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Abstract

The Networked-Numbers Game–a mathematical “game” played on a sim-

ple graph–is incredibly accessible and yet surprisingly rich in content. The

Game is known to contain deep connections to the finite-dimensional sim-

ple Lie algebras over the complex numbers. On the other hand, Quantum

Dimension Polynomials (QDPs)–enumerative expressions traditionally un-

derstood through root systems–corresponding to the above Lie algebras are

complicated to derive and often inaccessible to undergraduates. In this the-

sis, the Networked-Numbers Game is defined and some known properties

are presented. Next, the significance of the QDPs as a method to count

combinatorially interesting structures is relayed. Ultimately, a novel closed-

form expression of the type Dn QDPs and novel derivations of the QDPs

of types An, Bn, Cn, and Dn are provided using an inductive proof through

the Networked-Numbers Game. This provides a combinatorial avenue of

approach to a topic traditionally only attainable through Lie theory.
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Chapter 1

Introduction

The purpose of this text is twofold. First, it serves as an entry point into

the Networked-Numbers Game (NG) and some related mathematical ob-

jects in a way that is approachable by a typical undergraduate mathematics

student. Second, it develops in some detail some NG-related aspects of so-

called ‘Quantum Dimension Polynomials.’ In particular, it offers closed-form

expressions for QDPs in types An, Bn, Cn, and Dn and shows how these ex-

pressions can be obtained from NG play. It also provides a few applications

to an extension to the n-choose-k function and crystal graphs.

As introduced in Chapter 2, the NG is developed first naively and then

formally through an algebraic perspective. The chapter ends with an impor-

tant classification theorem relating the NG to finite-dimensional simple Lie

algebras. The NG provides a nice entry point into our combinatorial perspec-

tive of QDPs, with derivations/proofs of QDPs in types An, Bn, Cn, and Dn
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comprising most of the content of Chapter 3 and Appendix A. These proofs

consist mostly of sequences of NG states with generalized populations. Chap-

ter 4 briefly touches on two combinatorial applications of QDPs—an identity

relating the QDPs in type An to q-binomial coefficients, and q-enumeration

of k-element subsets of an (n+ 1)-element set, respectively.

Lastly, note that most of the enumerative and order-theoretic constructs

considered in this paper follow the conventions of [Stan1] and [Stan2].
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Chapter 2

The Networked-Numbers Game

Before we start discussing Quantum Dimension Polynomials and their uses,

it is important to understand what the Networked-Numbers Game (NG) is.

The NG is a “game” played on a finite simple graph whose edges are labeled

by values from an associated matrix. The game itself is often attributed

to Mozes [Moz], who was inspired by a Math Olympiad problem. Erikson

[Erik1], [Erik2], and [Erik3] seems to have conceived of the game in the level

of generality we consider here. However, our setup will more closely follow

the more recent work [Don1].

In the following, we first present an “informal introduction,” then a pre-

cise definition of the NG, and lastly an important classification theorem.
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2.1 An informal introduction to the Networked-

Numbers Game

To set up the NG, first choose a finite simple graph Γ with n nodes (the

nomenclature of ‘nodes’ is more common than ‘vertices’ in references that

consider the NG). To each node γi ∈ V (Γ) assign a population—a nonnegative

real number λi—at least one of which is nonzero. Additionally, to each edge

in Γ between nodes γi and γj assign two negative integers aij and aji. Their

absolute values, seen shortly in an example, will act as amplifiers, and a value

of |aij| > 1 is often denoted on Γ by drawing |aij| arrows on the edge between

γi and γj (this can be seen in Example 2.1.1).

The goal of the game is to successively “fire” nodes with positive popu-

lations in such a way that eventually each population is nonpositive; that is,

for each i such that 1 ≤ i ≤ |V (Γ)|, λi ≤ 0. Examples of such setups are

given in Examples 2.1.1 and 2.1.2.

To fire a given node γi with a positive population λi in a given state,

simply update each population λj at node γj, 1 ≤ j ≤ n and j ̸= i, as follows:

if γj is not adjacent to γi, keep λj constant; otherwise, λj 7→ λj+ |aij|λi. This

can be understood as taking λi, ‘amplifying’ it by |aij|, and adding it to λj.

Note that the quantity λj + |aij|λi is the same as λj −aijλi since we have the

convention that aij < 0. From here on, we’ll use the latter expression, which

is more common in the literature. NG play stipulates that a firing move is

only ‘legal’ when the population at the to-be-fired node is positive. Lastly,

4



update λi by changing its sign. We repeat this legal node-firing process

iteratively, producing a (possibly infinite) sequence of NG states.

Example 2.1.1. Consider the graph denoted by Γ = C3 (for reasons ex-

plained later):

r r r- ��
γ1 γ2 γ3 .

Note that in this case, the arrows on the edge between γ2 and γ3 represent

a23 = −1 and a32 = −2. Let us assign initial population (2, 0, 4) to (γ1, γ2, γ3)

and play the NG as follows. To keep things consistent, whenever we are faced

with multiple firing choices, we will choose the leftmost node to fire. This

choice produces the following state sequence:

r r r- ��
2 0 4

γ1 γ2 γ3
; r r r- ��

−2 2 4
γ1 γ2 γ3

; r r r- ��
0 −2 6

γ1 γ2 γ3

; r r r- ��
0 10 −6

γ1 γ2 γ3
; r r r- ��

10 −10 4
γ1 γ2 γ3

; r r r- ��
−10 0 4

γ1 γ2 γ3

; r r r- ��
−10 8 −4

γ1 γ2 γ3
; r r r- ��

−2 −8 4
γ1 γ2 γ3

; r r r- ��
−2 0 −4

γ1 γ2 γ3

Note that the game does indeed terminate with this choice of Γ = C3 and

initial population (λ1, λ2, λ3) = (2, 0, 4). The next example will show a game

that does not terminate.

Example 2.1.2. Now let our graph Γ be the standard 3-cycle with all am-

plitudes aij = −1 as follows:
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r r
r

γ1 γ2

γ3

Similarly as above, let us assign initial population (λ1, λ2, λ3) = (1, 2, 3).

We will choose firing sequence (γ1, γ2, γ3, γ1, γ2, γ3, γ1, γ2, . . . ) to produce the

following state sequence:

r r
r

1 2

3

;

r r
r

−1 3

4

;

r r
r

2 −3

7

;

r r
r

9 4

−7

;

r r
r

−9 13

2

;

r r
r

4 −13

15

;

r r
r

19 2

−15

;

r r
r

−19 21

4

; . . .

This game appears to never terminate. This can be seen by considering

the sum of populations throughout the state sequence. Upon firing node

γi, note that we subtract λi twice from the sum (at node γi) but also add

λi twice to the sum, once at each of the other nodes. Thus, the sum stays

6



constant no matter which node is fired; but, in order to reach a terminal

state, the sum would need to eventually be negative.

This indeed shows that the NG played on this 3-cycle never terminates,

no matter the starting population or firing sequence. In fact, “most” graphs

have no terminal games, as demonstrated in a special classification theorem

in Section 2.3. But, before we can state this classification, we must more

formally define the Networked-Numbers Game.

2.2 The formal Networked-Numbers Game

To this end, let I be a finite set, whose elements can be thought of as indices

or colors (i.e., I is a coloring set). Next, let Γ be a simple graph—i.e., Γ has

no loops or multiple edges—whose vertices or nodes are V (Γ) = {γi}i∈I and

whose edges are E(Γ), which consists of two-element subsets of V (Γ), each

corresponding to an edge and its unique endpoints. Lastly, let A = (aij)i,j∈I

be an I × I integer matrix satisfying

aij


= 2, if i = j

= 0, if {i, j} /∈ E(Γ)

< 0, if {i, j} ∈ E(Γ).

This matrix is used to label the edges of Γ, as in section 2.1.

We call G = (Γ, A) a game graph or NG graph. We also call Γ = Γ(G )

7



its playground graph and A = A(G ) its amplitude matrix. To emphasize the

role of I, we sometimes write ΓI or AI×I .

A playthrough of the NG consists of a sequence of states and node firings ;

the node firings are used to determine the successor of a given state.

To play the NG, the player chooses a game graph G = (ΓI , AI×I) and an

initial state, an I-tuple of nonnegative integers λ := {λi}i∈I , at least one of

which is nonzero. From this point on, we denote by state any integer I-tuple

µ = (µi)i∈I . Each µi located at position i is called the population at node

γi. Given a state µ, the only move a player can make is to choose a node γi

whose population µi is positive and fire it. This firing transforms the current

state µ into a new state ν according to the rule

νj = µj − aijµi,

for all j ∈ I, where aij ∈ A. Note that this is the same process as in Section

2.1, since aii = 2 for all i ∈ I (equivalent to saying νi = −µi) and aij = 0 if γi

is not adjacent to γj. Additionally, the value aij from the amplitude matrix

A does indeed, in a sense, ‘amplify’ µi before we subtract it from µj.

