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A critical view on the suitability of machine learning
techniques to downscale climate change projections:
Illustration for temperature with a toy experiment
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vides a series of techniques able to solve complex nonlinear problems, and that
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has promoted their application for statistical downscaling. Intercomparison

Email: ahernanzl@aemet.es Nevertheless, many evaluation studies of statistical downscaling methods
neglect the analysis of their extrapolation capability. In this study, we aim to
make a wakeup call to the community about the potential risks of using
machine learning for statistical downscaling of climate change projections. We
present a set of three toy experiments, applying three commonly used machine
learning algorithms, two different implementations of artificial neural net-
works and a support vector machine, to downscale daily maximum tempera-
ture, and comparing them with the classical multiple linear regression. We
have tested the four methods in and out of their calibration range, and have
found how the three machine learning techniques can perform poorly under
extrapolation. Additionally, we have analysed the impact of this extrapolation
issue depending on the degree of overlapping between the training and testing
datasets, and we have found very different sensitivities for each method and

specific implementation.
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1 | INTRODUCTION often filled by applying some type of downscaling over

GCMs outputs (Maraun et al., 2010). The two primary
Global climate models (GCMs) are the main tool to simu-  categories of downscaling techniques are (1) dynamic
late future climate projections, but their coarse resolution =~ downscaling, mostly by nesting high resolution regional
makes them unsuitable for the local scale (Charles climate models (RCMs) in GCMs and (2) statistical
et al., 2004; Schoof, 2013; Wilby et al., 2004). This gap is downscaling (SD), by establishing empirical/statistical
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relationships between large-scale predictors and local
surface predictands. SD relies on the following assump-
tions: (1) stationarity of these relationships under climate
change (Wilby et al., 2004); (2) predictors are reliably
simulated by GCMs; (3) predictors contain climate
change signal; and (4) predictors are strongly correlated
with predictands (Wilby et al., 2004). There are many dif-
ferent approaches to SD, each with its strengths and
weaknesses, and the VALUE EU COST Action (Maraun
et al., 2015) established a framework to evaluate and
intercompare them.

Machine learning (ML) techniques are able to simu-
late complex nonlinear relationships, what has promoted
their application as statistical downscaling models
(SDMs) (see, e.g., Goyal et al., 2012; Li et al., 2020;
Sachindra et al., 2018; Vandal et al., 2019). Nevertheless,
Hsieh (2009) pointed out the risk of using ML techniques
to downscale climate change projections. While they
have proved able to map complex functions, they can
exhibit significantly different behaviours in and out of
their calibration range.

Many evaluation studies limit to the so-called Perfect
Predictor experiment (Maraun & Widmann, 2018;
Maraun et al., 2015), which usually does not explicitly
test the behaviour of SDMs under extrapolation, and
never does it under such a degree of extrapolation as it is
expected in the future. The ability of SDMs to extrapolate
can be evaluated in different ways. A first option consists
in splitting a historical dataset in training/testing samples
in a specific way, for example by leaving the warmest/
driest years for validation. This analysis allows to explore
a certain degree of extrapolation, but usually narrower
than the one expected in future projections. Some exam-
ples of this approach can be seen in Gutiérrez et al. (2013),
San-Martin et al. (2017) and Bafio-Medina et al. (2020).
Another approach consists of using of RCMs as pseudo-
observations to train SDMs in a historical period and
evaluate them in the future, the so-called pseudo-reality
experiments (Maraun & Widmann, 2018; Maraun
et al., 2015). These experiments check the necessary (but
not sufficient) condition of SDMs being able to reproduce
climate change signal given by GCM-RCMs, and must be
limited to those variables which are realistically simu-
lated by GCM-RCMs. Although this approach allows the
analysis of a wider range of extrapolation, it introduces a
source of uncertainty associated with RCMs. Some exam-
ples of this approach can be found in Charles et al. (1999),
Vrac et al. (2007), Gaitan et al. (2014) and Hernanz
et al. (2021). And finally, another possible approach con-
sists in comparing raw GCMs with SDMs, which can only
be done by averaging over large enough areas. This
approach allows to analyse whether SDMs are able to
preserve trends projected by GCMs, but it cannot tackle

imperfections on the finer spatial scales. Some examples
of this approach can be found in Vandal et al. (2019), Xu
et al. (2020) and Bafio-Medina et al. (2021). Although
each approach has its drawbacks, these types of studies
are very valuable and can reveal significant extrapolation
issues.

