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Abstract

Failure of physical devices can cause inconvenience, loss of money, and some-

times even deaths. To improve the reliability of these devices, we need to

know the remaining useful life (RUL) of a device at a given point in time.

Data-driven approaches use data from a physical device to build a model that

can estimate the RUL. They have shown great performance and are often

simpler than traditional model-based approaches. Typical statistical and ma-

chine learning approaches are often not suited for sequential data prediction.

Recurrent Neural Networks are designed to work with sequential data but

suffer from the vanishing gradient problem over time. Therefore, I explore

the use of Long Short-Term Memory (LSTM) networks for RUL prediction. I

perform two experiments. First, I train bidirectional LSTM networks on the

Backblaze hard-disk drive dataset. I achieve an accuracy of 96.4% on a 60

day time window, state-of-the-art performance. Additionally, I use a unique

standardization method that standardizes each hard drive instance indepen-

dently and explore the benefits and downsides of this approach. Finally, I

train LSTM models on the NASA N-CMAPSS dataset to predict aircraft

engine remaining useful life. I train models on each of the eight sub-datasets,

achieving a RMSE of 6.304 on one of the sub-datasets, the second-best in

the current literature. I also compare an LSTM network’s performance to

the performance of a Random Forest and Temporal Convolutional Neural

Network model, demonstrating the LSTM network’s superior performance. I

find that LSTM networks are capable predictors for device remaining useful

life and show a thorough model development process that can be reproduced

to develop LSTM models for various RUL prediction tasks. These models

will be able to improve the reliability of devices such as aircraft engines and

hard-disk drives.
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1 Introduction

Physical devices can fail. Whether it is a car engine, medical device, television,

or one of countless other devices, there is an aspect of unreliability to it. Some

devices are components of a larger system. For example, consider a car engine.

It is part of the larger system of a full car. When smaller components fail, an

entire system can fail. This is clearly true for car engines. Vehicles will not

run without a working engine.

The shocking aspect of device failure is not that it happens, but rather the

frequency in which it happens. For example, Warranty Direct’s 2013 car

engine reliability report [2] found that MG Rover cars had a 1 in 13 chance

of engine failure. Similar numbers can be seen in popular car brands still

operating today, too. According to the same report, Audi cars have an

engine failure rate of 1 in 27. With millions of vehicles produced, engine

failure will impact an extremely large number of people. Frequent failure

is not limited to car engines. According to a 2020 report by Mindfactory

[54], a German retailer, around 493 of the 9,530 2080 Ti computer graphics

processing units were returned. This is a return rate of around 5%. With a

current manufacturer’s suggested retail price of around $1,000 [51], hundreds

of thousands of dollars are lost to faulty GPUs being returned.

Devices failures have many negative consequences. First, a device failure leads

to an inconvenience for the device’s user. GPUs are an essential computer

component to many researchers, video game players, or anyone else needing
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to process computationally-intensive graphics. If their GPU fails, and there is

up to a 1 in 20 chance it will according to the above statistics, their work or

lifestyle is interrupted while waiting for their return. Imagine any frequently-

used device in someone’s life. An air-conditioning unit, a refrigerator, or a

smartphone camera. Every device would cause some sort of inconvenience

in its user’s life if it failed. Second, device failures lead to large amounts of

money lost by manufacturers and users. As previously mentioned, hundreds

of thousands of dollars are lost to GPU failures by manufacturers on just one

model of a GPU. That only considers the GPUs that were returned by users.

It is easy to imagine scenarios where users would choose not to return their

failed GPU, causing consumers to lose thousands of dollars too. Another

example of device failure causing monetary loss can be seen in smartphones.

According to a 2017 report by Blancco [70], 26% of iPhone 6s had a reported

failure. At the time, the iPhone 6 was the most commonly used model with

21% of the 728,000,000 active iPhones being iPhone 6s. This means that

around 40,000,000 iPhone 6s would have had some form of reported failure.

With smartphones being as expensive as they are, the failure of these iPhones

undoubtedly cost consumers massive amounts of money in upgrade or repair

fees. Finally, device failures can cause physical harm. Consider the 2018

engine failure of Southwest Airlines Flight 1380. The left engine of the aircraft

failed, causing a window to be damaged. One passenger died, and eight others

were injured [41]. It is clear that the reliability of physical devices serves an

important purpose to those who interact with them.
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To improve the reliability and maintenance of physical devices, it would be

helpful to know how long a device has before it is unusable. The amount

of time a device has before it fails or is unusable is known as the remaining

useful life (RUL). ”In engineering, prognostics can be defined as the process

of RULs estimation of system/subsystem/component that is degrading due

to either normal operation (no fault symptoms) or detected fault” [28]. By

being able to estimate the remaining useful life of a device, we can predict

when it will fail. This can help minimize the damages caused by a failure,

as users or maintainers will have a warning before failure. The approaches

taken towards prognostics can be split into two categories: model-based and

data-driven approaches.

1.1 Model-Based Approaches

Model-based remaining useful life prediction uses models of physical systems

to depict the lifetime of a device or system [7]. An accurate, mathematical

model of the degradation towards failure of the device is required. Once

such an equation is obtained, deviations from this model can be measured

and checked against a threshold. If the sensor measurements exceed the

threshold, the range of error in predictions becomes larger [48]. In these

models, parameters are estimated using various algorithms, such as a Rao-

Blackwellised particle filter [43]. An example of a model-based prognostics

approach is in battery degradation [7]. The authors use the following equation

to model the degradation of a battery.
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λ = ae−bt (1)

In this equation, λ is the battery’s performance, t is the time, and a and b are

parameters that need to be estimated. They set a true a and b to generate

data. They allow a to be known as a value of 1. Then they use a particle

filter to estimate b using the data. Using this estimated value of b, they are

essentially fine-tuning a degradation model to model battery performance

with their assumed model parameters. They can then use the predicted value

of b for each value of t until λ = 0 so that they have a model of the lifetime

of the battery.

There are some advantages to using model-based remaining useful life pre-

diction approaches. Model-based approaches can model the physical system

where RUL prediction is needed. Model-based approaches use physics to

predict how the lifetime of a device will degrade. If the models are perfect,

then it would perfectly model the lifetime of the device in the real world.

Additionally, model-based approaches can often determine which features led

the device to degrade [48]. This would allow the engineers designing these

devices to know where the devices can be improved.

An obvious disadvantage to model-based approaches is that they require

an accurate model of the physical system. If one is not available, it would

require a deep understanding of the device or system being modeled and

the physics behind it to create such an equation. And, in the end, there
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are assumptions and predictions being made in the model that cause it to

be imperfect. In our battery example, this was the assumption of the value

of a and the estimation of b. This model may not depict the degradation

of a battery perfectly, leading to incorrect RUL predictions or a high error

window. For this reason, it is worth looking at other remaining useful life

prediction methods. such as data-driven approaches.

1.2 Data-Driven Approaches

Often, physical devices have sensors that are constantly collecting data about

the device. For example, hard-disk drives have S.M.A.R.T. features reported

by the drive at all times [56]. With many devices, these features can be

aggregated to form a dataset of historic device data. If failures are marked,

the run-to-failure of each device in that dataset can be seen. Data-driven

prognostics use this data to build a model of the device’s remaining useful

life [49].

The benefit of using a data-driven technique for remaining useful life prediction

comes from the ease of building a model. No in-depth physics knowledge

or accurate mathematical model is needed. All one has to do to use a data-

driven approach is implement some method of data-driven model building.

There are a variety of techniques to create such models, some of which will

be discussed in the next section, and these models are not specific to one

problem. Someone could develop a data-driven model that works on data

5



from smartphones and is easily transferred to another type of device, such as

car engines, with little modification [28].

A downside to data-driven techniques is that they require large datasets for

the devices in order to model failure [29]. It is easy to imagine an example

where this is hard to obtain. For example, if someone wanted to predict the

remaining useful life of a new type of aircraft, there would be no available data

on this aircraft. In this case, it might be more appropriate to create a model-

based representation of the aircraft to predict the RUL. However, in situations

where large datasets are available, data-driven techniques for prognostics are

very powerful. Additionally, these large datasets are becoming more feasible

to work with and collect as computational power increases. Consequentially,

data-driven approaches are becoming more popular [71]. Due to the increase

in popularity, transferability, and relative simplicity of data-driven models, I

choose to explore their use for RUL estimation throughout the rest of this

thesis.