Thus, gameplay begins by starting with an initial state λ and applying

legal node-firings to resulting states. Gameplay ends when the player obtains

a terminal state, in which all populations are nonpositive.

Algebraically, a state λ can be viewed as a vector
∑
i∈I

λiωi in the Z-module

Λ freely generated by the set Ω = {ωi}i∈I . Elements of Ω are fundamental

8



weights (or fundamental positions), and elements of Λ are weights or game

positions. A weight or position λ =
∑

i∈I λiωi is dominant (strongly domi-

nant) if λi ≥ 0 (λi > 0) for all i ∈ I.

Let Si : Λ → Λ be the Z-linear transformation given by the i-th NG firing

move (but without regard to legality):

Si(λ) = λ− λiαi

=
∑
j∈I

(λj − λiaij)ωj,

where αi is the i-th row vector of A, so αi =
∑

j∈I aijωj. Since S2
i = ε (the

identity Z-linear transformation Λ → Λ) in the group Aut(Λ) of invertible

Z-linear transformations on Λ, we can consider the Weyl group W ≤ Aut(Λ)

generated by the Si’s. Now, it is known that W ∼= ⟨si|(sisj)mij = ε⟩, where

mij is the unique positive integer for which aijaji = 4 cos2( π
mij

). Also, the

‘parity’ function sgn : W → {±1} given by sgn(si1 · · · sik) := (−1)k is a

well-defined group homomorphism [Hum].

Example 2.2.1. Consider W for Γ = C3 as follows,

r r r- ��
γ1 γ2 γ3 ,

where we have that

A =


2 −1 0

−1 2 −1

0 −2 2

 .

9



In this case, calculating the mij’s gives that

a12a21 = (−1)(−1) = 1 = 4 cos2
(

π

m12

)
=⇒ m12 = 3,

a13a31 = (0)(0) = 0 = 4 cos2
(

π

m13

)
=⇒ m13 = 2, and

a23a32 = (−1)(−2) = 2 = 4 cos2
(

π

m23

)
=⇒ m23 = 4.

Therefore,

W ∼= ⟨si|(sisj)mij = ε⟩

∼= ⟨s1, s2, s3|s21 = s22 = s23 = (s1s2)
3 = (s1s3)

2 = (s2s3)
4 = ε⟩,

a group that is known to have order 48.

Now that we have defined the NG, the natural question to ask at this

point is what choices of NG graphs G = (Γ, A) and initial states eventually

produce terminal states; i.e., finite gameplay?

2.3 The La Florado Klasado classification

In order to answer this finiteness question, let us provide a few definitions.

First, a NG state µ on graph G = (ΓI , AI×I) is nonzero if there exists

i ∈ I such that µi ̸= 0. Next, a state is dominant if µi ≥ 0 for all i ∈ I.

The graphs that concern us presently are called integer game graphs (ING

graphs), in which each amplitude aij ∈ A is an integer.
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Definition. A game-gratifying graph is a connected ING graph G = (Γ, A)

that has a nonzero dominant initial state from which a terminal state can be

reached.

We are now ready to state a classification of game-gratifying graphs. This

classification forms one part of a multifaceted theorem sometimes referred to

as La Florado Klasado (often denoted LFK), as in section 9 of [Don1]. This

theorem refers to Figure 2.1 on the next page. The most famous instance of

an LFK equivalence is the classification of the finite-dimensional simple Lie

algebras over C accomplished by W. Killing and E. Cartan in the late 1800s;

see [Col] for a compelling account of the discovery of the latter classification.

Theorem 1 (La Florado Klasado). Suppose G is a connected integral NG

graph. Then G is game-gratifying if and only if G is a Coxeter-Dynkin flower;

i.e., one of the NG graphs of Figure 2.1.

11



Figure 2.1: The Coxeter-Dynkin flowers of LFK

An (n ≥ 1) s s s s s s
Bn (n ≥ 3) s s s s s s-- �

Cn (n ≥ 2) s s s s s s- ��

Dn (n ≥ 4) s s s s s s
s

������

XXXXXX

E6 s s s
s

s s
E7 s s s

s
s s s

E8 s s s
s

s s s s
F4

s s s s-- �

G2
s s- ���
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Chapter 3

The Quantum Dimension

Polynomial Identity

3.1 A brief introduction to QDPs through

Weyl symmetric function theory

Now that we have defined the Networked-Numbers Game on an integral NG

graph, it is time to present the main result of this work: a description of

Quantum Dimension Polynomials (QDPs). This Section 3.1 lays out many

definitions based on terminology introduced in Section 2.2 and is not neces-

sary for an initial understanding of QDPs, but it serves as a brief reference

for the context of QDPs in Weyl symmetric function theory. Throughout

this section, assume G is a Coxeter-Dynkin flower.

Let {zi}i∈I be a set of indeterminates. For any µ =
∑

i∈I µiωi , let z
µ be

13



the Laurent monomial
∏

i∈I z
µi

i . Note that state vectors are integer I-tuples,

so the monomial exponents here are integers. Let L (G ) be the Z-algebra of

Laurent polynomials in the variables {zi}i∈I with coefficients from Z. The

Weyl group W acts on L (G ) by the rule si · zµ := zsi·µ, extending Z-linearly

to all of W in the obvious way.

Say χ ∈ L (G ) is W -invariant, or a Weyl-symmetric function, if σ ·χ = χ

for all σ ∈ W . Let L (G )W be the Z-subalgebra of Weyl symmetric functions.

For each strongly dominant µ ∈ Λ, define an ‘alternant’ Aµ by

Aµ :=
∑
σ∈W

sgn(σ)zσ·µ.

Let ϱ :=
∑

ωi be the ‘smallest’ strongly dominant weight. A fundamental

theorem in the theory of Weyl symmetric functions is that, for each dominant

λ, there is a unique solution χ ∈ L (G )W such that

Aϱ · χ = Aλ+ϱ.

This unique Weyl symmetric function is denoted χ
λ
and called a Weyl bial-

ternant. By specializing each zi at a certain power of q, we get a q-polynomial

called the quantum dimension polynomial, denoted qdimG
λ .

A quotient-of-products expression for qdimG
λ seems first to have been

given in [Jac] where the product is taken over the so-called ‘positive roots’ of

the ‘root system’ associated with G . In [Don2], a connection is made between

14



positive roots and states of NG play from a generic strongly dominant weight.

This connection is the basis for the following result, presented as Theorem

10.6.2 in [Don1]:

Theorem 2 (Theorem NG). Given a dominant weight λ, NG play from

initial position λ+ ϱ must terminate on our given Coxeter-Dynkin flower G .

Let (γi1 , . . . , γil) be such a terminating game, and let ck(λ+ϱ) be the positive

number at node γik just before this node is fired in our given game sequence.

Then the multiset of numbers {ck(λ + ϱ)}lk=1 does not depend on the choice

of game sequence, and

qdimG
λ =

l∏
k=1

1− qck(λ+ρ)

1− qck(ϱ)
.

We will employ Theorem NG in the next section in our derivation of cer-

tain quotient-of-product expressions for qdimG
λ when G ∈ {An, Bn, Cn, Dn}.

Given any polynomial in q with positive integer coefficients, it is reason-

able to ask what the polynomial might enumerate at q = 1, especially if the

polynomial has a nice product expression. One might further ask what the

positive integer coefficients enumerate.

For quantum dimension polynomials, there is a nice combinatorial answer

to these questions: qdimG
λ is the rank-generating function for an edge-colored

and ranked poset called a ‘crystal graph’ which we denote here by R(λ). A

distinguishing feature of crystal graphs is that they are ‘fibrous’ in that all

single-color components of any R(λ) are chains. The notion of a crystal

15



graph was developed by Kashiwara in [Kash1] and [Kash2] as a distilling

of information about so-called crystal bases for representations of quantum

groups. The precise definition of a crystal graph is beyond the scope of this

thesis, but we can describe how one can, in practice, construct them.

To begin, one constructs a ‘seed graph’ from NG play, and then one grows

all other crystal graphs from this seed. By playing the Numbers Game with

the rows αi of A as initial positions, we can construct a certain G -structured

fibrous poset A(G ) called the adjoint crystal graph. This graph is special in

that, for any dominant weight λ, there is a ‘crystal power’ A(G )⊗m of A(G )

(of Section 5 of [Don3]) which has a (G -structured and fibrous) connected

component R(λ) whose unique maximal element has weight λ and

WGF (R(λ); z) = χG
λ , and

RGF (R(λ); q) = qdimG
λ .

It is in this sense that Quantum Dimension Polynomials can be seen as

rank-generating functions.

3.2 Our QDP Theorem, and proofs for types

An and Dn

For a given integral NG graph G and weight λ, the corresponding QDP is

represented by qdimG
λ . These enumerative expressions are already defined

in the literature, but in the proof of Theorem 3 we provide an NG-based
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approach for deriving these polynomials. For the sake of brevity, we only

include proofs of the An and Dn cases here, while the Bn and Cn arguments

can be found in Appendix A.

