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Abstract

In this paper, we consider the uniform deployment problem of mobile
agents in asynchronous unidirectional ring networks. This problem requires
agents to spread uniformly in the network. In this paper, we focus on the
memory space per agent required to solve the problem. We consider two
problem settings. The first setting assumes that agents have no multiplicity
detection, that is, agents cannot detect whether another agent is staying at
the same node or not. In this case, we show that each agent requires Ω(log n)
memory space to solve the problem, where n is the number of nodes. In
addition, we propose an algorithm to solve the problem with O(k + log n)
memory space per agent, where k is the number of agents. The second setting
assumes that each agent is equipped with the weak multiplicity detection,
that is, agents can detect whether another agent is staying at the same node
or not, but cannot get any other information about the number of the agents.
Then, we show that the memory space per agent can be reduced to O(log k+
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log log n). To the best of our knowledge, this is the first research considering
the effect of the multiplicity detection on memory space required to solve
problems.

Keywords: distributed system, mobile agent, uniform deployment, ring
network, space-efficient

1. Introduction

1.1. Background and related works

A distributed system consists of a set of computers (nodes) connected by
communication links. As a promising design paradigm of distributed systems,
(mobile) agents have attracted much attention [1, 2]. Agents can traverse the
system with carrying information collected at visited nodes and process tasks
on each node using the information. In other words, agents can encapsulate
the process code and data, which simplifies design of distributed systems
[3, 4].

In this paper, we consider the uniform deployment (or uniform scattering)
problem as a fundamental problem for coordination of agents. This problem
requires agents to spread uniformly in the network. Uniform deployment is
useful for network management. In a distributed system, it is necessary that
each node regularly gets software updates and is checked whether some appli-
cation installed on the node is running correctly or not [5, 6]. Hence, consid-
ering agents with such services, uniform deployment guarantees that agents
visit each node at short intervals and provide services. Uniform deployment
might be useful also for a kind of load balancing. That is, considering agents
with large-size database replicas, uniform deployment guarantees that not
all nodes need to store the database but each node can quickly access the
database [7, 8]. Hence, we can see the uniform deployment problem as a kind
of the resource allocation problem (e.g., the k-server problem).

As related works, Flocchini et al. [9] and Elor et al. [10] considered uni-
form deployment with termination detection in ring networks, and Barriere
et al. [11] considered uniform deployment with termination detection in grid
networks. All of them assumed that agents are oblivious (or memoryless) but
can observe multiple nodes within its visibility range. This assumption is of-
ten called the Look-Compute-Move model. On the other hand, our previous
work [12] considered uniform deployment in asynchronous unidirectional ring
networks for agents that have memory but cannot observe nodes except for
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Figure 1: An example of uniform deployment (n = 12, k = 4)

their currently visiting nodes. We considered two problem settings: agents
with knowledge of k and agents without knowledge of k, where k is the num-
ber of agents. For the first (resp., second) model, we proposed two (resp.,
one) algorithms to solve the uniform deployment problem with (resp., with-
out) termination detection. Recently, a variation of the uniform deployment
problem, called the dispersion problem, is considered in [13, 14]. In this prob-
lem, there exist n agents in an n-node graph, and this problem requires to
deploy the agents so that each node is occupied by exactly one agent. Hence,
we can see the dispersion problem as a special case of the uniform deploy-
ment problem when the number of agents is equal to the number of nodes.
Note that while all of the above works for uniform deployment [9, 10, 11, 12]
assumed that all agents are placed at distinct nodes in the initial configu-
ration, the dispersion problem allows initial configurations such that several
agents share the same node. So far, Kshemkalyani et al. [13] considered the
dispersion problem with termination detection in arbitrary static networks
and Agarwalla et al. [14] considered the problem with termination detection
in dynamic rings.

1.2. Our contribution

In this paper, we consider the uniform deployment problem in asyn-
chronous unidirectional ring networks (Fig. 1). Although we consider uni-
directional rings, this result can be applied to most cases of bidirectional
rings. If agents have a common sense of direction in the bidirectional ring,
the result in unidirectional rings can be directly applied to bidirectional rings.
If agents do not have a common sense of direction and the initial deployment
of agents is symmetric, it is possible that agents have a common sense of
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Table 1: Results for agents with knowledge of k (n: #nodes, logN : upper bound of log n,
k: #agents)

Previous results [12] Results of this paper

Result 1 Result 2 Model 1 Model 2

Available Knowledge k k k k, logN

Communication Messages Messages Unremovable tokens Unremovable tokens

Multiplicity detection Required Required Not Required Required

Termination detection Required Required Required Not Required

Agent memory O(k logn) O(logn) O(k + logn) O(log k + log logn)

Time complexity Θ(n) O(n log k) O(n log k) O(n2 logn)

Total number of moves Θ(kn) Θ(kn) O(kn log k) O(kn2 logn)

direction, and thus, the idea in unidirectional rings can be applied. Thus,
considering the problem in unidirectional rings is fundamental one and in-
teresting to investigate. Similar to [12], we assume that agents have memory
but cannot observe nodes except for their currently visiting nodes. While the
previous work [12] considered uniform deployment with such agents for the
first time and clarified the solvability, this work focuses on the memory space
per agent required to solve the problem and aims to propose space-efficient
algorithms in weaker models than that of [12]. That is, while agents in [12]
can send a message to the agents staying at the same node, agents in this
paper do not have such ability. Instead, each agent initially has a token and
can release it on a visited node, and agents can communicate only by the
tokens. After a token is released, it cannot be removed. We also analyze the
time complexity and the total number of moves.

In Table 1, we compare our contributions with the results for agents with
knowledge of k in [12]. We consider two problem settings. The first setting
considers agents without multiplicity detection, that is, agents cannot detect
whether another agent is staying at the same node or not. In this model, we
show that each agent requires Ω(log n) memory space to solve the problem,
where n is the number of nodes. In addition, we propose an algorithm to
solve the problem with termination detection and this algorithm requires
O(k+ log n) memory space per agent, O(n log k) time, and O(kn log k) total
number of moves. Note that, in the asynchronous system the (ideal) time
complexity is defined under the following assumptions: 1) The time for an
agent to transit to the next node is at most one, and 2) the time for local
computation is ignored. The second setting considers agents with the weak
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multiplicity detection, that is, agents can detect whether another agent is
staying at the same node or not, but they cannot get any other information
about the number of the agents. In this setting, we also assume that agents
know an upper bound logN of log n such that logN = O(log n). Then, we
propose an algorithm to solve the problem without termination detection and
this algorithm reduces the memory space per agent to O(log k + log log n),
but uses O(n2 log n) time and O(kn2 log n) total number of moves. To the
best of our knowledge, this is the first research considering the effect of the
multiplicity detection on memory space required to solve problems.

1.3. Organization

The paper is organized as follows. Section 2 presents the system model
and introduces the uniform deployment problem. In Section 3 we consider
the case without multiplicity detection. In Section 4 we consider the case
with weak multiplicity detection. Section 5 concludes the paper.