It is worth noting that hybrid data-driven and model-based approaches exist.

These can be more powerful than either of the two on their own [20]. However,

they still require physical modeling of the system or device, so I will not

explore these techniques further.
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1.3 Machine Learning

There are two main categories of data-driven approaches: statistical and ma-

chine learning approaches. Statistical techniques involve building a statistical

model of the given data to predict RUL. These statistical models may be some

kind of time series analysis model, like an ARIMA model. The discussion

of such statistical models is kept brief and included as needed, as machine

learning models have shown superior performance [64].

Machine learning is a rapidly-growing field that involves using computer

algorithms that can ”learn” from data. It is a subfield of artificial intelligence.

Learning in this context can be thought of as an algorithm improving its

performance by training on some task [38]. Once this algorithm has been

trained on data, it should be able to make reasonable predictions on its given

task. For example, if someone wanted to create a machine learning model that

can learn to detect spam emails, they would likely start by collecting hundreds

or thousands of emails. They would train some kind of machine learning

model on these emails. The model would start its learning process incorrectly

discriminating the spam emails from the real emails. Eventually, the model

would start to improve its performance and the model user could implement

this model in a spam-detection application. There is a large overlap between

statistical and machine learning modeling. They both involve creating a

model to learn trends from data. However, statistical models often have a

focus on inference, being able to determine truths about the population from
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the data. In contrast, machine learning models often focus on the predictive

performance of models [18]. There are three main categories of machine

learning: supervised, unsupervised, and reinforcement learning [38].

1.3.1 Categories of Machine Learning

Supervised learning is the most widely-used machine learning method [38].

It involves training a model on labeled data [45]. This means that the true

value that one is trying to predict is already known. The model can see

how far off its predictions are when learning. Supervised tasks, and tasks in

other categories of machine learning, can usually be placed into the categories

of regression and classification [42]. Regression tasks involve predicting a

continuous number. An example of a supervised regression task may be

predicting a stock price given historical stock data. The model will have

access to the true values of the historical stock prices, making it supervised,

and the model has the goal of predicting a continuous value, the future stock

price. Therefore, this model would be a supervised regression model. The

second major type of supervised prediction is classification. Classification

is, as the name suggests, grouping data points into classes. For example,

consider a dataset of labeled images of cats and dogs. The model has the true

animals that the images represent, and is therefore supervised. The model

also has the goal of placing the images into the categories of a cat or a dog,

so it is a classifier. There are many popular supervised learning algorithms.

Some include Logistic Regression, Decision Trees, Random Forests, Support
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Vector Machines, and Neural Networks [65].

Unsupervised learning is another category of machine learning. Unsupervised

learning involves learning patterns from unlabelled data. The algorithms often

group data by patterns or analyze unlabelled data based on the structural

properties of the data [38]. For example, consider a website for online shopping.

An unsupervised model could group customers by purchase type so the website

can recommend users products they may want to buy. The true label of the

type of products a customer may buy could be unknown or unknowable. In

either case, the label is not needed to group the customer data by similarity.

Some common types of unsupervised learning include K-Nearest-Neighbors,

Principal Components Analysis, and Singular Value Decomposition [27].

The final major category of machine learning is reinforcement learning. Rein-

forcement learning algorithms have an agent that is learning to interact with

its environment. The agent performs actions in the environment to receive

rewards. The better an agent is doing at its job, the more reward the agent

gets [68]. This agent has the goal of maximizing its reward. This is very

similar to how humans learn. As an example, consider a robot trying to

learn to walk. The robot would have a constant stream of data from all of its

sensors. When the robot first tries to walk, it will likely not succeed. It will

receive a very small reward for taking no steps. This robot will experiment

with different actions until it stumbles (pun intended) upon the correct series

of actions it needs to take to make a step, gaining a large reward. As it
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maximizes its rewards, it also learns to walk. We did not provide this robot

with any labels, but we also did not leave it completely unsupervised; we

defined what we would reward it for doing correctly.

With those categories in mind, let us consider the problem of remaining useful

life prediction again. In remaining useful life prediction, we have data from

physical devices. Hopefully, this data contains a mark for when that device

fails. We can use this mark to calculate the true remaining useful life. This

remaining useful life will probably be a discrete numerical value. Therefore,

we should use a supervised algorithm that can perform classification. (It

should be noted that regression predictions can be rounded to an integer to

mock multiclass classification, so regression will work too.)

1.3.2 Deep Learning and Neural Networks

In supervised learning, a sub-field of machine learning has developed known as

deep learning. Deep learning networks are models that contain multiple layers

of neural networks that update their parameters with optimization algorithms

[38]. Various deep learning architectures have shown great performance in

the task of prognostics [76]. This is supported by the number of prognostics

papers using deep learning models in comparison to those using traditional

statistical or machine learning models. For example, in the problem of aircraft

engine remaining useful life prediction, the top four categories of papers

published working with the NASA Commercial Modular Aero-Propulsion

System Simulation dataset used some form of neural-network-based deep

10



learning, totaling 64 out of the 81 papers [72]. To understand how deep

learning models work, we need to start with understanding a neural network.

A neural network algorithm is a representation of the human brain. A basic

artificial neural network contains neurons that are either active or inactive.

An output is determined by adding weighted inputs. This output is put

through an activation function to determine if the neuron is active or not.

Many neurons are connected into a network, called an artificial neural network.

The activation of neurons throughout a network can approximate nonlinear

functions [50]. Figure 1 demonstrates a basic neuron in a neural network. In

that figure, wij is the weight of the connection between the current neuron,

i, and the previous connected neurons, j. The state of a neuron is denoted

as sj(t) and is computed with an activation function. In this diagram, the

activation function is g, and the specific function used depends on the problem.

The argument of the activation function is a weighted sum of the inputs that

have a bias term, θ [50]. The equation below can be used to determine the

state of a neuron at time t+ 1 using a given activation function g.

si(t+ 1) = g(
N∑
j=1

wijsj(t)− θi) (2)

A neural network is the connection of these neurons. There is typically an

input layer, a ”hidden layer” of neurons, and an output layer that are all fully

connected. There could be multiple hidden layers. These could be used to
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Figure 1: Diagram of basic neuron in a neural network.

learn more complex features. For example, layer one may learn what shapes

are present in an array of pixels while layer two learns the relationship among

those shapes. As the number of layers increases, the neural network can learn

more complex functions. An example of a simple neural network can be seen

Figure 2.

After a prediction is made, the neural network can calculate an error. The

error function can be differentiated to calculate a gradient. This gradient is

used to perform stochastic gradient descent and propagate weight updates

backward through the network (backpropagation) [50]. This is what allows

a neural network to learn. It makes a prediction and changes its weights to

correct for its mistake. After doing this thousands or millions of times, it

can approximate the universal function that represents the true relationship

between the features and predicted variable.
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Input

Hidden

Output

Figure 2: Artificial neural network. Each node is a neuron.

Neural networks are organized into different architectures to perform various

tasks. Recall that in device health data, we have a collection of sequential,

time-dependent data points. Each data point depends on the previous data

point. There is a type of neural network made for making predictions on

sequential data known as a Recurrent Neural Network.

1.3.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are neural networks that can use previous

outputs as inputs. They are usually thought of as having different cells that

are connected into a network. These cells can activate and produce an output.

A diagram of a basic RNN is shown in Figure 3. In this diagram, a[t] is the

activation of a cell at a given time t, x[t] is the input at a given time, and y[t]
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Figure 3: Traditional many-to-many RNN.

is the output at a given time. This RNN is many-to-many, meaning that it

takes multiple inputs and produces multiple outputs [6]. For the problem of

remaining useful life estimation, we only need to produce one output, the

RUL.

The activation of a cell a[t] and the output of a cell y[t] can be defined by the

following equations. This these equations, g1 and g2 are activation functions

and Wax, Waa, Wya, ba, and by are coefficients that are shared among cells

temporally to allow the network to remember information [6].

a[t] = g1(Waaa
[t−1] +Waxx

[t] + ba) (3)

y[t] = g2(Wyaa
[t] + by) (4)

The traditional backpropagation algorithm that was previously described

cannot be used in a Recurrent Neural Network, so RNNs have a custom loss
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function, L, that is the sum of the loss at every time step and a backpropaga-

tion method (called backpropagation through time) that can be expressed by

the following equations [6].

