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Abstract

The Spanish Meteorological Agency (AEMET) is responsible for the elabora-

tion of downscaled climate projections over Spain to feed the Second National

Plan of Adaptation to Climate Change (PNACC-2) and this is the last of three

papers aimed to evaluate and intercompare five empirical/statistical downscal-

ing (ESD) methods developed at AEMET: (a) Analog, (b) Regression,

(c) Artificial Neural Networks, (d) Support Vector Machines and (e) Kernel

Ridge Regression, in order to decide which methods and under what configu-

rations are more suitable for that purpose. Following the framework

established by the EU COST Action VALUE, in this experiment we test the

transferability of these methods to future climate conditions with the use of

regional climate models (RCMs) as pseudo observations. We evaluate the mar-

ginal aspects of the distributions of daily maximum/minimum temperatures

and daily accumulated precipitation, over mainland Spain and the Balearic

Islands, analysed by season. For maximum/minimum temperatures all

methods display certain transferability issues, being remarkable for Support

Vector Machines and Kernel Ridge Regression. For precipitation all methods

appear to suffer from transferability difficulties as well, although conclusions

are not as clear as for temperature, probably due to the fact that precipitation

does not present such a marked signal of change. This study has revealed how

an analysis over a historical period is not enough to fully evaluate ESD

methods, so we propose that some type of analysis of transferability should be

added in a standard procedure of a complete evaluation.
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1 | INTRODUCTION

The Spanish Meteorological Agency (AEMET) is respon-
sible for the elaboration of downscaled climate projec-
tions over Spain to feed the Second National Plan of
Adaptation to Climate Change (PNACC-2) and this is the
last of three papers aimed to evaluate five empirical/
statistical downscaling (ESD) methods developed at
AEMET.

The methodology adopted for the complete evaluation
follows the guidelines proposed by Vrac et al. (2007) and
the EU COST Action VALUE (Maraun et al., 2015) and
consists of a set of three experiments: “Experiment 1: per-
fect predictor,” “Experiment 2: global climate model
(GCM) predictor” and “Experiment 3: pseudo reality.”
The first experiment (Hernanz et al., 2021) showed good
results by the five methods both for the mean values and
the tails of maximum/minimum temperatures. As for
precipitation, most methods were able to capture the
total precipitation amount, but only a few methods and
configurations seemed suitable for extreme events and
for the precipitation occurrence. The second experiment
(Hernanz et al., 2021) showed how ESD methods pres-
ented a significant sensitivity to the use of imperfect pre-
dictors from GCMs and in this third paper we study the
transferability of those methods to future conditions with
the use of pseudo observations from regional climate
models (RCMs) as predictands. Pseudo reality experi-
ments are aimed to reveal whether predictors/predictand
relationships found by ESD methods at a historical period
are transferable to future climate conditions and whether
predictors necessary to simulate the response to climate
change have not been taken into account (Maraun
et al., 2015; Maraun and Widmann, 2018).

Pseudo reality experiments use RCMs not only to
evaluate ESD methods but also to calibrate them. By cali-
brating and evaluating ESD methods with predictands of
the same nature, small imperfections on GCM+RCMs
are not expected to have a strong impact on the conclu-
sions. This methodology somehow assumes that RCMs
do not have transferability issues, which is not granted;
although RCMs rely mainly on physical laws, they also
contain empirical parameterizations which might vary
under future climate conditions, and they are not usually
evaluated in terms of their ability to capture the observed
trends but in terms of their biases. Nevertheless, GCMs
and RCMs here used have been widely evaluated over
different regions of the globe at CMIP and CORDEX
experiments, which enables certain confidence in their
transferability to different climates. Pseudo reality experi-
ments allow to check whether ESD methods are able to
capture the climate change signal. However, these experi-
ments represent a necessary but not sufficient condition,

since there are differences between the real world and
the pseudo reality world, and they cannot be used to eval-
uate those aspects which are not realistically simulated
by the GCM+RCM, such as for example, extreme precipi-
tation when using models that parameterize convection
(Maraun and Widmann, 2018).