2. Preliminaries

2.1. System model

We use almost the same model as that in [12]. A unidirectional ring
network R is defined as 2-tuple R = (V,E), where V is a set of anonymous
nodes and E is a set of unidirectional links. We denote by n (= |V |) the num-
ber of nodes, and let V = {v0, v1, . . . , vn−1} and E = {e0, e1, . . . , en−1} (ei =
(vi, v(i+1) mod n)). For simplicity, operations on an index of a node assume
calculations modulo n, that is, v(i+1) mod n is simply represented by vi+1. We
define the direction from vi to vi+1 as the forward direction. The distance
from node vi to vj is defined to be (j − i) mod n.

An agent is a state machine having an initial state. Let A = {a0, a1, . . .
, ak−1} be a set of k (≤ n) anonymous agents. Since the ring is unidirectional,
agents staying at vi can move only to vi+1. We assume that agents have
knowledge of k but do not have knowledge of n. Each agent initially has a
single token and can release it on a visited node at most once. After a token
is released, it cannot be removed. The token on an agent can be realized by
one bit memory and cannot carry any additional information. Hence, the
tokens on a node represents just the number of the tokens and agents cannot
recognize the owners of the tokens. This information is used to recognize
whether the currently visited node is where an agent is initially located or not,
and to detect when an agent has traveled once around the ring by comparing
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the number of tokens that it has observed with the number k of agents. Thus,
it is sufficient that each agent has only one token. Notice that each node can
store information other than tokens in practice, but it is sufficient to store
information about tokens when considering anonymous agents. Moreover,
we assume that agents move through a link in a FIFO manner, that is, when
agent ap leaves vi after agent aq, ap reaches vi+1 after aq. Note that such a
FIFO assumption is natural because 1) agents are implemented as messages
in practice, and 2) the FIFO assumption of messages is natural and can be
easily realized using sequence numbers.

We consider two problem settings: agents without multiplicity detection
and agents with weak multiplicity detection. While agents without multi-
plicity detection cannot detect whether another agent is staying at the same
node or not, agents with weak multiplicity detection can detect another agent
staying at the same node, but they cannot get any other information about
the number of the agents. Hence, such multiplicity detection is called weak.
Each agent can be equipped with the ability of weak multiplicity detection
using only 1-bit memory space. Notice that in practice it requires little cost
(at most O(log k) memory space per agent) to equip agents with the ability
to count the exact number of agents staying at the same node (this ability
is called the strong multiplicity detection). However, in this paper we aim
to reduce memory space as much as possible, and thus we consider agents
without (or with weak) multiplicity detection. In addition, it is possible that
the ability of strong multiplicity detection does not work correctly for some
fault. Even in this case, agents without (or with weak) multiplicity detection
can work correctly. Thus, such agents achieve some kind of fault-tolerance.

Each agent ai executes the following three operations in an atomic action:
1) Agent ai reaches a node v (when ai is in transit to v), or starts operations
at v (when ai stays at v), 2) agent ai executes local computation, and 3)
agent ai leaves v if it decides to move. For the case with weak multiplicity
detection, the local computation depends on whether another agent is staying
at v or not. Note that these assumptions of atomic actions are also natural
because they can be implemented by nodes with an incoming buffer that
stores agents about to visit the node and makes them execute actions in a
FIFO order. We consider an asynchronous system, that is, the time for each
agent to transit to the next node or to wait until the next activation (when
staying at a node) is finite but unbounded.

A (global) configuration C is defined as a 4-tuple C = (S, T, P,Q) and
the correspondence table is given in Table 2. Element S is a k-tuple S =
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Table 2: Meaning of each element in configuration C = (S, T, P,Q)

Element Meaning and example

S = (s0, s1, . . . , sk−1) Agent states (si: the state of agent ai)

T = (t0, t1, . . . , tn−1) Node states (ti: the number of tokens at node vi)

P = (p0, p1, . . . , pn−1) Sets of agents staying at nodes
(pi: a set of agents staying at node vi)

Q = (q0, q1, . . . , qn−1) Sequences of agents residing on links
(qi: a sequence of agents in transit from vi−1 to vi)

(s0, s1, . . . , sk−1), where si is the state (including the state to denote whether
it holds a token or not) of agent ai. Element T is an n-tuple T = (t0, t1, . . .,
tn−1), where ti is the state (i.e., the number of tokens) of node vi. The
remaining elements P and Q represent the positions of agents. Element P is
an n-tuple P = (p0, p1, . . . , pn−1), where pi is a set of agents staying at node
vi. Element Q is an n-tuple Q = (q0, q1, . . . , qn−1), where qi is a sequence of
agents residing in the FIFO queue corresponding to link (vi−1, vi). Hence,
agents in qi are in transit from vi−1 to vi.

We denote by C the set of all possible configurations. In initial configura-
tion C0 ∈ C, all agents are in the initial state (where each has a token) and
placed at distinct nodes and no node has any token. Notice that we assume
such an initial configuration just for simplicity, but even if two or more agents
exist at the same node in C0, agents can solve the problem similarly by using
the number of tokens at each node and atomicity of execution. The node
where agent a is located in C0 is called the home node of a and is denoted
by vHOME(a). For convenience, we assume that in C0 agent a is stored at
the incoming buffer of its home node vHOME(a). This assures that agent a
starts the algorithm at vHOME(a) before any other agents make actions at
vHOME(a), that is, a is the first agent that takes an action at vHOME(a).

A (sequential) schedule X = ρ0, ρ1, . . . is an infinite sequence of agents,
intuitively which activates agents to execute their actions one by one. Sched-
ule X is fair if every agent appears in X infinitely often. An infinite sequence
of configurations E = C0, C1, . . . is called an execution from C0 if there exists
a fair schedule X = ρ0, ρ1, . . . that satisfies the following conditions for each
h (h > 0):

• If ρh−1 ∈ pi (i.e., ρh−1 is an agent staying at vi) for some i in Ch−1, the
states of ρh−1 and vi in Ch−1 are changed in Ch by local computation
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of ρh−1. If ρh−1 releases its token at vi, the value of ti increases by one.
After this, if ρh−1 decides to move to vi+1, ρh−1 is removed from pi and
is appended to the tail of qi+1. If ρh−1 decides to stay, ρh−1 remains in
pi. The other elements in Ch are the same as those in Ch−1.

• If agent ρh−1 is at the head of qi (i.e., ρh−1 is the next agent to reach vi)
for some i in Ch−1, ρh−1 is removed from qi and reaches vi. Then, the
states of ρh−1 and vi in Ch−1 are changed in Ch by local computation
of ρh−1. If ρh−1 releases its token at vi, the value of ti increases by
one. After this, if ρh−1 decides to move to vi+1, ρh−1 is appended to
the tail of qi+1. If ρh−1 decides to stay, ρh−1 is inserted in pi. The other
elements in Ch are the same as those in Ch−1.

Note that if the activated agent ρh−1 has no action to execute, then Ch−1

and Ch are identical. Actually after uniform deployment is achieved, the
same configuration is repeated forever.