L(ŷ, y) =
Ty∑
t=1

L(ŷ[t], y[t]) (5)

∂L(T )

∂W
=

Ty∑
t=1

∂L(T )

∂W

∣∣∣
(t)

(6)

In these equations, ŷ[t] is the predicted value at a time point, y[t] is the true

value at a time point, T represents the number of time points, t is an individual

time point, and W is the weight matrix. Backpropagation will be done at

each time point using the partial derivative in the second equation above.

Recurrent neural networks have shown success in tasks involving sequential

such as text classification [44] and time series forecasting [69]. However, they

suffer from something known as the vanishing gradient problem [33].

The gradient is calculated by taking a partial derivative of the loss function.

This partial derivative can be followed to minimize the loss function. In

a RNN, the loss function is calculated for each input in the data. The

calculation of the loss function involves the multiplication of each previous

weight. Therefore, if an activation function that scales values from 0-1 is used,

the network will be multiplying numbers from 0-1 together. This causes the

gradient to shrink in backpropagation through time as the number of nodes
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or layers increases. In certain cases, a small gradient can keep a network from

learning [33]. To solve this problem, RNNs were modified to introduce the

Long Short-Term Memory Network [34].

1.3.4 Long Short-Term Memory Network

The LSTM introduces a cell state ct that contains a series of gates that

have more control over the information that is retained between cells. The

LSTM has a forget ft, input it, and output ot gate. The combination of

these allows the LSTM cells to extend their short-term memory, keeping

any information they need through the learning process. Each gate contains

activation functions like sigmoid. The forget gate takes information from

the previous cell and current input to decide what to keep or forget. Any

information that is kept goes through the input gate. This determines what

values will be updated in the cell. The tanh function is applied to the cell state

and current input for regulation. The cell state is then updated according to

the combination of forget and input gates. Using the current cell gates and

state, the output gate decides what to pass on to the next cell. A diagram to

demonstrate a typical LSTM cell is shown in Figure 4. Equations [58] that

describe this process are shown below.

it = σ(Wixxt +Wimmt−1 +Wicct−1 + bi) (7)

16



ft = σ(Wfxxt +Wfmmt−1 +Wfcct−1 + bf ) (8)

ct = ft ⊙ ct−1 + it ⊙ g(Wcxxt +Wcmmt−1 + bc) (9)

ot = σ(Woxxt +Wommt−1 +Wocct + bo) (10)

mt = ot ⊙ h(ct) (11)

yt = ϕ(Wymmt + by) (12)

These equations describe one iteration of the network unit activations. These

are calculated T times. In these equations, x denotes an input vector of size

T , y denotes an output sequence of size T , W denotes the weight matrices,

b denotes the bias vectors, i is the input gate, f is the forget gate, o is the

output gate, c is the cell activation vector, m is the cell output activation

vector, ⊙ is the element-wise product of two vectors, g is the cell input

activation function, h is the cell output activation function, and ϕ is the

softmax network activation function [58].

With a model that can learn from sequential data without suffering from
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the vanishing gradient problem established, we can begin experimenting with

LSTMs. The next two sections are dedicated to demonstrating the effective-

ness of LSTMs for remaining useful life prediction of physical devices through

two real-world applications. First, in hard-disk drives and second in aircraft

engines. By showing these experiments, I provide reproducible model devel-

opment methods that can be transferred to other RUL prediction problems

or to similar tasks. I achieve state-of-the-art performance in problems in

device RUL prediction, offering real-world solutions to the pressing problem

of device failure.

ct-1

ht-1

xt

σ σ σtanh

tanh

Σ Σ Σ Σ

XX

ΣX ct

ht

X Scale

Σ Sum

σ Sigmoid

tanh tanhinput

hidden state

cell state forget gate

input gate output gate

Figure 4: The Structure of an LSTM Cell
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2 Hard-Disk Drive RUL Prediction

The first application of long short-term memory networks to predict remaining

useful life that I performed was in hard-disk drives. This section contains

work that was published in [25], in which I am the primary author.

2.1 Introduction

Hard disk drives or HDDs have been the primary storage systems in large-

scale data centers. Like any electronic device, HDDs also have a limited

lifespan. To monitor operational health of these devices, operators frequently

rely on S.M.A.R.T. (Self-Monitoring Analysis and Reporting Technology).

S.M.A.R.T. logs device health data such as power-on hours, temperature

and sector error rates, head flying hours and so on. [56]. These are set by

each drive manufacturer along with a threshold for each attribute which is

traditionally used to detect failure. If a hard drive is operating as it should,

each S.M.A.R.T. attribute should ideally not be outside this threshold.

Backblaze, a cloud storage and data backup company, has over 171,000 hard

drives in their data center [1]. With an annualized failure rate of 0.93% in

2020, over a thousand of their hard drives failed [39]. It follows that it is

necessary for hard drive manufacturers and companies like Backblaze to know

the remaining useful life (RUL) of their hard drives. This would not only

help reduce downtime at a large data center, but would help protect valuable

user data.
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S.M.A.R.T. attributes are a great way of detecting imminent failure of hard

drives [14], but it would be ideal to predict the RUL of a hard drive. This

would allow consumers to know that they need to start making backups and

initiate planning to buy a new hard drive long before it fails. It would also

allow companies like Backblaze to prepare to replace a drive ahead of time.

Contributions: In this work, we propose methods for data standardiza-

tion, normalization and RUL prediction for working with the highly class-

imbalanced Backblaze data using a Bidirectional Long Short Term Memory

Network [30] with multiple days of look-back period. Our approach considers

S.M.A.R.T. features which are highly correlated to failure and builds a predic-

tion pipeline that takes into consideration the long-term temporal relations

in the failure data. We employ a vanilla Long Short Term Memory Network

under similar data preprocessing conditions to contend that the Bi-LSTM

outperforms the standard LSTM implementation on all lookback periods. We

also consider a Random Forest baseline which upon inspection is found to

generate sub-par learning capability on the failure data thereby reinforcing

the need for learning temporal sequence patterns as our Bi-LSTM model does.

At an accuracy of 96.4% for a 15 day look-back, our model is among the

state-of-the-art reported in the literature. An overview of our approach is

shown in Figure 5.
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Figure 5: Overview of the workflow for our approach.

2.2 Previous Approaches

In this section, we review some of the previous works focused on remaining

useful life prediction of HDDs. For ease of review, we have divided these into

statistical and machine learning approaches.

2.2.1 Statistical Approaches

Remaining useful life prediction is inherently a time series problem. The

S.M.A.R.T. features of each hard drive are recorded at a constant time

interval. Each S.M.A.R.T. attribute value is dependant on the previous value.
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This lack of independence makes this problem difficult to solve with simple

statistical models such as linear regression. This section will briefly cover a

few statistical approaches historically taken. For more details, the reader is

encouraged to see the cited papers.

One such approach (Wang et al.) involved using a two-step parametric

method. The first step was transforming the variables into Gaussian variables

with the Box-Cox transformation, using Mahalanobis distance to get the

variables into one index. This was used for anomaly detection. Second, a

generalized likelihood ratio test with a sliding window was used to predict

failure. This method resulted in around a 68% failure detection rate [74].

Another approach (Wang et al.) used an adaptive Rao-Blackwellized particle

filter error tracking method. This gave a health status to the HDD. The

failure was predicted by using a threshold that is placed by the adaptive error

tracking. Using an accelerated degradation test, they were able to achieve

a 97.44% failure detection rate [75]. It should be noted that this approach

was used to predict whether a hard disk drive would fail, not the RUL of an

HDD.

A third approach (He, Yang and Xie) proposes using the Weibull distribu-

tion instead of the exponential distribution to predict RUL. Using sectional

Weibull modeling can better capture the nuances of the HDD time-to-failure

distribution [32].

The above approaches rely heavily on a deep understanding of specific sta-
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tistical techniques to predict impending failure. Model-driven approaches

are highly pointed and they do not always end up learning the complex,

underlying patterns in unstructured failure data with class imbalance.

2.2.2 Data-driven Approaches

In recent years, there has been an exponential rise in the adoption of data-

driven approaches for fault prediction tasks. The solution frameworks involv-

ing the (a) prediction of RUL of an HDD instance and (b) classifying whether

an HDD instance will fail within a certain number of days have both seen

significant improvements with the adoption of machine learning and and deep

learning approaches. This section will briefly survey some machine learning

methods widely used in HDD RUL prediction.