The use of pseudo observations to study transferabil-
ity of ESD methods has been applied in the past. Charles
et al. (1999) evaluated a nonhomogeneous hidden
Markov model to downscale daily precipitation over
Australia using pseudo observations from one RCM both
in a historical period and in a 2×CO2 context. They found
that its validation under present and 2×CO2 conditions
were different and also that predictor selection played an
important role in the transferability. Gaitan et al. (2014)
evaluated a large ensemble of ESD methods to downscale
daily precipitation over Canada in a historical period and
under a future SRES A2 scenario (IPCC, 2000), also by
using pseudo observations from one RCM. Among the
numerous methods they evaluated there were different
versions of Analog methods, Regression methods and
Artificial Neural Networks, and they found that,
although some methods performed similarly in present
and future regarding the precipitation occurrence, errors
related with the precipitation amount were bigger in
future than in present for all methods. van der Linden
and Mitchell (2009) also evaluated Analog methods,
Regression methods and Artificial Neural Networks over
Europe in a historical period and in a SRES A1B scenario
(IPCC, 2000) using one RCM and they found that ESD
methods achieved worse results as far in the future they
were evaluated. Erlandsen et al. (2020) evaluated an ESD
method based on “downscaling climate” instead of
“downscaling weather,” which consists in estimating
parameters of the distributions instead of daily data
(Benestad, 2021). They combined this approach with the
use of common EOFs (Benestad, 2001; 2021) using a con-
vective permitting RCM over the emissive scenario
RCP8.5 (see IPCC, 2013) and found a significant sensitiv-
ity to the predictors choice and to the calibration period.

On the other hand, other approaches to study the
transferability of ESD methods are possible. Gutiérrez
et al. (2013) validated a large ensemble of ESD methods
for maximum/minimum temperature over Spain by
selecting the warmest years of a historical period. They
found a significant underestimation by all methods com-
pared to their validation in regular years. This underesti-
mation was more marked in methods exclusively based
on weather typing and analogs, and less marked in Multi-
ple Linear Regression, both alone or combined with
weather typing approaches. San-Martín et al. (2017) did
the same for precipitation, validating over the driest years
of a historical period, given that climate projections point
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to a drier future climate in the region. They found a cer-
tain and similar overestimation by all methods, and they
concluded that transferability was more sensitive to the
set of predictors used than to the ESD method itself.

It is important to emphasize that, although the assump-
tion of transferability is a well-known limitation of ESD
methods, few evaluation studies include an analysis of
transferability, and it is even less common to find pseudo
reality studies using more than one RCM. For this evalua-
tion we have broadened the methodology proposed by Vrac
et al. (2007) to the comparison of seven different combina-
tions of GCM+RCM, in order to allow an analysis of the
sensitivity of the results to the GCM+RCM used.

The main objective of this paper is to evaluate the
transferability of five ESD methods to future projected
climate conditions and it is organized as follows. First, a
description of the datasets is given at section 2, followed
by a brief introduction to the five downscaling methods,
their different configurations and the methodology used
for the analysis of results in section 3. Results of the eval-
uation are presented in section 4, and finally main con-
clusions are summarized in section 5.

2 | DATA

The following datasets and temporal periods have been
used for this study.

Predictands (daily maximum/minimum tempera-
ture and 24 hr accumulated precipitation) come from
RCMs listed in Table 1, driven by GCMs listed in
Table 2. We have intentionally combined the same
GCM with different RCMs and the same RCM with dif-
ferent GCMs, in order to allow the analysis of sensitiv-
ity to the GCM/RCM used, resulting in the seven
combinations of GCM+RCM listed in Table 3 (two com-
binations have been discarded because of availability or
reliability problems). These models, all of them partici-
pant in the EURO-CORDEX experiment (Jacob
et al., 2014), have been widely evaluated in this context
(see Kotlarski et al., 2014; Katragkou et al., 2015; Del-
l'Aquila et al., 2016; Vaittinada-Ayar et al., 2016; Her-
rera et al., 2020) and they have been selected because of
their fairly good representation of the indexes used for
this work. They cover the region of the study (Spain
mainland and the Balearic Islands) with 3,357 grid

TABLE 1 Regional climate

models (RCMs)
RCM Institution Reference

CNRM-ALADIN63 Centre National de Recherches
Météorologiques (CNRM), France

Nabat et al. (2020)