Two quick notes about notation: for i, j ∈ Z+, i ≤ j, let

λj
i :=

j∑
m=i

λm = λi + λi+1 + · · ·+ λj.

For i > j, let λj
i := 0. Additionally, for k ∈ Z+, define the q-integer to be

[k]q := 1 + q + · · ·+ qk−1 =
1− qk

1− q
.

We use the rational function form as a simplification of the polynomial and

regard the discontinuity at q = 1 as removable.

Theorem 3 (The Quantum Dimension Polynomial Identity). Consider the

integral NG graphs of type An, Bn, Cn, and Dn named in Theorem 1. Let

λ = (λi)
n
i=1 be a nonnegative weight. Then

qdimAn
λ =

n∏
i=1

n∏
j=i

[λj
i + j + 1− i]q
[j + 1− i]q

,

qdimBn
λ =

n−1∏
i=1

n−1∏
j=i

[λj
i + j + 1− i]q
[j + 1− i]q

n∏
i=1

n∏
j=i

[λn
i + λn−1

j + 2n+ 1− i− j]q

[2n+ 1− i− j]q
,

qdimCn
λ =

n−1∏
i=1

n−1∏
j=i

[λj
i + j + 1− i]q
[j + 1− i]q

n∏
i=1

n+1∏
j=i+1

[λn
i + λn

j + 2n+ 2− i− j]q

[2n+ 2− i− j]q
, and

qdimDn
λ =

n−1∏
i=1

n−1∏
j=i

[λj
i + j + 1− i]q
[j + 1− i]q

n−1∏
i=1

n∏
j=i+1

[λn−2
i + λn

j + 2n− i− j]q

[2n− i− j]q
.
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Furthermore, the above polynomials can be obtained by playing through

the corresponding NG graph with initial weight (λi + 1)ni=1, recording each

fired population µi as [µi]q, and multiplying each q-integer together.

Proof. (Case An):

We will use induction to establish the following three claims for any n ∈

Z+:

Using firing sequence (γ1; γ2, γ1; γ3, γ2, γ1; . . . ; γn, γn−1, . . . , γ1) onAn, start-

ing with initial weight λ = (λ1 + 1, . . . , λn + 1) =
∑n

i=1(λi + 1)ωi, we get

1. The above qdimAn
λ q-polynomial equality holds by taking the fired

weights,

2. The sequence of NG states ends with terminal state

r r r r rp p p
γ1 γ2 γ3 γn−1 γn

−λ
n
−
1

−λ
n−

1
−
1

−λ
n−

2
−
1

−λ
2
−
1

−λ
1
−
1

, and

3. At an attached “ghost node” γn+1 with initial weight λn+1 +1 to node

γn, the terminal weight of γn+1 is

λn+1
1 + (n+ 1) = λ1 + · · ·+ λn+1 + (n+ 1) =

n+1∑
i=1

(λi + 1).

This claim is essential to the induction step of the proof.

18



(Case n = 1):

Playing the NG on A1 using firing sequence (γ1)–keeping in mind the

“ghost node” γ2, we get

r b
γ1 γ2

λ 1
+
1

λ 2
+
1

; r b
γ1 γ2

−λ
1
−
1

λ 1
+
λ 2
+
2

Thus,

1.
[λ1 + 1]q

[1]q
=

[λ1
1 + 1 + 1− 1]q
[1 + 1− 1]q

=
1∏

i=1

1∏
j=i

[λj
i + j + 1− i]q
[j + 1− i]q

,

2. The terminal state is the same as we desire, and

3. The terminal weight of the “ghost node” γ2 is λ1+λ2+2 =
∑2

i=1(λi+1).

Therefore, our proposition holds for n = 1.

(Case n ⇒ n+ 1):

Now, suppose that our three hypotheses hold for some n ∈ Z+. That is,

the result for our gameplay so far on An is the following picture:

r r r r r bp p p
γ1 γ2 γ3 γn−1 γn γn+1

−λ
n
−
1

−λ
n−

1
−
1

−λ
n−

2
−
1

−λ
2
−
1

−λ
1
−
1

λ
n+

1

1

+
(n
+
1)

.

19



We also get that

qdimAn
λ =

n∏
i=1

n∏
j=i

[λj
i + j + 1− i]q
[j + 1− i]q

.

Now continue gameplay onAn+1 by adding on a new “ghost node” γ(n+1)+1

= γn+2 with population λn+2+1 and appending to the current game the firing

sequence (γn+1, γn, . . . , γ1). We get the following game sequence:

r r r r r r bp p p
γ1 γ2 γ3 γn−1 γn γn+1 γn+2

−λ
n
−
1

−λ
n−

1
−
1

−λ
n−

2
−
1

−λ
2
−
1

−λ
1
−
1

λ
n+

1

1

+
(n
+
1)

λ n
+
2
+
1

; r r r r r r bp p p
γ1 γ2 γ3 γn−1 γn γn+1 γn+2

−λ
n
−
1

−λ
n−

1
−
1

−λ
n−

2
−
1

−λ
2
−
1

λ
n+

1

2

+
n

−λ
n+

1

1

−
(n
+
1)

λ
n+

2

1

+
(n
+
2)

; r r r r r r bp p p
γ1 γ2 γ3 γn−1 γn γn+1 γn+2

−λ
n
−
1

−λ
n−

1
−
1

−λ
n−

2
−
1

λ
n+

1

3

+
(n
−
1)

−λ
n+

1

2

−
n

−λ
1
−
1

λ
n+

2

1

+
(n
+
2)

; ...

; r r r r r r bp p p
γ1 γ2 γ3 γn−1 γn γn+1 γn+2

−λ
n
−
1

−λ
n−

1
−
1

λ
n+

1

n−
1
+
3

−λ
3
−
1

−λ
2
−
1

−λ
1
−
1

λ
n+

2

1

+
(n
+
2)
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; r r r r r r bp p p
γ1 γ2 γ3 γn−1 γn γn+1 γn+2

−λ
n
−
1

λ n
+
λ n

+
1
+
2

−λ
n+

1

n−
1
−
3

−λ
3
−
1

−λ
2
−
1

−λ
1
−
1

λ
n+

2

1

+
(n
+
2)

; r r r r r r bp p p
γ1 γ2 γ3 γn−1 γn γn+1 γn+2

λ n
+
1
+
1

−λ
n
−
λ n

+
1
−
2

−λ
n−

1
−
1

−λ
3
−
1

−λ
2
−
1

−λ
1
−
1

λ
n+

2

1

+
(n
+
2)

; r r r r r r bp p p
γ1 γ2 γ3 γn−1 γn γn+1 γn+2

−λ
n+

1
−
1

−λ
n
−
1

−λ
n−

1
−
1

−λ
3
−
1

−λ
2
−
1

−λ
1
−
1

λ
n+

2

1

+
(n
+
2)

Then by applying Theorem NG, we get

1.

qdim
An+1

λ = qdimAn
λ

n+1∏
k=1

[λn+1
k + (n+ 1) + 1− k]q
[(n+ 1) + 1− k]q

=
n∏

i=1

n∏
j=1

[λj
i + j + 1− i]q
[j + 1− i]q

n+1∏
k=1

[λn+1
k + (n+ 1) + 1− k]q
[(n+ 1) + 1− k]q

=
n+1∏
i=1

n+1∏
j=1

[λj
i + j + 1− i]q
[j + 1− i]q

.

2. Terminal state
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r r r r r rp p p
γ1 γ2 γ3 γn−1 γn γn+1

−λ
n+

1
−
1

−λ
n
−
1

−λ
n−

1
−
1

−λ
3
−
1

−λ
2
−
1

−λ
1
−
1

3. The weight of the new “ghost node” γ(n+1)+1 is

λn+2
1 + (n+ 2) = λ1 + · · ·+ λn+1 + λ(n+1)+1 + ((n+ 1) + 1)

=

(n+1)+1∑
i=1

(λi + 1).

Therefore, the proposition holds for all n ∈ Z+.

(Case Bn): See Appendix A.

(Case Cn): See Appendix A.

(Case Dn):

Note that
n−1∏
i=1

n−1∏
j=i

[λj
i + j + 1− i]q
[j + 1− i]q

= qdim
An−1

λ . This falls in line with the

fact that when viewing Dn as follows,

r r r r r
rp p p

γ1 γ2 γn−3 γn−2

γn−1

γn

λ 1
+
1

λ 2
+
1

λ n
−3
+
1

λ n
−2
+
1

λ n
−1
+
1

λ n
+
1 ,

removing γn leaves a copy of An−1. In fact, starting with firing sequence

(γ1; γ2, γ1; . . . ; γn−2, γn−3, . . . , γ2, γ1; γn−1, γn−2, γn−3, . . . , γ2, γ1) produces
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r r r r r
rp p p

γ1 γ2 γn−3 γn−2

γn−1

γn

−λ
n−

1
−
1

−λ
n−

2
−
1

−λ
3
−
1

−λ
2
−
1

−λ
1
−
1

λ
n−

2

1

+
λ
n
2
+
(2
n
−
3)

,

since the only two times γn−2 is fired it first has population λn−2
1 + (n − 2)

and then λn−1
1 + (n − 1), which are each added to (λn + 1) at γn to give

population λn−2
1 + λn

2 + (2n− 3).