A Bayesian Network is ”a probabilistic graphical model that represents a set

of random variables and their conditional dependencies” [22]. These use the

S.M.A.R.T. attributes to predict the probability that a hard drive will fail at

a particular time. Simple (Chaves et al.) [22, 21] and Combined Bayesian

Networks (Jia et al.) [52] have been used to predict the RUL. The Combined

Bayesian Network is able to combine multiple machine learning classifiers to

give a model that can predict more accurately than an individual classifier.

Relatively-straightforward machine learning models have also had some suc-

cess in solving this problem. Machine learning algorithms such as Support

Vector Machines (SVM), Decision Trees (DT), and Random Forests (RF) are
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frequently used. These algorithms are often used as a baseline or control to

compare a proposed method to [35], as they are known to be well-performing.

However, RF algorithms have shown to predict the RUL very well, and

are commonly treated as more than a baseline [62, 8, 9]. Random Forest

algorithms do not require a sequence of time data, so the input of current

S.M.A.R.T. attribute values would be enough to predict the RUL [8]. This

means that RF approaches need less data, offering an advantage over some of

the time-dependant models discussed later.

By far, the most common method to predict the RUL of hard drives involves

using Long Short-Term Memory networks (LSTMs). These are an improve-

ment on Recurrent Neural Networks that can help solve the vanishing gradient

problem [34]. LSTMs [9, 12, 61], Convolutional Neural Network LSTMs [47],

Clustered LSTMs [13], and Attention LSTMs [23, 73] have all been used to

predict hard drive failure or the RUL of a hard drive with a high degree of

success.

A convolutional neural network LSTM (CNN-LSTM) is able to combine

the benefits of both CNNs and LSTMs into one model. The CNN uses

convolutional layers to reduce variation in the input. This filtered input is

then passed to the LSTM, giving the LSTM better input than without the

CNN. This combined model could give better results than a simple CNN or

LSTM would alone [47] [57].

An encoder decoder LSTM, also known as a sequence-to-sequence model, uses
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two models. The first model encodes the input sequence to a fixed length.

The second model decodes that fixed length input and predicts a sequence

of output [24]. Remaining useful life prediction does not necessarily call for

sequence prediction. All we need to predict is one number, the RUL. However,

encoder decoder models have shown great performance and are often the base

to an attention LSTM, so it is worth mentioning.

2.3 Bidirectional Long Short-Term Memory Network

Numerous variants of LSTMs have been introduced to improve performance.

We use one such variant - the Bidirectional LSTM or Bi-LSTM - in combination

with specialized normalization strategies to predict and improve upon the

HDD RUL as predicted by vanilla LSTMs.

A bidirectional LSTM is a variant of an LSTM that consists of two LSTMs.

These LSTMs run at the same time. One runs on the input sequence and the

other runs backwards on the input sequence [31]. In this way, the LSTM runs

in both directions. In this problem, one could think of one direction of the

LSTM running on the sequence of hard drive data leading up to failure and

another running on the sequence as the hard drive gets further away from

failure. This allows the LSTM to better learn the relationship between the

features and the remaining useful life with a simple, low-cost architecture

change. For this reason, we experiment on effectiveness of a bidirectional

LSTM in determining the remaining useful life of hard-disk drives. Figure 6

25



LSTM

σ

LSTM

X1

Y1

LSTM

σ

LSTM

X2

LSTM

σ

LSTM

Xn

Y2 Yn
Outputs

Inputs

Backward 
Layer

Forward 
Layer

Activation 
Layer …

…

…

…

…

Figure 6: Bidirectional LSTM Architecture

shows the architecture of a bidirectional LSTM.

2.4 Data Preprocessing

Backblaze is a cloud storage company that has over 170,000 HDDs used by

customers across the globe. Each quarter, they release snapshots of all of

their hard disk drives [1]. In these snapshots, there are daily statistics for

each HDD including S.M.A.R.T. features and a few other features for each

HDD. Among those is whether or not a HDD failed on a given day. If it

failed, it it marked with a 1 and removed from the subsequent snapshots.
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2.4.1 Data Collection

Using the Backblaze data from quarter 4 for 2019 and quarters 1 and 2

for 2020, we programmatically created a dataset containing the S.M.A.R.T.

features leading up to failure for one hard drive model. Only one model

was selected due to the inconsistency in meanings of S.M.A.R.T. features

between models. The model selected was the Seagate ST4000DM000. We

target this model because of the high prevalence of disk failures compared to

other models.

This selection also allows for comparison with several existing state-of-the-art

approaches in the literature such as Basak et al. [13] and Anantharaman et

al. [8]. Basak et al. used a spatio-temporal approach to predict the RUL of

HDDs combining LSTM and hierarchical clustering. They achieved a mean

absolute error (MAE) of 2.4 days for the prediction on Seagate ST4000DM000.

Anantharaman et al. used two approaches: (a) a Random Forest model using

the current snapshot of S.M.A.R.T. readings and (b) an LSTM which models

the historical temporal pattern of the S.M.A.R.T. features. Their results

suggest the Random Forest predictions are comparable to or outperforms the

LSTM on Seagate ST4000DM000.

In order to create our dataset, we first looked for a hard drive with the model

ST4000DM000 that had failed. When one was found, the previous 60 and

120 days worth of data were gathered for that same serial number. This was

then concatenated onto the dataset in the long format. For each day back,
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a column for the remaining useful life was also added. For example, if a

failed device was found, the column for RUL would have a value of 1 on the

previous day, 2 on the day before that, and so on. This allowed us to keep

from having to treat this as a binary classification problem. We could instead

predict the RUL value using regression.

We chose to take a regression approach to this problem because we felt it

remained true to the goal of the model. With regression, the model will be

able to output a continuous number representing the predicted amount of days

until the hard drive fails. Since the data is captured each day, this predicted

number could be rounded or truncated. This will lead to a simple way to

assess the performance of the model. One approach that was considered

for binary classification was to iterate over each day, essentially asking the

model the question ”Will the hard drive fail on this day?” One could then

use the first day where the model gives a value of 1 (hard drive failing) as

the remaining useful life, capturing classification statistics along the way. We

suspect this is how many previous approaches to RUL prediction handled

this dataset, as most statistics provided in the literature are classification

statistics (F Score, Precision, Recall, etc.).

2.4.2 Feature Selection

The Backblaze dataset provides dozens of S.M.A.R.T. statistics for each of

its hard drives; however, not all of these are relevant. Some of the features

are redundant, do not contain useful information, or are null. To remove
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these and reduce the complexity of the model, we used two feature selection

methods. These were a correlation score and a Decision Tree.

Before using any feature selection techniques, we removed all null features

and features that were already normalized. Backblaze performs their own

data normalization and provides raw and normalized versions of each feature

reported. We chose to apply our own normalization techniques, discussed

later, and therefore removed all of these features.

The first method of feature selection we chose was using a correlation score.

We calculated the Pearson product-moment correlation coefficient between

each S.M.A.R.T. feature and the feature representing the remaining life of

the hard drive. This was calculated for each hard drive instance, averaged,

and then the absolute value was taken. This left us with a correlation score

for each S.M.A.R.T. feature, shown in Figure 7. As can be seen, 5 of the

features are highlighted in green. These indicate the features that we selected

as the final predictors. S.M.A.R.T. 7 was included over S.M.A.R.T. 193

because it was used as a predictor in [13] and we wanted to make sure a fair

comparison was possible. We suspect that 193 had a higher correlation score

in our analysis than S.M.A.R.T. 7 due to differences in data, but the scores

of S.M.A.R.T. 7 and S.M.A.R.T. 193 were practically the same.

With concerns about nonlinearity of S.M.A.R.T. feature values, we conducted

another method of feature selection. We trained a simple Decision Tree

regressor on the dataset using all of the features. A graph demonstrating the
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Figure 7: Pearson Correlation Score for S.M.A.R.T. Features as bars, Feature
importance from Decision Tree as diamonds.

importance it gave to each feature is shown on top of the bar plots in Figure 7.

The diamonds represent the importance percentage of the respective feature

determined by the decision tree. The sum of each of these importances is

equal to one. As can be seen, the decision tree feature importance agrees

with the correlation scores. S.M.A.R.T. 7, 240, 193, 242, 9, and 241 are given

the most importance and highest correlation scores. Because of this, we felt

comfortable taking S.M.A.R.T. 7, 9, 240, 241, and 242 as the features for the

LSTM models. As discussed, these are the same features reported in [13],

which will allow for more comparability in model performance.