DMI-HIRHAM5 Danish Meteorological Institute (DMI),
Denmark

Bøssing Christensen
et al. (2007)

KNMI-RACMO22E Royal Netherlands Meteorological
Institute (KNMI), Netherlands

Meijgaard et al. (2008)

TABLE 2 Global climate

models (GCMs)
GCM Institution Reference

CNRM-CM5 Centre National de Recherches
Météorologiques/Centre Européen de
Recherche et Formation Avancée en
Calcul Scientifique (CNRM-
CERFACS), France

Voldoire et al. (2013)

IPSL-CM5A-MR Institut National de l'Environnement
Industriel et des Risques, Verneuil en
Halatte, France/Institut Pierre Simon
Laplace, CNRS (IPSL-INERIS),
France

Dufresne et al. (2013)

MPI-ESM-LR Max-Planck-Institut (MPI) for
Meteorology, Germany

Giorgetta et al. (2013)

TABLE 3 GCM/RCM matrix of

combinations
CNRM-ALADIN63 DMI-HIRHAM5 KNMI-RACMO22E

CNRM-CM5 RCM1 RCM2 RCM3

IPSL-CM5A-MR RCM4 RCM5

MPI-ESM-LR RCM6 RCM7
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points and a spatial resolution of 0.11� (see study area
in Figure 1).

Predictors for calibration and evaluation come from
the same GCMs used to drive those RCMs (see Table 2),
all of them participants in the CMIP5 experiment
(Taylor et al., 2012), in the area (55.5�N, 30�N, 28.5�W,

15�E) with spatial resolution of 1.5� × 1.5� (see predic-
tors domain at Figure S1, Supporting Information) and
daily mean values. Their simulations correspond to the
first realization, first initialization method and first
physics (r1i1p1). In order to scale all predictors, they
are standardized using their own mean and standard
deviation over the period 1961–1990. In addition, they
are interpolated to each target point as a weighted aver-
age of the four nearest neighbours, being their weights
the inverse of the distances. The sets of predictors used
for each variable are listed in Table 4. Predictors in
pseudo reality experiments are ideally taken from the
RCM itself, because RCMs are constrained with the
boundary conditions given by the driving GCM usually
in large domains, so predictors from the GCM and from
the RCM can be significantly different (Maraun and
Widmann, 2018). However, we have used predictors
from the GCMs, which allows us to analyse the impact
of this effect.

For each GCM+RCM, the calibration period corre-
sponds to 1961–1985, and there are two evaluation
periods: 1986–2005 (present) and 2081–2100 (future).
Data for calibration and for evaluation in a present
period come from the historical run. Data used for the
future evaluation period corresponds to the radiative
forcing given by the RCP8.5 (see IPCC, 2013), which has
been chosen for being the most extreme scenario in terms
of climate change.

FIGURE 1 Area of study (Peninsular Spain and Balearic

Islands) [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 4 Predictor variables for the different methods: common variables for maximum/minimum temperature and precipitation

(upper rows), specific variables for both temperatures (middle rows) and variables just for precipitation (lower rows)

Variable Name Levels Units Type

Common T Temperature 500 K Direct

U U wind component 500 m�s−1 Direct

V V wind component 500 m�s−1 Direct

Ug U geostrophic wind component Mean sea level m�s−1 Derived

Vg V geostrophic wind component Mean sea level m�s−1 Derived

SLP Mean sea level pressure Mean sea level Pa Direct

Maximum/minimum
temperature

T Temperature 700, 850 K Direct

Ins Theoretical insolation hr

Precipitation Vtg Vertical thermal gradient Between 500 and
850 hPa

K Derived

Vog Geostrophic vorticity Mean sea level s−1 Derived

Vo Vorticity 500 s−1 Derived

Dg Geostrophic divergence Mean sea level s−1 Derived

D Divergence 500 s−1 Derived

SLP
trend

Mean sea level pressure variation from the
previous day

Mean sea level Pa Derived

Note: Attending their availability, predictors are categorized as direct/derived from GCMs outputs. Theoretical insolation is the theoretical number of hours of

insolation as function exclusively of the latitude and the day of the year.
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Additionally, we have included some results from
Experiment 1, in which predictors come from the
reanalysis ERA-Interim (Dee et al., 2011) of the
European Centre for Medium-Range Weather Forecasts
(ECMWF) and predictands are taken from a high-
resolution observational grid developed by AEMET
(Peral et al., 2017) in 1980–2005.

