time model.
This slows the learning process and makes expressing the dynamics difficult. Intro-
ducing a structure specialized for expressing x(t+ 1) = x(t) +∆ẋ, such as ResNet
[46], is a possible solution to this problem. Even for this case, it is noteworthy that
the proposed method is still available and retains the abovementioned advantages.

In this study, to verify the basic properties of the proposed approach, we eval-
uated only simple examples. Although this example is extremely simple compared
to typical soft and bio-inspired robots, the proposed approach of applying model-
based control without going through mathematical modeling could be useful for
soft and bio-inspired robotics in general. In addition, the results that the state
space reconstructed by autoencoders can be used in this approach when it is non-
trivial to construct state vectors directly from sensor values and that the difficulty
in defining a cost function in the reconstructed state space is useful information for
future research in this area. Employing a simulation setting that is more similar
to a real soft and bio-inspired robot and conducting an experiment using real soft
and bio-inspired robots will be an important future work for this study.

6 Conclusion

In this paper, we proposed a new approach, referred to as neural model extraction,
as a method that enables the application of control theory for soft and bio-inspired
robots that are difficult to model mathematically. Specifically, as an instance of
neural model extraction, we proposed linear model extraction, in which linear
regressions are extracted from an NN employing a piece-wise nonlinear activation
function. The proposed method can efficiently extract a linear equation that, for
that particular input, behaves in a completely identical way to the NN owing to the
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property that the derivative of piece-wise linear functions is easily computed for
any given input. If an NN is trained for a nonlinear state equation of a robot, the
extracted linear models correspond to first-order approximations around inputs to
the NN. To validate the proposed method, we conducted a simulation of a simple
two DOFs planar manipulator. In particular, we focused on three setups using
different sensors to measure the posture of the robot. Through the simulation,
the validity was confirmed and the advantage was highlighted. This distinctive
feature is beneficial, especially for soft and bio-inspired robots, and its importance
is thought to increase in the future.
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