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Abstract 

Background:  The objective of this study was to identify which air pollutants, atmospheric variables and health 
determinants could influence COVID-19 mortality in Spain. This study used information from 41 of the 52 provinces 
in Spain (from Feb. 1, to May 31, 2021). Generalized Linear Models (GLM) with Poisson link were carried out for the 
provinces, using the Rate of Mortality due to COVID-19 (CM) per 1,000,000 inhabitants as dependent variables, and 
average daily concentrations of PM10 and NO2 as independent variables. Meteorological variables included maximum 
daily temperature (Tmax) and average daily absolute humidity (HA). The GLM model controlled for trend, seasonalities 
and the autoregressive character of the series. Days with lags were established. The relative risk (RR) was calculated 
by increases of 10 g/m3 in PM10 and NO2 and by 1 ℃ in the case of Tmax and 1 g/m3 in the case of HA. Later, a linear 
regression was carried out that included the social determinants of health.

Results:  Statistically significant associations were found between PM10, NO2 and the CM. These associations had a 
positive value. In the case of temperature and humidity, the associations had a negative value. PM10 being the vari‑
able that showed greater association, with the CM followed of NO2 in the majority of provinces. Anyone of the health 
determinants considered, could explain the differential geographic behavior.

Conclusions:  The role of PM10 is worth highlighting, as the chemical air pollutant for which there was a greater num‑
ber of provinces in which it was associated with CM. The role of the meteorological variables—temperature and HA—
was much less compared to that of the air pollutants. None of the social determinants we proposed could explain the 
heterogeneous geographical distribution identified in this study.
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Background
The corona virus pandemic (COVID-19) has become the 
principal public health issue of our time. According to 
daily mortality surveillance data [21], as of May 3, 2020, 
during the end of the first wave in Spain, there were an 

estimated 81,958 deaths due to COVID-19, and an excess 
mortality of 50 percent compared to the prior year. 
In early May of 2020, the World Health Organization 
(WHO) calculated an alarming rate of infection around 
the world, estimated at over 3.5 million infected patients 
[13]. As 26 of February 2022, a total of 10,977,524 con-
firmed cases of COVID-19 and 99,410 deaths have been 
reported in Spain [1].

Without a doubt, the COVID-19 pandemic poses 
questions for which there are still no answers, includ-
ing the causes of disease, the factors that increase 
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transmission, and the reasons behind its severity and 
mortality.

In general, the environment and air pollution in 
particular play an important role in the transmis-
sion, severity [39] and mortality [18] of some diseases, 
including COVID-19 [19, 38]. The adverse effects of 
environmental pollution on human health are widely 
recognized, and it has been shown that chronic expo-
sure to air pollutants contributes to increases in 
hospitalizations and mortality, primarily related to car-
diovascular system and respiratory problems, which 
can cause various diseases including cancer [32]. An 
analysis of The Lancet Commission on pollution and 
health suggested that air pollution is responsible for at 
least 16 percent of global deaths, and it is considered 
the primary cause of avoidable death in the world [35]. 
In general, poor air quality has also been linked to an 
increase in mortality due to Severe Acute Respiratory 
Syndrome (SARS) [14].

During the COVID-19 pandemic it has been observed 
that patients that become infected with SARS-CoV-2 
often experience serious complications, including multi-
organ failure, septic shock, pulmonary edema, severe 
pneumonia and respiratory stress, in many cases with 
fatal consequences [10]. Some authors consider that air 
pollution could contribute to the severity [7] and mortal-
ity [12] of COVID-19. However, the COVID-19 mortality 
rate (CM) during the first wave varied in different coun-
tries and depended, among other things, on the response 
capacity of countries [28]. It was also influenced by the 
characteristics of SARS-CoV-2, which has undergone 
mutations in different regions around the world [48]. This 
is a topic that has not been studied as extensively as has, 
for example, incidence and hospital admissions.

There is evidence that chronic exposure to air pollution 
increases respiratory and cardiovascular toxicity [24]. 
It has also been observed that particulate matter (PM) 
can act as a transporter for multiple infectious micro-
organisms that have an impact on immunity and could 
increase susceptibility to different diseases [57]. Various 
research studies suggest that exposure to PM2.5 and PM10 
increases the risk of COVID-19 infection [58], including 
a study in the United States (USA), which showed that 
long-term exposure to fine particulate matter (PM2.5) 
increases the risk of mortality due to COVID-19 [63]. 
Another study in Italy identified PM10 as the pollutant 
that presented the strongest correlation with the num-
ber of deaths due to COVID-19 [16], and a study in Spain 
also found evidence of an association between mortality 
due to COVID-19 and different air pollutants [38].

With respect to NO2, a study in the United Kingdom 
(UK) considered NO2 to be the primary contributor to 
increases in the number of deaths and the number of 

cases of COVID-19, above all during the early phases of 
the pandemic [58].