A brief description of what each selected feature represents [56] is provided

below.

30



S.M.A.R.T. 7

Seek Error Rate. The rate of seek errors of the magnetic head.

S.M.A.R.T. 9

Power-on Hours. The total number of hours the hard drive has been

powered on.

S.M.A.R.T. 240

Head Flying Hours. The amount of time a disk head has spent moving.

S.M.A.R.T. 241

Total LBAs Written. The total number of LBAs written by the hard drive.

An LBA is a 512 byte section of memory.

S.M.A.R.T. 242

Total LBAs Read. The total number of LBAs read by the hard drive.

It seems to make intuitive sense that each of these features would be highly

correlated with hard drive failure.
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2.4.3 Data Standardization

A typical method of standardization would involve scaling all features of all

of the data points to some standard range. When done on this data, this led

to a few points being more extreme than others (see Figure 8). As can be

seen, a few of the points have values above 10. The standardization makes

the points have a mean of 0 and variance of 1. All of the points should ideally

be somewhere between -2 and 2 to have an even distribution. The points that

are extremely far outside of this range may inhibit the LSTM’s training and

reduce performance.

In order to fix this, a different approach to standardization was taken. Instead

of standardizing each feature from every hard drive (the full dataset), each

individual hard drive was standardized independently of the other. Each

feature from each hard drive was scaled such that they would have a mean

of 0 and variance of 1. This heavily reduced the impact of the extreme data

points. However, this did come with a cost. We could no longer apply this

same scaler to the test set since each scale was dependent on the hard drive.

This has potential impacts on ’across-the-board’ generalization of the model,

a topic which will be discussed further in the paper.

Since applying the same scaler to the training and test sets was no longer an

option, we took the same approach to scaling the test set and other validation

sets as the training set. Each feature for each device was independently scaled

to a mean of 0 and variance of 1.
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This approach can be applied to any hard drive data of the same shape. This

means that someone using this model could easily standardize their data and

run it through our model without having to apply the exact transformation

as us, something one would most likely have to do with typical normalization.

An alternative solution to this issue, and one that has been applied in the

past [13], would have been to perform some kind of outlier detection and

removal. However, this comes with the cost of losing potentially valuable

data. Some points labled as outliers would be easy to justify as impossible.

For example, consider a hard drive that reports its hours active as longer

than the hard drive has been manufactured. Other points would not be as

easy to justify removing, and there is the potential of removing something

useful to the model.

It also raises the question of how this would be handled in an actual imple-

mentation of the model. Would an end user have to be okay with a model

simply being wrong about their hard drive’s RUL if it reported one of these

extreme points? If a model is trained on a dataset without these extreme

points, we cannot expect it to be accurate when it inevitably encounters

feature values like this outside of training. For these reasons, we did not use

this approach.
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2.4.4 Reclassification of Data

At this point, we had a set of training data consisting of 78 hard drives with

5 S.M.A.R.T. features reported for each hard drive 60 days up to failure and

the day of failure. We had 2 sets of test data. One consisted of 71 hard

drives, different than the ones in the training set, with the same 5 S.M.A.R.T.

features reported for each drive 60 days up to failure and the day of failure.

The second test set consisted of 133 hard drives with the same 5 S.M.A.R.T.

features reported 120 days up to failure and the day of failure.

After visualizing the data for each day leading up to failure, a pattern begins

to emerge (see Figure 9). It appears that a few of the reported S.M.A.R.T.

features have large jumps leading up to the day of failure. This is what would

be expected. For example, consider S.M.A.R.T. 7, the rate of seek errors.
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One would expect these errors to increase dramatically as the hard drive

begins to fail. Our model will likely be predicting a lower remaining useful

life of the hard drive as each feature has a dramatic change. This will be a

problem when trying to predict the RUL accurately using regression. How

could the model say that a hard drive has 117 days of RUL instead of 116

when the feature values for these are virtually the same and these dramatic

changes do not happen until right before failure?

To solve this problem, we reclassified every value for the remaining useful life

that is over 30 days as 30 days. This created a category where the hard drive

is in good working condition. This reclassification of the RUL is also done

in [8]. Any day where a hard drive is reporting normal S.M.A.R.T. feature

values can be treated as having 30+ days of remaining useful life. We believe

35



this is appropriate given the inspection of the feature values and would still

maintain the practicality of the model. A consumer using this model would

have about 30 days to back up and replace their hard drive before failure,

much better than the last minute notification of failure usually given.

2.5 Model Training

2.5.1 LSTM Models

To train an LSTM model, the data has to be in the shape of [samples x

timesteps x features]. The samples are the number of data points. (Given

60 days worth of data, including a 0th day of failure, for 78 hard drives, the

number of samples is 4758.) The timesteps are the number of days of data

leading up to each sample point. We trained these LSTM models with a

variety of parameters for the timesteps. With these timesteps, our models do

not have to make their prediction based on the current S.M.A.R.T. feature

values. The models can also use the previous n days’ S.M.A.R.T. features to

better understand the way the data is changing. The final dimension of the

shape that LSTM data has to be in is the number of features. In this case,

this is simply 5, as we chose 5 S.M.A.R.T. features in the previous section.

With the data in the correct shape, the LSTM models could be trained. To

train the basic LSTM, we created a model with an LSTM layer consisting of

32 units followed by a densely-connected neural network layer. The Adam

optimizer was chosen. The model was trained for 50 epochs with a batch size
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of 64 and was shuffled during training. A very similar approach was taken

to train the bidirectional LSTM. A Bidirectional wrapper was added to the

LSTM layer that would return the last output.

All of the LSTM models were trained with 5, 10, 15, and 30 timesteps. This

was done to see the impact on RUL prediction when the model is given

varying amounts of data. An example loss function graph for the LSTM

training is provided in Figure 10.

The LSTM models are trained on a specific hard-disk drive model with the five

chosen features. In this, none of the LSTM models should have to be retrained

unless major changes are made to the selected features, an unlikely event given

that their meanings were determined by the model’s manufacturer. So the

performance on the test set should be comparable to the models’ performance

on new data if that data is in the correct shape.

2.5.2 Random Forest

To provide a baseline performance comparison, a Random Forest model was

also trained. The random forest was trained on the same dataset as the

LSTM models, split into 80% training and 20% testing. The data for the

random forest was not standardized and each feature was given to it. Due

to the flexibility of random forests, this would have been unnecessary and

led to reduced performance when we tried it. Any data point more than 30

days away from failure was still capped at 30 days for comparability. It was
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Figure 10: Loss function for a vanilla LSTM trained with 5 days look back
over 50 epochs. Loss curves of other LSTM models follow a similar trend.
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trained with 1000 estimators and no max depth.

2.6 Results

After each model was trained, each model was then evaluated on two test

sets. The first included data similar to the data the models were trained on.

This test set had the 5 S.M.A.R.T. feature values for the 60 days leading up

to a hard drive failure for 71 hard drives. The second test set was included

to see how to the trained models would perform when given a more difficult

task. Instead of predicting the RUL for data at most 60 days away from hard

drive failure, the second test set included data 120 days leading up to each

hard drive’s failure. This dataset included 133 hard drives. Both of these test

sets were standardized in the same way the training sets were.

In order to evaluate the performance of these models, we needed some quan-

titative metrics. Because our models would output a continuous number

representing the predicted remaining useful life, we chose R2 as one of these

metrics. We also collected the mean absolute error (MAE) in the predicted

RUL. To concretely represent the usefulness of the models, we also collected

accuracy. To determine how many correct predictions the model made, we

rounded each prediction. So a prediction of 24.4 days RUL when the hard

drive actually had 24 would be deemed a correct prediction.

The performance of each LSTM model with 5, 10, 15, and 30 days timesteps

for 60 days of data is shown in Table 1. The basic LSTM network is denoted

39



as LSTM and the bidirectional LSTM is denoted as Bi-LSTM.

Model Timesteps Accuracy R2 MAE

LSTM 5 0.910 0.992 0.287
LSTM 10 0.914 0.994 0.244
LSTM 15 0.916 0.992 0.247
Bi-LSTM 30 0.910 0.994 0.238
Bi-LSTM 5 0.939 0.999 0.131
Bi-LSTM 10 0.934 0.997 0.190
Bi-LSTM 15 0.964 0.998 0.120
Bi-LSTM 30 0.960 0.998 0.132
RF NA 0.667 0.987 0.483

Table 1: Performance for trained models on test data 60 days before failure.