2.2. The uniform deployment problem

The uniform deployment problem in a ring network requires k (≥ 2)
agents to spread uniformly in the ring, that is, all the agents are located at
distinct nodes and the distance between any two adjacent agents should be
identical like Fig. 1. Here, we say two agents are adjacent when there exists
no agent between them. However, we should consider the case that n is not
a multiple of k. In this case, we aim to distribute the agents so that the
distance of any two adjacent agents should be ⌊n/k⌋ or ⌈n/k⌉.

We consider the uniform deployment problem in two settings: with termi-
nation detection and without termination detection. In the uniform deploy-
ment problem with termination detection, a unique halt state is defined as
follows. An agent stays at a node (not in a link) when it is in the halt state.
When agent ai enters the halt state, it terminates the algorithm, that is, ai
neither changes its state nor leaves the current node once it enters the halt
state. Hence if an agent enters the halt state, it can detect its termination.
Now, we define the uniform deployment problem with termination detection
as follows.

Definition 1. An algorithm solves the uniform deployment problem with
termination detection if any execution satisfies the following conditions.
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• All agents change their states to the halt state in finite time.

• When all agents are in the halt state, qj = ∅ holds for any qj ∈ Q and
the distance of each pair of adjacent agents is ⌊n/k⌋ or ⌈n/k⌉.

On the other hand, the uniform deployment problem without termination
detection introduces suspended states instead of the halt state as follows. An
agent stays at a node when it is in a suspended state. When agent ai enters
a suspended state, it neither changes its state nor leaves the current node v
unless the observable local configuration of v (i.e., existence of another agent
or the number of tokens for agents with weak multiplicity detection, or the
number of tokens for agents without multiplicity detection) changes. If the
local configuration changes, it can resume its behavior and leave the current
node. Different from the halt state, the suspended states are not uniquely de-
fined since an agent can resume different behaviors from different suspended
states; the suspended state should contain the information necessary to re-
sume the behavior. The uniform deployment problem without termination
detection allows all agents to stop in the suspended states, which is also
known as communication deadlock.

Definition 2. An algorithm solves the uniform deployment problem without
termination detection if any execution satisfies the following conditions.

• All agents change their states to the suspended states in finite time.

• When all agents are in the suspended states, qj = ∅ holds for any
qj ∈ Q, and the distance of each pair of adjacent agents satisfies ⌊n/k⌋
or ⌈n/k⌉.

Next, we define the time complexity as the time required to solve the prob-
lem. Since there is no bound on time between activations in asynchronous
systems, it is impossible to measure the exact time. Instead we consider
the ideal time complexity, which is defined as the execution time under the
following assumptions: 1) The time for an agent to transit to the next node
or to wait until the next activation is at most one, and 2) the time for local
computation is ignored (i.e., zero). This definition is based on the ideal time
complexity for asynchronous message-passing systems [15]. For example, if
some agent continues to move in the ring from the beginning to the end of
execution of the algorithm, the ideal time complexity is equivalent to the
number of moves for the agent. Note that these assumptions are introduced
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only to evaluate the complexity, that is, algorithms are required to work
correctly without such assumptions. In the following, we use terms “time
complexity” and “time” instead of “ideal time complexity”.

3. Agents without multiplicity detection

In this section, we consider uniform deployment for agents without mul-
tiplicity detection.

3.1. A lower bound of memory space per agent

First, we show the following lower bound of memory space per agent.

Theorem 1. When k < n/2 and k = O(nc) hold for any constant c < 1,
for agents without multiplicity detection the memory space per agent to solve
the uniform deployment problem is Ω(log n) even if the algorithm does not
require termination detection.

Proof. We show the theorem by contradiction. We assume that there ex-
ists an algorithm to solve the uniform deployment problem with at most
log n − log 2k bit memory per agent. Notice that log n − log 2k = Ω(log n)
holds because k < n/2 and k = O(nc) hold for any constant c < 1. Then,
each agent has at most 2(logn−log 2k) = n/2k states. Since we consider a de-
terministic algorithm and an agent requires d states to store a distance of
length d, when an agent enters the halt state or a suspended state, it has
moved at most n/2k times after it observed a token for the last time.

We consider the initial configuration such that agents a0, a1, . . . , ak−1 are
placed at consecutive nodes in an n-node ring in this order. Then, the dis-
tance between two adjacent agents in the final configuration should be ⌊n/k⌋
or ⌈n/k⌉. We assume that agents move in a synchronous manner, that is,
in each step all agents are always activated and execute actions simultane-
ously. Then, since all agents execute the same deterministic algorithm and
recognize the same local configuration until they release tokens, they release
tokens simultaneously (if they do). Since agents stay at consecutive nodes
in the initial configuration, the released tokens are also placed at consecu-
tive nodes. We consider the behavior of agents a0 and a1. Since a0 and
a1 move at most n/2k times after they observed a token for the last time,
the distance between them is at most n/2k + 1( ̸= ⌊n/k⌋ or ⌈n/k⌉). How-
ever, this contradicts the condition of uniform deployment and we have the
theorem.

10



Remark. We proved the lower bound for any k such that k = O(nc) for
the case that agents have knowledge of k. Of course, we can use the same
proof idea for some specific values of k (e.g., k = n/2) even when k does not
satisfy k = O(nc).

3.2. An algorithm with O(k + log n) memory space per agent

Next, we propose an algorithm to solve the uniform deployment problem
with termination detection and this algorithm requires O(k+ log n) memory
space per agent, O(n log k) time, and O(kn log k) total number of moves.
From Theorem 1, the algorithm is optimal in memory space per agent when
k = O(log n). The algorithm consists of two phases as do the two algorithms
in [12]: the selection phase and the deployment phase. In the selection phase,
agents select some base nodes, which are the reference nodes for uniform
deployment. In the deployment phase, based on the base nodes, each agent
determines a destination node where it should stay and moves to the node.
For simplicity, we assume n = ck for some positive integer c, and we will
remove this assumption in Section 3.2.3.

3.2.1. Selection Phase

In this phase, some home nodes are selected as base nodes. We say
that two base nodes are adjacent when there exists no base node between
them. Then, several base nodes are selected to satisfy the following conditions
called the base node conditions: 1) At least one base node exists, 2) the
distance between every pair of adjacent base nodes is the same, and 3) the
number of home nodes between every pair of adjacent base nodes is the
same. For example, in Fig. 2 (a) distances from vHOME(a1) to vHOME(a2),
from vHOME(a2) to vHOME(a3), and from vHOME(a3) to vHOME(a1) are all 6,
and the number of home nodes between vHOME(a1) and vHOME(a2), between
vHOME(a2) and vHOME(a3), and between vHOME(a3) and vHOME(a1) are all 2.
Thus, vHOME(a1), vHOME(a2), and vHOME(a3) satisfy the base node conditions.
Notice that it is possible that only a single node is selected as the base node.
After selection of base nodes, agents that are not staying at the base nodes
move so that they stay evenly between the base nodes and agents achieve
uniform deployment (Fig. 2 (b)). When the selection phase is completed, each
agent stays at its home node and knows whether its home node is selected as
a base node or not. We call an agent a leader (but possibly not unique) when
its home node is selected as a base node, and call it a follower otherwise.
Active agents are candidates for leaders, and initially all agents are active.
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Figure 2: (a): An example of the base node conditions (n = 18, k = 9), (b): Behavior
after selection of base nodes.