In this paper, we perform a set of three toy experi-
ments in order to show how some ML techniques com-
monly used to downscale climate change projections can
behave extremely wrong under extrapolation. The main
objective of this paper is to make a wake-up call to the
community on the potential risks of using these tech-
niques, to reinforce the need of some kind of extrapola-
tion analysis as a key piece of SDMs evaluation studies
and to analyse the sensitivity of three common ML SDMs
to the degree of overlapping between the training and
testing datasets. The paper is organised as follows. First,
a description of the datasets used is given at Section 2,
followed by a brief introduction to the downscaling
methods in Section 3. The experiment design is explained
in Section 4. And finally, results and concluding remarks
are shown and discussed in Sections 5 and 6,
respectively.

2 | DATA

In order to keep this study as simple and clear as possi-
ble, it has been limited to the downscaling of daily maxi-
mum surface temperature (TMAX) using temperature at
850 hPa (T850) as the only predictor. This predictor
meets three out of the four conditions enumerated in
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FIGURE 1
coefficient between T850 (interpolated from the reanalysis

Spatial distribution of Pearson correlation

ERA-interim) and daily maximum temperature (from the high
resolution AEMET grid [0.05°]). See text for details
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Section 1: reliability by GCMs, signal of climate change
and strong correlation with predictand (see Figure 1).
Note that this simple choice of T850 as the unique predic-
tor is only reasonable when near surface and free atmo-
sphere are strongly coupled.

T850 has been taken from the reanalysis ERA-Interim
(Dee et al., 2011) of the European Centre for Medium-
Range Weather Forecasts (ECMWF) for the domain
(45° N, 34.5° N, 10.5° W, 4.5° E) with spatial resolution of
1.5° x 1.5° and as daily mean values (from 00, 06, 12 and
18 UTC). It has been interpolated to each target point with
a bilinear interpolation of the four nearest neighbours and
standardised so it is used in the form of anomalies.

TMAX has been taken from a high resolution grid
(0.05°) consisting of 16,156 points over Spain (mainland
and Balearic Islands) developed by AEMET (Peral
et al., 2017). This grid has been generated using an adap-
tation of the HIRLAM Surface Analysis code (Navascués
et al., 2003; Rodriguez et al., 2003), based on an Optimum
Interpolation algorithm (Daley, 1991), applied over a
selection of 1800 stations from the AEMET observational
network.

Both datasets cover the period 1980-2016, and the
training/testing split has been performed in different ways
for each of the three experiments explained in Section 4.

3 | DOWNSCALING METHODS

For these experiments we have applied three commonly
used ML techniques, two different implementations of
artificial neural network (ANN) and a support vector
regression (SVR), and we have compared their results
with the classical method of multiple linear regression
(MLR). Note that, since this particular problem is one-
dimensional, MLR really corresponds to a simple linear
regression. For their implementation, we have used the
Python machine learning library Scikit-learn (Pedregosa
et al., 2011).

ANNSs (McCulloch & Pitts, 1943; Rosenblatt, 1958) are
supervised learning algorithms based on the biological
neurons' behaviour, imitating them by nodes which work
as perceptrons (Rosenblatt, 1958). In the popular imple-
mentation of ANNs called multilayer perceptron (MLP),
these nodes are organised in several layers, the input
layer, the output layer and a set of hidden layers, which
communicate with adjacent layers. Each node receives
several input signals (x;) from the (m) nodes at the previ-
ous layer and adds them with different weights (wj)
(Equation 1). This resulting input signal (z) is then fed to
an activation function (g), so the node will pass a signal
to the next layer depending on whether the activation
function exceeds a certain threshold or not. For these