On the other hand, there are studies of SARS, car-
ried out prior to the pandemic in Beijing, Hong Kong, 
Guangzhou and Taiwan, that suggest that the optimal 
environmental temperature for the survival of the virus is 
16–28 °C. However, in the case of SARS-CoV-2, this evi-
dence is not sufficient to identify the true role of temper-
ature in the COVID-19 pandemic. Initially, the absence 
of a correlation between temperature and incidence of 
COVID-19 was attributed to methodological deficiencies 
and the fact that in many parts of the world the studies 
were carried out during the winter [42]. However, wider 
investigations in different climate zones and in differ-
ent geographical areas around the world have not been 
able to clearly establish the role that temperature plays in 
COVID-19 incidence and mortality [6].

Relative humidity (indoor or outdoor) is considered 
an important factor in the severity of some respiratory 
diseases [65]. Some studies suggest that low air humid-
ity may be an important risk factor for respiratory infec-
tions and could be responsible for an increase in rates of 
general mortality [5]. During the first wave of COVID-19, 
it was observed in Italy that a dry climate contributed to 
better transmission of SARS-CoV-2 [69], however, the 
evidence that relates COVID-19 mortality to humidity is 
scarce.

Many social and demographic determinants have been 
related to COVID-19 mortality. Poverty, economic cir-
cumstances and inequities in health services could con-
tribute to increases in CM [45]. In the United States a 
relationship was found between access to health services 
[43] and CM, though race was not found to be associated 
with CM [3] Another study linked population density 
and lack of employment to high CM [53], and sex [46] 
and mobility were also included as important determi-
nants of COVID-19 transmission [9], though there was 
no observed association with CM.

As mentioned in other studies, environmental factors 
act together [31] and therefore, they must be included 
together in analysis to determine the effect they have on 
COVID-19 mortality. Thus, the objective of this study 
was to identify which air pollutants, atmospheric varia-
bles and health determinants could influence COVID-19 
mortality in Spain.

Methods
An ecological, longitudinal retrospective time series 
study was carried out between February 1, and May 31, 
2020 (first wave in Spain). The study included 41 of 52 
Spanish provinces; not all provinces were studied due to 
difficulties in obtaining information for the desired study 
variables, as described in the inclusion criteria.
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Inclusion criteria: the study included those provinces 
with available information on chemical air pollutants 
such as nitrogen dioxide (NO2), particulate matter (PM10) 
and meteorological variables such as average maximum 
temperature (Tmax) and average absolute humidity 
(HA). A maximum information loss of 10% was set for 
the days studied for all independent variables considered. 
In the event that there was more than 10% missing data 
for pollutants or meteorological variables in a province, 
that variable was not considered in the analysis for that 
province.

Variables
Independent variables
Air pollutants
Average daily concentrations of PM10 and NO2 in g/m3 
were used, obtained from stations located in the different 
provinces analyzed [Source: Ministerio para la Transición 
Ecológica y el Reto Demográfico (MITECO)].

Meteorological variables
The daily values of maximum temperature (Tmax) were 
used as well as daily absolute humidity (HA) in g/m3, 
because they presented better behavior with the COVID-
19 variables analyzed [38, 65] [Source: Agencia Estatal 
de Meteorología (AEMET)]. The meteorological vari-
ables were obtained from the representative observatory 
of each province according to AEMET. The values of air 
pollutants have been obtained as the average values of 
the set of stations located in each province.

HA was obtained based on average daily relative 
humidity (HR) and average daily temperature (T) [27]. 
Absolute humidity was calculated based on the Clausius–
Clapeyron equation, as follows [30]:

Health determinants
In order to explain the heterogeneity in the geographical 
distribution of the COVID-19 mortality results associ-
ated with air pollutants and meteorological variables, 
other health determinants were analyzed, grouped using 
the Lalonde–Laframboise epidemiological model [17]. 
This model classifies variables into groups related to 
human biology, lifestyles, environment and health ser-
vices. Variables studied were:

•	 Lifestyles: considered through average mobility.
•	 Environment: included the physical, social and 

socioeconomic environment. The variables studied 
according to these characteristics are described here:

HA =
6.112× e[17.67×T/+243,5] ×HR× 2.1674

273, 15+ T
.

–	 Physical environment: it includes the existence of 
an airport or not in each province; the annual aver-
age values of PM2.5, PM10 and NO2 in the period 
2017–2019; the number of petrol cars per inhabit-
ant; the number of diesel cars per inhabitant; the 
number of total cars excluding low and zero emis-
sion vehicles.

–	 Social environment: including rurality and dwell-
ings of less than 30  m2 (as a proxy for overcrowd-
ing).

–	 Socio-economic environment: including income 
level, deprivation index and environmental expend-
iture.

•	 Health system responses:
	 Among the variables corresponding to this group, the 

following were studied for each province: the number 
of consulting rooms; the number of health centres; 
the average number of ambulances per inhabitant; 
the average number of family doctors per inhabit-
ant; the average number of nurses per inhabitant; the 
average number of doctors and nurses per inhabitant 
[11]; the number of beds per 1000 inhabitants; the 
number of ICU beds per 1000 inhabitants; the new 
contracts of health personnel (registered with the 
Social Security in the last year); the number of new 
contracts of health personnel (registered with the 
Social Security) during the last year. f.; the number of 
beds per 1000 inhabitants; the number of ICU beds 
per 1000 inhabitants and the new contracts of health 
personnel (registered with the Social Security) during 
the last year (for sources of information, see Addi-
tional file 1: Table S2).