We say that node v is active (resp., a follower) when it is the home node of
an active (resp., a follower) agent.

At first, we explain the basic idea of the selection phase in [12], which
assumes weak multiplicity detection, and then we explain the way of apply-
ing the idea to the model in this section (i.e., the case without multiplicity
detection). In the selection phase of [12], agents find group IDs (GID) (but
possibly not unique) each of which is a tuple of the distance and the number
of followers between two base nodes, and decrease the number of active agents
using the GIDs. At the beginning of the algorithm, each agent ai releases its
token at vHOME(ai). The selection phase consists of several subphases. At
the beginning of each subphase, each agent ai stays at vHOME(ai). During
the subphase, if ai is a follower, it keeps staying at vHOME(ai). On the other
hand, each active agent ai travels once around the ring and gets its new GID.
Notice that each agent can detect when it completes one circuit of the ring
using knowledge of k. Then, ai compares its GID with GIDs of other agents
one by one in a lexicographical manner (ai gets them during the traversal of
the ring) and determines the next behavior. Briefly, (a) if all active agents
have the same GID, it means that home nodes of the active agents satisfy
the base node conditions. Hence, the active agents become leaders and enter
to the deployment phase. (b) If all agents do not have the same GID but ai’s
GID is the maximum, it remains active and executes the next subphase. (c)
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If ai does not satisfy (a) or (b), it becomes a follower. Agents execute such
subphases until base nodes are selected.

Now, we explain the detail of the group ID (GID). The GID (not nec-
essarily unique) of an active agent ai is given in the form of (fNumi, di),
where fNumi is the number of follower nodes between vHOME(ai) and the
next active node in the subphase, say vnext(ai), and di is the distance from
vHOME(ai) to vnext(ai). In Fig. 3 (a), when agent ai moves from its home node
vj(= vHOME(ai)) to the next active node v′j(= vnext(ai)), it observes two fol-
lower nodes and visits four nodes. Hence, ai gets its GID GIDi = (2, 4). Note
that active agents traverse the ring and follower agents stay at their home
nodes, and each active agent ai executes the following three operations in
one atomic action: 1) Agent ai visits some node v, 2) agent ai executes some
computation at v, and 3) agent ai leaves the current node. By the above fact
and the FIFO property of links, it does not happen that some active agent
visits some node where another active agent is still staying. Thus, each active
agent ai can detect its arrival at the next active node when it visits a token
node with no agent (recall that the weak multiplicity detection is assumed
in [12]). By the similar way, agent ai can get the GIDs of every active agent
while it travels once around the ring. Agents in [12] use O(log n) memory
space to get such a GID and decide whether they remain active (or they have
the lexicographically maximum GID) or not. Notice that an agent may get
different GIDs in different subphases.

In the following, we explain how to apply the previous idea to the model
in this section (i.e., the case without multiplicity detection). Agents in this
section cannot detect existence of other agents staying at the same node
and cannot detect the arrival of the next active node using existence of an
agent. To deal with this, unlike [12], all agents (including follower agents)
move in the ring and memorize the state of all agents by using a k-bits
array Activenow. The value of Activenow[i] is true iff its i-th agent is active
(otherwise it is a follower). Hence, each agent can get a GID of any active
agent a by going from node vHOME(a) to vnext(a) each of whose corresponding
value of Activenow is true. In Fig. 3 (b), if vj and v′j are active and vℓ and v′ℓ
are followers, ai and other agents can get ai’s GID GIDi = (2, 4).

Now, we explain implementation of the subphase. While follower agents
in [12] stay at the current node, follower agents in this paper also move in the
ring. First, each follower agent moves moves to the nearest active node to
simulate the behavior of the active agent. To do this, each agent has variable
nearActivenow that indicates the number of tokens to the nearest active node
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Figure 3: (a): A GID of an active agent ai in [12]. (b): A GID of an active agent ai in
this section (vj and v′j are active and vℓ and v′ℓ are followers).

in the subphase (the values of nearActivenow for active agents are 0). Then,
each active or follower agent ai travels once around the ring. While traveling,
ai executes the following actions:

(1) Get its GID GIDi = (fNumi, di): Agent ai gets its GID GIDi by moving
from the current node to the next active node (i.e., from vHOME(ai) to
vnext(ai) for active agent ai or from the nearest active node v to the next
active node from v for follower agent ai) with counting the numbers of
followers and visited nodes (Fig. 3 (b)).

(2) Compare GIDi with GIDs of all active agents: During the traversal, ai
compares GIDi with GIDs of all active agents one by one, and checks
1) whether GIDi is the lexicographically maximum and 2) whether the
GIDs of all active agents are the same. To check these, ai keeps a
variable same (same = true means that GIDs ai ever found are the
same). In addition, ai keeps a variables GIDmax that is the largest GID
among GIDs ai ever found, and ai updates same and GIDmax (if neces-
sary) every time it finds a GID of another active agent. When GIDmax

is updated, ai also updates the value of nearActivenext, indicating the
number of tokens to the nearest active node in the next subphase.

When completing one circuit of the ring, ai returns to vHOME(ai) and
determines its state for the next subphase. (a) If same = true, ai (and all
the other active agents) become leaders and completes the selection phase.
(b) If same = false and GIDi = GIDmax, ai remains in its state (active or
follower) and executes the next subphase. (c) If ai does not satisfy (a) or
(b), each active (resp., follower) agent becomes (resp., remains) a follower
and executes the next subphase. By repeating such subphase at most ⌈log k⌉
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times, all the remaining active agents end up with the same GID in some
subphase and they are selected as leaders so that their home nodes should
satisfy the base node conditions. Notice that ⌈log k⌉ subphases are sufficient,
since no pair of adjacent active agents remain active in every subphase (as
shown in the proof of Theorem 2).

The pseudocode of the selection phase is described in Algorithm 1. Vari-
able t represents the number of tokens (mod k) that agent ai has observed
during traversal of the ring. Each agent uses variable preActive for storing
the position (i.e., the ordinary number) of the last active node it visited be-
fore coming to the current node, and a k-bits boolean array Activenext for
storing the states of all agents for the next subphase. In addition, agents use
procedure nextActive() to move to the next active node, and its pseudocode
is described in Procedure 1. Note that, in each subphase each follower agent
firstly moves to the nearest active node, travels once around the ring from
the active node, and returns to its home node. Hence, each follower agent
travels twice around the ring in each subphase and each active agent does
so for simplicity. In addition, in Algorithm 1 each agent can get the number
n of nodes when it finishes traveling once around the ring, but we omit the
description.

