
Denison University Denison University

Denison Digital Commons Denison Digital Commons

Faculty Publications

2019

Analyzing Documents with TF-IDF Analyzing Documents with TF-IDF

Matthew Lavin
Denison University

Follow this and additional works at: https://digitalcommons.denison.edu/facultypubs

Recommended Citation Recommended Citation
Lavin, M. (2019). Analyzing Documents with TF-IDF. Programming Historian, undefined(8).
http://dx.doi.org/10.46430/phen0082

This Article is brought to you for free and open access by Denison Digital Commons. It has been accepted for
inclusion in Faculty Publications by an authorized administrator of Denison Digital Commons.

https://digitalcommons.denison.edu/
https://digitalcommons.denison.edu/facultypubs
https://digitalcommons.denison.edu/facultypubs?utm_source=digitalcommons.denison.edu%2Ffacultypubs%2F1064&utm_medium=PDF&utm_campaign=PDFCoverPages

28/02/2022, 23:55Analyzing Documents with TF-IDF | Programming Historian

Page 1 of 21https://programminghistorian.org/en/lessons/analyzing-documents-with-tfidf

Programming Historian

Analyzing Documents with TF-IDF
(/en/lessons/analyzing-documents-with-
tfidf)
Matthew J. Lavin
This lesson focuses on a foundational natural language

processing and information retrieval method called Term

Frequency - Inverse Document Frequency (tf-idf). This lesson

explores the foundations of tf-idf, and will also introduce you to

some of the questions and concepts of computationally oriented

text analysis.

! Peer-reviewed

(https://github.com/programminghistorian/ph-

submissions/issues/206)

" CC-BY 4.0

(https://creativecommons.org/licenses/by/4.0/deed.en)

Support PH (/en/individual)

edited by

Zoe LeBlanc

reviewed by

Quinn Dombrowski

(https://orcid.org/0000-0001-5802-6623)

Catherine Nygren

published

| 2019-05-13

modified

| 2021-11-10

difficulty

| Medium

 https://doi.org/10.46430/phen0082

https://programminghistorian.org/en/lessons/analyzing-documents-with-tfidf
https://github.com/programminghistorian/ph-submissions/issues/206
https://creativecommons.org/licenses/by/4.0/deed.en
https://programminghistorian.org/en/individual
https://orcid.org/0000-0001-5802-6623

28/02/2022, 23:55Analyzing Documents with TF-IDF | Programming Historian

Page 2 of 21https://programminghistorian.org/en/lessons/analyzing-documents-with-tfidf

Contents$
Overview

Preparation

Suggested Prior Skills

Before You Begin

Lesson Dataset

Tf-idf Definition and Background

Procedure

How the Algorithm Works

How to Run it in Python 3

Interpreting Word Lists: Best Practices and Cautionary Notes

Some Ways Tf-idf Can Be Used in Computational History

1. As an Exploratory Tool or Visualization Technique

2. Textual Similarity and Feature Sets

3. As a Pre-processing Step

Potential Variations of Tf-idf

Scikit-Learn Settings

1. stopwords

2. min_df, max_df

3. max_features

4. norm, smooth_idf, and sublinear_tf

Beyond Term Features

Tf-idf and Common Alternatives

1. Keyness

2. Topic Models

3. Automatic Text Summarization

References and Further Reading

Alternatives to Anaconda

Endnotes

Overview
This lesson focuses on a core natural language processing and information retrieval method called Term

Frequency - Inverse Document Frequency (tf-idf). You may have heard about tf-idf in the context of topic

modeling, machine learning, or or other approaches to text analysis. Tf-idf comes up a lot in published

work because it’s both a corpus (https://en.wikipedia.org/wiki/Text_corpus) exploration method and a pre-

processing step for many other text-mining measures and models.

Looking closely at tf-idf will leave you with an immediately applicable text analysis method. This lesson

will also introduce you to some of the questions and concepts of computationally oriented text analysis.

Namely, this lesson addresses how you can isolate a document’s most important words from the kinds of

words that tend to be highly frequent across a set of documents in that language. In addition to tf-idf,

there are a number of computational methods for determining which words or phrases characterize a set

of documents, and I highly recommend Ted Underwood’s 2011 blog post as a supplement.1

https://en.wikipedia.org/wiki/Text_corpus

28/02/2022, 23:55Analyzing Documents with TF-IDF | Programming Historian

Page 3 of 21https://programminghistorian.org/en/lessons/analyzing-documents-with-tfidf

Preparation
Suggested Prior Skills$

Prior familiarity with Python or a similar programming language. Code for this lesson is written in

Python 3.6, but you can run tf-idf in several different versions of Python, using one of several

packages, or in various other programming languages. The precise level of code literacy or

familiarity recommended is hard to estimate, but you will want to be comfortable with basic types

and operations. To get the most out of this lesson, it is recommended that you work your way

through something like Codeacademy’s “Introduction to Python” course

(https://www.codecademy.com/learn/learn-python), or that you complete some of the introductory

Python lessons on the Programming Historian (/en/lessons/introduction-and-installation).

In lieu of the above recommendation, you should review Python’s basic types

(https://www.learnpython.org/) (string, integer, float, list, tuple, dictionary), working with variables,

writing loops in Python, and working with object classes/instances.

Experience with Excel or an equivalent spreadsheet application if you wish to examine the linked

spreadsheet files. You can also use the pandas library in python to view the CSVs.

Before You Begin$
Install the Python 3 version of Anaconda. Installing Anaconda is covered in Text Mining in Python

through the HTRC Feature Reader (/en/lessons/text-mining-with-extracted-features). This will

install Python 3.6 (or higher), the Scikit-Learn library (https://scikit-learn.org/stable/install.html)

(which we will use for tf-idf), and the dependencies needed to run a Jupyter Notebook

(https://jupyter.org/).

It is possible to install all these dependencies without Anaconda (or with a lightweight alternative

like Miniconda (https://docs.conda.io/en/latest/miniconda.html)). For more information, see the

section below titled “Alternatives to Anaconda”

Lesson Dataset$
Tf-idf, like many computational operations, is best understood by example. To this end, I’ve prepared a

dataset of 366 New York Times historic obituaries (https://en.wikipedia.org/wiki/Obituary) scraped from

https://archive.nytimes.com/www.nytimes.com/learning/general/onthisday/

(https://archive.nytimes.com/www.nytimes.com/learning/general/onthisday/). On each day of the year, The
New York Times featured an obituary of someone born on that day.

Lesson files, including, this dataset, can be downloaded from lesson-files.zip (/assets/tf-idf/lesson-

files.zip). The dataset is small enough that you should be able to open and read some if not all of the files.