The performance of each LSTM model with the same timesteps for 120 days

of data is shown in Table 2. The random forest model is also added for

comparison at the bottom of both tables.

As can be seen, the LSTM models achieve high accuracy on data within the

same range it is trained on. In Table 1 we see that the Bidirectional LSTM

with a timestep of 15 days performs the best on the test set. This model

achieves a MAE of 0.12, much lower than most of the state-of-the-art models,

including Basak et al. [13] that achieved a MAE of 2.4 on the same model.

Every LSTM model outperforms the Random Forest model. All of the LSTM

models are able to generalize very well to the same time frame.

Figure 11, Figure 12, and Figure 13 demonstrate the difference in performance

between the LSTM and random forest models. All of these graphs are sorted
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Model Timesteps Accuracy R2 MAE

LSTM 5 0.479 0.286 4.305
LSTM 10 0.471 0.219 4.589
LSTM 15 0.444 0.028 5.250
LSTM 30 0.358 -0.359 6.433
Bi-LSTM 5 0.497 0.312 4.145
Bi-LSTM 10 0.496 0.216 4.448
Bi-LSTM 15 0.487 0.071 4.874
Bi-LSTM 30 0.369 -0.565 6.792
RF NA 0.378 0.333 3.647

Table 2: Performance for trained models when extrapolating to 120 days
away from failure.

by the actual remaining useful life for demonstrative purposes.

Table ?? shows performance metrics for related data-driven approaches for

hard drive health assessment. While the table is not exhaustive, it should

provide some context to the performance of state-of-the-art models.

2.6.1 Observations

Some interesting observations can be gained from the graphs in Figure 11,

Figure 12, and Figure 13. First, it is clear that the LSTM models outperform

the Random Forest. While Figure 11 shows almost no separation between

the True RUL and the Predicted RUL for the Bi-LSTM architecture, the

difference is most clearly visible in Figure 13 for the Random Forest. It is also

clear that the Bi-LSTM outperforms the regular LSTM model in Figure 12.

Second, we see that the LSTM models incorrectly predict the RUL more often
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Figure 11: Bidirectional LSTM with 15 days lookback predictions. The points
are sorted by the actual RUL.
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Figure 12: LSTM with 15 days lookback predictions. The points are sorted
by the actual RUL.
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Model Type Precision Recall MAE Citation

Random Forest 0.95 0.67 - Aussel et al.[9]
Attention LSTM 0.93 0.96 - Wang et al.[73]
Random Forest 0.66 0.94 - Lu et al.[47]
LSTM 0.66 0.88 - Lu et al.[47]
CNN-LSTM 0.93 0.94 - Lu et al.[47]
Random Forest - - 6.4 Anantharaman et al.[8]
LSTM - - 8.15 Anantharaman et al.[8]
Clustered LSTM - - 2.4 Basak et al.[13]
Bi-LSTM - - 0.12 Our Approach

Table 3: Performance of previous approaches for RUL prediction by various
data-driven approaches.

when the hard drive is further away from failure. Most of the deviations from

the actual remaining useful life are when the hard drive is in the category of

30+ days RUL. The LSTMs are more accurate when the hard drive is closer

to failure, reinforcing its practical importance. Third, we can see that the

Random Forest appears to have an opposite relationship with the data. The

Random Forest is much less accurate the closer the hard drive gets to the

day of failure. There is not a spot on Figure 13 where the Random Forest

appears to consistently predict the RUL, but it is certainly worse when the

actual RUL gets below 10 days. It is also worth noting that the Random

Forest is appearing to overestimate the remaining useful life. A real user

would probably want the model to underestimate the RUL. It is better that

they replace their hard drive early than have it fail on them before they can

replace it.
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Figure 13: Random Forest predictions. The points are sorted by the actual
RUL.

Every model performs poorly when attempting to extrapolate far into the

future. This is a common problem with statistical and machine learning

prediction methods in general. From Table 2, we see that the Bidirectional

LSTM has the highest accuracy at predicting the remaining useful life of hard

drives that are twice as far away from failing (120 days) as the models were

trained on (60 days). This LSTM model gets nearly half of its predictions

correct. In contrast, the random forest has a lower accuracy score, but also has

a higher R2 and lower MAE. This implies that the random forest predictions

may actually be better than the LSTM models, but the random forest does

not predict the exact RUL as well.

It would be hard to expect a model to be able to perform as well on data

that is twice as far away as the data it was trained on, but being able to do
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so would highly improve the real-world usefulness of the model.

2.7 Standardization and Generalization

This section is dedicated to more discussion of our novel standardization

approach. The benefits and downsides of this method of standardization will

be explained.

As mentioned in Section 2.4, the hard drive data needed to be normalized or

standardized to be used by the LSTM models. A traditional standardization

approach where the entire features would be standardized as a whole was

considered, but not adopted due to the poor LSTM performance. We believe

the cause of this to be partially due to extreme data points influencing the

weights of the LSTM and difficulty of the problem.

To standardize the data, we standardized the data per sample. This means

that each feature of each hard drive was essentially treated as its own dataset

when applying the scaler.

To better explain this, consider two hard drives: hard drive A and hard drive

B. Both hard drive A and B are of the same model, but hard drive A has an

extreme value for its S.M.A.R.T. 7 feature on 2 of the 60 days of data captured.

When all of the S.M.A.R.T. 7 feature values are standardized together, the

weight of these extreme values are maintained. The standardization we used

made each feature have a mean of 0 and variance of 1. It follows that the

more data points that exist, the less the extreme values of S.M.A.R.T. 7 that
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hard drive A contains will be pulled towards a reasonable number. For some

models, such as a Random Forest, this may not be an issue, but because of

the nature of recurrent neural networks we believe these extreme values will

amplify the weights and reduce the performance of the model.

By normalizing the S.M.A.R.T. 7 values for hard drive A and B separately,

the extreme values for hard drive A will be pulled more towards reasonable

values while still maintaining the patterns in their feature values that the

LSTM can learn. Figure 14 is included to visualize this process. The data

included in this figure is entirely theoretical, but demonstrates the differences

in the range of the data for both of the standardization techniques discussed.

This method of standardization deals with the extreme data points without

risking a loss of data as would be done using an outlier removal. However,

this does have the potential downside of not being able to reuse the same

standardization function to new data. At first, we assumed that this would

cause the model to lose any generalization, completely overfitting on the

training data. From the results, we see that this was not the case. The LSTM

models performed exceptionally well at predicting the RUL of hard drives in

the test set after undergoing this standardization. It outperforms a model,

the Random Forest, that was not standardized this way.

As was also demonstrated, this method of standardization has the potential of

restricting the range of time that the model is useful. We saw that the models

did not perform well on 120 days worth of data. Using this standardization
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Figure 14: Visualizing a potential difference between the regular method of
standardization (left) and the per sample standardization (right.)

technique, the data around day 120 should have around the same values as

the data around day 60 for the other test sets. Instead of being able to apply

a standardization function that would potentially assign different values to

those past 60 days, they are all standardized to a similar range.

We believe that this should not discredit this technique of standardization.

The performance of the LSTM models were greatly increased by this standard-

ization technique over a traditional one. We attribute this to the complexity

of the dataset. Many of the S.M.A.R.T. feature values remain relatively-

unchanging until the hard drive is soon to fail. The typical method of

standardization may assign a similar value for one of the S.M.A.R.T. features

60 days away from failure to one 120 days away from failure due to the

nature of the data (see Figure 9). This, while still maintaining outliers, would

probably make training an accurate LSTM very difficult.
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2.8 Conclusion

In this section, we attempted to solve the problem of remaining useful life

prediction for hard drives. Given a series of hard drive data 60 days before

the hard drive fails, we were able to predict the remaining useful life of a

hard drive with state-of-the-art accuracy, outperforming previous approaches

in the literature [13] that worked on the same data and the same model, in

particular.

To accomplish this, we used both Bidirectional and vanilla Long Short-

Term Memory networks, or LSTMs, with highly customized pre-processing

directives. We provided a cap on the number of days a hard drive could be

away from failure, giving our model a category where the hard drive is treated

as operating normally. This allowed the model to better handle data where

the hard drive is not failing, improving the performance. We implemented

a unique method of data standardization that standardized each hard drive

independently. This maintained generalization on similar time windows, but

came with the cost of reducing performance on time windows much different

than trained on.