All that is left at this point is the second double product of the pro-

posed qdimDn
λ . The firing sequence we choose will depend on whether n

is even or odd. For even n, continuing gameplay using firing sequence

(γn, γn−2, γn−3, . . . , γ2, γ1; γn−1, γn−2, γn−3, . . . , γ2; . . . ; γn, γn−2, γn−3; γn−1,

γn−2; γn) gives us the following:

r r r r r
rp p p

γ1 γ2 γn−3 γn−2

γn−1

γn

−λ
n−

1
−
1

−λ
n−

2
−
1

−λ
3
−
1

−λ
2
−
1

−λ
1
−
1

λ
n−

2

1

+
λ
n
2
+
(2
n
−
3)

; r r r r r
rp p p

γ1 γ2 γn−3 γn−2

γn−1

γn

−λ
n−

1
−
1

−λ
n−

2
−
1

−λ
3
−
1

λ
n−

2

1

+
λ
n
3
+
(2
n
−
4)

−λ
1
−
1

−λ
n−

2

1

−
λ
n
2
−
(2
n
−
3)
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; r r r r r
rp p p

γ1 γ2 γn−3 γn−2

γn−1

γn

−λ
n−

1
−
1

−λ
n−

2
−
1

λ
n−

2

1

+
λ
n
4
+
(2
n
−
5)

−λ
n−

2

1

−
λ
n
3
−
(2
n
−
4)

λ
n−

2

2

+
λ
n
3
+
(2
n
−
5)

−λ
2
−
1

; ...

; r r r r r
rp p p

γ1 γ2 γn−3 γn−2

γn−1

γn

−λ
n−

1
−
1

λ
n−

2

1

+
λ
n
n−

1
+
n

−λ
4
−
1

−λ
3
−
1

λ
n−

2

2

+
λ
n
3
+
(2
n
−
5)

−λ
2
−
1

; r r r r r
rp p p

γ1 γ2 γn−3 γn−2

γn−1

γn

λ
n−

2

1

+
λ n
+
(n
−
1)

−λ
n−

2

1

−
λ
n
n−

1
−
n

−λ
4
−
1

−λ
3
−
1

λ
n−

2

2

+
λ
n
3
+
(2
n
−
5)

−λ
2
−
1

; r r r r r
rp p p

γ1 γ2 γn−3 γn−2

γn−1

γn

−λ
n−

2

1

−
λ n
−
(n
−
1)

−λ
n−

1
−
1

−λ
4
−
1

−λ
3
−
1

λ
n−

2

2

+
λ
n
3
+
(2
n
−
5)

−λ
2
−
1
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; r r r r r
rp p p

γ1 γ2 γn−3 γn−2

γn−1

γn

−λ
n−

2

1

−
λ n
−
(n
−
1)

−λ
n−

1
−
1

−λ
4
−
1

λ
n−

2

2

+
λ
n
4
+
(2
n
−
6)

−λ
n−

2

2

−
λ
n
3
−
(2
n
−
5)

−λ
2
−
1

; r r r r r
rp p p

γ1 γ2 γn−3 γn−2

γn−1

γn

−λ
n−

2

1

−
λ n
−
(n
−
1)

−λ
n−

1
−
1

λ
n−

2

2

+
λ
n
5
+
(2
n
−
7)

−λ
n−

2

2

−
λ
n
4
−
(2
n
−
6)

−λ
3
−
1

λ
n−

2

3

+
λ
n
4
+
(2
n
−
6)

; ...

; r r r r r
rp p p

γ1 γ2 γn−3 γn−2

γn−1

γn

−λ
n−

2

1

−
λ n
−
(n
−
1)

λ
n−

2

2

+
λ n
+
(n
−
2)

−λ
5
−
1

−λ
4
−
1

−λ
3
−
1

λ
n−

2

3

+
λ
n
4
+
(2
n
−
6)

; ...

; r r r r r
rp p p

γ1 γ2 γn−3 γn−2

γn−1

γn

−λ
1
−
1

−λ
2
−
1

−λ
n−

1
−
1

−λ
n−

2
−
1

−λ
n−

3
−
1

λ
n−

2

n−
3
+
λ
n
n−

2
+
5
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; r r r r r
rp p p

γ1 γ2 γn−3 γn−2

γn−1

γn

−λ
1
−
1

−λ
2
−
1

−λ
n−

1
−
1

λ
n−

2

n−
3
+
λ
n
n−

1
+
4

−λ
n−

3
−
1

−λ
n−

2

n−
3
−
λ
n
n−

2
−
5

; r r r r r
rp p p

γ1 γ2 γn−3 γn−2

γn−1

γn

−λ
1
−
1

−λ
2
−
1

λ
n−

2

n−
3
+
λ n
+
3

−λ
n−

2

n−
3
−
λ
n
n−

1
−
4

λ n
−2
+
λ
n
n−

1
+
3

−λ
n−

2
−
1

; r r r r r
rp p p

γ1 γ2 γn−3 γn−2

γn−1

γn

−λ
1
−
1

−λ
2
−
1

−λ
n−

2

n−
3
−
λ n
−
3

−λ
n−

1
−
1

λ n
−2
+
λ
n
n−

1
+
3

−λ
n−

2
−
1

; r r r r r
rp p p

γ1 γ2 γn−3 γn−2

γn−1

γn

−λ
1
−
1

−λ
2
−
1

−λ
n−

2

n−
3
−
λ n
−
3

λ n
−2
+
λ n
+
2

−λ
n−

2
−
λ
n
n−

1
−
3

−λ
n−

2
−
1

; r r r r r
rp p p

γ1 γ2 γn−3 γn−2

γn−1

γn

−λ
1
−
1

−λ
2
−
1

−λ
n−

3

−λ
n−

2
−
λ n
−
2

−λ
n−

1
−
1

λ n
+
1
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; r r r r r
rp p p

γ1 γ2 γn−3 γn−2

γn−1

γn

−λ
1
−
1

−λ
2
−
1

−λ
n−

3

−λ
n−

2
−
1

−λ
n−

1
−
1

−λ
n
−
1

The underlined values in the above sequence do indeed match those in the

second double product of the proposed qdimDn
λ , and so the Quantum Dimen-

sion Polynomial Identity holds for type Dn, where n is even.

For odd n, continuing gameplay using firing sequence (γn, γn−2, γn−3, . . . ,

γ2, γ1; γn−1, γn−2, γn−3, . . . , γ2; . . . ; γn−1, γn−2, γn−3; γn, γn−2; γn−1) gives us the

following:

r r r r r
rp p p

γ1 γ2 γn−3 γn−2

γn−1

γn

−λ
n−

1
−
1

−λ
n−

2
−
1

−λ
3
−
1

−λ
2
−
1

−λ
1
−
1

λ
n−

2

1

+
λ
n
2
+
(2
n
−
3)

; r r r r r
rp p p

γ1 γ2 γn−3 γn−2

γn−1

γn

−λ
n−

1
−
1

−λ
n−

2
−
1

−λ
3
−
1

λ
n−

2

1

+
λ
n
3
+
(2
n
−
4)

−λ
1
−
1

−λ
n−

2

1

−
λ
n
2
−
(2
n
−
3)
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; r r r r r
rp p p

γ1 γ2 γn−3 γn−2

γn−1

γn

−λ
n−

1
−
1

−λ
n−

2
−
1

λ
n−

2

1

+
λ
n
4
+
(2
n
−
5)

−λ
n−

2

1

−
λ
n
3
−
(2
n
−
4)

λ
n−

2

2

+
λ
n
3
+
(2
n
−
5)

−λ
2
−
1

; ...

; r r r r r
rp p p

γ1 γ2 γn−3 γn−2

γn−1

γn

−λ
n−

1
−
1

λ
n−

2

1

+
λ
n
n−

1
+
n

−λ
4
−
1

−λ
3
−
1

λ
n−

2

2

+
λ
n
3
+
(2
n
−
5)

−λ
2
−
1

; r r r r r
rp p p

γ1 γ2 γn−3 γn−2

γn−1

γn

λ
n−

2

1

+
λ n
+
(n
−
1)

−λ
n−

2

1

−
λ
n
n−

1
−
n

−λ
4
−
1

−λ
3
−
1

λ
n−

2

2

+
λ
n
3
+
(2
n
−
5)

−λ
2
−
1

; r r r r r
rp p p

γ1 γ2 γn−3 γn−2

γn−1

γn

−λ
n−

2

1

−
λ n
−
(n
−
1)

−λ
n−

1
−
1

−λ
4
−
1

−λ
3
−
1

λ
n−

2

2

+
λ
n
3
+
(2
n
−
5)

−λ
2
−
1
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; r r r r r
rp p p

γ1 γ2 γn−3 γn−2

γn−1

γn

−λ
n−

2

1

−
λ n
−
(n
−
1)

−λ
n−

1
−
1

−λ
4
−
1

λ
n−

2

2

+
λ
n
4
+
(2
n
−
6)

−λ
n−

2

2

−
λ
n
3
−
(2
n
−
5)

−λ
2
−
1

; r r r r r
rp p p

γ1 γ2 γn−3 γn−2

γn−1

γn

−λ
n−

2

1

−
λ n
−
(n
−
1)

−λ
n−

1
−
1

λ
n−

2

2

+
λ
n
5
+
(2
n
−
7)

−λ
n−

2

2

−
λ
n
4
−
(2
n
−
6)

−λ
3
−
1

λ
n−

2

3

+
λ
n
4
+
(2
n
−
6)

; ...