The original data is also available in the ‘obituaries’ folder, containing the ‘.html’ files downloaded from the

2011 “On This Day” website and a folder of ‘.txt’ files that represent the body of each obituary. These text

files were generated using a Python library (https://docs.python.org/3/library/intro.html) called

BeautifulSoup (https://www.crummy.com/software/BeautifulSoup/), which is covered in another

Programming Historian lesson (see Intro to BeautifulSoup (/en/lessons/intro-to-beautiful-soup)).

https://www.codecademy.com/learn/learn-python
https://programminghistorian.org/en/lessons/introduction-and-installation
https://www.learnpython.org/
https://programminghistorian.org/en/lessons/text-mining-with-extracted-features
https://scikit-learn.org/stable/install.html
https://jupyter.org/
https://docs.conda.io/en/latest/miniconda.html
https://en.wikipedia.org/wiki/Obituary
https://archive.nytimes.com/www.nytimes.com/learning/general/onthisday/
https://programminghistorian.org/assets/tf-idf/lesson-files.zip
https://docs.python.org/3/library/intro.html
https://www.crummy.com/software/BeautifulSoup/
https://programminghistorian.org/en/lessons/intro-to-beautiful-soup

28/02/2022, 23:55Analyzing Documents with TF-IDF | Programming Historian

Page 4 of 21https://programminghistorian.org/en/lessons/analyzing-documents-with-tfidf

This obituary corpus is an historical object in its own right. It represents, on some level, how the questions

of inclusion and representation might affect both the decision to publish an obituary, and the decision to

highlight a particular obituary many years later. The significance of such decisions has been further

highlighted in recent months by The New York Times itself. In March 2018, the newspaper began

publishing obituaries for “overlooked women”. In the words of Amisha Padnani and Jessica Bennett, “who

gets remembered — and how — inherently involves judgment. To look back at the obituary archives can,

therefore, be a stark lesson in how society valued various achievements and achievers.” Viewed through

this lens, the dataset provided here stands not as a representative sample of historic obituaries but,

rather, a snapshot of who The New York Times in 2010-2011 considered worth highlighting. You’ll notice

that many of the historic figures are well known, which suggests a self-conscious effort to look back at

the history of The New York Times and select obituaries based on some criteria.

Tf-idf Definition and Background$
Often inaccurately attributed to others, the procedure called Term Frequency - Inverse Document

Frequency was introduced in a 1972 paper by Karen Spärck Jones under the name “term specificity.”

Fittingly, Spärck Jones was the subject of an “Overlooked No More” obituary in January 2019.

With tf-idf, instead of representing a term in a document by its raw frequency (number of occurrences) or

its relative frequency (term count divided by document length), each term is weighted by dividing the

term frequency by the number of documents in the corpus containing the word. The overall effect of this

weighting scheme is to avoid a common problem when conducting text analysis: the most frequently used

words in a document are often the most frequently used words in all of the documents. In contrast, terms

with the highest tf-idf scores are the terms in a document that are distinctively frequent in a document,

when that document is compared other documents.

If this explanation doesn’t quite resonate, a brief analogy might help. Imagine that you are on vacation for

a weekend in a new city, called Idf City. You’re trying to choose a restaurant for dinner, and you’d like to

balance two competing goals: first, you want to have a very good meal, and second, you want to choose a

style of cuisine that’s distinctively good in Idf City. That is, you don’t want to have something you can get

just anywhere. You can look up online reviews of restaurants all day, and that’s just fine for your first goal,

but what you need in order to satisfy the second goal is some way to tell the difference between good and

distinctively good (or perhaps even uniquely good).

It’s relatively easy, I think, to see that restaurant food could be:

1. both good and distinctive,

2. good but not distinctive,

3. distinctive but not good, or

4. neither good nor distinctive.

Term frequencies could have the same structure. A term might be:

1. Frequently used in a language like English, and especially frequent or infrequent in one document

2. Frequently used in a language like English, but used to a typical degree in one document

3. Infrequently used in a language like English, but distinctly frequent or infrequent in one document

2

3

4

5

28/02/2022, 23:55Analyzing Documents with TF-IDF | Programming Historian

Page 5 of 21https://programminghistorian.org/en/lessons/analyzing-documents-with-tfidf

4. Infrequently used in a language like English, and used at to a typical degree in one document

To understand how words can be frequent but not distinctive, or distinctive but not frequent, let’s look at

a text-based example. The following is a list of the top ten most frequent terms (and term counts) from

one of the obituaries in our New York Times corpus.

Rank Term Count

1 the 21

2 of 16

3 her 15

4 in 14

5 and 13

6 she 10

7 at 8

8 cochrane4

9 was 4

10 to 4

After looking at this list, imagine trying to discern information about the obituary that this table

represents. We might infer from the presence of her and cochrane in the list that a woman named

Cochrane is being discussed but, at the same time, this could easily be about a person from Cochrane,

Wisconsin or someone associated with the Cochrane Collaboration

(https://en.wikipedia.org/wiki/Cochrane_(organisation)), a non-profit, non-governmental organization. The

problem with this list is that most of top terms would be top terms in any obituary and, indeed, any

sufficiently large chunk of writing in most languages. This is because most languages are heavily

dependent on function words like the, as, of, to, and from that serve primarily grammatical or structural

purposes, and appear regardless of the text’s subject matter. A list of an obituary’s most frequent terms

tell us little about the obituary or the person being memorialized. Now let’s use tf-idf term weighting to

compare the same obituary from the first example to the rest of our corpus of New York Times obituaries.

The top ten term scores look like this:

Rank Term Count

1 cochrane 24.85

2 her 22.74

3 she 16.22

4 seaman 14.88

5 bly 12.42

6 nellie 9.92

7 mark 8.64

8 ironclad 6.21

9 plume 6.21

10 vexations6.21

https://en.wikipedia.org/wiki/Cochrane_(organisation)

28/02/2022, 23:55Analyzing Documents with TF-IDF | Programming Historian

Page 6 of 21https://programminghistorian.org/en/lessons/analyzing-documents-with-tfidf

In this version of the list, she and her have both moved up. cochrane remains, but now we have at least

two new name-like words: nellie and bly. Nellie Bly (https://en.wikipedia.org/wiki/Nellie_Bly) was a turn-of-

the-century journalist best known today for her investigative journalism, perhaps most remarkably when

she had herself committed to the New York City Lunatic Asylum for ten days in order to write an expose

on the mistreatment of mental health patients. She was born Elizabeth Cochrane Seaman, and Bly was her

pen name or nom-de-plume. With only a few details about Bly, we can account for seven of the top ten tf-

idf terms: cochrane, her, she, seaman, bly, nellie, and plume. To understand mark, ironclad, and vexations,

we can return to the original obituary and discover that Bly died at St. Mark’s Hospital. Her husband

(https://en.wikipedia.org/wiki/Robert_Seaman) was president of the Ironclad Manufacturing Company.

Finally, “a series of forgeries by her employees, disputes of various sorts, bankruptcy and a mass of

vexations and costly litigations swallowed up Nellie Bly’s fortune.” Many of the terms on this list are

mentioned as few as one, two, or three times; they are not frequent by any measure. Their presence in

this one document, however, are all distinctive compared with the rest of the corpus.

Procedure
How the Algorithm Works$
Tf-idf can be implemented in many flavors, some more complex than others. Before I begin discussing

these complexities, however, I would like to trace the algorithmic operations of one particular version. To

this end, we will go back to the Nellie Bly obituary and convert the top ten term counts into tf-idf scores

using the same steps that were used to create the above tf-idf example. These steps parallel Scikit-

Learn’s tf-idf (https://scikit-

learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html) implementation.

Addition, multiplication, and division are the primary mathematical operations necessary to follow along.