3.2.2. Deployment Phase

In this phase, each agent determines its destination node and moves to the
node. If vHOME(ai) is a base node (i.e., ai is a leader), vHOME(ai) is ai’s des-
tination node and ai stays there. Otherwise (i.e., if ai is a follower), ai firstly
moves until it observes nearActivenow tokens to reach the nearest base node.
After this, ai moves nearActivenow×n/k times to reach its destination node.
For example, in Fig. 4 we assume that nodes v0d and v3d are selected as base
nodes. Then, destination nodes of a0, a1, a2, a3, a4, and a5 are v

0
d, v

1
d, v

2
d, v

3
d, v

4
d,

and v5d, respectively. When all agents move to their destination nodes, the
final configuration is a solution of the uniform deployment problem.

The pseudocode of the deployment phase is described in Algorithm 2. We
have the following theorem for the proposed algorithm.

Theorem 2. For agents without multiplicity detection, the proposed algo-
rithm solves the uniform deployment problem with termination detection.
This algorithm requires O(k + log n) memory space per agent, O(n log k)
time, and O(kn log k) total number of moves.

Proof. At first, we show correctness of the algorithm. From lines 21 to 24 in
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Algorithm 1 The behavior of active or follower agent ai in the selection
phase

Behavior of Agent ai
1: /*selection phase*/
2: phase = 1, t = 0, nearActivenow = 0, nearActivenext = 0, preActive = 0,

same = true
3: for j = 0; j < k − 1; j ++ do Activenow[j] = true, Activenext[j] = true
4: release a token at its home node vHOME(ai)
5: while phase ̸= ⌈log k⌉ do
6: if ai is a follower then
7: move until it observes nearActivenow tokens // reach the nearest

active node
8: t = nearActivenow
9: end if

10: execute NextActive() and get the first GID GIDi = (fNumi, di),
GIDmax = GIDi

11: while t ̸= nearActivenow do
12: execute NextActive() and get GID GIDoth = (fNumoth, doth) of the

next active agent
13: if GIDoth ̸= GIDi then same = false
14: if GIDmax > GIDoth then Activenext[preActive] = false
15: if GIDmax < GIDoth then
16: GIDmax = GIDoth, nearActivenext = preActive
17: for j = 0; j < t− 1; j ++ do Activenext[j]= false
18: end if
19: end while
20: move until it observes k − nearActivenow tokens // return to its home

node vHOME(ai)
21: if same = true then // active nodes satisfy the base node conditions
22: if ai is active then enter a leader state
23: terminate the selection phase and enter the deployment phase
24: end if
25: if (ai is active) ∧ (GIDi ̸= GIDmax) then enter a follower state
26: phase = phase+1, same = true, nearActivenow = nearActivenext
27: for j = 0; j < k − 1; j ++ do Activenow[j] = Activenext[j]
28: end while
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Procedure 1 Procedure NextActive()

Behavior of Agent ai
1: preActive = t
2: move to the next token node and set t = (t+ 1) mod k
3: while Activenow[t] ̸= true do
4: move to the next token node and set t = (t+ 1) mod k
5: end while
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Figure 4: An example of the deployment phase.

Algorithm 1, when same = true, agents enter the deployment phase. This
means that all the active nodes in the subphase have the same GID and
they satisfy the base node conditions. In addition, from Algorithm 2 each
agent can determine its destination node and moves to the node. Hence,
the algorithm solves the uniform deployment problem. In the following, we
analyze complexity.

At first, we evaluate the memory space per agent. Each agent ai mem-
orizes at most three GIDs GIDi, GIDmax, and GIDoth, and each of them
requires O(log n) memory space. In addition, ai memorizes two boolean ar-
rays Activenow and Activenext, each of which requires O(k) memory space.
Since other variables require O(k + log n) memory space or less, each agent
requires O(k + log n) memory space.

Next, we analyze the time complexity and the total number of moves.
We show that base nodes are selected within at most ⌈log k⌉ subphases. To
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Algorithm 2 The behavior of agent ai in the deployment phase

Behavior of Agent ai
1: /*deployment phase*/
2: if ai is a leader then
3: keep staying at the current node vHOME(ai) and enter the halt state

(or terminate the algorithm)
4: end if
5:

6: if ai is a follower then
7: move until it observes nearActivenow tokens // reach the nearest base

node
8: move nearActivenow × n/k times
9: enter the halt state

10: end if

show this, we first claim that the largest GID increases every time a subphase
completes. That is, letting GIDj

max (resp., GIDj+1
max) be the maximum GID

in the j-th (resp., (j + 1)-st) subphase, then GIDj
max < GIDj+1

max holds unless
all the GIDs are the same in the j-th subphase. This property holds from
the following reason. We assume that in the j-th subphase active agents
aj0, a

j
1, . . . , a

j
ℓ−1 exist in this order. Since all the agents do not have the same

GID in this subphase, at least one of the active agents becomes a follower.
We assume that agent ajℓ′ (0 ≤ ℓ′ ≤ ℓ − 1) becomes a follower and agent
aj(ℓ′−1) mod ℓ remains active in the j-th subphase. Then, aj(ℓ′−1) mod ℓ clearly

gets a GID larger than GIDj
max in the (j+1)-st subphase. Then, we show that

base nodes are selected within ⌈log k⌉ subphases. Let Aj (resp., Aj+1) be a
set of agents having GIDj

max (resp., GIDj+1
max) and remain active at the end of

the j-th (resp., (j+1)-st) subphase. Then, |Aj+1| ≤ (1/2)|Aj| holds because
1) GIDj

max < GIDj+1
max holds as mentioned above and 2) to satisfy ai ∈ Aj and

ai ∈ Aj+1 for some agent ai, it is necessary that agent aj(i+1) mod ℓ ∈ Aj that
is ai’s adjacent active agent in ai’s forward direction in the j-th subphase
has to become a follower in the (j + 1)-st subphase. Thus, base nodes are
selected within at most ⌈log k⌉ subphases.

Now, we analyze the time complexity and the total number of moves. For
each subphase in the selection phase, each agent travels twice around the ring,
and each agent executes such a subphase at most ⌈log k⌉ times. Thus, the
selection phase requires O(n log k) time units and O(kn log k) total number

18



of moves. In the deployment phase, each agent moves to its destination node,
which requires at most 2n time units and 2kn total number of moves. Hence,
the algorithm requires the time complexity O(n log k) and the total number
of moves O(kn log k).

3.2.3. Uniform deployment for the case of n ̸= ck

To remove the assumption of n = ck imposed in Section 3, only the parts
for determining the destination node and for moving to the destination node
should be modified. In the case that n is not a multiple of k, the distance
between adjacent destination nodes should be ⌈n/k⌉ or ⌊n/k⌋.

Since all the agents recognize a single base node or uniformly distributed
base nodes, they can determine the uniformly distributed destination nodes
using the base nodes as reference nodes: Let b be the number of the base
nodes, and r = n mod k. The distance of every pair of adjacent base nodes
is identical even in the case of n ̸= ck, and is n/b = (⌊n/k⌋ × k + r)/b =
⌊n/k⌋ × k/b + r/b (notice that k/b and r/b are integers). This implies that
we should select k/b− 1 destination nodes between two adjacent base nodes
so that the first r/b intervals between adjacent destination nodes should be
⌈n/k⌉ and others should be ⌊n/k⌋. From the above discussion, we can see
that each agent can determine its own destination node by local computation
so that all the agents can spread over the ring to achieve uniform deployment.