experiments, we have used two different
implementations of ANN, one using a rectified linear unit
activation function (ANN-RELU) and the other using a
logistic activation function (ANN-LOG)

m
z:ijxj. (1)
=1

The training of an MLP consists in searching those
weights which minimise errors, and it is usually achieved
by an iterative process in which signals are transmitted
forward, errors are propagated backwards and weights
are updated until a certain condition is fulfilled. During
this iterative process, ANNs algorithms can get trapped
in local minima, which is one of their major drawbacks,
along with their high computational training cost. ANNs
can tackle both classification and regression problems,
and they have been extensively applied to SD (Chadwick
et al, 2011; Coulibaly et al, 2005; Dibike &
Coulibaly, 2006; Mendes & Marengo, 2013; Sailor
et al., 2000; Snell et al., 2000; Trigo & Palutikof, 1999).

SVMs (Boser et al., 1992; Cortes & Vapnik, 1995;
Vapnik, 1995) are supervised learning algorithms origi-
nally designed for classification based on a combination
of minimal errors and maximising distances from data
points to the boundary decision (maximal margins).
A slightly different version of the algorithm, SVR, can be
applied to regression problems. Linear SVR (Drucker
et al., 1997) searches for the optimum hyperplane
(defined by its parameters w, wy) by penalysing only
errors greater than a certain threshold (¢), which defines
the so-called e-tube. The nonlinear problem is tackled by
mapping original data (x), through a transformation (¢),
to a higher dimensional space (feature space) where the
problem becomes linear. Thus, an SVR corresponds to
the hyperplane in the feature space:

y=w"p(x) +wo. 2)

And the combination of minimal errors and maximal
margins corresponds to minimising

1 4 i
EWTW—FC ;(éi—&-é ) (3)

subject to

yi— (W) +we) <e+&,i=1,2,...m,
(WT(p(xi)+Wo) _yisg+§i*’i:1’2’"-’n’ (4)
£,67>0,i=1,2,...,1,
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where ¢; and &%, called slack variables, are the penalties
corresponding to errors out of the e-tube, x;, y; correspond
to pairs of data points and C is a hyperparameter that
establishes the balance between errors and maximal mar-
gin. For a more detailed description on SVR, see Drucker
et al. (1997). Expensive high-dimensional computations,
usually referred to as the curse of dimensionality, are
avoided by the so-called kernel trick (see Shawe-Taylor &
Cristianini, 2004), which consists in visiting the feature
space exclusively to compute inner products of pairs of
points without explicitly mapping each point individu-
ally. This is only possible by carefully defining the inner
product as a specific function called kernel (K) with some
desired properties. For this work, we have used a radial
basis function kernel of variance >

K)ot plg)=e =~ (5)

Finally, the problem consists of solving a convex qua-
dratic programming problem, or a set of linear equations
in the least-square support vector machine variant
(Suykens & Vandewalle, 1999), both of them lacking the
inconvenience of local minimum. Different forms of SVMs
have been widely applied to SD, both for classification and
regression (Anandhi et al., 2008; Chen et al, 2010;

Experiment 1

Experiment 2

Ghosh & Mujumdar, 2008; Hou et al., 2014; Sachindra
et al., 2013; Tripathi et al., 2006; Yu & Liong, 2007).

4 | EXPERIMENT DESIGN

In order to prove how ML techniques can exhibit strange
behaviours out of their calibration range and to analyse
their sensitivity to the degree of extrapolation, three toy
experiments have been performed (Figure 2).

Experiment 1: “full overlapping”—for each grid point,
the training/testing split is performed randomly in a
60/40 ratio. The aim of this first experiment is to evaluate
and intercompare the three methods when no extrapola-
tion takes place.

Experiment 2: “no overlapping”—for each grid point,
the 60th percentile of T850 is used as a threshold for the
training/testing split, using values under it for training
and values over it for testing. The aim of this experiment
is to compare the three methods under extrapolation, in
the extreme and non-realistic case of zero overlapping
between the training and testing datasets.