At one point, we must calculate the natural logarithm (https://en.wikipedia.org/wiki/Natural_logarithm) of a

variable, but this can be done with most online calculators and calculator mobile apps. Below is a table

with the raw term counts for the first thirty words, in alphabetical order, from Bly’s obituary, but this

version has a second column that represents the number of documents in which each term can be found.

Document frequency (df) is a count of how many documents from the corpus each word appears in.

(Document frequency for a particular word can be represented as df .)

Index Term Count Df

1 afternoon 1 66

2 against 1 189

3 age 1 224

4 ago 1 161

5 air 1 80

6 all 1 310

7 american 1 277

8 an 1 352

9 and 13 364

10 around 2 149

11 as 2 357

6

i

https://en.wikipedia.org/wiki/Nellie_Bly
https://en.wikipedia.org/wiki/Robert_Seaman
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://en.wikipedia.org/wiki/Natural_logarithm

28/02/2022, 23:55Analyzing Documents with TF-IDF | Programming Historian

Page 7 of 21https://programminghistorian.org/en/lessons/analyzing-documents-with-tfidf

12 ascension 1 6

13 asylum 1 2

14 at 8 362

15 avenue 2 68

16 balloon 1 2

17 bankruptcy1 8

18 barrel 1 7

19 baxter 1 4

20 be 1 332

21 beat 1 33

22 began 1 241

23 bell 1 24

24 bly 2 1

25 body 1 112

26 born 1 342

27 but 1 343

28 by 3 349

29 career 1 223

30 character 1 89

To calculate inverse document frequency for each term, the most direct formula would be N/df , where N

represents the total number of documents in the corpus. However, many implementations normalize the

results with additional operations. In TF-IDF, normalization is generally used in two ways: first, to prevent

bias in term frequency from terms in shorter or longer documents; second, to calculate each term’s idf

value (inverse document frequency). For example, Scikit-Learn’s implementation represents N as N+1,

calculates the natural logarithm of (N+1)/df , and then adds 1 to the final result. This lesson will return to

the topic of normalization in the section below titled “Scikit-Learn Settings”.

To express Scikit-Learn’s idf transformation , we can state the following equation:

Once idf is calculated, tf-idf is tf multiplied by idf .

Mathematical equations like these can be a bit bewildering if you’re not used to them. Once you’ve had

some experience with them, they can provide a more lucid description of an algorithm’s operations than

any well written paragraph. (For more on this subject, Ben Schmidt’s “Do Digital Humanists Need to

Understand Algorithms?” is a good place to start.) To make the idf and tf-idf equations more concrete,

I’ve added two new columns to the terms frequency table from before. The first new column represents

the derived idf score, and the second new column multiplies the Count and Idf columns to derive the final

i

i

7

id = ln[(N + 1)/ d] + 1fi fi

i i i i

tf-id = t × idfi fi fi

8

28/02/2022, 23:55Analyzing Documents with TF-IDF | Programming Historian

Page 8 of 21https://programminghistorian.org/en/lessons/analyzing-documents-with-tfidf

tf-idf score. Notice that that idf score is higher if the term appears in fewer documents, but that the

range of visible idf scores is between 1 and 6. Different normalization

(https://en.wikipedia.org/wiki/Normalization_(statistics)) schemes would produce different scales.

Note also that the tf-idf column, according to this version of the algorithm, cannot be lower than the

count. This effect is also the result of our normalization method; adding 1 to the final idf value ensures

that we will never multiply our Count columns by a number smaller than one, which preserves the original

distribution of the data.

Index Term Count Df Idf Tf-idf

1 afternoon 1 66 2.70066923 2.70066923

2 against 1 189 1.65833778 1.65833778

3 age 1 224 1.48926145 1.48926145

4 ago 1 161 1.81776551 1.81776551

5 air 1 80 2.51091269 2.51091269

6 all 1 310 1.16556894 1.16556894

7 american 1 277 1.27774073 1.27774073

8 an 1 352 1.03889379 1.03889379

9 and 13 3641.00546449 13.07103843

10 around 2 149 1.89472655 3.78945311

11 as 2 357 1.02482886 2.04965772

12 ascension 1 6 4.95945170 4.95945170

13 asylum 1 2 5.80674956 5.80674956

14 at 8 362 1.01095901 8.08767211

15 avenue 2 68 2.67125534 5.34251069

16 balloon 1 2 5.80674956 5.80674956

17 bankruptcy1 8 4.70813727 4.70813727

18 barrel 1 7 4.82592031 4.82592031

19 baxter 1 4 5.29592394 5.29592394

20 be 1 332 1.09721936 1.09721936

21 beat 1 33 3.37900132 3.37900132

22 began 1 241 1.41642412 1.41642412

23 bell 1 24 3.686486023.68648602

24 bly 2 1 6.21221467 12.42442933

25 body 1 112 2.17797403 2.17797403

26 born 1 342 1.06763140 1.06763140

27 but 1 343 1.06472019 1.06472019

28 by 3 3491.04742869 3.14228608

29 career 1 223 1.49371580 1.49371580

30 character 1 89 2.40555218 2.40555218

https://en.wikipedia.org/wiki/Normalization_(statistics)

28/02/2022, 23:55Analyzing Documents with TF-IDF | Programming Historian

Page 9 of 21https://programminghistorian.org/en/lessons/analyzing-documents-with-tfidf

These tables collectively represent one particular version of the tf-idf transformation. Of course, tf-idf is

generally calculated for all terms in all of the documents in your corpus so that you can see which terms in

each document have the highest tf-idf scores. To get a better sense of the what your output might look

like after executing such an operation, download and open the full Excel file for Bly’s obituary by

downloading the lesson files (/assets/tf-idf/lesson-files.zip), extracting the ‘.zip’ archive, and opening

‘bly_tfidf_all.xlsx’.

How to Run it in Python 3$
In this section of the lesson, I will walk through the steps I followed to calculate tf-idf scores for all terms

in all documents in the lesson’s obituary corpus. If you would like to follow along, you can download the

lesson files, extract the ‘.zip’ archive, and run the Jupyter Notebook inside of the ‘lesson’ folder. You can

also create a new Jupyter Notebook in that location copy/paste blocks of code from this tutorial as you go.

If you are using Anaconda, visit the Jupyter Notebook Documentation Page (https://jupyter-notebook-

beginner-guide.readthedocs.io/en/latest/execute.html) for more information on changing the Jupyter

Notebook startup location. As with any programming language, there’s more than one way to do each of

the steps I discuss below.

My first block of code is designed to retrieve all the filenames for ‘.txt’ files in the ‘txt’ folder. The following

lines of code import the Path class from the pathlib library and use the Path().rglob() method to

generate a list of all the files in the ‘txt’ folder that end with ‘.txt’. pathlib will also join the

file.parent folder location with each file name to provide full file paths for each file (on MacOS or

Windows).