Dependent variables
The dependent variables were calculated based on the 
number of positive cases of COVID-19. Cases diagnosed 
as positive for COVID-19 were defined based on positive 
PCR test results in 99.74 percent of the data. The remain-
ing cases were diagnosed based on presentation of symp-
toms compatible with the disease.

The rate of mortality due to COVID-19 (CM) per 
1,000,000 inhabitants was used as the dependent vari-
able, calculated in the following way:

Rate of mortality due to COVID-19 (CM) per 1,000,000 
inhabitants: (number of COVID-19 positive deaths/pop-
ulation) × 1,000,000 inhabitants.

Information on deaths was provided by the National 
Epidemiology Center at the Carlos III Health Institute. 
Population data at the province level were provided by 
the National Institute of Statistics (INE). The dependent 
variables were calculated based on the number of posi-
tive cases of COVID-19.
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Analysis methodology
Generalized Linear Models (GLM) with Poisson link 
were carried out for the 41 studied provinces, using rate 
of mortality due to COVID-19 (CM) per 1,000,000 inhab-
itants as the dependent variable and the air pollutants 
and meteorological variables as independent variables.

The GLM modeling process has two phases: on the one 
hand, the control of the trend, seasonalities and possible 
overdispersion of the series and, on the other hand, the 
possible effect that the atmospheric pollution and mete-
orological variables (with their corresponding lags) have 
on the dependent variable.

To control for the trend, a variable called n1 was used. 
This variable was defined as n1 = 1 for February 1, 2020; 
n2 = 2 for February 2, 2020 and so forth until the end 
of the period. To control for seasonalities of 4  months 
(120  days), 3  months (90  days), 2  months (60  days) 
and 1  month (30  days) the following variables were 
introduced:

sin120 = sin(2π*n1 (3/365.25); cosin120 = cosin(2π*n1 
(3/365.25), sin90 = sin(2π*n1 (4/365.25), sin60 = sin(2π*n1 
(6/365.25) and sin30 = sin(2π*n1 (12/365.25), in addition 
to the corresponding cosines of the same functions.

To control for possible overdispersion of the model, the 
autoregressive of order 1 of the dependent variable has 
been introduced.

GLM were carried out between the dependent vari-
ables and the average daily values of the independent 
variables, identifying lag days with significant differences. 
In the case of Tmax and HA, significant lags were con-
sidered, starting with the 5th day until the 28th day; 
one of the criteria considered was that temperature and 
humidity would be unable to aggravate the symptoms of 
the disease in an immediate way; it would be more likely 
that they could influence SARS-CoV-2 around the 5th 
day (incubation period). This criteria, coincides with a 
study that identified a greater correlation between tem-
perature and COVID-19 after the 5th day of infection 
[6]. In contrast with the environmental variables, the air 
pollutants would be able to aggravate respiratory and 
circulatory system symptoms and cause a patent to seek 
health services to receive a diagnosis and be considered a 
case of COVID-19 on the same day [22]. For this reason, 
lags were not considered in the study of PM10 and NO2 
between days 0 and 28.

A range of days was established for the analysis, lasting 
from 0 to 28 days, taking into account the beginning of 
symptoms through the time of death of the patient [36]. 
A model of weekly distribution of the lags was used [19, 
38]. First, lags from 0 to 7 days were introduced, and later 
8–14 days, 15–21 days and 22–28 days, maintaining sig-
nificant lags until the completion of 28 days.

Using the estimators obtained from the Generalized 
Linear Models with Poisson Link (GLM), the relative risk 
(RR) were calculated, based on the formula RR = eβ where 
β is the absolute value of the estimator obtained. A nega-
tive value of the coefficient of the estimator indicates that 
an increase in the dependent variable is associated with 
a decrease in the independent variable. RR were calcu-
lated by an increase of 10 µg/m3 in PM10 and NO2, 1 ℃ 
in the case of Tmax and 1 g/m3 for HA. In order to bet-
ter describe the results of RR associated with CM, maps 
were constructed that included the studied provinces; 
the information on risks is presented in terciles in natu-
ral breaks grouped in ascending order: RR terciles: ter-
cile 1, tercile 2 and tercile 3. The attributable risk of some 
provinces was calculated based on the following formula: 
RR = (RR − 1)/RR.

In order to explain the heterogeneity in the geo-
graphical distribution of the results, a linear regression 
model was carried out. This model included the health 
determinants included in the Lalonde–Laframboise 
epidemiological model as independent variables (the 
Lalonde–Laframboise model) groups variables into life-
style, environment, and health system response).

The equation is as follows: Ŷ = β0 + β1X1 + β2X2

+β3X3 + . . .+ βkXk,where Y = risks associated with 
NO2, PM10, Tmax and HA by studied province, for each 
independent variable Xi the model considers a regres-
sion coefficient βi. This coefficient refers to the expected 
change in the dependent variable associated with a unit 
change in the corresponding independent variable (Xi: 
X1, X2, X3  o Xk), holding all of the other independent 
variables constant [20].

Software
SPSS 25.0 and Stata 16.0 software packages were used 
for the time series analysis. Maps were constructed using 
Qgis 3.16.3, and tables were produced using Excel.

Results
Table 1 shows information on both the dependent vari-
able (CM) and the lags where associations between the 
environmental variables considered and the dependent 
variable are established.