4. Agents with weak multiplicity detection

In this section, we consider agents with weak multiplicity detection, and
propose an algorithm to solve the uniform deployment problem without ter-
mination detection. This algorithm reduces the memory space per agent to
O(log k + log log n), but uses O(n2 log n) time and O(kn2 log n) total num-
ber of moves. It also gives up the termination detection. The algorithm
consists of three phases: the selection phase, the collection phase, and the
deployment phase. In the selection phase, agents select base nodes similar
to Section 3. In the collection phase, agents move in the ring so that they
stay at consecutive nodes starting from the base nodes. In the deployment
phase, agents move to their destination nodes. In this section, we assume
that agents know an upper bound logN of log n such that logN = O(log n).

4.1. Selection phase

Similar to Section 3, in this phase some home nodes are selected as base
nodes. The basic idea is the same as that in Section 3, that is, agents find
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Figure 5: A GID of an active agent ai (primel = 3).

GIDs and decrease the number of active agents using the GIDs. However,
compared with the algorithm in Section 3, memory space is reduced from
O(k+log n) to O(log k+log log n). We use two techniques for the reduction:
(i) As in [12], a follower remains at its home node and informs an active agent
of its state using the weak multiplicity detection: when an agent is detected
at a node, it is recognized as a follower. This improves memory space from
O(k) to O(log k). The algorithm simply counts the number of followers
between adjacent active nodes, while the algorithm in Section 3 requires
O(k) memory space to maintain the states of all agents. (ii) Distances are
computed using Residue Number System (RNS) [16] that represents a large
number as a set of small numbers. In particular, we use the technique called
Chinese Remainder Theorem (CRT) [17]. The CRT says that for two positive
integers n1 and n2 (n1, n2 < n), if the remainders when divided by each of
the first log n prime numbers 2, 3, 5, . . . , U are the same, then n1 = n2 holds.
The prime number theorem guarantees that the (log n)-th prime U satisfies
U = O(log2 n). Thus, agents check if distances between adjacent active
nodes are the same or not by using the CRT and reduce memory space from
O(log n) to O(log log n).

We explain the outline of the selection phase. As in Section 3, the state
of an agent is active, leader, or follower, and initially all agents are active. At
the beginning of the algorithm, each agent ai releases its token at vHOME(ai).
The selection phase consists of at most ⌈log k⌉ subphases. As in Section 3,
dropping out from active agents is realized by GIDs each of which consists
of the number of followers and the distance between active nodes. The only
difference is that the distance part is compared using remainders by primes
(Fig. 5). Each subphase consists of several iterations. At the beginning of
each iteration, each agent ai stays at vHOME(ai). For the l-th iteration in
each subphase, if ai is a follower, different from Section 3, it keeps staying
vHOME(ai) to inform active agents visiting the node of its state. On the other
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hand, each active agent ai travels once around the ring and gets the distance
part dprime

l of its GID as the remainder divided by the l-th prime primel. In
Fig. 5, when primel = 3, ai gets its GID GIDi = (2, 1).

During the traversal, ai lexicographically compares its GID GIDi with
GIDs of other active agents one by one, and it determines its next behavior
when it returns to vHOME(ai). As in Section 3, ai uses variable same (same =
true means that GIDs ai ever found in the iteration are the same). Then, (a)
if same = true and l = logN , it means that the distances between all the
pairs of adjacent active nodes are the same, and these home nodes satisfy
the base node conditions. Hence, the active agents become leaders and enter
the collection phase without staying at its home node. (b) If same = true
but l ̸= logN , ai executes the next (l + 1)-st iteration using the next prime
primel+1. (c) If same = false, they terminate the current subphase. If ai
has the maximum GID, ai remains active and starts the next subphase.
Otherwise, ai becomes a follower. Each active agent executes such subphases
at most ⌈log k⌉ times. Notice that the distances are compared using the CRT,
which implies that the agents with the maximum distance among the agents
with the maximum fNum (the number of followers between adjacent active
agents) do not necessarily remain active in the subphase. Hence, agents
remaining active in the subphase may differ from those in the algorithm of
Section 3. However, ⌈log k⌉ subphases are still sufficient as in Section 3,
which is guaranteed by selecting active agents with the maximum fNum.

The pseudocode of the selection phase is described in Algorithm 3. Similar
to Algorithm 1, variable t represents the number of tokens (mod k) that ai
observed during the travel of the ring. In addition, each agent ai uses boolean
variable max (max = true means GIDi is the maximum among GIDs ai has
ever found), and uses procedure NextActive2 () to go the next active node
and the pseudocode is described in Procedure 2.

4.2. Collection phase

In this phase, leader agents instruct follower agents so that they move to
and stay at consecutive nodes starting from the base nodes. Concretely, each
leader agent ai firstly moves to the nearest follower node vj (i.e., the token
node with another agent) so that ai makes the follower agent to execute the
collection phase. Then, ai waits at vj until the follower leaves vj. Note that,
when an active agent in the selection phase visits vj, it leaves vj without
staying there by the atomicity of an action. Hence, the behavior of leader
agent ai can inform a follower agent of the beginning of the collection phase.
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Algorithm 3 The behavior of active agent ai in the selection phase

Behavior of Active Agent ai
1: /*selection phase*/
2: phase = 1, prime = 2, t = 0, same = true, max = true
3: release a token at its home node vHOME(ai)
4: while (phase ̸= ⌈log k⌉) ∨ (prime ̸= the (logN)-th prime) do
5: execute NextActive2 () and get its own GID GIDi = (fNumi, d

prime
i )

6: while t ̸= 0 do // ai is not at vHOME(ai)
7: execute NextActive2 () and get GID GIDoth = (fNumoth, d

prime
oth ) of the

　 next active agent
8: if GIDoth ̸= GIDi then same = false
9: if GIDoth > GIDi then max = false // there exists an agent having

a larger GID
10: end while
11: // ai returns to its home node vHOME(ai)
12: if (same = true) ∧ (prime = the (logN)-th prime) then terminate

the selection phase, start the collection phase with a leader state, and
leave the current node // all active agents have the same GID for all
target primes

13: else if (same = true) ∧ (prime ̸= the (logN)-th prime) then prime =
(next prime)

14: else if max = false then terminate the selection phase and start the
collection phase with a follower state

15: else phase = phase+ 1, prime = 2, same = true, max = true
16: end while

Procedure 2 Procedure NextActive2 ()

Behavior of Active Agent ai
1: move to the next token node and set t = (t+ 1) mod k
2: while another agent does not exist at the current node do
3: move to the next token node and set t = (t+ 1) mod k
4: end while

After this, ai leaves vj and moves to the next follower node. This process
is repeated until ai reaches the next leader node (i.e., the token node with
no agent). Note that, by the atomicity of an action and the FIFO property,
when an agent moves to some leader node, the leader agent was already

22



�� ����

�

(a)

�� ����

�

(b)

��
����

�

(c)

�� ��
��

�

(d)

�� �� ��

�

(e)

�� �� ��

�

(f)

������������	
� �������
������	
�

Figure 6: An example of the collection phase (fNum = 2).

activated, started its collection phase, and left the leader node. Hence, when
agent ai visits a token node with no agent, it can recognize that the nodes is
the next leader node. On the other hand, each follower agent ai waits at the
current node until another agent (i.e., a leader) comes. Then, ai firstly moves
to the nearest leader node. After this, ai moves until it reaches a node with
no agent and stays there. When all agents finish their movements, the agents
are divided into groups (possibly only one group) each of which consists of
fNum+ 1 agents, where fNum is the number of follower agents between two
adjacent leader agents when the selection phase completes, and the agents
in a group are deployed at consecutive nodes starting from a base node.