Using this method, I append each text file name to the list called all_txt_files . Finally, I return the

length of all_txt_files to verify that I’ve found 366 file names. This loop-and-append approach is

very common in Python.

from pathlib import Path

all_txt_files =[]
for file in Path("txt").rglob("*.txt"):
 all_txt_files.append(file.parent / file.name)
counts the length of the list
n_files = len(all_txt_files)
print(n_files)

A quick note on variable names. The two most common variable naming patterns prioritize convenience

and semantic meaning respectively. For convenience, one might name a variable x so it’s easier and faster

to type when referencing it. Semantic variables, meanwhile, attempt to describe function or purpose. By

naming my list of all text files all_txt_files and the variable representing the number of files

n_files , I’m prioritizing semantic meaning. Meanwhile, I’m using abbreviations like txt for text and

n for number to save on typing, or using all_txt_files instead of all_txt_file_names because

brevity is still a goal. Underscore and capitalization norms are specified in PEP-8, Python’s official style

guide, with which you should try to be generally familiar.9

https://programminghistorian.org/assets/tf-idf/lesson-files.zip
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/execute.html

28/02/2022, 23:55Analyzing Documents with TF-IDF | Programming Historian

Page 10 of 21https://programminghistorian.org/en/lessons/analyzing-documents-with-tfidf

For various resons, we want our files to count up by day and month since there’s on file for every day and

month of a year. We can use the sort() method to put the files in ascending numerical order and print

the first file to make sure it’s ‘txt/0101.txt’.

all_txt_files.sort()
all_txt_files[0]

Next, we can use our list of file names to load each file and convert them to a format that Python can read

and understand as text. In this block of code, I do another loop-and-append operation. This time, I loop

my list of file names and open each file. I then use Python’s read() method to convert each text file to a

string (str), which is how Python knows to think of the data as text. I append each string, one by one, to

a new list called all_docs . Crucially, the string objects in this list have the same order as the file names

in the all_txt_files list.

all_docs = []
for txt_file in all_txt_files:
 with open(txt_file) as f:
 txt_file_as_string = f.read()
 all_docs.append(txt_file_as_string)

This is all the setup work we require. Text processing steps like tokenization

(https://en.wikipedia.org/wiki/Lexical_analysis#Tokenization) and removing punctuation will happen

automatically when we use Scikit-Learn’s TfidfVectorizer to convert documents from a list of strings

to tf-idf scores. One could also supply a list of stopwords here (commonly used words that you want to

ignore). To tokenize and remove stopwords in languages other than English, you may need to preprocess

the text with another Python library or supply a custom tokenizer and stopword list when Scikit-Learn’s

TfidfVectorizer . The following block of code imports TfidfVectorizer from the Scikit-Learn library,

which comes pre-installed with Anaconda. TfidfVectorizer is a class (written using object-oriented

programming), so I instantiate it with specific parameters as a variable named vectorizer . (I’ll say more

about these settings in the section titled “Scikit-Learn Settings”.) I then run the object’s

fit_transform() method on my list of strings (a variable called all_docs). The stored variable X is

output of the fit_transform() method.

#import the TfidfVectorizer from Scikit-Learn.
from sklearn.feature_extraction.text import TfidfVectorizer

vectorizer = TfidfVectorizer(max_df=.65, min_df=1, stop_words=None, use_idf=True,
norm=None)
transformed_documents = vectorizer.fit_transform(all_docs)

The fit_transform() method above converts the list of strings to something called a sparse matrix

(https://en.wikipedia.org/wiki/Sparse_matrix). In this case, the matrix represents tf-idf values for all texts.

Sparse matrices save on memory by leaving out all zero values, but we want access to those, so the next

block uses the toarray() method to convert the sparse matrices to a numpy array

(https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html). We can print the length of the

array to ensure that it’s the same length as our list of documents.

https://en.wikipedia.org/wiki/Lexical_analysis#Tokenization
https://en.wikipedia.org/wiki/Sparse_matrix
https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html

28/02/2022, 23:55Analyzing Documents with TF-IDF | Programming Historian

Page 11 of 21https://programminghistorian.org/en/lessons/analyzing-documents-with-tfidf

transformed_documents_as_array = transformed_documents.toarray()
use this line of code to verify that the numpy array represents the same number of
documents that we have in the file list
len(transformed_documents_as_array)

A numpy array is list-like but not exactly a list, and I could fill an entire tutorial discussing the differences,

but there’s only one aspect of numpy arrays we need to know right now: it converts the data stored in

transformed_documents to a format where every tf-idf score for every term in every document is

represented. Sparse matrices, in contrast, exclude zero-value term scores.

We want every term represented so that each document has the same number of values, one for each

word in the corpus. Each item in transformed_documents_as_array is an array of its own representing

one document from our corpus. As a result of all this, we essentially have a grid where each row is a

document, and each column is a term. Imagine one table from a spreadsheet representing each

document, like the tables above, but without column or row labels.

To merge the values with their labels, we need two pieces of information: the order of the documents, and

the order in which term scores are listed. The order of these documents is easy because it’s the same

order as the variable all_docs list . The full term list is stored in our vectorizer variable, and it’s in

the same order that each item in transformed_documents_as_array stores values. We can use the the
TFIDFVectorizer class’s get_feature_names() method to get that list, and each row of data (one

document’s tf-idf scores) can be rejoined with the term list. (For more details on pandas dataframes, see

the lesson “Visualizing Data with Bokeh and Pandas” (/en/lessons/visualizing-with-bokeh).)

import pandas as pd

make the output folder if it doesn't already exist
Path("./tf_idf_output").mkdir(parents=True, exist_ok=True)

construct a list of output file paths using the previous list of text files the
relative path for tf_idf_output
output_filenames = [str(txt_file).replace(".txt", ".csv").replace("txt/",
"tf_idf_output/") for txt_file in all_txt_files]

loop each item in transformed_documents_as_array, using enumerate to keep track of
the current position
for counter, doc in enumerate(transformed_documents_as_array):
 # construct a dataframe
 tf_idf_tuples = list(zip(vectorizer.get_feature_names(), doc))
 one_doc_as_df = pd.DataFrame.from_records(tf_idf_tuples, columns=['term',
'score']).sort_values(by='score', ascending=False).reset_index(drop=True)

 # output to a csv using the enumerated value for the filename
 one_doc_as_df.to_csv(output_filenames[counter])

The above block of code has three parts:

https://programminghistorian.org/en/lessons/visualizing-with-bokeh

28/02/2022, 23:55Analyzing Documents with TF-IDF | Programming Historian

Page 12 of 21https://programminghistorian.org/en/lessons/analyzing-documents-with-tfidf

1. After importing the pandas library, it checks for a folder called ‘tf_idf_output’ and creates it if it

doesn’t exist.

2. It takes the list of ‘.txt’ files from my earlier block of code and use it to construct a counterpart ‘.csv’

file path for each ‘.txt’ file. The output_filenames variable will, for example, convert ‘txt/0101.txt’

(the path of the first ‘.txt’ file) to ‘tf_idf_output/0101.csv’, and on and on for each file.

3. Using a loop, it merges each vector of tf-idf scores with the feature names from vectorizer,

converts each merged term/score pairs to a pandas dataframe, and saves each dataframe to its

corresponding ‘.csv’ file.

Interpreting Word Lists: Best Practices and Cautionary Notes$
After you run the code excerpts above, you will end up with a folder called ‘tf_idf_output’ with 366 ‘.csv’

files in it. Each file corresponds to an obituary in the ‘txt’ folder, and each contains a list of terms with tf-

idf scores for that document. As we saw with Nellie Bly’s obituary, these term lists can be very suggestive;

however, it’s important to understand that over-interpreting your results can actually distort your

understanding of an underlying text.