The CM values range from the highest values found for 
Segovia, Soria and Ciudad Real to the lowest in the prov-
inces of Las Palmas, Almería, Huelva and Murcia. It was 
found that, as a general rule, the highest CM values are 
found in the interior provinces of the peninsula.

The associations of atmospheric pollutants with mor-
tality shown in Table 1 are positive in the sense that the 
higher the concentration of pollutants, the higher the 
number of cases. As a general rule, in relation to delays, 
they show two types of effects: some in the short term 
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Table 1  Air pollutants and atmospheric variables associated with the COVID-19 mortality rate (CM) by lag days in provinces in Spain 
(a) from Feb. 1, to May 31, 2020

a Studied provinces: 41 of 52; some provinces were not studied due to incomplete information

(–) no association

Spanish provinces CM COVID-19 mortality rate (CM) by associated lag days (Lag)

Air pollutants Atmospheric variables

PM10 NO2 Tmax HA

A Coruña 2.23 (–) (–) (5) (–)

Alacant/Alicante 2.11 (–) (–) (–) (5)

Albacete 10.77 (11) (2, 5) (18) (6, 9, 23, 28)

Almería 0.64 (0,3,28) (22,27) (–) (–)

Araba/Álava 9.02 (20) (2, 11) (8) (6, 16, 19, 22)

Asturias 2.68 (2, 19, 23) (–) (–) (–)

Ávila 10.96 (1, 4, 10, 19, 22, 25, 27) (–) (14, 20) (–)

Barcelona 6.88 (–) (–) (–) (21)

Bizkaia 6.10 (–) (–) (–) (21)

Burgos 6.09 (21) (–) (14, 16, 24) (20)

Cádiz 1.01 (21) (–) (–) (–)

Cantabria 3.00 (2) (20) (–) (–)

Castelló/Castellón 3.06 (–) (16) (20) (14, 18, 28)

Ciudad Real 17.91 (26) (6, 13, 18, 28) (25) (–)

Cuenca 12.56 (12, 19, 22, 27) (28) (7, 15, 24) (5, 18, 25)

Gipuzkoa 3.29 (16) (–) (14) (–)

Guadalajara 7.47 (2) (8, 11, 14, 16) (25) (–)

Huelva 0.71 (18, 22) (16) (14) (20, 24)

Illes Balears 2.31 (–) (–) (–) (–)

La Rioja 8.79 (0, 10, 12, 21, 27) (–) (7, 14, 19) (–)

León 7.17 (24) (4, 7, 8, 12) (–) (19)

Lugo 0.79 (21, 24) (8) (20, 24) (8, 14)

Madrid 10.30 (–) (–) (–) (–)

Málaga 1.43 (23, 25) (13, 28) (–) (–)

Murcia 0.79 (–) (15, 25) (–) (–)

Navarra 6.59 (2, 3, 15) (–) (–) (–)

Ourense 3.42 (–) (2, 7, 10) (18) (14)

Palencia 5.67 (25, 27) (9) (19, 24, 27) (23)

Pontevedra 1.32 (–) (21) (25, 28) (–)

Salamanca 12.36 (4, 7) (4, 16, 22, 26) (–) (8)

Segovia 21.42 (20) (3, 25) (8) (23, 24)

Sevilla 1.18 (–) (–) (–) (–)

Soria 20.18 (9, 18, 21, 24) (12) (9, 19) (13, 22, 24)

Tarragona 3.43 (5, 27) (–) (9, 15, 28) (–)

Toledo 8.62 (–) (0, 13, 16, 24) (–) (–)

València/Valencia 2.28 (27) (–) (–) (27)

Valladolid 8.12 (3, 21) (8, 14, 18) (24) (–)

Zamora 6.20 (20, 22) (4, 7, 9, 11, 21) (3) (21, 26)

Zaragoza 6.01 (24, 27) (14, 20) (–) (–)

Santa Cruz de Tenerife 0.96 (–) (0, 13, 16, 19, 23) (–) (–)

Las Palmas 0.32 (–) (–) (–) (–)
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(Lags 0–7) and others in the long term (lags 15–28). For 
temperature and humidity, the associations found are 
negative (the lower the humidity and temperature, the 
greater the effect on CM) and, in general, only the effect 
appears in the long term.

Table 2 and Fig. 1a–d show the risks of the air pollut-
ants and atmospheric variables associated with CM. 
Fig. 1a shows that the provinces that presented a greater 
number of RRs associated with PM10 are found in tercile 
1 and tercile 3. The RRs of these terciles ranged between 
1.030 and 1.213. Table 2 shows the AR by province; AR 
represents the contribution of air pollutants and atmos-
pheric variables in the GLM. In the case of PM10 the 
province with the greatest RR associated with CM was 
Almeria, with an RR of 1.213 (1.026–1.400) and an AR of 
18 percent. In other words, for each 10 g/m3 increase in 
PM10, the attributable risk (AR) of PM10 to CM was 18%. 

Fig. 1b shows the map of risks of NO2 associated with 
CM. Four of seven provinces that belong to tercile 2 
(RR:1.22–1.64) and tercile 3 (RR:1.64–3.50) are found in 
the northwest of Spain. The greatest effect is in the prov-
ince of Lugo with an AR of 26.9%.