; r r r r r
rp p p

γ1 γ2 γn−3 γn−2

γn−1

γn

−λ
n−

2

1

−
λ n
−
(n
−
1)

λ
n−

2

2

+
λ n
+
(n
−
2)

−λ
5
−
1

−λ
4
−
1

−λ
3
−
1

λ
n−

2

3

+
λ
n
4
+
(2
n
−
6)

; ...

; r r r r r
rp p p

γ1 γ2 γn−3 γn−2

γn−1

γn

−λ
1
−
1

−λ
2
−
1

−λ
n−

1
−
1

−λ
n−

2
−
1

λ
n−

2

n−
3
+
λ
n
n−

2
+
5

−λ
n−

3
−
1
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; r r r r r
rp p p

γ1 γ2 γn−3 γn−2

γn−1

γn

−λ
1
−
1

−λ
2
−
1

−λ
n−

1
−
1

λ
n−

2

n−
3
+
λ
n
n−

1
+
4

−λ
n−

2

n−
3
−
λ
n
n−

2
−
5

−λ
n−

3
−
1

; r r r r r
rp p p

γ1 γ2 γn−3 γn−2

γn−1

γn

−λ
1
−
1

−λ
2
−
1

λ
n−

2

n−
3
+
λ n
+
3

−λ
n−

2

n−
3
−
λ
n
n−

1
−
4

−λ
n−

2
−
1

λ n
−2
+
λ
n
n−

1
+
3

; r r r r r
rp p p

γ1 γ2 γn−3 γn−2

γn−1

γn

−λ
1
−
1

−λ
2
−
1

−λ
n−

2

n−
3
−
λ n
−
3

−λ
n−

1
−
1

−λ
n−

2
−
1

λ n
−2
+
λ
n
n−

1
+
3

; r r r r r
rp p p

γ1 γ2 γn−3 γn−2

γn−1

γn

−λ
1
−
1

−λ
2
−
1

−λ
n−

2

n−
3
−
λ n
−
3

λ n
−2
+
λ n
+
2

−λ
n−

2
−
1

−λ
n−

2
−
λ
n
n−

1
−
3

; r r r r r
rp p p

γ1 γ2 γn−3 γn−2

γn−1

γn

−λ
1
−
1

−λ
2
−
1

−λ
n−

3

−λ
n−

2
−
λ n
−
2

λ n
+
1

−λ
n−

1
−
1
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; r r r r r
rp p p

γ1 γ2 γn−3 γn−2

γn−1

γn

−λ
1
−
1

−λ
2
−
1

−λ
n−

3

−λ
n−

2
−
1

−λ
n
−
1

−λ
n−

1
−
1

Again, the underlined values in the above sequence do indeed match those

in the second double product of the proposed qdimDn
λ , and so the Quantum

Dimension Polynomial Identity holds for type Dn, where n is odd.

3.3 Examples

To demonstrate what Quantum Dimension Polynomials tend to look like, we

present the following examples of types An and Dn, respectively.

Example 3.3.1. Let G = A3 and let λ = (2, 1, 0). Then

qdimA3
λ =

[λ1 + 1]q
[1]q

[λ1 + λ2 + 2]q
[2]q

[λ1 + λ2 + λ3 + 3]q
[3]q

[λ2 + 1]q
[1]q

[λ2 + λ3 + 2]q
[2]q

[λ3 + 1]q
[1]q

=
[3]q
[1]q

[5]q
[2]q

[6]q
[3]q

[2]q
[1]q

[3]q
[2]q

[1]q
[1]q

=
(1− q3)(1− q5)(1− q6)(1− q2)(1− q3)(1− q)

(1− q)(1− q2)(1− q3)(1− q)(1− q2)(1− q)

=
1− q3

1− q
· 1− q5

1− q
· 1− q6

1− q2
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= (1 + q + q2)(1 + q + q2 + q3 + q4)(1 + q2 + q4)

= 1 + 2q + 4q2 + 5q3 + 7q4 + 7q5 + 7q6 + 5q7 + 4q8 + 2q9 + q10.

Example 3.3.2. Let G = D4 and let λ = (2, 1, 0, 1). Note that from Exam-

ple 3.3.1,
3∏

i=1

3∏
j=i

[λj
i + j + 1− i]q
[j + 1− i]q

= qdimA3

(2,1,0).

Thus,

qdimD4
λ = qdimA3

(2,1,0) ·
[λ2

1 + λ4
2 + 5]q

[5]q

[λ2
1 + λ4

3 + 4]q
[4]q

[λ2
1 + λ4 + 3]q

[3]q

· [λ2 + λ4
3 + 3]q

[3]q

[λ2 + λ4 + 2]q
[2]q

[λ4 + 1]q
[1]q

= qdimA3

(2,1,0) ·
[10]q
[5]q

[8]q
[4]q

[7]q
[3]q

[5]q
[3]q

[4]q
[2]q

[2]q
[1]q

= qdimA3

(2,1,0) ·
(1− q10)(1− q8)(1− q7)(1− q5)(1− q4)(1− q2)

(1− q5)(1− q4)(1− q3)(1− q3)(1− q2)(1− q)

= qdimA3

(2,1,0) ·
(1− q10)(1− q8)(1− q7)

(1− q3)(1− q3)(1− q)

=
(1− q3)(1− q5)(1− q6)

(1− q)(1− q)(1− q2)
· (1− q10)(1− q8)(1− q7)

(1− q3)(1− q3)(1− q)

=
(1− q5)

(1− q)
· (1− q6)

(1− q3)
· (1− q10)

(1− q2)
· (1− q8)

(1− q)
· (1− q7)

(1− q)

= (1 + q + q2 + q3 + q4)(1 + q3)(1 + q2 + q4 + q6 + q8)

· (1 + q + q2 + q3 + q4 + q5 + q6 + q7)(1 + q + q2 + q3 + q4 + q5 + q6).

(Note that this is a polynomial of degree 28.)
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Chapter 4

Applications

Now that we have stated and proved the Quantum Dimension Polynomial

Identity and examined a few examples, we now provide a few applications.

First, in Section 4.1 we provide an identity for qdimAn
ωk
. Second, in Section

4.2 we use QDPs to answer a combinatorial problem involving the number

of possible subsets of a given set that satisfy a certain property.

4.1 A special identity for qdimAn
ωk

Recall that for a positive integer k ≤ n, the n-tuple ωk is the k-th fundamental

weight with the value 1 in the k-th position and the value 0 elsewhere. For

example, for n = 6, ω4 = (0, 0, 0, 1, 0, 0).

What happens if we examine qdimAn
wk
? It turns out that this QDP can be

expressed in a very nice way. But first, let us declare some notation.
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Definition. For an integer n ≥ 1, we extend the factorial operator ! to

q-integers by defining

[n]q! := [n]q[n− 1]q · · · [1]q.

Additionally, for an integer k such that 1 ≤ k ≤ n, we extend the typical

falling factorial notation, which takes the first k factors in the factorial as

follows:

([n]q)k = [n]q[n− 1]q · · · [(n− k) + 1]q =
[n]q!

[n− k]q!
.

Lastly, when 0 ≤ k ≤ n we extend the ‘n choose k’ operator to q-integers by

defining (
n

k

)
q

:=
[n]q!

[k]q![n− k]q!
=

([n]q)k
[k]q!

.

Example 4.1.1.

(
5

3

)
q

=
([5]q)3
[3]q!

=
(1− q5)(1− q4)(1− q3)

(1− q3)(1− q2)(1− q)

=
1− q5

1− q
· 1− q4

1− q2

= (1 + q + q2 + q3 + q4)(1 + q2)

= 1 + q + 2q2 + 2q3 + 2q4 + q5 + q6.
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Note that when evaluated at q = 1,

(
5

3

)
q

∣∣∣∣∣
q=1

= 10 =

(
5

3

)
.

We are now ready to state the following proposition:

Proposition 4.1.1. For positive integers k and n with k ≤ n,

qdimAn
ωk

=

(
n+ 1

k

)
q

,

a degree k(n+ 1− k) polynomial.

Proof. Let k and n be positive integers with k ≤ n. From Theorem 3,

qdimAn
ωk

=
n∏

i=1

n∏
j=i

[λj
i + j + 1− i]q
[j + 1− i]q

.