In general, it’s best to begin with the ideas that these term lists will be helpful for generating hypotheses

or research questions. Tf-idf results but will not necessarily produce definitive claims. For example, I have

assembled a quick list of obituaries for late 19th- and early 20th-century figures who all worked for

newspapers and magazines and had some connection to social reform. My list includes Nellie Bly, Willa

Cather (https://en.wikipedia.org/wiki/Willa_Cather), W.E.B. Du Bois

(https://en.wikipedia.org/wiki/W._E._B._Du_Bois), Upton Sinclair

(https://en.wikipedia.org/wiki/Upton_Sinclair), Ida Tarbell (https://en.wikipedia.org/wiki/Ida_Tarbell), but

there may be other figures in the corpus who fit the same criteria.

I originally expected to see many shared terms, but I was surprised. Each list is dominated by

individualized words (proper names, geographic places, companies, etc.) but I could screen these out

using my tf-idf settings, or just ignore them. Simultaneously, I can look for words overtly indicating each

figure’s ties to the profession of authorship. (The section of this tutorial titled Scikit-Learn Settings says

more about how you can treat a named entity or a phrase as a single token.) The following table shows the

top 20 tf-idf terms by rank for each obituary:

Tf-idf RankNellie Bly Willa CatherW.E.B. Du BoisUpton Sinclair Ida Tarbell

1 cochrane cather dubois sinclair tarbell

2 her her dr socialist she

3 she she negro upton her

4 seaman nebraska ghana books lincoln

5 bly miss peace lanny miss

6 nellie forrester encyclopedia social oil

7 mark sibert communist budd abraham

8 ironclad twilights barrington jungle mcclure

10

https://en.wikipedia.org/wiki/Willa_Cather
https://en.wikipedia.org/wiki/W._E._B._Du_Bois
https://en.wikipedia.org/wiki/Upton_Sinclair
https://en.wikipedia.org/wiki/Ida_Tarbell

28/02/2022, 23:55Analyzing Documents with TF-IDF | Programming Historian

Page 13 of 21https://programminghistorian.org/en/lessons/analyzing-documents-with-tfidf

9 plume willa fisk brass easton

10 vexationsantonia atlanta california volumes

11 phileas mcclure folk writer minerva

12 597 novels booker vanzetti standard

13 elizabeth pioneers successively macfadden business

14 nom cloud souls sacco titusville

15 balloon book council wrote articles

16 forgeries calif party meat bridgeport

17 mcalpin novel disagreed pamphlets expose

18 asylum southwest harvard my trusts

19 fogg verse arts industry mme

20 verne wrote soviet novel magazine

I’ve used boldface to indicate terms that seem overtly related to authorship or writing. The list includes

articles, arts, book, book, books, encyclopedia, magazine, nom, novel, novels, pamphlets, plume, verse,

volumes, writer, and wrote, but it could be extended to include references to specific magazine or book

titles. Setting aside momentarily such complexities, it is striking to me that Cather and Sinclair’s lists have

so many words for books and writing, whereas Bly, Du Bois and Tarbell’s do not.

I could easily jump to conclusions. Cather’s identity seems to be tied most to her gender, her sense of

place, and her fiction and verse. Sinclair more so with his politics and his writings about meat, industry,

and specifically the well known, controversial trial and execution of Nicola Sacco and Bartolomeo Vanzetti.

Bly is tied to her pen name, her husband, and her writing about asylums. Du Bois is linked to race and his

academic career. Tarbell is described by what she wrote about: namely business, the trusts, Standard Oil,

and Abraham Lincoln. Going further, I could argue that gender seems more distinctive for women than it is

for men; race is only a top term for the one African American in my set.

Each of these observations forms the basis for a deeper question, but these details aren’t enough to make

generalizations. Foremost, I need to consider whether my tf-idf settings are producing effects that would

disappear under other conditions; robust results should be stable enough to appear with various settings.

(Some of these settings are covered in the “Scikit-Learn Settings” section.) Next, I should read at least

some of the underlying obituaries to make sure I’m not getting false signals from any terms. If I read Du

Bois’s obituary, for example, I may discover that mentions of his work “The Encyclopedia of the Negro,”

contribute at least partially to the overall score of the word negro.

Likewise, I can discover that Bly’s obituary does include words like journalism, journalistic, newspapers,

and writing, but the obituary is very short, meaning most words mentioned in it occur only once or twice,

which means that words with very high idf scores are even more likely to top her list. I really want tf and

idf to be balanced, so I could rule out words that appear in only a few documents, or I could ignore results

for obituaries below a certain word count.

Finally, I can design tests to measure directly questions like: were obituaries of African Americans are

more likely to mention race? I think the prediction that they did is a good hypothesis, but I should still

subject my generalizations to scrutiny before I form conclusions.

28/02/2022, 23:55Analyzing Documents with TF-IDF | Programming Historian

Page 14 of 21https://programminghistorian.org/en/lessons/analyzing-documents-with-tfidf

Some Ways Tf-idf Can Be Used in Computational History$
As I have described, tf-idf has its origins in information retrieval, and the idea of weighting term

frequencies against norms in a larger corpus continues to be used to power various aspects of everyday

web applications, especially text-based search engines. However, in a cultural analytics or computational

history context, tf-idf is suited for a particular set of tasks. These uses tend to fall into one of three

groups.

1. As an Exploratory Tool or Visualization Technique$

As I’ve already demonstrated, terms lists with tf-idf scores for each document in a corpus can be a strong

interpretive aid in themselves, they can help generate hypotheses or research questions. Word lists can

also be the building bocks for more sophisticated browsing and visualization strategies. “A full-text

visualization of the Iraq War Logs” (http://jonathanstray.com/a-full-text-visualization-of-the-iraq-war-

logs), by Jonathan Stray and Julian Burgess, is a good example of this use case. Using tf-idf-

transformed features, Stray and Burgess build a network visualization that positions Iraq War logs in

relation to their most distinctive keywords. This way of visualizing textual information led Stray to develop

the Overview Project (https://www.overviewdocs.com), which provides a dashboard for users to visualize

and search thousands of documents at a time. We could use this kind of approach to graph our obituaries

corpus and see if there are keyword communities.

2. Textual Similarity and Feature Sets$

Since tf-idf will often produce lower scores for high frequency function words and increased scores for

terms related to the topical signal of a text, it is well suited for tasks involving textual similarity. A search

index will often perform tf-idf on a corpus and return ranked results to user searches by looking for

documents with the highest cosine similarity to the user’s search string. The same logic can be used to

ask a question like “Which obituary in our corpus is most similar to Nellie Bly’s obituary?”

Similarly, we could use tf-idf to discover the top terms related to a document or a group of documents.

For example, I could gather together a selection of obituaries about journalists (Bly included) and combine

them into one document before running tf-idf. The output for that document would now work as a

heuristic for terms that are distinctive in my journalism obituaries in the corpus when compared with other

obituaries in the corpus. I could use such a term list for a range of other computational tasks.

3. As a Pre-processing Step$

The above paragraphs gesture at why tf-idf pre-processing is so often used with machine learning. Tf-

idf-transformed features tend to have more predictive value than raw term frequencies, especially when

classifying a supervised machine learning model, in part because it tends to increase the weight of topic

words and reduce the weight of high frequency function words. One notable exception to this

generalization is authorship attribution, where high frequency function words are highly predictive. As I

will show in the “Scikit-Learn Settings” section, tf-idf can also be used to cull machine learning feature

lists and, often, building a model with fewer features is desirable.