As can be seen both in Fig. 1a and b and in the results 
of the RRs shown in Tables 2 and 3, the effect of NO2 on 
CM occurs in a similar number of provinces (27 prov-
inces with associations for PM10 compared to 24 prov-
inces with associations for NO2), but, in general, the RRs 
found for PM10 are higher than those found for NO2.

In our study, we identified a negative association 
between temperature and CM and HA and CM. In 
other words, with a lower temperature or lower HA, CM 
increases.

Fig. 1c shows the risks of temperature associated with 
CM. The provinces in tercile 3 (RRs of 1.25–1.45) that 
had a higher RR associated with temperature and CM 
were Lugo and Zamora, located in the northwest of 
Spain.

Fig. 1d shows the risks of HA associated with CM. Four 
of the seven provinces that belong to tercile 3 (RRs de 
1.17–1.45) are found in the northwest of Spain.

The number of provinces where associations are found 
between MC and temperature (21) and with absolute 
humidity (18) is lower than those found for air pollutants.

The purpose of displaying the RR values found between 
MC and the different environmental variables on a map 
(Fig.  1) was to visualize the existence of differentiated 
geographical behavior in some regions compared to 
others.

The information from the risk maps is very heteroge-
neous, and does not contribute to delimiting areas with 
greater risk or geographical areas with common charac-
teristics (hotspots) that would justify a greater or lesser 

distribution of the variables studied, which means that 
our analysis does not allow us to draw any important 
conclusions from a geographical point of view.

In order to explain the differences observed in the 
geographical distribution of the RRs at the country level 
(Fig.  1), other health determinants were analyzed (see 
Additional file 1: Table S2) using linear regression mod-
els. However, none of the explanatory variables consid-
ered was associated with CM.

Discussion
Prior pandemics such as the 1918 flu (known as the Span-
ish Flu) and the pandemics of 1957 and 1968 resulted in 
millions of deaths worldwide [59]. These pandemics had 
an impact on mortality that was devastating for public 
health and for the world economy. The current COVID-
19 pandemic is no exception. There have been a high 
number of deaths in Spain, thus it is important to deter-
mine which factors are related to mortality.

The results found in our study regarding higher CM 
values during the first wave in inland regions of the Pen-
insula are consistent with those found in other studies 
conducted in Spain and would indicate the important 
role that environmental variables played during the first 
wave, in the absence of pharmacological measures, in 
increasing temperature and absolute humidity [29]

In order to better understand the influence of the fac-
tors studied on CM, this discussion is divided into sec-
tions for each variable studied.

PM10
This study showed a high percentage of provinces with 
an association between CM and PM10. It is known that 
in general, PM has a soluble fraction and an insoluble 
fraction that can act upon pulmonary cells and cause 
adverse effects [40]. The soluble fraction contains water, 
soluble ions and organic acids, while the insoluble frac-
tion is primarily made up of kaolinite, calcium carbonate 
and organic carbon that is responsible for greater cellular 
mortality and severe cellular damage [69]. Furthermore, 
the exposure to PM may cause chronic inflammation 
and cellular damage through oxidative stress that causes 
alterations in the immune response, which makes a 
human being more susceptible to infections [61]. On the 
other hand, in analyzing the mechanism of action of PM 
on CM, some authors consider that pre-existing immune 
disorders brought about by exposure to high concen-
trations of PM10 and PM2.5 played an important role in 
the lethal nature of SAR-CoV-2 in Milán and Lombardy, 
Italy [23]. One study even found that PM10 presented a 
strong relationship with the number of deaths distributed 
in each Italian province affected by COVID-19 [16], and 
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Table 2  Relative risks (RR) associated with the COVID-19 mortality rate (CM) and air pollutants and atmospheric variables, by Spanish 
province (a) from Feb. 1, to May 31, 2020

a Studied provinces: 41 of 52 Spanish provinces; some provinces were not studied due to incomplete information; RR is interpreted as an increase of 10 µg/m3 in PM10 
and NO2, 1 ℃ in the case of Tmax and 1 g/m3 for HA

CM COVID-19 mortality rate; AR attributable risk; (–) no association

Spanish provinces CM RRs Asociados a la tasa de mortalidad por COVID-19 (CM)

Air pollutants Atmospheric variables

PM10 AR NO2 AR Tmax AR HA AR

A Coruña 2.23 (–) (–) (–) (–) 1.063 (1.010–1.115) 5.907 (–) (–)

Alacant/Alicante 2.11 (–) (–) (–) (–) (–) (–) 1.198 (1.044–1.352) 16.525

Albacete 10.77 1.020 (1.006–1.035) 2.003 1.118 (1.019–1.216) 10.532 1.037 (1.020–1.054) 3.609 1.630 (1.152–2.107) 38.634

Almería 0.64 1.213 (1.026–1.400) 17.552 1.352 (1.019–1.684) 26.013 (–) (–) (–) (–)

Araba/Álava 9.02 1.019 (1.012–1.025) 1.835 1.047 (1.004–1.089) 4.455 1.036 (1.018–1.054) 3.489 1.725 (1.187–2.262) 42.014