Note that λj
i = 1 if i ≤ k ≤ j and λj

i = 0 otherwise. Thus, we get the

following series of equalities involving a long double product of q-integer

fractions that each telescope:

35



qdimAn
ωk

=
n∏

i=1

n∏
j=i

[λj
i + j + 1− i]q
[j + 1− i]q

=
k∏

i=1

n∏
j=k

[j + 2− i]q
[j + 1− i]q

=

(
[k + 2− 1]q
[k + 1− 1]q

· [k + 3− 1]q
[k + 2− 1]q

· [k + 4− 1]q
[k + 3− 1]q

· · · · · [n+ 2− 1]q
[n+ 1− 1]q

)
·
(
[k + 2− 2]q
[k + 1− 2]q

· [k + 3− 2]q
[k + 2− 2]q

· [k + 4− 2]q
[k + 3− 2]q

· · · · · [n+ 2− 2]q
[n+ 1− 2]q

)
· · · (⋆)

·
(
[k + 2− k]q
[k + 1− k]q

· [k + 3− k]q
[k + 2− k]q

· [k + 4− k]q
[k + 3− k]q

· · · · · [n+ 2− k]q
[n+ 1− k]q

)
=

(
[n+ 2− 1]q
[k + 1− 1]q

)
·
(
[n+ 2− 2]q
[k + 1− 2]q

)
· · · · ·

(
[n+ 2− k]q
[k + 1− k]q

)
=

[n+ 1]q[n]q · · · [(n+ 1) + 1− k]q
[k]q[k − 1]q · · · [1]q

=
([n+ 1]q)k

[k]q!

=

(
n+ 1

k

)
q

.

Interestingly, note that in the telescoping double product at (⋆) there are

k(n+ 1− k) total fractions. Moreover, the degree of the resulting polynomial

is k(n+1−k), as there are, after cancellation, k fractions multiplied together,

each contributing a degree n+ 1− k polynomial.

Looking back at Example 4.1.1, note that the degree of
(
5
3

)
q
is 6 = 3(4 +

1− 3) = k(n+ 1− k).
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Example 4.1.2. To see the telescoping products in action, we will examine

qdimA5
ωk

for all k. We break up each single product by parentheses, noting

that in each block every q-integer cancels out except for the last numerator

and the first denominator.

qdimA5
ω1

=
[λ1

1 + 1]q
[1]q

· [λ
2
1 + 2]q
[2]q

· [λ
3
1 + 3]q
[3]q

· [λ
4
1 + 4]q
[4]q

· [λ
5
1 + 5]q
[5]q

=
[2]q
[1]q

· [3]

[2]q
· [4]q
[3]q

· [5]q
[4]q

· [6]q
[5]q

=
[6]q
[1]q

=
([6]q)1
[1]q

=

(
6

1

)
q

.

qdimA5
ω2

=

(
[λ2

1 + 2]q
[2]q

· [λ
3
1 + 3]q
[3]q

· [λ
4
1 + 4]q
[4]q

· [λ
5
1 + 5]q
[5]q

)
·
(
[λ2

2 + 1]q
[1]q

· [λ
3
2 + 2]q
[2]q

· [λ
4
2 + 3]q
[3]q

· [λ
5
2 + 4]q
[4]q

)
=

(
[3]q
[2]q

· [4]q
[3]q

· [5]q
[4]q

· [6]q
[5]q

)
·
(
[2]q
[1]q

· [3]q
[2]q

· [4]q
[3]q

· [5]q
[4]q

)
=

[6]q[5]q
[2]q[1]q

=
([6]q)2
[2]q

=

(
6

2

)
q

.
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qdimA5
ω3

=

(
[λ3

1 + 3]q
[3]q

· [λ
4
1 + 4]q
[4]q

· [λ
5
1 + 5]q
[5]q

)
·
(
[λ3

2 + 2]q
[2]q

· [λ
4
2 + 3]q
[3]q

· [λ
5
2 + 4]q
[4]q

)
·
(
[λ3

3 + 1]q
[1]q

· [λ
4
3 + 2]q
[2]q

· [λ
5
3 + 3]q
[3]q

)
=

(
[4]q
[3]q

· [5]q
[4]q

· [6]q
[5]q

)
·
(
[3]q
[2]q

· [4]q
[3]q

· [5]q
[4]q

)
·
(
[2]q
[1]q

· [3]q
[2]q

· [4]q
[3]q

)
=

[6]q[5]q[4]q
[3]q[2]q[1]q

=
([6]q)3
[3]q

=

(
6

3

)
q

.

qdimA5
ω4

=

(
[λ4

1 + 4]q
[4]q

· [λ
5
1 + 5]q
[5]q

)
·
(
[λ4

2 + 3]q
[3]q

· [λ
5
2 + 4]q
[4]q

)
·
(
[λ4

3 + 2]q
[2]q

· [λ
5
3 + 3]q
[3]q

)
·
(
[λ4

4 + 1]q
[1]q

· [λ
5
4 + 2]q
[2]q

)
=

(
[5]q
[4]q

· [6]q
[5]q

)
·
(
[4]q
[3]q

· [5]q
[4]q

)
·
(
[3]q
[2]q

· [4]q
[3]q

)
·
(
[2]q
[3]q

· [3]q
[2]q

)
=

[6]q[5]q[4]q[3]q
[4]q[3]q[2]q[1]q

=
([6]q)4
[4]q

=

(
6

4

)
q

.

qdimA5
ω5

=

(
[λ5

1 + 5]q
[5]q

)
·
(
[λ5

2 + 4]q
[4]q

)
·
(
[λ5

3 + 3]q
[3]q

)
·
(
[λ5

4 + 2]q
[2]q

)
·
(
[λ5

5 + 1]q
[1]q

)
=

(
[6]q
[5]q

)
·
(
[5]q
[4]q

)
·
(
[4]q
[3]q

)
·
(
[3]q
[2]q

)
·
(
[2]q
[1]q

)
=

([6]q)5
[5]q

=

(
6

5

)
q

.
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4.2 The lattice of k-element subsets of an (n + 1)-

element set

Consider the following combinatorial problem: given the setA = {1, 2, . . . , n+

1}, how many k-element subsets of A are there whose elements sum to a fixed

number s? A version of this problem was posed in [Proc1] and addressed us-

ing ideas similar to what we present next. In the following, we largely assume

knowledge of distributive lattices.

To approach this problem using QDPs, we will construct a lattice of

k-element subsets of A. To this end, consider a k-element subset S ⊆ A

as a strictly increasing k-tuple {s1, s2, . . . , sk}. Given another such subset

T = {t1, t2, . . . , tk}, say S ≤ T ⇐⇒ si ≤ ti for each i. Let Ln(k) be the set

of all k-element subsets with respect to this partial order.

Note that for any S, T ∈ Ln(k), there is a least upper bound S ∨ T =

{max(s1, t1), . . . ,max(sk, tk)} and a greatest lower bound

S ∧ T = {min(s1, t1), . . . ,min(sk, tk)}. Additionally, ‘∨’ distributes over ‘∧’

and vice-versa:

R ∨ (S ∧ T ) = (R ∨ S) ∧ (R ∨ T )

and

R ∧ (S ∨ T ) = (R ∧ S) ∨ (R ∧ T ).

That is, Ln(k) is a distributive lattice.

With respect to this lattice ordering, the minimal element (with rank
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0) is {1, . . . , k} and the maximal element (with rank k · (n + 1 − k)) is

{n+ 2− k, . . . , n, n+ 1}. Also, the rank of any S ∈ Ln(k) is

ρ(S) = s1 + · · ·+ sk − (1 + · · ·+ k) = s1 + · · ·+ sk −
k(k + 1)

2
.

Now, for T ∈ Ln(k), T covers S, written S −−→ T , if and only if there is

some j ∈ {1, . . . , k} such that sj + 1 = tj, while si = ti whenever i ̸= j. In

this case, let c := sj (‘c’ is for color) and write S
c−−→ T .

It is a well-known fact from the theory of crystal graphs that Ln(k) is the

crystal graph associated with the dominant weight ωk for the Coxeter-Dynkin

flower An. Within this crystalline context, Ln(k) is known as a ‘miniscule

lattice.’ By the Quantum Dimension Polynomial Identity and Proposition

4.1.1, (
n+ 1

k

)
q

=
([n]q)k
[k]q!

= qdimAn
ωk

= RGF (Ln(k), q).

Example 4.2.1. Consider the lattice L5(3), constructed as described above.

This lattice can be described using A5 with initial weight ω3 = (0, 0, 1, 0, 0):

r r r r r
γ1 γ2 γ3 γ4 γ5

0 0 1 0 0

The lattice L5(3) is shown below:
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s
s

s s
s s s

s s s
s s s

s s s
s s

s
s

{1, 2, 3}

{1, 2, 4}

{1, 2, 5} {1, 3, 4}

{1, 2, 6} {1, 3, 5} {2, 3, 4}

{1, 3, 6} {1, 4, 5} {2, 3, 5}

{1, 4, 6} {2, 3, 6} {2, 4, 5}

{1, 5, 6} {2, 4, 6} {3, 4, 5}

{2, 5, 6} {3, 4, 6}

{3, 5, 6}

{4, 5, 6}

1

+

q

+

2q2

+

3q3

+

3q4

+

3q5

+

3q6

+

2q7

+

q8

+

q9

RGF (L5(3), q):

Indeed, the Rank Generating Function shown on the right of L5(3) matches

qdimA5
ω3

from Example 4.1.2 when multiplied out.