We also implemented a Random Forest model as a baseline to compare our

LSTM models to. The random forest model was able to perform as well as

the LSTM models on data in a different time window than trained on, but

was severely outperformed on the test data from the same time window.
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2.8.1 Future Work

While our work is able to predict the remaining useful life of hard drives

well, there is still much room for future work to be done on this complex

problem. Most notably, an ideal model would be able to achieve similar

performance to our model while still being able to extrapolate well. There

is no set number of days that one could select for training the model that

would not run into extrapolation issues. Even if one were to train a model

on 1,000 days of data, there is still a scenario where someone would have a

hard drive that is more than 1,000 days away from failing. We attempted

to solve this by implementing the cap on the remaining useful life, but the

models still struggled to perform well when the time interval was doubled.

Improving the extrapolation performance would be an important milestone

towards true generalization and add to the applicability of the model in a

real-world deployment scenario.

Second, future work could explore a model that is able to predict the remaining

useful life for any hard drive model. While we believe our process could easily

be reproduced for any hard drive model, it would be worth exploring the

possibility of training a model that would work for more than one model.

Finally, future work could implement a hard drive RUL prediction model into

a real system, testing the performance of the model on real-time hard drive

data for hard drives that may not fail for years.
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3 Aircraft Engine RUL Prediction

The next application of long short-term memory networks to predict remaining

useful life that I performed was in aircraft engines. This section contains

in-progress work.

3.1 Introduction

There are over 16,400,000 flights handled by the Federal Aviation Adminis-

tration (FAA) in the United States every year [4]. With this many planes,

hardware failures are bound to happen. Unexpected problems with an aircraft

can cause flight delays and cancellations. A 2010 report sponsored by the FAA

through its National Center of Excellence for Aviation Operations Research

estimated ”that the total cost of all US air transportation delays in 2007 was

$32.9 billion.” They say that ”delays could be caused by mechanical problems.”

[11] In addition to the monetary cost of airplane hardware failures, an issue

with an aircraft could lead to an in-flight disaster, potentially endangering

the pilots or passengers on board.

To mitigate the effects of these failures, it is important to be able to predict the

remaining useful life of aircraft components, such as the engine. This allows

airlines to make appropriate maintenance to the engines before the inevitable

engine failure happens. To help facilitate this process, NASA released the

Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset

in 2010 [19].
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The C-MAPSS dataset contains simulated turbofan engine data. It simulates

a variety of realistic flight conditions and injects faults into the engine during

one of the flights. It contains full recordings of the simulated flights with

30 parameters. Due to the realism of the simulated data, this dataset is

often used for benchmarking of various prognostics approaches [55] and for

remaining useful life prediction [72].

However, there was room for improvement with the C-MAPSS dataset. The

engine fault could not be predicted before it would happen; all remaining

useful life prediction would have to begin after the fault was detected. In

order to provide a more realistic failure evolution, provide more data, and

make models more usable, NASA released a New Commercial Modular Aero-

Propulsion System Simulation (N-CMAPSS) dataset [5]. The N-CMAPSS

dataset ”contains eight sets of data from 128 units and seven different failure

modes affecting the flow (F) and/or efficiency (E) of all the rotating sub-

components” [5]. It contains 47 different variables taken from measurements,

virtual sensors, model health parameters, and auxiliary data. It also includes

a remaining useful life measurement, allowing for easy RUL prediction. This

paper will use the N-CMAPSS data to predict the remaining useful life of

turbofan engines.

3.1.1 Contributions

In this paper, we present a series of long short-term memory models to

predict the remaining useful life of aircraft engines in the N-CMAPSS dataset.
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Figure 15: Overview of the model training and evaluation process of this
paper.

These models show a high degree of success in this problem, with one model

achieving a RMSE of 6.3 and a NASA score of 0.637. This is among the best

in the literature. We also train a Random Forest and Temporal Convolutional

Network model on one of the N-CMAPSS datasets. Our simple LSTM

approach substantially outperforms these models, even when performing the

same regularization method as the LSTM on the other models. Additionally,

the approach we present is simple and could be easily replicated by anyone

needing to predict the RUL of aircraft engines. Our approach could also be

transferred to many other prognostics datasets. This is contrary to many of

the previous approaches in the literature that use highly-specific and complex

methods of predicting engine RUL.
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We demonstrate the success of principal components analysis to reduce the

complexity of this large dataset without sacrificing model performance. We

highlight the issue of overfitting in the sub-datasets of N-CMAPSS and

provide our solutions. Using recurrent dropout and a dropout layer, we are

able to improve the test performance of an LSTM model trained on the second

sub-dataset of N-CMAPSS from a RMSE of 10.38, a statistic which could

already be considered good, to a RMSE of 8.627. We analyze the predictions

of our models to show gaps in model performance that can be addressed in

future works to lead to even better RUL prediction models.

3.2 Previous Approaches

3.2.1 C-MAPSS

Despite its limitations, understanding the approaches taken to predict RUL

using the C-MAPSS dataset is essential to establishing a basis for approaching

the N-CMAPSS dataset. While the fundamental differences between the two

datasets make directly comparing the performance of solutions to the N-

CMAPSS dataset to the best performing C-MAPSS models impossible, we

can transfer techniques from the best models to this new dataset. According

to a 2021 review by Vollert et. al [72], the top three most common machine

learning models used to predict the RUL of the C-MAPSS dataset were

the Long Short-Term Memory Network (LSTM) (28 papers), Convolutional

Neural Network (CNN) (10 papers), and a CNN combined with an LSTM (10
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papers). CNNs and LSTMs were the best performing models in terms of pure

predictive performance, using root mean square error (RMSE) as a metric.

3.2.2 N-CMAPSS

As the N-CMAPSS dataset is a relatively-new dataset at the time of writing

this paper, not much work has been done exploring its use for remaining

useful life prediction. Perhaps the most notable usage of the N-CMAPSS

dataset was in the 2021 Prognostics and Heath Maintenance Conference Data

Challenge [3]. This was a challenge held by the 13th Annual Conference of

the Prognostics and Health Management Society in which the contestants

were tasked with predicting time to failure of aircraft engines using a subset of

the N-CMAPSS dataset. This challenge is useful to look at, as the top three

teams were asked to write papers on their approach. A similar competition

was held in 2008 [36] that introduced the original C-MAPSS dataset and lead

to the development of some powerful prognostics methods [55].

In the 2021 PHM competition [3], a subset of N-CMAPSS with 100 aircraft

units across 7 different failure models is used. The scenario descriptors

(flight data), measurements, and auxiliary data were provided. This can be

contrasted with the 128 units and data from virtual sensors and engine health

parameters that are present in the full N-CMAPSS dataset. The competition

was scored using a combination of 50% of each of the two metrics, RMSE (13)

and NASA’s scoring function (14) [5] where late predictions are penalized

heavier than early predictions. The formal definitions of these metrics are
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shown in the equations below.

RMSE =

√√√√ 1

mv∗

mv∗∑
n=1

(∆(n))
2

(13)

sc =
1

mv∗

mv∗∑
n=1

exp(α|∆(n)|)− 1 (14)

In these equations, mv∗ is the size of the validation dataset, ∆(n) is the

difference between the estimated and real remaining useful life for the nth

sample, and α is 1
13

when underestimating the RUL and 1
10

if not.

Third place in the 2021 PHM contest [66] used two stacked deep convolutional

neural networks. They carry out an encoding phase followed by an RUL

prediction phase. They scored 3.651 in the competition. In their paper, they

report a RMSE of 6.24, a sc of 0.64, and a combined score of 2.95 on their

validation set, performing better than their competition score. Second place

[26] used an inception-based deep convolutional network. They only trained

their model on one flight but were able to achieve a competition score of

3.33. Surprisingly, the results on their validation set were slightly worse,

achieving a RMSE of 12.5, sc of 2.53, and an overall score of 7.5. First place

[46] used another deep convolutional network, utilizing a CNN that could

take variable-length input sequences. They achieved a contest score of 3.006,

not reporting their validation metrics. From these contest results, we can see

that CNNs are a powerful tool for the task of RUL prediction. This is to be
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expected, as 20 of the papers in the survey on the C-MAPSS dataset [72]

mentioned in the above section used some form of CNN. However, the most

popular model used on the C-MAPSS dataset was an LSTM model.