Asturias 2.68 (–) (–) (–) (–) (–) (–) (–) (–)

Ávila 10.96 1.135 (1.003–1.266) 11.877 (–) (–) 1.081 (1.047–1.114) 7.454 (–) (–)

Barcelona 6.88 (–) (–) (–) (–) (–) (–) 1.082 (1.023–1.141) 7.557

Bizkaia 6.10 (–) (–) (–) (–) (–) (–) (–) (–)

Burgos 6.09 1.013 (1.004–1.021) 1.240 (–) (–) 1.090 (1.049–1.130) 8.232 1.181 (1.096–1.267) 15.358

Cádiz 1.01 1.016 (1.002–1.029) 1.530 (–) (–) (–) (–) (–) (–)

Cantabria 3.00 1.042 (1.023–1.061) 4.032 1.046 (1.015–1.077) 4.400 (–) (–) (–) (–)

Castelló/Castellón 3.06 (–) (–) 1.047 (1.010–1.084) 4.500 1.123 (1.072–1.175) 10.989 1.707 (1.417–1.996) 41.402

Ciudad Real 17.91 1.006 (1.004–1.008) 0.594 1.132 (1.004–1.259) 11.625 1.028 (1.014–1.043) 2.769 (–) (–)

Cuenca 12.56 1.044 (1.002–1.087) 4.257 1.021 (1.015–1.028) 2.089 1.124 (1.042–1.206) 11.015 1.331 (1.225–1.437) 24.864

Gipuzkoa 3.29 1.025 (1.008–1.041) 2.419 (–) (–) 1.054 (1.022–1.086) 5.153 (–) (–)

Guadalajara 7.47 1.016 (1.006–1.025) 1.535 1.151 (1.006–1.295) 13.095 1.034 (1.013–1.055) 3.308 (–) (–)

Huelva 0.71 1.056 (1.001–1.111) 5.296 1.335 (1.076–1.593) 25.076 1.237 (1.057–1.417) 19.173 2.492 (2.109–2.875) 59.871

Illes Balears 2.31 (–) (–) (–) (–) (–) (–) (–) (–)

La Rioja 8.79 1.144 (1.005–1.282) 12.555 (–) (–) 1.131 (1.046–1.217) 11.612 (–) (–)

León 7.17 1.007 (1.002–1.012) 0.697 1.395 (1.014–1.775) 28.307 1.183 (1.093–1.273) 15.492 (–) (–)

Lugo 0.79 1.112 (1.003–1.221) 10.066 1.640 (1.129–2.151) 39.025 1.367 (1.278–1.457) 26.867 6.463 (2.928–9.999) 84.528

Madrid 10.30 (–) (–) (–) (–) (–) (–) (–) (–)

Málaga 1.43 (–) (–) 1.027 (1.006–1.048) 2.641 (–) (–) (–) (–)

Murcia 0.79 (–) (–) 1.114 (1.000–1.228) 10.239 (–) (–) (–) (–)

Navarra 6.59 1.071 (1.000–1.142) 6.646 (–) (–) (–) (–) (–) (–)

Ourense 3.42 (–) (–) 1.530 (1.049–2.011) 34.641 1.040 (1.008–1.071) 3.824 1122 (1033–1212) 10.908

Palencia 5.67 1.047 (1.014–1.080) 4.496 1.120 (1.020–1.220) 10.722 1.220 (1.113–1.327) 18.026 1129 (1031–1228) 11.459

Pontevedra 1.32 (–) (–) 1.051 (1.011–1.091) 4.838 1.164 (1.164–1.165) 14.103 (–) (–)

Salamanca 12.36 1.045 (1.006–1.084) 4.295 1.223 (1.005–1.440) 18.211 (–) (–) 1063 (0998–1128) 5.906

Segovia 21.42 1.005 (1.002–1.008) 0.496 1.082 (1.010–1.154) 7.574 1.016 (1.001–1.030) 1.547 1205 (1182–1228) 17.008

Sevilla 1.18 (–) (–) (–) (–) (–) (–) (–) (–)

Soria 20.18 1.150 (1.007–1.293) 13.034 (–) (–) 1.191 (1.115–1.266) 16.028 1736 (1326–2145) 42.380

Tarragona 3.43 1.086 (1.004–1.169) 7.953 (–) (–) 1.251 (1.115–1.388) 20.082 (–) (–)

Toledo 8.62 (–) (–) 1.106 (1.010–1.202) 9.555 (–) (–) (–) (–)

València/Valencia 2.28 1.006 (1.002–1.011) 0.625 (–) (–) (–) (–) 1203 (1082–1324) 16.864

Valladolid 8.12 1.023 (1.003–1.043) 2.228 1.085 (1.006–1.165) 7.868 1.031 (1.011–1.051) 3.018 (–) (–)

Zamora 6.20 1.064 (1.005–1.123) 6.002 3.501 (1.136–5.865) 71.435 1.454 (1.115–1.794) 31.238 1201 (1082–1319) 16.712

Zaragoza 6.01 1.029 (1.009–1.049) 2.818 (–) (–) (–) (–) (–) (–)

Santa Cruz de Tenerife 0.96 (–) (–) 1.927 (1.013–2.841) 48.097 (–) (–) (–) (–)