Experiment 3: “partial overlapping”—for each grid
point, the training/testing split is performed randomly in
a 60/40 ratio as in Experiment 1. But the testing dataset
is then modified by shifting predictors to higher values

Experiment 3
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FIGURE 2 Illustrative scheme of the training (grey) and testing (red) datasets, for a single grid point. Experiment 1: “full overlapping”

(first column), Experiment 2: “no overlapping” (second column) and Experiment 3: “partial overlapping” (third column). Of the different
shifts applied in Experiment 3 (ranging from +0.5 to +4 standard deviations), this figure corresponds to the specific shift of +1.5 standard
deviations. The upper row shows standardised T850 (x-axis) versus TMAX (°C, y-axis), and the lower row shows the frequency (counts)

of T850
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and using the estimates from MLR as predictands, since
in experiment 3 there are no observed predictands. Dif-
ferent shifts have been applied: +0.5, +1, +1.5, ..., +4
standard deviations. This experiment aims to analyse the
sensitivity of each method to the level of extrapolation,
with a more realistic approach than Experiment 2 in
terms of shape of the training and testing distributions
and degree of overlapping between them. On the other
hand, it is important to remark that this experiment
relies on the assumption of linear relationship between
T850 and TMAX, for it validates against linearly extrapo-
lated data instead of against real data. But given the high
linear correlation between T850 and TMAX in the
observed range (Figure 1) it seems a reasonable assump-
tion to be made for the purpose of this experiment.

In the three experiments, 8110 days are used for train-
ing and 5405 for testing, and the hyperparameter tuning
is performed by cross-validation using exclusively the
training data set. SDMs are validated with the testing
dataset by their root mean square error (RMSE).

Additionally, for Experiment 2, SDMs have been
applied over both the training and testing datasets, in order
to visualise their behaviour out of the calibration range.

5 | RESULTS

In the first experiment, all SDMs achieve similar RMSEs,
with slightly better results for ML techniques (Figure 3).

ANN-RELU

Nonlinear methods do not add much value here because
of the high linear correlation among predictor and
predictand (Figure 1). Nevertheless, these very same
methods have proved to overcome MLR when using a
greater set of predictors (Hernanz et al., 2021).

When applied under extreme extrapolation, ML tech-
niques display very high RMSEs compared to MLR
(Figure 3). Despite the similar RMSEs of the four SDMs in
Experiment 1, their RMSEs in Experiment 2 differ signifi-
cantly. Whereas the mean RMSE goes from 2.58°C in Exper-
iment 1 to 3.29°C in Experiment 2 for MLR, for ANA-RELU
it goes from 2.51 to 6.06°C, for ANA-LOG it goes from 2.49
to 7.66°C and for SVR it goes from 2.51 to 5.52°C. Some
regions present much larger RMSEs than in Experiment
1, while in other regions RMSEs barely increase. A possible
explanation comes with the fact that regions with larger
RMSE:s correspond to some of the main Spanish valleys with
high occurrence of fog, especially in winter, which strongly
condition daily maximum temperatures and could lead to a
certain uncoupling between T850 and TMAX. A further
analysis of this evidence is out of the scope of this work, but
it might constitute an interesting future study.

An illustrative example of the different behaviours by
the four methods under extrapolation, over a single grid
point, is shown in Figure 4. The four methods map a sim-
ilar relationship between T850 and TMAX over the train-
ing sample, but their behaviours diverge largely under
extrapolation, where ANN-RELU, ANN-LOG and SVR
do not perform well.

ANN-LOG SVR

3.29

o} 2 a

FIGURE 3

Spatial distribution and spatial mean of RMSE (°C) for daily maximum temperature in Experiments 1 (upper row) and

2 (lower row) by MLR (first column), ANN-RELU (second column), ANN-LOG (third column) and SVR (fourth column)
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FIGURE 4 Standardised T850 versus observed (grey) and

downscaled maximum temperature (°C) by MLR (blue),
ANN-RELU (orange), ANN-LOG (red) and SVR (green) over the
training (white background) and testing (red background) datasets
for Experiment 2. This figure represents an illustrative example
over a single grid point of coordinates 1.730° W and 37.318" N