3 | DOWNSCALING METHODS
AND DIAGNOSTICS

In this section we provide a description of the downscal-
ing methods and the methodology adopted for their
evaluation.

3.1 | Downscaling methods

The five ESD methods and their different configurations
(see Table 5) are briefly presented here. For a more
detailed description see Hernanz et al., 2021. (a) Analog
(ANA) methods (Lorenz, 1969; Zorita and von
Storch, 1999) are based on the assumption of similar local
conditions under similar synoptic situations, and one of
their major drawbacks is their limitation to predict
values outside of the observed range (Imbert and
Benestad, 2005). This method uses Ug, Vg, U500 and

V500 (see Table 1) as large-scale fields and combines the
synoptic analogy with local analogy in different ways.
For precipitation, analog days can be selected following a
nearest neighbour approach (“1”), a n-nearest neighbours
approach (“N”) or taking one randomly with a probabil-
ity (“PDF”) given by their analogy to the target day. It
should be noticed that, for temperature, this method is a
hybrid with a multiple linear regression (MLR), so this
particular implementation does not suffer from the limi-
tation commented above. (b) Regression (REG) consists
in a MLR for temperature and a generalized linear model
(GLM) for precipitation, based on the statistical down-
scaling model (SDSM; Wilby et al., 2002). (c) Artificial
Neural Networks (ANN) (McCulloch and Pitts, 1943;
Rosenblatt, 1958) method uses a multilayer perceptron
(Rosenblatt, 1958) both for temperature and precipita-
tion. (4) Support Vector Machines (SVM) (Boser
et al., 1992; Cortes and Vapnik, 1995; Vapnik, 1995) uses
different versions of SVMs for temperature and precipita-
tion. (5) The last method consists on a combination of
two specific types of SVMs: Kernel Ridge Regression
(KRR) (Vovk, 2013) and Least-Square Support Vector
Machine (LS-SVM) (Suykens and Vandewalle, 1999).
None of the methods here presented make use of EOFs,
but all of them relate predictors and predictands at grid
point scale.

All methods make use of L2 regularization (Hoerl
and Kennard, 1970; Tikhonov and Arsenin, 1977), and
the tuning of the different parameters have been per-
formed by cross-validation in a leave-one-out approach.

Other intercomparison studies of classical methods
and machine learning (ML) techniques can be found in
Zorita and von Storch (1999), Vandal et al. (2019) and Li
et al. (2020).

3.2 | Diagnostics

Although Experiments 1 and 2 analysed both the mean
values and the tails of the distributions for maximum/
minimum temperatures, and three indexes for precipita-
tion related to the total precipitation amount, intense pre-
cipitations and the precipitation occurrence, in this paper
we only have use one index per variable in order to limit
the analysis to the aspects best reproduced by RCMs. For
maximum/minimum temperature we analyse their mean
values (TXm and TNm, respectively) and for precipita-
tion, its mean total amount (PRCPTOT). The precipita-
tion occurrence has been discarded because of the
well-known bias of RCMs to overestimate this magnitude
with low intensities commonly known as drizzle effect
(Gutowski Jr. et al., 2003). And intense precipitation has
also been excluded from the analysis because of possible

TABLE 5 Downscaling methods grouped by three families:

Analog, Regression and machine learning methods

Family Temperature Precipitation

Analog ANA Synoptic analogy:
ANA-SYN-1 (best
analog)

ANA-SYN-N (average)
ANA-SYN-PDF
(probability density
function)

Same but combined with
local analogy:

ANA-LOC-1
ANA-LOC-N
ANA-LOC-PDF

Regression REG REG-LIN (linear)
REG-EXP (exponential)
REG-CUB (cubic)

Machine
learning

ANN (Artificial
Neural Network)

SVM (Support
Vector Machines)