Las Palmas de Gran 
Canarias

0.32 (–) (–) (–) (–) (–) (–) (–) (–)
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another study carried out in three French provinces sug-
gested that an increase in PM10, generated an increase 
in CM [41]. It has also been observed that an increase in 
CM was associated with an increase in the concentration 

of PM2.5 in the United States [62]. Our results coincide 
with a study in China that found that increases in the 
concentrations of PM10 and PM2.5 were correlated with 
an increase in CM [67]. Although there are studies that 

Deaths PM10 by provinces

Not analyzed
No Assosiation

Map 1a: Risk map COVID-19 mortality rate (CM) vs PM10 in Spain February-May 2020-Tertiles in natural break

Deaths NO2 by provinces

Not analyzed
No Assosiation

Map 1b: Risk map COVID-19 mortality rate (CM) vs NO2 in Spain February-May 2020-Tertiles in natural break

Deaths Tmax by provinces

Not analyzed
No Assosiation

Map 1c: Risk map COVID-19 mortality rate (CM) vs Tmax in Spain February-May 2020-Tertiles in natural break

Deaths HA by provinces

Not analyzed
No Assosiation

Map 1 d: Risk map COVID-19 mortality rate (CM) vs HA in Spain February- May 2020- Tertiles in natural

Fig. 1  Risks of air pollutants and atmospheric variables associated with the COVID-19 mortality rate (CM) in provinces in Spain (*) from Feb. 1, to 
May 31, 2020. a Risk map COVID-19 mortality rate (CM) vs PM10 in Spain February–May 2020-tertiles in natural break; b risk map COVID-19 mortality 
rate (CM) vs NO2 in Spain February–May 2020-tertiles in natural break; c risk map COVID-19 mortality rate (CM) vs Tmax in Spain February–May 
2020-tertiles in natural break; d risk map COVID-19 mortality rate (CM) vs HA in Spain February–May 2020-tertiles in natural break

Table 3  Percentage of air pollutants and atmospheric variables associated with the COVID-19 mortality rate (CM) in provinces in 
Spain (a) from Feb. 1, to May 31, 2020

a Studied provinces: 41 of 52; some provinces were not studied due to incomplete information

CM COVID-19 mortality rate

Association with air pollutants Association with atmospheric 
variables

PM10 NO2 Tmax HA

COVID-19 mortality rate

 Total Spanish provinces studied 41 41 41 41

 Number of Spanish provinces with an association 27 24 21 18

 % of Spanish provinces with an association 65.85 58.54 51.22 43.90



Page 9 of 12Culqui Lévano et al. Environmental Sciences Europe           (2022) 34:39 	

mention a high correlation between PM10 and PM2.5, 
PM10 has been independently associated with COVID-
19 mortality specifically, such that it has come to be con-
sidered an independent predictor of mortality due to 
COVID-19 and is probably an early indicator of epidemic 
recurrence [55]. Along these lines, our study identified 
66 percent of provinces associated with CM and PM10, 
which was the greatest percentage among the pollutants 
and atmospheric variables studied (see Table 3).

NO2
The effect of NO2 on the aggravation of respiratory dis-
eases has been shown above all in children [33]. There is 
scarce evidence among adults. On the other hand, stud-
ies of healthy volunteers have shown that environments 
with NO2 induce infiltration of inflammatory cells in 
airways [25]. Furthermore, it is believed that the expo-
sure to pollutants such as NO2 could inhibit antimicro-
bial responses, reducing the elimination of the virus and 
promoting pulmonary infection [58]. In studies prior to 
the pandemic, it has been shown that acute exposure to 
NO2 causes oxidative stress and worsening of pulmonary 
function [26].

It has been suggested that patients with cardiovascu-
lar risks infected with SARS-CoV-2 could have higher 
levels of angiotensin 2 (ECA2), [34]. This could produce 
a disequilibrium in the anti-inflammatory response and 
contribute to a worsening of pulmonary function. Along 
these lines, one study established a possible role of NO2 
in interfering with ECA2, due to the fact that a great 
quantity of ECA2 was identified in the epithelial cells of 
the lung after exposure to NO2 [4].

Studies related to COVID incidence have shown a 
greater association between COVID-19 incidence and 
NO2 in England ([58], and France [41]). In Spain, a study 
showed a short-term association between NO2 and the 
incidence and severity of COVID-19, but such an asso-
ciation was not found for CM [38]. Another study car-
ried out by the European Space Agency (ESA) showed 
that 78% of deaths due to COVID-19 were concentrated 
in five areas in northern Italy and in central Spain, areas 
that also had high levels of NO2 [44]. A study in Eng-
land found that long-term exposure to NO or NO2 was 
associated with an increase in CM, which confirms the 
findings at the regional and subregional level of associa-
tions between zones with greater concentrations of NO2 
(above 100  µmol/m2) and zones with higher CM [58]. 
However, in our study, the analysis of long-term exposure 
to NO2 (see Additional file 1: Table S1) did not identify 
an association with CM.