For example, in Fig. 6 there exist one leader agent a0 and two follower
agents a1 and a2 between a0 and its next leader (i.e., fNum = 2). From (a)
to (b), a0 firstly moves to the nearest token node with an agent (i.e., follower
node), and stays there until the follower agent leaves the node. From (b)
to (c), a1 detecting another agent a0 firstly moves to the token node with
no agent (i.e., leader node v), and then moves to the next node. From (c)
to (d), a0 similarly moves to the next follower node where agent a2 exists.
From (d) to (e), a2 firstly moves to leader node v and moves until it visits a
node with no agent. From (e) to (f), a0 moves to leader node v and finishes
the collection phase. The pseudocode of the collection phase is described in
Algorithm 4.
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Algorithm 4 The behavior of leader or follower agent ai in the collection
phase (vj is the current node of ai)

Behavior of Agent ai
1: /*collection phase*/
2: // the behavior of leader agents
3: if ai is in the leader state then
4: move to the next token node
5: while there exists another agent at vj do
6: wait at vj until there exists no agent other than ai
7: move to the next token node
8: end while
9: terminate the collection phase, start the deployment phase, and leave

the current node
10: end if
11:

12: // the behavior of follower agents
13: if ai is in the follower state then
14: wait at vj until there exists another agent
15: move to the token node with no agent
16: move to the next node
17: while there exists another agent at vj do
18: move to the next node
19: end while
20: terminate the collection phase and start the deployment phase
21: end if

4.3. Deployment phase

In this phase, leader agents control follower agents so that they should
move to and stay at their destination nodes to achieve uniform deployment.
Since each agent only has O(log k+ log log n) memory space, it cannot mea-
sure explicitly the distance to its destination node and move to the node as
in Section 3. Agents overcome such a problem using the weak multiplicity
detection and the CRT. The basic idea is as follows. The deployment phase
consists of several subphases, and the distance between every pair of adjacent
agents in the same group is increased by one in each subphase. To realize
it, each subphase consists of several iterations. For explanation of an iter-
ation, consider a group where a0 is a leader and followers a1, a2, . . . , afNum

24



�� �� ��

(a)

�� ����

(b)

�� ����

(c)

������������	
� �������
������	
�

Figure 7: Behavior outline of the deployment phase for the case of fNum = 2 ((a): begin-
ning of the phase, (b): the end of the first subphase, (c): the end of the second subphase)

are following a0 in this order. At the beginning of the first subphase, they
stay at consecutive nodes, and at the end of the h-th subphase the dis-
tance between every pair of adjacent agents becomes h + 1 (Fig. 7). Each
subphase consists of fNum iterations. In the l-th iteration, each of the l
agents afNum−l+1, afNum−l+2, . . . , afNum moves to the next node. Consequently,
in each subphase am moves m times and thus the distance between every
pair of adjacent agents increases by one.

The l-th iteration is realized as follows. Leader agent a0 firstly moves to
the node where afNum−l+1 is staying and stays there until afNum−l+1 moves
to the next node. Then, a0 moves to the node where afNum−l+2 is staying
to make afNum−l+2 to move to the next node. This process is repeated until
afNum moves to the next node. After this, a0 makes a remaining circuit of the
ring, returns to the node where it started the deployment phase, say vdep(a0),
and terminates the l-th iteration. Then, a0 checks if the locations of agents
from vdep(a0) to the next leader node are uniform or not using the CRT. If
the locations are uniform, a0 returns to vdep(a0) and enters a suspended state.
Otherwise, a0 executes the next iteration. When a0 executes the fNum-th
iteration and the locations are not uniform, a0 executes the next subphase.

For example, in Fig. 8 there exist one leader agent a0 and two follower
agents a1 and a2 (i.e., fNum=2). Variable v′ represents the next leader node.
Let d1 (resp., d2) be the distance from a0 to a1 (resp., a1 to a2), and d3 be
the distance from a2 to v′. In (a), d1 = d2 = 1 and d3 = 4 holds. From (a) to
(b), as the first iteration in the first subphase, a0 moves to the node where
the fNum-th follower agent (i.e., a2) exists and stays there until a2 moves
to the next node. From (b) to (c), a0 returns to the node vdep(a0) where it
started the deployment phase. Then, d1 = 1, d2 = 2, and d3 = 3 hold. Since
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Figure 8: An example of the deployment phase (fNum = 2, v′ is the next leader node).

a0 recognizes that the locations of agents are not uniform, it executes the
next iteration. From (c) to (d), as the second iteration in the first subphase,
a0 moves to the node where the (fNum−1)-st agent (i.e., a1) exists and stays
there until a1 moves to the next node. From (d) to (e), a0 moves to the next
follower’s (i.e., a2’s) node and stays there until a2 moves to the next node.
From (e) to (f), a0 returns to node vdep(a0). Then, since d1 = d2 = d3 = 2
holds, ai recognizes that the locations of agents becomes uniform.

The pseudocode of the deployment phase is described in Algorithm 5.
In Algorithm 5, each leader agent uses procedure Check() to check whether
the locations of agents are uniform or not by comparing the distance dis1
from the (fNum−1)-th follower agent to the fNum-th follower agent with the
distance dis2 from the fNum-th follower agent to the next leader node using
the CRT. In Check(), variable diff represents the difference between dis1 and
dis2 (i.e., diff = dis1 − dis2), and the pseudocode is described in Procedure
3. We have the following theorem for the proposed algorithm.

Theorem 3. For agents with weak multiplicity detection and knowledge of
an upper bound logN of log n satisfying logN = O(log n), the proposed al-
gorithm solves the uniform deployment problem without termination detec-
tion. This algorithm requires O(log k + log log n) memory space per agent,
O(n2 log n) time, and O(kn2 log n) total number of moves.