Potential Variations of Tf-idf$
Scikit-Learn Settings$

11

http://jonathanstray.com/a-full-text-visualization-of-the-iraq-war-logs
https://www.overviewdocs.com/

28/02/2022, 23:55Analyzing Documents with TF-IDF | Programming Historian

Page 15 of 21https://programminghistorian.org/en/lessons/analyzing-documents-with-tfidf

The Scikit-Learn TfidfVectorizer has several internal settings that can be changed to affect the

output. In general, these settings all have pros and cons; there’s no singular, correct way to preset them

and produce output. Instead, it’s best to understand exactly what each setting does so that you can

describe and defend the choices you’ve made. The full list of parameters is described in Scikit-Learn’s

documentation (https://scikit-

learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html), but here are

some of the most important settings:

1. stopwords$

In my code, I used python stopwords=None but python stopwords='english' is available. This setting

will filter out words using a preselected list (https://github.com/scikit-learn/scikit-

learn/blob/master/sklearn/feature_extraction/_stop_words.py) of high frequency function words such as

‘the’, ‘to’, and ‘of’. Depending on your settings, many of these terms will have low tf-idf scores regardless

because they tend to be found in all documents. For a discussion of some publicly available stop word

lists (including Scikit-Learn’s), see “Stop Word Lists in Free Open-source Software Packages”

(https://aclweb.org/anthology/W18-2502).

2. min_df, max_df$

These settings control the minimum number of documents a term must be found in to be included and the

maximum number of documents a term can be found in in order to be included. Either can be expressed

as a decimal between 0 and 1 indicating the percent threshold, or as a whole number that represents a

raw count. Setting max_df below .9 will typically remove most or all stopwords.

3. max_features$

This parameter can be used to winnow out terms by frequency before running tf-idf. It can be especially

useful in a machine learning context when you do not wish to exceed a maximum recommended number

of term features.

4. norm, smooth_idf, and sublinear_tf$

Each of these will affect the range of numerical scores that the tf-idf algorithm outputs. norm supports l1

and l2 normalization, which you can read about on machinelearningmastery.com

(https://machinelearningmastery.com/vector-norms-machine-learning/). Smooth-idf adds one to each

document frequency score, “as if an extra document was seen containing every term in the collection

exactly once.” Sublinear_tf applies another scaling transformation, replacing tf with log(tf). For more on

tf-idf smoothing and normalization, see Manning, Raghavan, and Schütze.

Beyond Term Features$

Since the basic idea of tf-idf is to weight term counts against the number of documents in which terms

appear, the same logic can be used on other text-based features. For example, it is relatively

straightforward to combine tf-idf with stemming or lemmatization (https://nlp.stanford.edu/IR-

book/html/htmledition/stemming-and-lemmatization-1.html). Stemming and lemmatization are two

common ways to group together different word forms/inflections; for example, the stem of both happy
and happiness is happi, and the lemma of both is happy. After stemming or lemmatization, stem or lemma

12

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/_stop_words.py
https://aclweb.org/anthology/W18-2502
https://machinelearningmastery.com/vector-norms-machine-learning/
https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html

28/02/2022, 23:55Analyzing Documents with TF-IDF | Programming Historian

Page 16 of 21https://programminghistorian.org/en/lessons/analyzing-documents-with-tfidf

counts can be substituted for term counts, and the (s/l)f-idf transformation can be applied. Each stem or

lemma will have a higher df score than each of the words it groups together, so lemmas or stems with

many word variants will tend to have lower tf-idf scores.

Similarly, the tf-idf transformation can be applied to n-grams. A Fivethirtyeight.com post from March

2016 called “These Are The Phrases Each GOP Candidate Repeats Most”

(https://fivethirtyeight.com/features/these-are-the-phrases-each-gop-candidate-repeats-most/) uses

such an approach to perform the inverse-document frequency calculation on phrases rather than words.

Tf-idf and Common Alternatives$
Tf-idf can be compared with several other methods of isolating and/or ranking important term features in

a document or collection of documents. This section provides a brief mention of four related but distinct

measures that target similar but not identical aspects of textual information.

1. Keyness$

Keyness is a catchall term for a constellation of statistical measures that attempt to indicate the numerical

significance of a term to a document or set of documents, in direct comparison with a larger set of

documents or corpus. Depending on how we set up our tf-idf transformation, it may isolate many of a

document’s most important features, but tf-idf is not as precise as the most commonly used measures of

keyness. Rather than changing a document’s term frequency scores, keyness testing produces a

numerical indicator of how statistically typical or atypical the term’s usage in a text is. With a Chi-square

test (https://en.wikipedia.org/wiki/Chi-squared_test), for example, we can evaluate the relationship of a

term frequency to an established norm, and derive a P-value (https://en.wikipedia.org/wiki/P-value)

indicating the probability of encountering the observed difference in a random sample. For more

information on keyness, see Bondi and Scott.

2. Topic Models$

Topic modeling and tf-idf are radically different techniques, but I find that newcomers to digital

humanities often want to run topic modeling on a corpus as a first step and, in at least some of those

cases, running tf-idf instead of generating topic models would be preferable. Tf-idf is especially

appropriate if you are looking for a way to get a bird’s eye view of your corpus early in the exploratory

phase of your research because the algorithm is transparent and the results are reproducible. As Ben

Schmidt suggests, scholars using topic modeling need to know that “topics may not be as coherent as

they assume.” This is one reason tf-idf is integrated into the Overview Project

(https://www.overviewdocs.com). Topic models can also help scholars explore their corpora, and they

have several advantages over other techniques, namely that they suggest broad categories or

communities of texts, but this a general advantage of unsupervised clustering methods. Topic models are

especially appealing because documents are assigned scores for how well they fit each topic, and

because topics are represented as lists of co-occurring terms, which provides a strong sense of how

terms relate to groupings. However, the probabilistic model behind topic models is sophisticated, and it’s

easy to warp your results if you don’t understand what you’re doing. The math behind tf-idf is lucid

enough to depict in a spreadsheet.

3. Automatic Text Summarization$

13

14

15

16

https://fivethirtyeight.com/features/these-are-the-phrases-each-gop-candidate-repeats-most/
https://en.wikipedia.org/wiki/Chi-squared_test
https://en.wikipedia.org/wiki/P-value
https://www.overviewdocs.com/

28/02/2022, 23:55Analyzing Documents with TF-IDF | Programming Historian

Page 17 of 21https://programminghistorian.org/en/lessons/analyzing-documents-with-tfidf

Text summarization is yet another way to explore a corpus. Rada Mihalcea and Paul Tarau, for example,

have published on TextRank, “a graph-based ranking model for text processing” with promising

applications for keyword and sentence extraction. As with topic modeling, TextRank and tf-idf are

altogether dissimilar in their approach to information retrieval, yet the goal of both algorithms has a great

deal of overlap. It may be appropriate for your research, especially if your goal is to get a relatively quick a

sense of your documents’ contents before designing a larger research project.