Interestingly, there is no known product formula for the number of k-

element subsets of {1, 2, . . . , n + 1} whose sum is a fixed number s. This

number can be discerned as the coefficient for qr = qs−
k(k+1)

2 in the q-binomial

coefficient
(
n+1
k

)
q
[Proc1].

For example, in the above lattice, the 3-element subsets of {1, 2, 3, 4, 5, 6}
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that sum to s = 11 are {1, 4, 6}, {2, 3, 6}, and {2, 4, 5}, which can be found

in the row with rank s− k(k+1)
2

= 11− 3(4)
2

= 5.
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Chapter 5

Concluding remarks

We were able to introduce the Networked-Numbers Game for a game graph

G = (Γ, A) and state that G is game-gratifying if and only if it is a Coxeter-

Dynkin flower, as defined in Theorem 1 (La Florado Klasado). Next, we

introduced Quantum Dimension Polynomials, proved a novel result involv-

ing closed-form expressions of QDPs of types An, Bn, Cn, and Dn, and pro-

vided a few examples of QDPs. Lastly, we proved a nice identity for qdimAn
ωk

and applied some QDPs of type An to a combinatorial problem involving

enumeration of certain k-element subsets of the set {1, 2, . . . , n + 1}. These

statements and results demonstrate the power and beauty of some interesting

algebraic and combinatorial structures.

There are a few immediate possible directions to continue. First, do nice

closed-form expressions for the QDPS of types E6, E7, E8, F4, or G2–namely,

the remaining integral Coxeter-Dynkin flowers of Figure 2.1–exist? Second,
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what other applications of QDPS are there? [Fis] and [Proc2] expose and

enumerate certain kinds of “symmetric plane partitions”–arrays of integers

that can be thought of as cubes stacked in towers above the arrays’ positions–

using QDPs of types Bn and Cn. Are there other kinds of symmetric plane

partitions described by the QDPs of type Dn?
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Appendix A

Proofs for QDPs of types Bn

and Cn

Here we provide proofs of Cases Bn and Cn of the Quantum Dimension

Polynomial Identity (Theorem 3 of Section 2.2).

Proof. (Case Bn):

Consider our goal:

qdimBn
λ =

n−1∏
i=1

n−1∏
j=i

[λj
i + j + 1− i]q
[j + 1− i]q

n∏
i=1

n∏
j=i

[λn
i + λn−1

j + 2n+ 1− i− j]q

[2n+ 1− i− j]q
.

(A.1)

Note that
n−1∏
i=1

n−1∏
j=i

[λj
i + j + 1− i]q
[j + 1− i]q

= qdim
An−1

λ . This falls in line with the

fact that when viewing Bn as follows,
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r r r r r r-- �p p p
γ1 γ2 γ3 γn−2 γn−1 γn

λ 1
+
1

λ 2
+
1

λ 3
+
1

λ n
−2
+
1

λ n
−1
+
1

λ n
+
1

,

removing γn leaves a copy of An−1. In fact, starting with firing sequence

(γ1; γ2, γ1; γ3, γ2, γ1; . . . ; γn, γn−1, . . . , γ1) produces

r r r r r r-- �p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
n−

1
−
1

−λ
n−

2
−
1

−λ
n−

3
−
1

−λ
2
−
1

−λ
1
−
1

λ
n
1
+
λ
n−

1

1

+
(2
n
−
1)

,

since the only time γn−1 is fired it has population λn−1
1 + (n − 1) and is

amplified by a factor of 2 before being added to (λn + 1) at γn.

All that is left at this point is the second double product of equation A.1.

Continuing gameplay using firing sequence (γn, γn−1, . . . , γ1; γn, γn−1, . . . , γ2;

. . . ; γn, γn−1; γn), we get

r r r r r r-- �p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
n−

1
−
1

−λ
n−

2
−
1

−λ
n−

3
−
1

−λ
2
−
1

−λ
1
−
1

λ
n
1
+
λ
n−

1

1

+
(2
n
−
1)

; r r r r r r-- �p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
n−

1
−
1

−λ
n−

2
−
1

−λ
n−

3
−
1

−λ
2
−
1

λ
n
1
+
λ
n−

1

2

+
(2
n
−
2)

−λ
n
1
−
λ
n−

1

1

−
(2
n
−
1)
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; r r r r r r-- �p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
n−

1
−
1

−λ
n−

2
−
1

−λ
n−

3
−
1

λ
n
1
+
λ
n−

1

3

+
(2
n
−
3)

−λ
n
1
−
λ
n−

1

2

−
(2
n
−
2)

λ
n
2
+
λ
n−

1

2

+
(2
n
−
3)

; ...

; r r r r r r-- �p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
n−

1
−
1

−λ
n−

2
−
1

λ
n
1
+
λ
n−

1

n−
2
+
(n
+
2)

−λ
3
−
1

−λ
2
−
1

λ
n
2
+
λ
n−

1

2

+
(2
n
−
3)

; r r r r r r-- �p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
n−

1
−
1

λ
n
1
+
λ n

−1
+
(n
+
1)

−λ
n
1
−
λ
n−

1

n−
2
−
(n
+
2)

−λ
3
−
1

−λ
2
−
1

λ
n
2
+
λ
n−

1

2

+
(2
n
−
3)

; r r r r r r-- �p p p
γ1 γ2 γ3 γn−2 γn−1 γn

λ
n
1
+
n

−λ
n
1
−
λ n

−1
−
(n
+
1)

−λ
n−

2
−
1

−λ
3
−
1

−λ
2
−
1

λ
n
2
+
λ
n−

1

2

+
(2
n
−
3)
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; r r r r r r-- �p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
n
1
−
n

−λ
n−

1
−
1

−λ
n−

2
−
1

−λ
3
−
1

−λ
2
−
1

λ
n
2
+
λ
n−

1

2

+
(2
n
−
3)

; r r r r r r-- �p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
n
1
−
n

−λ
n−

1
−
1

−λ
n−

2
−
1

−λ
3
−
1

λ
n
2
+
λ
n−

1

3

+
(2
n
−
4)

−λ
n
2
−
λ
n−

1

2

−
(2
n
−
3)

; r r r r r r-- �p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
n
1
−
n

−λ
n−

1
−
1

−λ
n−

2
−
1

λ
n
2
+
λ
n−

1

4

+
(2
n
−
5)

−λ
n
2
−
λ
n−

1

3

−
(2
n
−
4)

λ
n
3
+
λ
n−

1

3

+
(2
n
−
5)

; ...

; r r r r r r-- �p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
n
1
−
n

−λ
n−

1
−
1

λ
n
2
+
λ n

−1
+
n

−λ
4
−
1

−λ
3
−
1

λ
n
3
+
λ
n−

1

3

+
(2
n
−
5)
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; r r r r r r-- �p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
n
1
−
n

λ
n
2
+
(n
−
1)

−λ
n
2
−
λ n

−1
−
n

−λ
4
−
1

−λ
3
−
1

λ
n
3
+
λ
n−

1

3

+
(2
n
−
5)

; r r r r r r-- �p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
1
−
1

−λ
n
2
−
(n
−
1)

−λ
n−

1
−
1

−λ
4
−
1

−λ
3
−
1

λ
n
3
+
λ
n−

1

3

+
(2
n
−
5)

; r r r r r r-- �p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
1
−
1

−λ
n
2
−
(n
−
1)

−λ
n−

1
−
1

−λ
4
−
1

λ
n
3
+
λ
n−

1

4

+
(2
n
−
6)

−λ
n
3
−
λ
n−

1

3

−
(2
n
−
5)

; r r r r r r-- �p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
1
−
1

−λ
n
2
−
(n
−
1)

−λ
n−

1
−
1

λ
n
3
+
λ
n−

1

5

+
(2
n
−
7)

−λ
n
3
−
λ
n−

1

4

−
(2
n
−
6)

λ
n
4
+
λ
n−

1

4

+
(2
n
−
7)

; ...
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; r r r r r r-- �p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
1
−
1

−λ
n
2
−
(n
−
1)

λ
n
3
+
(n
−
2)

−λ
5
−
1

−λ
4
−
1

λ
n
4
+
λ
n−

1

4

+
(2
n
−
7)

; r r r r r r-- �p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
1
−
1

−λ
2
−
1

−λ
n
3
−
(n
−
2)

−λ
5
−
1

−λ
4
−
1

λ
n
4
+
λ
n−

1

4

+
(2
n
−
7)

; r r r r r r-- �p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
1
−
1

−λ
2
−
1

−λ
n
3
−
(n
−
2)

−λ
5
−
1

λ
n
4
+
λ
n−

1

5

+
(2
n
−
6)