KRR (Kernel Ridge
Regression)

ANN
SVM
KRR
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misrepresentations by RCMs under climate change
(Kendon et al., 2014). For each of the selected indexes
and for each GCM+RCM from Table 3, we have com-
puted the bias, the mean error (ME) and the root mean
square error (RMSE), in absolute terms for temperature
and relative for precipitation, at both evaluation periods
(present and future). Note that the three indexes corre-
spond to temporal aggregations (mean or sum), so they
result in a pair of pseudo-observed/downscaled values for
each grid point in the whole period, which have been
used to compute the biases. Thus, biases correspond to
one value per grid point, while MEs and RMSEs summa-
rize biases from all grid points in a single and spatially
averaged value.

Additionally, a selection of cases of interest (combina-
tions of GCM+RCMs and seasons) have been analysed
through scatter plots of downscaled versus observed
PRCPTOT, both in present and in future.

And finally, we have also analysed the climate
change signal given by the pseudo observations and by
the ESD methods for the three indexes; TXm, TNm and
PRCPTOT, and we have included maps of the
ensemble mean.

4 | RESULTS

The main results of each of the variables considered are
presented in the following subsections. In order to allow
a fluent analysis, we will use the terms good/bad transfer-
ability for similar/different behaviours between future
and present, that is, for biases in the future of the same/
different order to those in the present. This way, a
method with low bias/ME/RMSE in future and high

biases in present will be said to have bad transferability,
while a method with high bias/ME/RMSE both in pre-
sent and future will be said to have good transferability.

4.1 | Maximum/minimum temperature

For the mean values of maximum/minimum tempera-
ture, TXm and TNm respectively, the following results
have been reached:

All methods display very low MEs in present for all
GCM+RCMs, of the same order as those from Experi-
ment 1 (Figure 2), which strengthens the methodology
here used and the validity of using pseudo observations
for temperature. This finding also lets us conclude that
the impact of using predictors from GCMs instead of
from RCMs (see section 2) is not significant. Nonethe-
less, this conclusion has been reached for a particular
set of predictors and might not be the case for others.
Furthermore, it should be noted that we are evaluating
aggregated data, so at daily level the impact might be
larger. In general, MEs are bigger in future than in pre-
sent. All ESD methods display a wide range of MEs for
the different GCM+RCMs in future, with higher values,
in absolute terms, than those achieved in the historical
period. Nevertheless, there are important differences
among EDS methods, seasons and GCM+RCMs. SVM
and KRR present the most remarkable transferability
problems, with clear underestimations in JJA and SON
for TNm and, less marked, although also significant, for
TXm. ANN also displays an important underestimation
for TNm in SON and, not so intensely, in JJA. And
ANA and REG present more moderated transferability
problems in general.

FIGURE 2 ME (�C) for mean value of the daily maximum (left column) and minimum (right column) temperatures by season under

present conditions (1986–2005) at first row (grey background) and under future conditions (2081–2100, RCP8.5) at second row (red

background). The methods are ANA (pink), REG (blue), ANN (green), SVM (orange) and KRR (grey). Each box contains the seven

GCM+RCM combinations from Table 3 and red lines represent results from Experiment 1 (reanalysis+observational grid) [Colour figure can
be viewed at wileyonlinelibrary.com]
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It is important to bear in mind that MEs might be off-
setting positive and negative spatial biases. These biases
have been analysed but their sign and magnitude are
quite dependent on the GCM+RCM, so no general con-
clusions can be drawn from them, apart from the fact
that biases in future can reach extremely high values (see
biases for RCM5 at Figure 3 as an example). RMSEs have
also been analysed (not shown) but do not show addi-
tional marked errors apart from the ones revealed by
the MEs.

Although the climate change signal has been
analysed by seasons, we have included maps only for JJA
(Figures 4 and S3), when this signal is stronger over the
analysed area. In general, all methods show a positive
sign of change in agreement to that shown by dynamical
simulations, but differ in the intensity of change. REG
captures the change in TXm and TNm very well, with
quite low biases. ANA and ANN present some positive
bias in the signal of change for TXm, while for TNm
ANN presents a clear underestimation and ANA captures
it with insignificant bias. And finally, SVM and KRR
clearly underestimate the signal of change, both for TXm
and TNm.