References and Further Reading
Beckman, Milo. “These Are The Phrases Each GOP Candidate Repeats Most,” FiveThirtyEight,
March 10, 2016. https://fivethirtyeight.com/features/these-are-the-phrases-each-gop-candidate-

repeats-most/

Bennett, Jessica, and Amisha Padnani. “Overlooked,” March 8, 2018.

https://www.nytimes.com/interactive/2018/obituaries/overlooked.html

Blei, David M., Andrew Y. Ng, and Michael I. Jordan, “Latent Dirichlet Allocation” Journal of Machine
Learning Research 3 (January 2003): 993-1022.

Bondi, Marina, and Mike Scott, eds. Keyness in Texts. Philadelphia: John Benjamins, 2010.

Bowles, Nellie. “Overlooked No More: Karen Sparck Jones, Who Established the Basis for Search

Engines” The New York Times, January 2, 2019.

https://www.nytimes.com/2019/01/02/obituaries/karen-sparck-jones-overlooked.html

Documentation for TfidfVectorizer. https://scikit-

learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html

Grimmer, Justin and King, Gary, Quantitative Discovery from Qualitative Information: A General-

Purpose Document Clustering Methodology (2009). APSA 2009 Toronto Meeting Paper. Available

at SSRN: https://ssrn.com/abstract=1450070

“Ida M. Tarbell, 86, Dies in Bridgeport” The New York Times, January 7, 1944, 17.

https://www.nytimes.com

Manning, C.D., P. Raghavan, and H. Schütze, Introduction to Information Retrieval. Cambridge:

Cambridge University Press, 2008.

Mihalcea, Rada, and Paul Tarau. “Textrank: Bringing order into text.” In Proceedings of the 2004

conference on empirical methods in natural language processing. 2004.

“Nellie Bly, Journalist, Dies of Pneumonia” The New York Times, January 28, 1922, 11.

https://www.nytimes.com

Salton, G. and M.J. McGill, Introduction to Modern Information Retrieval. New York: McGraw-Hill,

1983.

17

28/02/2022, 23:55Analyzing Documents with TF-IDF | Programming Historian

Page 18 of 21https://programminghistorian.org/en/lessons/analyzing-documents-with-tfidf

Schmidt, Ben. “Do Digital Humanists Need to Understand Algorithms?” Debates in the Digital
Humanities 2016. Online edition. Minneapois: University of Minnesota Press.

http://dhdebates.gc.cuny.edu/debates/text/99

–. “Words Alone: Dismantling Topic Models in the Humanities,” Journal of Digital Humanities. Vol. 2,

No. 1 (2012): n.p. http://journalofdigitalhumanities.org/2-1/words-alone-by-benjamin-m-schmidt/

Spärck Jones, Karen. “A Statistical Interpretation of Term Specificity and Its Application in

Retrieval.” Journal of Documentation 28, no. 1 (1972): 11–21.

Stray, Jonathan, and Julian Burgess. “A Full-text Visualization of the Iraq War Logs,” December 10,

2010 (Update April 2012). http://jonathanstray.com/a-full-text-visualization-of-the-iraq-war-logs

Underwood, Ted. “Identifying diction that characterizes an author or genre: why Dunning’s may not

be the best method,” The Stone and the Shell, November 9, 2011.

https://tedunderwood.com/2011/11/09/identifying-the-terms-that-characterize-an-author-or-genre-

why-dunnings-may-not-be-the-best-method/

–. “The Historical Significance of Textual Distances”, Preprint of LaTeCH-CLfL Workshop, COLING,

Santa Fe, 2018. https://arxiv.org/abs/1807.00181

van Rossum, Guido, Barry Warsaw, and Nick Coghlan. “PEP 8 – Style Guide for Python Code.” July

5, 2001. Updated July 2013. https://www.python.org/dev/peps/pep-0008/

Whitman, Alden. “Upton Sinclair, Author, Dead; Crusader for Social Justice, 90” The New York
Times, November 26, 1968, 1, 34. https://www.nytimes.com

“W. E. B. DuBois Dies in Ghana; Negro Leader and Author, 95” The New York Times, August 28,

1963, 27. https://www.nytimes.com

“Willa Cather Dies; Noted Novelist, 70” The New York Times, April 25, 1947, 21.

https://www.nytimes.com

Alternatives to Anaconda$
If you are not using Anaconda, you will need to cover the following dependencies:

1. Install Python 2 or 3 (preferably Python 3.6 or later)

2. Recommended: install and run a virtual environment

3. Install the Scikit-Learn library and its dependencies (see http://scikit-learn.org/stable/install.html

(http://scikit-learn.org/stable/install.html)).

4. Install Jupyter Notebook and its dependencies

Endnotes

http://scikit-learn.org/stable/install.html

28/02/2022, 23:55Analyzing Documents with TF-IDF | Programming Historian

Page 19 of 21https://programminghistorian.org/en/lessons/analyzing-documents-with-tfidf

1. Underwood, Ted. “Identifying diction that characterizes an author or genre: why Dunning’s may not

be the best method,” The Stone and the Shell, November 9, 2011.

https://tedunderwood.com/2011/11/09/identifying-the-terms-that-characterize-an-author-or-genre-

why-dunnings-may-not-be-the-best-method/ (https://tedunderwood.com/2011/11/09/identifying-

the-terms-that-characterize-an-author-or-genre-why-dunnings-may-not-be-the-best-method/) ↩

2. Bennett, Jessica, and Amisha Padnani. “Overlooked,” March 8, 2018.

https://www.nytimes.com/interactive/2018/obituaries/overlooked.html

(https://www.nytimes.com/interactive/2018/obituaries/overlooked.html) ↩

3. This dataset is from a version of The New York Times “On This Day” website that hasn’t been

updated since January 31, 2011, and it has been replaced by a newer, sleeker blog located at

https://learning.blogs.nytimes.com/on-this-day/ (https://learning.blogs.nytimes.com/on-this-day/).

What’s left on the older “On This Day” Website is a static .html file for each day of the year

(0101.html, 0102.html, etc.), including a static page for February 29th (0229.html). Content appears

to have been overwritten whenever it was last updated, so there are no archives of content by year.

Presumably, the “On This Day” entries for January 1 - January 31 were last updated on their

corresponding days in 2011. Meanwhile, February 1 - December 31 were probably last updated on

their corresponding days in 2010. The page representing February 29 was probably last updated on

February 29, 2008. ↩

4. Spärck Jones, Karen. “A Statistical Interpretation of Term Specificity and Its Application in

Retrieval.” Journal of Documentation vol. 28, no. 1 (1972): 16. ↩

5. Bowles, Nellie. “Overlooked No More: Karen Spärck Jones, Who Established the Basis for Search

Engines” The New York Times, January 2, 2019.

https://www.nytimes.com/2019/01/02/obituaries/karen-sparck-jones-overlooked.html

(https://www.nytimes.com/2019/01/02/obituaries/karen-sparck-jones-overlooked.html) ↩

6. “Nellie Bly, Journalist, Dies of Pneumonia” The New York Times, January 28, 1922, 11.

https://www.nytimes.com (https://www.nytimes.com) ↩

7. Documentation for TfidfVectorizer. https://scikit-

learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html

(https://scikit-

learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html) ↩

8. Schmidt, Ben. “Do Digital Humanists Need to Understand Algorithms?” Debates in the Digital
Humanities 2016. Online edition. (Minneapois: University of Minnesota Press): n.p.