The bibliography referenced in this discussion shows 
studies that link PMs with CM, and there are fewer stud-
ies that relate NO2 to CM. A study carried out in Queen 

County, New York (USA) identified a negative relation-
ship between PM2.5 and CM [2]. When concentrations 
of PM2.5 were studied in the selected areas, the study 
confirmed that concentrations of PM2.5 were much 
lower than in the studies that found a greater associa-
tion between CM and PM2.5 in Italy [24] and China [68]. 
The authors concluded that in these zones, other pollut-
ants such as NO2 and SO2 could have had a much greater 
influence on the transmission and pathogenesis of 
COVID-19. This would suggest that in the places where 
PM concentrations are high, it is more likely that there is 
an association between CM and PM, and in places where 
PM concentrations are lower, other environmental pol-
lutants could compete for an association with CM, which 
would explain some of the differences in the associa-
tions identified in some of the provinces studied in Spain. 
These studies agree with our findings of a greater number 
of provinces with an association between PM10 and CM 
(66%), followed by 58.54% of provinces with an associa-
tion between CM and NO2.

Tmax and HA
Although some authors link temperatures to greater 
virus transmission [37], a systematic review reveals that 
much of the evidence analyzed related to the association 
between temperature and the incidence of COVID-19 is 
considered low quality, due to defects in study design or 
missing information [42].

Prior to the pandemic, some authors considered that 
low levels of humidity could be an important risk fac-
tor for respiratory diseases, and that low humidity itself 
could cause a wide increase in the mortality rates due to 
respiratory diseases [5, 15] and could even increase mor-
tality rates due to SARS [56]. At the beginning of the pan-
demic, some authors published articles stating that the 
transmission of SARS-CoV-2 was more efficient at lower 
temperatures and low humidity [51], based on laboratory 
studies in which SARS-CoV became inactive an higher 
temperatures and humidity [8]. However, the evidence 
around the relationship between temperature and CM, 
or the relationship between HA and CM, remains scarce. 
One study showed that an increase of one unit in humid-
ity and in the range of daily daytime temperature was 
positively associated with a change of 0.28% and 2.22% 
in CM, respectively [47]. Another study in 166 countries 
identified a negative correlation between temperature 
and the number of deaths, and a negative relationship 
between relative humidity and the number of deaths 
[60–64]. In the present study we also identified a nega-
tive association, both for temperature and CM and for 
HA and CM. However, at the Spanish national level, both 
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temperature and HA (atmospheric variables) presented 
a lower percentage of associated provinces, compared 
to the air pollutant variables (see Table 3). Therefore, the 
role played by atmospheric variables in CM is not yet 
clear.

Geographical distribution and other health 
determinants
In order to explain the differences in the geographi-
cal distribution of the studied variables, we carried out 
an analysis of other health determinants based on the 
Lalonde–Laframboise model of health determinants (see 
Additional file  1: Table  S1). However, we were not able 
to identify any health determinant associated with the 
GLM in the studied provinces. It could be that despite 
the fact that air pollutants and atmospheric variables are 
not sufficient alone to explain high CM, the determinants 
included in our model are not directly related to COVID-
19 mortality. On the other hand, there are other variables 
that could be related to CM, for example sex, age, co-
morbidities, and access to intensive care services, among 
others, which, due to the study design, were impossible to 
measure in sufficient detail.

Conclusions
Our study identified atmospheric variables and air pol-
lutants related to CM. Among the air pollutants, the role 
of PM10 is worth highlighting, as the chemical air pollut-
ant for which there was a greater number of provinces in 
which it was associated with CM. The role of the meteor-
ological variables—temperature and HA—was much less 
compared to that of the air pollutants.

None of the social determinants we proposed could 
explain the heterogeneous geographical distribution 
identified in this study. This is probably due to the fact 
that the variables to which we had access during our 
analysis are not the only variables that influence COVID-
19 mortality. Mortality is also affected by factors such as 
access to mechanical fans, availability of emergency med-
ical staff, pneumologists, and specialists in intensive care 
units, among other factors. Information on these factors 
was not available during the course of the analysis.

Limitations
The methodology of the analysis of this is a descrip-
tive observational study. Specifically, it is a population-
based ecological study. Generally, in epidemiological 
studies it constitutes a basic level of evidence. This 
type of study does not allow for a causal relationship; 
but it constitutes a useful exploratory approach [49]. 
The study carried out by the authors corresponds to 
an ecological time series design, with all the epide-
miological limitations inherent to this type of study 

[60], especially the ecological fallacy. The two previous 
points show the need for prudence when extrapolating 
the results to other temporal situations different from 
those corresponding to the moment of carrying out 
this study.

The period of confinement affected the exposure to 
pollutants [50, 52, 66] and to environmental variables 
in all of the provinces, above all in the provinces with a 
very low incidence. This decrease in air pollution levels 
as a consequence of confinement may affect the associ-
ation that may exist between air pollution and COVID-
19. However, it should be taken into account that the 
study design included the values of the atmospheric 
pollutants considered 28  days prior to the start of the 
confinement in Spain.

In addition, the lack of a polymerase chain reaction 
tests and its heterogeneous provincial distribution is 
an important bias that may condition the results of this 
study, especially in the incidence rate.

On the other hand, the environmental variables of 
exposure were not measured where the people who 
died were. The fact of using a single meteorological 
observatory or a few pollution measurement stations 
per province indicates that they cover very wide areas; 
which is associated with the Berkson type error [54].
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