In summary, all methods present worse evaluation
results in future than in present, which points to a lack of
transferability by all of them. Nevertheless, two out of the
five methods, SVM and KRR, have revealed very impor-
tant transferability problems, much more marked than
for the other methods.

4.2 | Precipitation

For precipitation, MEs in the historical period are, in
general, of the same order and sign than those from
Experiment 1, with the only exception of summer
(Figure 5). In the other seasons, MEs over GCM+RCMs
match perfectly with the ones over reanalysis for all ESD
methods, reproducing even the general displacement to
more negative MEs in SON, which supports the validity

of RCMs as pseudo observations, and also the use of pre-
dictors from the GCMs instead of from the RCMs them-
selves (see section 2). Nevertheless, in JJA there is a
slight mismatch, with more positive MEs over
GCM+RCMs than over reanalysis. One possible cause
comes from the fact that we are using relative errors,
which makes the metric very sensitive to small imperfec-
tions during the dry season. Another possible explanation
might be that summers in the historical evaluation period
are slightly drier than in the calibration period (see
Figure S1), so transferability issues start to emerge
already. And finally, summer precipitation, which is basi-
cally convective, represents a special added difficulty both
for ESD methods and RCMs, as downscaling links local
effects to large-scale conditions, and convection is rarely
a large-scale phenomenon.

MEs in future are similar to those in present in DJF
and SON, with a slight trend to more positive MEs in
MAM and a clear shift to overestimation in JJA. In this
season, MEs display a wide spread, so JJA needs a deeper
analysis over each GCM+RCM separately (see Figure 6).
REG-EXP, REG-CUB and SVM are excluded from the
discussion because of their systematic underestimation of
PRCPTOT, even at Experiment 1. Figure 6 reveals a clear
distinction between RCMs 1–3 and 4–7. Furthermore,
when analysing biases over each GCM+RCM separately
(not shown), RCMs 4, 5 and 6 display much higher biases
in future JJA than the other GCM+RCMs. And finally,
Figure S1 shows how RCMs 4, 5 and 6 present a stronger
signal of change in PRCPTOT in JJA than the other
GCM+RCMs. For these reasons we focus the analysis
henceforth on three cases of interest (RCMs 4, 5 and 6 in
JJA). In these three study cases, all methods appear to
display a tendency to overestimate in future (Figure 6),
less marked for KRR, whereas in the other combinations
of GCM+RCM, where there is barely signal of change,
biases by ESD methods are of the same order in present
and future. Nevertheless, these three study cases corre-
spond to very low PRCPTOT values given by the
GCM+RCMs, so the use of relative errors can easily lead

FIGURE 3 Same as Figure 2,

but for bias (�C) over RCM5 (IPSL-

CM5A-MR+KNMI-RACMO22E).

Each box contains 3,357 grid points.

A red asterisk indicates that values

lie outside the plotted range [Colour

figure can be viewed at

wileyonlinelibrary.com]
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to very high MEs. Furthermore, as it has been men-
tioned, low MEs might be hiding positive and negative
biases by compensating them. In order to avoid these

FIGURE 4 Change (�C) for TXm (left column) and TNm (right

column) in JJA given by the pseudo reality (first row), and biases

(�C) by the ESD methods: ANA (second row), REG (third row),

ANN (fourth row), SVM (fifth row) and KRR (sixth row). The seven

GCM+RCMs have been summarized by their ensemble mean.

Maps of change by the ESD methods have been included in

Figure S3 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 ME over relative errors (%) for PRCPTOT by season

under present conditions (1986–2005) at first row (grey

background) and under future conditions (2081–2100, RCP8.5) at
second row (red background). Methods coloured by families: RAW

(grey), ANA-SYN-1, ANA-SYN-N and ANA-SYN-PDF (pink), ANA-

LOC-1, ANA-LOC-N and ANA-LOC-PDF (yellow), REG-LIN, REG-

EXP and REG-CUB (blue), ANN, SVM and KRR (green). Each box

contains the seven GCM+RCM combinations from Table 3, and red

lines represent results from Experiment 1 (reanalysis+observational
grid). A red asterisk indicates that values lie outside the plotted

range [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 ME over relative errors (%) for PRCPTOT in JJA.