Finally, Figure 5 shows results from Experiment 3, in
which the three ML methods are evaluated for different
degrees of extrapolation. MLR is not evaluated in this
experiment, because the linear relationship has been
used to build the shifted testing datasets. While the three
methods displayed extrapolation problems of the same
order in Experiment 2 (Figure 3), ANN-RELU behaves
much better than ANN-LOG and SVR under extrapola-
tion in this third experiment, in which the training and
testing distributions overlap in a more realistic way. For
example, for a shift of +0.5 standard deviations and a
percentage of testing data out of the calibration range of
0%-3%, RMSEs by ANN-RELU increment up to 6% com-
pared to Experiment 1, but for ANN-LOG and SVR these
increments go up to around 20%. For a shift of +1 stan-
dard deviation (0%-13% of data out of range), ANN-
RELU increments its RMSEs up to 19%, while ANN-LOG
and SVR reach 63% and 147%, respectively. And for a
shift of +2 standard deviations (10%-36% of data out of
range), ANN-RELU goes up to 53% increments, while
ANN-LOG and SVR reaches increments of 263%
and 775%.

6 | CONCLUDING REMARKS

ML is a growing field with many applications in atmo-
spheric sciences, being SD of climate change projections
one of them. In this study, we have analysed the behav-
iour of three commonly used ML techniques, two
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FIGURE 5 Increment of RMSE (%) for ANN-RELU (first
panel, orange), ANN-LOG (second panel, red) and SVR (third
panel, green) at Experiment 3, for different shifts applied to the
testing dataset. The fourth panel (grey) shows, for each shift, the
amount of testing data (%) that lies out of the calibration range.
Each box contains the quartiles of all grid points (16,156 data) and
the whiskers extend to a maximum of 1.5 times the interquartile
range. Outliers beyond this range are plotted individually. Note that
vertical scales are different for each panel

different implementations of ANN (ANN-RELU and
ANN-LOG) and an SVR, under extrapolation, through a
set of three toy experiments: the first one to evaluate
them when no extrapolation takes place, the second one
to evaluate them in the extreme case of no overlapping
between the training and testing datasets and the third
one to analyse their sensitivity to the degree of over-
lapping. We have proved how the three ML SDMs can
behave extremely wrong out of their calibration range,
despite their scores inside the calibration range being as
good as or even better than those for MLR. Then, we
have analysed the impact of this potential extrapolation
issue depending on the degree of overlapping between
the training and testing datasets. We have found that
ANN-RELU errors, when some degree of overlapping
takes place, are much lower than those of ANN-LOG and
SVR, which has revealed to be extremely sensitive to
extrapolation.

This set of experiments has allowed us to prove how
three commonly used ML techniques can perform wrong
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under extrapolation, so their suitability for SD of climate
change projections should be seriously questioned. Fur-
thermore, we have seen how, for a specific technique
(ANN), extrapolation issues are very sensitive to the par-
ticular implementation. For this technique, we have com-
pared two commonly used activation functions, but other
architectures and implementations are possible and also
common. For this reason, results shown here might not
be straightforward generalised to other techniques or spe-
cific implementations, and the extrapolation capability of
these methods should be thoroughly examined for each
case (variable, region, set of predictors, architecture, etc.).

It is important to clarify that these experiments do
not intend to replace other more realistic evaluation
approaches which also tackle the extrapolation issue, like
the ones mentioned in Section 1. Nonetheless, it is worth
noting to remark that experiments which validate over
spatially/temporarily aggregated data might hide extrapo-
lation problems in finer spatial/temporal scales. Thus, we
consider that analysing the response of ML SDMs
through synthetic extrapolation experiments like these
ones constitutes a good practice and a first recommended
step to detect and be aware of their potential risks.

Finally, we would like to point to the emerging field
of  Physics-Constrained  Machine  Learning  (see,
e.g., Willard et al., 2020; Kashinath et al., 2021) as a possi-
ble way of alleviating these extrapolation problems, by
reducing the high amount of degrees of freedom that
these techniques cope with.
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