−λ
n
4
−
λ
n−

1

4

−
(2
n
−
7)

; r r r r r r-- �p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
1
−
1

−λ
2
−
1

−λ
n
3
−
(n
−
2)

λ
n
4
+
λ
n−

1

6

+
(2
n
−
7)

−λ
4
−
2λ
n−

1

5

−
λ n
−
(2
n
−
6)

2λ
n−

1

5

+
λ n
+
(2
n
−
9)

; ...
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; r r r r r r-- �p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
1
−
1

−λ
2
−
1

−λ
3
−
1

−λ
n
n−

2
−
3

−λ
n−

1
−
1

λ
n
n−

1
+
λ n

−1
+
3

; r r r r r r-- �p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
1
−
1

−λ
2
−
1

−λ
3
−
1

−λ
n
n−

2
−
3

λ
n
n−

1
+
2

−λ
n
n−

1
−
λ n

−1
−
3

; r r r r r r-- �p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
1
−
1

−λ
2
−
1

−λ
3
−
1

−λ
n−

2
−
1

−λ
n
n−

1
−
2

λ n
+
1

; r r r r r r-- �p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
1
−
1

−λ
2
−
1

−λ
3
−
1

−λ
n−

2
−
1

−λ
n−

1
−
1

−λ
n
−
1

The underlined values in the above sequence do indeed match those in

the second double product of equation A.1, and so the Quantum Dimension

Polynomial Identity holds for type Bn.

(Case Cn):
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Consider our goal:

qdimCn
λ =

n−1∏
i=1

n−1∏
j=i

[λj
i + j + 1− i]q
[j + 1− i]q

n∏
i=1

n+1∏
j=i+1

[λn
i + λn

j + 2n+ 2− i− j]q

[2n+ 2− i− j]q
.

(A.2)

The proof proceeds similarly to the above of type Bn.

Note that
n−1∏
i=1

n−1∏
j=i

[λj
i + j + 1− i]q
[j + 1− i]q

= qdim
An−1

λ . This falls in line with the

fact that when viewing Cn as follows,

r r r r r r- ��p p p
γ1 γ2 γ3 γn−2 γn−1 γn

λ 1
+
1

λ 2
+
1

λ 3
+
1

λ n
−2
+
1

λ n
−1
+
1

λ n
+
1

,

removing γn leaves a copy of An−1. In fact, starting with firing sequence

(γ1; γ2, γ1; γ3, γ2, γ1; . . . ; γn, γn−1, . . . , γ1) produces

r r r r r r- ��p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
n−

1
−
1

−λ
n−

2
−
1

−λ
n−

3
−
1

−λ
2
−
1

−λ
1
−
1

λ
n
1
+
n

,

since the only time γn−1 is fired it has population λn−1
1 +(n−1) and is added

to (λn + 1) at γn.

All that is left at this point is the second double product of equation A.2.

Continuing gameplay using firing sequence (γn, γn−1, . . . , γ1; γn, γn−1, . . . , γ2;

. . . ; γn, γn−1; γn), we get
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r r r r r r- ��p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
n−

1
−
1

−λ
n−

2
−
1

−λ
n−

3
−
1

−λ
2
−
1

−λ
1
−
1

λ
n
1
+
n

; r r r r r r- ��p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
n−

1
−
1

−λ
n−

2
−
1

−λ
n−

3
−
1

−λ
2
−
1

λ
n
1
+
λ
n
2
+
(2
n
−
1)

−λ
n
1
−
n

; r r r r r r- ��p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
n−

1
−
1

−λ
n−

2
−
1

−λ
n−

3
−
1

λ
n
1
+
λ
n
3
+
(2
n
−
2)

−λ
n
1
−
λ
n
2
−
(2
n
−
1)

λ
n
2
+
(n
−
1)

; ...

; r r r r r r- ��p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
n−

1
−
1

−λ
n−

2
−
1

λ
n
1
+
λ
n
n−

2
+
(n
+
3)

−λ
3
−
1

−λ
2
−
1

λ
n
2
+
(n
−
1)
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; r r r r r r- ��p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
n−

1
−
1

λ
n
1
+
λ
n
n−

1
+
(n
+
2)

−λ
n
1
−
λ
n
n−

2
−
(n
+
3)

−λ
3
−
1

−λ
2
−
1

λ
n
2
+
(n
−
1)

; r r r r r r- ��p p p
γ1 γ2 γ3 γn−2 γn−1 γn

λ
n
1
+
λ n
+
(n
+
1)

−λ
n
1
−
λ
n
n−

1
−
(n
+
2)

−λ
n−

2
−
1

−λ
3
−
1

−λ
2
−
1

λ
n
2
+
(n
−
1)

; r r r r r r- ��p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
n
1
−
λ n
−
(n
+
1)

−λ
n−

1
−
1

−λ
n−

2
−
1

−λ
3
−
1

−λ
2
−
1

λ
n
2
+
(n
−
1)

; r r r r r r- ��p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
n
1
−
λ n
−
(n
+
1)

−λ
n−

1
−
1

−λ
n−

2
−
1

−λ
3
−
1

λ
n
2
+
λ
n
3
+
(2
n
−
3)

−λ
n
2
−
(n
−
1)

; r r r r r r- ��p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
n
1
−
λ n
−
(n
+
1)

−λ
n−

1
−
1

−λ
n−

2
−
1

λ
n
2
+
λ
n
4
+
(2
n
−
4)

−λ
n
2
−
λ
n
3
−
(2
n
−
3)

λ
n
3
+
(n
−
2)
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; ...

; r r r r r r- ��p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
n
1
−
λ n
−
(n
+
1)

−λ
n−

1
−
1

λ
n
2
+
λ
n
n−

1
+
(n
+
1)

−λ
4
−
1

−λ
3
−
1

λ
n
3
+
(n
−
2)

; r r r r r r- ��p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
n
1
−
λ n
−
(n
+
1)

λ
n
2
+
λ n
+
n

−λ
n−

2

2

−
2λ

n−
1
−
λ n
−
n

−λ
4
−
1

−λ
3
−
1

λ
n
3
+
(n
−
2)

; r r r r r r- ��p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
1
−
1

−λ
n
2
−
λ n
−
n

−λ
n−

1
−
1

−λ
4
−
1

−λ
3
−
1

λ
n
3
+
(n
−
2)

; r r r r r r- ��p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
1
−
1

−λ
n
2
−
λ n
−
n

−λ
n−

1
−
1

−λ
4
−
1

λ
n
3
+
λ
n
4
+
(2
n
−
5)

−λ
n
3
−
(n
−
2)
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; r r r r r r- ��p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
1
−
1

−λ
n
2
−
λ n
−
n

−λ
n−

1
−
1

λ
n
3
+
λ
n
5
+
(2
n
−
6)

−λ
n
3
−
λ
n
4
−
(2
n
−
5)

λ
n
4
+
(n
−
3)

; ...

; r r r r r r- ��p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
1
−
1

−λ
n
2
−
λ n
−
n

λ
n
3
+
λ n
+
(n
−
1)

−λ
5
−
1

−λ
4
−
1

λ
n
4
+
(n
−
3)

; r r r r r r- ��p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
1
−
1

−λ
2
−
1

−λ
n
3
−
λ n
−
(n
−
1)

−λ
5
−
1

−λ
4
−
1

λ
n
4
+
(n
−
3)

; r r r r r r- ��p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
1
−
1

−λ
2
−
1

−λ
n
3
−
λ n
−
(n
−
1)

−λ
5
−
1

λ
n
4
+
λ
n
5
+
(2
n
−
7)

−λ
n
4
−
(n
−
3)
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; r r r r r r- ��p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
1
−
1

−λ
2
−
1

−λ
n
3
−
λ n
−
(n
−
1)

λ
n
4
+
λ
n
6
+
(2
n
−
8)

−λ
n
4
−
λ
n
5
−
(2
n
−
7)

λ
n
5
+
(n
−
4)

; ...

; r r r r r r- ��p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
1
−
1

−λ
2
−
1

−λ
3
−
1

−λ
n
n−

2
−
λ n
−
4

−λ
n−

1
−
1

λ
n
n−

1
+
2

; r r r r r r- ��p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
1
−
1

−λ
2
−
1

−λ
3
−
1

−λ
n
n−

2
−
λ n
−
4

λ
n
n−

1
+
λ n
+
3

−λ
n
n−

1
−
2

; r r r r r r- ��p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
1
−
1

−λ
2
−
1

−λ
3
−
1

−λ
n−

2
−
1

−λ
n
n−

1
−
λ n
−
3

λ n
+
1
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; r r r r r r- ��p p p
γ1 γ2 γ3 γn−2 γn−1 γn

−λ
1
−
1

−λ
2
−
1

−λ
3
−
1

−λ
n−

2
−
1

−λ
n−

1
−
1

−λ
n
−
1

The underlined values in the above sequence do indeed match those in

the second double product of equation A.2, and so the Quantum Dimension

Polynomial Identity holds for type Cn.
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