Rows correspond to the seven GCM+RCM combinations from Table 3

(in order from the bottom to the top) and columns correspond to ESD

methods: ANA-SYN-1 (a), ANA-SYN-N (b), ANA-SYN-PDF (c), ANA-

LOC-1 (d), ANA-LOC-N (e), ANA-LOC-PDF (f), REGLIN (g), REG-

EXP (h), REG-CUB (i), ANN (j), SVM (k) and KRR (l). Upper left

triangle of each cell corresponds to present conditions (1986–2005) and
bottom right corresponds to future conditions (2081-2100, RCP8.5)

[Colour figure can be viewed at wileyonlinelibrary.com]
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problems, we have performed an additional analysis in
the form of scatter plots for ANA-SYN-1 (as a representa-
tive of the Analog family), REG-LIN, ANN and KRR.
Figure 7 shows how ANA-SYN-1 and REG-LIN tend to
overestimate PRCPTOT in the future period of the three
selected cases, which confirms their difficulty to repro-
duce drier future climates. And for ANN and KRR,
although they capture PRCPTOT with great accuracy in
the present period in the three cases, their behaviours in
future are very different. These two machine learning
methods do not present a clear tendency to over-
estimation as did ANA-SYN-1 and REG-LIN, but their
scatter plots reveal a significant spread around the diago-
nal, a sign of lack of accuracy.

In order to analyse the signal of change we have also
focused on JJA (Figures 8 and S4). The Analog methods
are not able to capture the dry conditions projected by the
GCM+RCMs, and portray a future with barely a signal of

change at all. Regression methods appear to capture the
change in PRCPTOT better than Analog methods,
although they do not present such dry conditions as the
GCM+RCMs do, especially the REG-LIN option. And
finally, of the three machine learning methods, ANN and
KRR appear to capture the signal of change fairly well,
while SVM presents a significant positive change in
PRCPTOT in the south of Spain that clearly does not
match the pattern given by the GCM+RCMs.

In summary, precipitation does not present as marked
a signal of change as temperature does, so the analysis of
transferability is focused on a selection of cases of interest,
and they reveal transferability problems in all ESD
methods. For Analog methods and for REG-LIN, a ten-
dency to overestimate PRCPTOT in a drier future climate
has been detected. For machine learning methods a certain
deterioration when applied to a drier climate is also seen,
especially for SVM, although with no systematic bias.

FIGURE 7 Statistical

downscaling (y axis) versus pseudo

observations (x axis) of PRCPTOT

(mm) for a selection of special cases:

RCM4 in JJA (first column), RCM5

in JJA (second column) and RCM6 in

JJA (third column). Present

conditions (1986–2005) in grey and

future conditions (2081–2100,
RCP8.5) in red. Methods by rows:

ANA-SYN-1, REG-LIN, ANN

and KRR [Colour figure can be

viewed at wileyonlinelibrary.com]
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5 | CONCLUDING REMARKS

In this paper we have evaluated the transferability to
future climate conditions of five statistical downscaling
techniques using pseudo observations from RCMs as
predictands, and by comparing their evaluation results in
a historical and a future period. We have extended the
methodology proposed at Vrac et al. (2007) using seven
GCM+RCM combinations. Additionally, results in the
historical evaluation period have been compared with
those from Experiment 1 in order to identify possible
sources of uncertainty introduced by the use of pseudo
observations.

For maximum/minimum temperatures, the five
methods have revealed some transferability issues, which

aligns with the findings by van der Linden and Mitch-
ell (2009) and Gutiérrez et al. (2013). This lack of trans-
ferability has been found to be very remarkable in the
cases of SVM and KRR. Experiments 1 and 2 (Hernanz
et al., 2021, 2021b) showed how these two methods,
which are able to reproduce complex nonlinear relation-
ships and are based on different types of Support Vector
Machines, could achieve fairly good results under present
conditions, overcoming the linear method REG both with
perfect and imperfect predictors, but this study has rev-
ealed some important transferability issues in them. This
relates with the well-known problem of machine learning
algorithms to deal with new situations to which they
have not been trained, and calls in question their suitabil-
ity for downscaling climate projections, as pointed out by
Hsieh (2009). On the other hand, the other machine
learning method, ANN, presents transferability issues not
as marked, generally similar to those by ANA and REG
with few exceptions. Considering conclusions from
Experiments 1 and 2, in which ANA and ANN usually
reached better results than REG, it seems reasonable to
use both of them to elaborate the climate projections, so
the uncertainty introduced by the downscaling technique
is taken into account.