Proof. At first, we show correctness of the proposed algorithm. From line
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Algorithm 5 The behavior of leader or follower agent ai in the deployment
phase (vj is the current node of ai)

Behavior of Agent ai
1: /*deployment phase*/
2: // the behavior of leader agents
3: if ai is in the leader state then
4: while true do
5: for l = 1 to fNumi do
6: for m = l to 1 do
7: move to the node where the (fNum + 1 −m)-th follower agent

exists
8: wait at vj until there exists no agent other than ai
9: end for

10: return to the node where it started the deployment phase
11: Check()
12: end for
13: end while
14: end if
15:

16: // the behavior of follower agents
17: if ai is in the follower state then
18: enter a suspended state
19: while true do
20: wait at vj until there exists another agent
21: move to the next node and enter a suspended state
22: end while
23: end if

12 of Algorithm 3, at the end of the selection phase, the active nodes (or
the home nodes of the selected leaders) satisfy the base node conditions. In
addition, from Algorithm 4, at the end of the collection phase agents are
divided into groups each of which consists of fNum+1 agents and agents in a
group are staying at the consecutive nodes starting at a base node. Without
loss of generality, in the following we consider a group of agents between two
adjacent base nodes vbase (inclusively) and v′base (exclusively). We denote by
dbase the distance from vbase to v′base. Then, at the end of the collection phase
the distance sequence Dgroup of the group of agents can be represented by
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Procedure 3 Procedure Check()

Behavior of Agent ai
1: diff = 0, uniform = true
2: for prime = 2, 3, 5, . . . , the (logN)-th prime do
3: move to the (fNumi − 1)-th node v among nodes where an agent ex-

ists with counting the number t of tokens // v is the node where the
(fNumi − 1)-st follower is staying

4: move to the next node v′ where an agent exists // v′ is the node where
(fNumi)-th follower is staying

5: dis1 = (distance from v to v′) mod prime
6: move until it observes (fNum− t) tokens // reach the next base node
7: let vnBase is the current node
8: dis2 = (distance from v′ to vnBase) mod prime
9: return to the node where it started the deployment phase

10: if prime = 2 then
11: if (dis1 ̸= dis2) ∨ (dis1 ̸= dis2 + 1) then uniform = false and break

// the locations are not uniform
12: else diff = dis1 − dis2
13: else // prime ≥ 3
14: if (dis1−dis2 ̸= diff) then uniform = false and break // the locations

are not uniform
15: end for
16: if uniform = true then
17: // locations of agents from the node where it started the deployment

phase to the next leader node is uniform
18: enter a suspended state
19: end if

(1, 1, . . . , 1, dbase − fNum).
Now, we consider the deployment phase. We first claim that at the be-

ginning of the d′-th subphase (for every d′) the distance sequence Dgroup can
be represented by Dgroup = (d′, d′, . . . , d′, dbase − (d′ − 1)× fNum), and at the
end of the l-th iteration in the d′-th subphase Dgroup can be represented by
Dgroup = (d′, d′, . . . , d′︸ ︷︷ ︸

fNum-l

, d′ + 1, d′ + 1, . . . , d′ + 1,︸ ︷︷ ︸
l

dbase − (d′ − 1) × fNum − l).

This is because, from lines 5 to 12 and 17 to 23 in Algorithm 5, during
the first l iterations in each subphase the (fNum + 1−m)-th follower agent
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(1 ≤ m ≤ l) moves l−m+1 times. Hence, since the fNum-th follower moves
exactly once in each iteration and thus moves fNum times in each subphase.
Precisely, the m-th follower agent moves exactly m times in each subphase,
which leads to the above claims. Let d′x(l) = dbase − (d′ − 1) × fNum − l.
Then, since the value of d′x(l) decreases one by one during execution of the
deployment phase, there exists some l-th iteration in the d′-th phase such
that d′x(l) = d′ or d′x(l) = d′+1 holds. Then, at the end of the iteration the lo-
cations of agents are uniform. This condition is checked by each leader agent
using Procedure Check() to compare the distance from the (fNum − 1)-th
follower agent to the fNum-th follower agent (i.e., d′ + 1) with the distance
from the fNum-th follower agent to v′base (i.e., d

′
x(l)). Thus, each leader agent

can detect that the locations of agents are uniform, and after this it enters
a suspended state at the node where it started the deployment phase. Thus,
the algorithm can solve the uniform deployment problem.

In the following, we analyze complexity. At first, we evaluate the memory
space per agent. Each agent ai has two variables GIDi and GIDoth to store
GIDs, each of which requires O(log k+ log log n) memory space. Since other
variables require O(log k+log log n) memory space or less, each agent requires
O(log k + log log n) memory space.

Next, we analyze the time complexity and the total number of moves.
For each subphase in the selection phase, each active agent travels at most
O(log n) times to check whether home nodes of active agents satisfy the base
node conditions or not using the Chinese Remainder Theorem. Since each
active agent executes such a subphase at most ⌈log k⌉ times and there are
at most k active agents, the selection phase requires O(n log k log n) time
units and O(kn log k log n) total number of moves. Next, in the collection
phase each leader agent moves to the next leader node, and each follower
agent moves to the nearest leader node and then moves to the nearest empty
(i.e., no agents exist) node. Hence, each of movements for leader agents
and follower agents requires O(n) time units and O(kn) total number of
moves. Finally, we consider the deployment phase. For each iteration in
each subphase, each leader agent travels once around the ring to make fol-
lower agents move, and travels at most O(log n) times around the ring to
check whether the locations of agents are uniform or not using the Chinese
Remainder Theorem. Since one subphase consists of at most k iterations
and there exist at most k leader agents in each subphase, agents require
k × (n + n log n) = O(kn log n) time units and O(k2n log n) total number
of moves to execute one subphase. Moreover, since agents execute such a
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subphase at most ⌈n/k⌉ times, the deployment phase requires O(n2 log n)
time units and O(kn2 log n) total number of moves. Therefore, the proposed
algorithm requires O(n2 log n) time units and O(kn2 log n) total number of
moves.

5. Conclusion

In this paper, we proposed two space-efficient uniform deployment al-
gorithms in asynchronous unidirectional ring networks. For agents without
multiplicity detection, we showed that each agent requires Ω(log n) memory
space, and proposed an algorithm to solve the problem with termination de-
tection that requires O(k + log n) memory space per agent, O(n log k) time,
and O(kn log k) total number of moves. This algorithm is optimal in mem-
ory space per agent when k = O(log n). For agents with weak multiplicity
detection, we proposed an algorithm to solve the problem without termi-
nation detection that requires O(log k + log log n) memory space per agent,
O(n2 log n) time, and O(kn2 log n) total number of moves.

Open problems are as follows. The first is concerning agents without
multiplicity detection and to propose a space-optimal (i.e., O(log n) mem-
ory) algorithm to solve the problem. The second is concerning agents with
weak multiplicity detection and to show a lower bound of memory space per
agent. We conjecture that it is Ω(log k + log log n), which implies that the
second algorithm is asymptotically optimal in memory space per agent. The
third is to analyze the space complexity with relaxed models, e.g., a model
such that each agent can have more than one tokens and/or depends on ran-
domness. The last one is to consider solvability in bidirectional rings. In
particular, when agents do not have sense of direction and the initial deploy-
ment of agents is symmetric, it is possible that agents cannot achieve uniform
deployment.
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