http://dhdebates.gc.cuny.edu/debates/text/99 (http://dhdebates.gc.cuny.edu/debates/text/99) ↩

9. van Rossum, Guido, Barry Warsaw, and Nick Coghlan. “PEP 8 – Style Guide for Python Code.” July

5, 2001. Updated July 2013. https://www.python.org/dev/peps/pep-0008/

(https://www.python.org/dev/peps/pep-0008/) ↩

https://tedunderwood.com/2011/11/09/identifying-the-terms-that-characterize-an-author-or-genre-why-dunnings-may-not-be-the-best-method/
https://www.nytimes.com/interactive/2018/obituaries/overlooked.html
https://learning.blogs.nytimes.com/on-this-day/
https://www.nytimes.com/2019/01/02/obituaries/karen-sparck-jones-overlooked.html
https://www.nytimes.com/
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
http://dhdebates.gc.cuny.edu/debates/text/99
https://www.python.org/dev/peps/pep-0008/

28/02/2022, 23:55Analyzing Documents with TF-IDF | Programming Historian

Page 20 of 21https://programminghistorian.org/en/lessons/analyzing-documents-with-tfidf

10. “Ida M. Tarbell, 86, Dies in Bridgeport” The New York Times, January 7, 1944, 17.

https://www.nytimes.com (https://www.nytimes.com); “Nellie Bly, Journalist, Dies of Pneumonia”

The New York Times, January 28, 1922, 11. https://www.nytimes.com (https://www.nytimes.com);

“W. E. B. DuBois Dies in Ghana; Negro Leader and Author, 95” The New York Times, August 28,

1963, 27. https://www.nytimes.com (https://www.nytimes.com); Whitman, Alden. “Upton Sinclair,

Author, Dead; Crusader for Social Justice, 90” The New York Times, November 26, 1968, 1, 34.

https://www.nytimes.com (https://www.nytimes.com); “Willa Cather Dies; Noted Novelist, 70” The
New York Times, April 25, 1947, 21. https://www.nytimes.com (https://www.nytimes.com) ↩

11. Stray, Jonathan, and Julian Burgess. “A Full-text Visualization of the Iraq War Logs,” December 10,

2010 (Update April 2012). http://jonathanstray.com/a-full-text-visualization-of-the-iraq-war-logs

(http://jonathanstray.com/a-full-text-visualization-of-the-iraq-war-logs) ↩

12. Manning, C.D., P. Raghavan, and H. Schütze, Introduction to Information Retrieval. (Cambridge:

Cambridge University Press, 2008): 118-120. ↩

13. Beckman, Milo. “These Are The Phrases Each GOP Candidate Repeats Most,” FiveThirtyEight,
March 10, 2016. https://fivethirtyeight.com/features/these-are-the-phrases-each-gop-candidate-

repeats-most/ (https://fivethirtyeight.com/features/these-are-the-phrases-each-gop-candidate-

repeats-most/) ↩

14. Bondi, Marina, and Mike Scott, eds. Keyness in Texts. (Philadelphia: John Benjamins, 2010). ↩

15. Tf-idf is not typically a recommended pre-processing step when generating topic models. See

https://datascience.stackexchange.com/questions/21950/why-we-should-not-feed-lda-with-tfidf

(https://datascience.stackexchange.com/questions/21950/why-we-should-not-feed-lda-with-

tfidf) ↩

16. Schmidt, Ben. “Words Alone: Dismantling Topic Models in the Humanities,” Journal of Digital
Humanities. Vol. 2, No. 1 (2012): n.p. http://journalofdigitalhumanities.org/2-1/words-alone-by-

benjamin-m-schmidt/ (http://journalofdigitalhumanities.org/2-1/words-alone-by-benjamin-m-

schmidt/) ↩

17. Mihalcea, Rada, and Paul Tarau. “Textrank: Bringing order into text.” In Proceedings of the 2004
conference on empirical methods in natural language processing. 2004. ↩

AABOUT THE AUTHORBOUT THE AUTHOR
Matthew J. Lavin is a Clinical Assistant Professor of English and Director of the Digital Media Lab at the

University of Pittsburgh. His current scholarship and teaching focus on book history, cultural analytics,

turn-of-the-twentieth-century U.S. literature and culture.

SSUGGESTED CITATIONUGGESTED CITATION
Matthew J. Lavin, "Analyzing Documents with TF-IDF," Programming Historian 8 (2019),

https://doi.org/10.46430/phen0082.

https://www.nytimes.com/
https://www.nytimes.com/
https://www.nytimes.com/
https://www.nytimes.com/
https://www.nytimes.com/
http://jonathanstray.com/a-full-text-visualization-of-the-iraq-war-logs
https://fivethirtyeight.com/features/these-are-the-phrases-each-gop-candidate-repeats-most/
https://datascience.stackexchange.com/questions/21950/why-we-should-not-feed-lda-with-tfidf
http://journalofdigitalhumanities.org/2-1/words-alone-by-benjamin-m-schmidt/

28/02/2022, 23:55Analyzing Documents with TF-IDF | Programming Historian

Page 21 of 21https://programminghistorian.org/en/lessons/analyzing-documents-with-tfidf

The Programming Historian (ISSN: 2397-2068) is released under a CC-BY

(https://creativecommons.org/licenses/by/4.0/deed.en) license.

This project is administered by ProgHist Ltd, Charity Number 1195875 (https://register-of-

charities.charitycommission.gov.uk/charity-search/-/charity-details/5181272/charity-overview) and Company

Number 12192946 (https://find-and-update.company-information.service.gov.uk/company/12192946).

ISSN 2397-2068 (English) (/)

ISSN 2517-5769 (Spanish) (/es)

ISSN 2631-9462 (French) (/fr)

ISSN 2753-9296 (Portuguese) (/pt)

! Hosted on GitHub (https://github.com/programminghistorian/jekyll)

% Site last updated 24 February 2022 (https://github.com/programminghistorian/jekyll/commits/gh-

pages)

& RSS feed subscriptions (https://programminghistorian.org/feed.xml)

' See page history (https://github.com/programminghistorian/jekyll/commits/gh-

pages/en/lessons/analyzing-documents-with-tfidf.md)

(Make a suggestion (/en/feedback) Lesson retirement policy (/en/lesson-retirement-policy)

) Translation concordance (/translation-concordance)

https://creativecommons.org/licenses/by/4.0/deed.en
https://register-of-charities.charitycommission.gov.uk/charity-search/-/charity-details/5181272/charity-overview
https://find-and-update.company-information.service.gov.uk/company/12192946
https://programminghistorian.org/
https://programminghistorian.org/es
https://programminghistorian.org/fr
https://programminghistorian.org/pt
https://github.com/programminghistorian/jekyll
https://github.com/programminghistorian/jekyll/commits/gh-pages
https://programminghistorian.org/feed.xml
https://github.com/programminghistorian/jekyll/commits/gh-pages/en/lessons/analyzing-documents-with-tfidf.md
https://programminghistorian.org/en/feedback
https://programminghistorian.org/en/lesson-retirement-policy
https://programminghistorian.org/translation-concordance

	Analyzing Documents with TF-IDF
	Recommended Citation

	Analyzing Documents with TF-IDF | Programming Historian