For precipitation, being the signal of change not as
marked as for temperature, transferability problems are
not as easy to detect. The study of the three cases with
the most marked change in PRCPTOT has revealed diffi-
culties for all methods to represent a drier future climate,
which aligns with the findings by Gaitan et al. (2014),
van der Linden and Mitchell (2009) and San-Martín
et al. (2017). Analog methods display a positive bias in
the three cases, confirming the difficulty for these
methods to represent different future climate conditions.
Also REG-LIN has shown the same overestimation when
applied to a drier future climate, and the machine learn-
ing algorithms, ANN and KRR, have revealed a certain
deterioration in capturing PRCPTOT under future drier
conditions when compared with their results in the his-
torical period. The other methods, REG-EXP, REG-CUB
and SVM, have not been analysed because of their lack of
accuracy for PRCPTOT at Experiment 1. Experiments
1 and 2 showed how Analog methods were able to cap-
ture the total precipitation amount, the precipitation
occurrence and intense precipitations, while transfer
function methods appear only suitable for the total pre-
cipitation amount. Nevertheless, with the transferability
problems revealed by all methods, it seems reasonable to
use, at least, one method of each family to generate the
climate projections. No Analog method has proved
clearly better than the simplest form, ANA-SYN-1, and
for Regression methods, REG-LIN has proved the best
configuration. For machine learning techniques,

FIGURE 8 Relative change (%) for PRCPTOT in JJA given by

the ensemble mean of the seven GCM+RCMs. Pseudo reality (first

row), ANA-SYN-1, ANA-SYN-N and ANA-SYN-PDF (second row,

from left to right), ANA-LOC-1, ANA-LOC-N and ANA-LOC-PDF

(third row, from left to right), REG-LIN, REG-EXP and REG-CUB

(fourth row, from left to right), and machine learning

(ML) methods (fifth row, ANN, SVM and KRR from left to right).

Maps of the bias by ESD methods have been included in Figure S4

[Colour figure can be viewed at wileyonlinelibrary.com]
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although ANN and KRR have achieved similar results in
the three experiments, the fact that KRR displays much
more marked transferability issues than ANN for temper-
ature suggests that ANN might also be a better choice for
precipitation.

Literature indicates that predictor selection plays a
key role in the transferability of ESD methods (see,
e.g., Parding et al., 2019). Being the purpose of this evalu-
ation the comparison of ESD methods, and considering
the high computational cost of the whole methodology,
we have limited it to a unique set of predictors for each
variable. Nevertheless, a systematic analysis replicating
these three experiments but for different sets of predictors
might constitute an interesting future work.

Additionally, it should be noticed that all ESD
methods here evaluated operate at a daily scale (“down-
scaling weather”), but “downscaling climate” appears to
be a promising approach, as parameters of the distribu-
tions are usually easier to predict than daily states and
transferability issues might be palliated (Erlandsen
et al., 2020; Benestad, 2021).

And finally, it is important to point out that transfer-
ability problems might not come exclusively from ESD,
but also from the GCMs themselves. Correlation between
different parameters simulated by GCMs might be non-
stationary (Wilby and Wigley, 2000; Vrac et al., 2021),
and also GCMs parameterizations may have been
adjusted and calibrated making use of observational
dataset with the corresponding transferability issues.

In summary, this study, together with Experiments
1 and 2, has allowed us to thoroughly evaluate five ESD
methods over the studied region, revealing their strengths
and weaknesses. This particular experiment, the third
one, has highlighted how ESD methods can perform very
differently under present and future climate conditions,
which aligns with the existing literature regarding this
issue, and supports the idea that a complete evaluation
must include some type of transferability analysis.
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