There are a couple of papers in the literature that use the N-CMAPSS dataset

outside of this competition. One such example uses a Deep Gaussian Process

to estimate RUL on the full N-CMAPSS dataset [15]. They introduce a new

type of model, a DGP, that they validate on the N-CMAPSS dataset. Their

proposed model achieves a RMSE of 7.37 with their best model, a Monte-

Carlo Dropout model, achieving a RMSE of 7.31. These were evaluated on

three test units. A second example uses a fusion of a physics-based and deep

learning model for RUL prediction on the N-CMAPSS dataset [20]. They used

hybrid vanilla neural networks, CNN, and LSTM models. On three test units,

they achieved a RMSE of 4.22 and an sc of 0.43. Both of these approaches

use very custom models that are powerful remaining useful life predictors. An

aggregation of performance for all of the models in this subsection is shown

in Table 4.

Model Type RMSE sc Contest Reference
Stacked CNN 6.24 0.64 3.651 Solis-Martin et al. [66]
Inception CNN 12.5 2.53 3.33 Devol et al. [26]
Variable CNN - - 3.006 Lovberg et al. [46]
Deep Gaussian Process 7.37 - - Biggio et al. [15]
Monte-Carlo Dropout 7.31 - - Biggio et al. [15]
Hybrid 4.22 0.43 - Chao et al. [20]

Table 4: Performance on N-CMAPSS dataset
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3.3 Machine Learning Model Details

Along with an LSTM model, we also consider other types of machine learning

models.

3.3.1 Random Forest

To establish a performance baseline, we first consider a classical machine

learning model. On the C-MAPSS dataset, many tree-based models were

trained [72]. With this in mind, we choose to use a Random Forest baseline

model.

Random forests use multiple Decision Trees to vote on a prediction. These

Decision Trees are built with randomness so that each decision tree can be

uncorrelated with another. With many uncorrelated trees, the Random Forest

has better voting accuracy than with a single Decision Tree. [17]

3.3.2 Temporal Convolutional Neural Network

Recent results indicate that Convolutional Neural Networks can outperform

Recurrent Neural Networks in sequence modeling [10]. Therefore, we also

consider the use of Convolutional Neural Networks (CNNs) for predicting

engine remaining useful life on the N-CMAPSS dataset.

A Convolutional Neural Network that is in an effective architecture for

sequential prediction can be called a Temporal Convolutional Network (TCN).

Temporal Convolutional Networks are Convolutional Neural Networks that
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have causal convolutions. In other words, outputs at a specific time point

can only be convolved with elements from the same or previous time points.

This keeps information from the future from being used by the past. TCNs

also predict an output that is the same size as the input, similar RNNs. As

TCNs are not the main model type of this paper, an in-depth description of

how CNNs work and how TCNs differ is omitted. However, we encourage the

reader to see works such as papers by Lea et. al [40] and Bai et. al [10], as

they focus on the abilities of TCNs for sequential prediction tasks.

3.4 Data Preprocessing

The N-CMAPSS dataset is split into eight different sub-datasets. In these,

there are seven modes of failure that impact the flow or efficiency of each

sub-component of the engine. The five sub-components consist of the ”fan,

low pressure compressor (LPC), high pressure compressor (HPC), low pressure

turbine (LPT) and high pressure turbine (HPT)” [5]. A table displaying which

sub-components are being degraded in which sub-datasets is shown in Table 2.

Additionally, recommended training and testing sets are already included in

each sub-dataset. These describe a number of simulated independent aircraft,

usually about 7 aircraft in the training set and 4 in the testing, depending on

the sub-dataset. Considering total data points alone, most sub up at about a

66/33 train/test split. We choose to use these recommended splits.

Each of these sub-datasets contains over two gigabytes of data. With 47
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different variables and such a large file size, each of these datasets are very

complex. This complexity is increased when considering preprocessing data

for an LSTM. An LSTM needs data to be in the shape of [Samples, Timesteps,

Features]. Samples and features correspond to a traditional wide data format’s

rows and columns. The timestep dimension introduces history to the data.

For example, if we chose to use a timestep of 10, each data point would have

the samples for each feature for the current and previous 10 data points. In

the context of this problem, introducing the timesteps gives our model context

for each data point. This allows the model to better view the progression of

failure. While this is a powerful concept, it adds to the complexity of the

dataset, nearly increasing the dataset to n times its size for a timestep of

size n. To bring the complexity of the dataset back down, we can lower the

number of features.

Dataset No. Fan LPC HPC HPT LPT

E F E F E F E F E F

1 •
2 • • •
3 • • •
4 • •
5 • •
6 • • • •
7 • •
8 • • • • • • • • • •

Table 5: Degradation affecting either efficiency (E) or flow (F) of subcompo-
nents in N-CMAPSS dataset.
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3.4.1 Feature Reduction

There are around 47 features in the N-CMAPSS dataset. One of these

features is the RUL itself, so we remove that from the dataset to use as a

predicted label. Considering the remaining features, it follows that some of

these features are less useful than others when predicting remaining useful

life. It would be ideal to only have 4 or 5 key features that can explain engine

failure well. To accomplish this, we can either perform feature selection or

dimensionality reduction.

Feature selection can be thought of as the task of removing the least important

features, determined by some metric so that we are left with only the most

important features. This can be done in a variety of ways. Commonly,

features are selected by choosing the features that correlate most with the

predicted feature [16]. However, these techniques often require independence

or linearity of data that our dataset does not satisfy. Recently, Random

Forests have been used as a common form of feature selection [59]. However,

this requires the training of a Random Forest model, a non-trivial task for

large datasets. Additionally, in feature selection techniques, the solution often

involves removing the features that are not needed. When removing features,

we may take away a potential interaction between features that our machine

learning model could pick up on. For these reasons, we choose to perform

dimensionality reduction.
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3.4.2 Principal Components Analysis

One of the most popular methods of dimensionality reduction is Principal

Components Analysis (PCA). PCA simplifies the data to a number of or-

thogonal principal components. These uncorrelated principal components

maximize the variance [37]. The principal components can be thought of

as new variables that preserve the variability of the old data in a concise

way. One can choose the first k principal components that are needed to

explain m% of the variability [63]. In many situations, the first 2 to 4 compo-

nents can explain over 80% of the variance. This is often enough to train a

well-performing machine learning or statistical model.

Since each of these principal components is a combination of many original

features, a downside of using PCA comes from a loss in the interpretability

of features. In many domains, it would be much less meaningful to say ”the

first principal component is the most important feature” than to leave the

data in terms of its original features. Some analysis of feature importance

can still be done, but it is usually much more difficult. In our case, the

variance-preserving dimensionality reduction of this large dataset is worth

the slight loss of interpretability, so we choose to apply PCA to the data.

Before applying PCA to the N-CMAPSS data, we normalized the data using

a MinMaxScaler. This scales each data point to a value between zero and

one. All of the aircraft engine features are on different scales, so normalizing

the data will ensure that the model will not give higher weight to a feature
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that is simply on a different scale.

After some experimentation, we found that 4 or 5 principal components

were enough to explain over 90% of the variance in most of the N-CMAPSS

sub-datasets. For consistency, we choose to keep the 5 principal components

that explain the highest variance for each sub-dataset. We fit the PCA on

the training values and then use this to transform the training and testing

sets. An example graph displaying the percent of variance explained by each

principal component, taken from sub-dataset 1 (DS1) can be seen in Figure

16. In this case, the first 5 components explain 94.89% of the variance. All of

the other sub-datasets show similar patterns.

3.4.3 Data Reshaping

As previously mentioned, an LSTM requires data to be in the shape [Samples,

Timesteps, Features]. So, as a final preprocessing step, we reshape the data

to match this. We choose a timestep of 10. This is largely due to good

experimental performance and computing limitations. Even with the data

reduced to 5 features, the datasets are still extremely large, leading to long

training time and high memory requirements. The preprocessed training

split of the first dataset was in the shape of (4906627, 10, 5) and a test split

with the shape (2735223, 10, 5). The other dataset files demonstrate similar

numbers, most of them with slightly larger amounts of samples.
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Figure 16: Percent of variance explained by the first five principal components
for sub-dataset one of N-CMAPSS.

3.5 Model Training

3.5.1 The Problem of Overfitting

With the N-CMAPSS data properly preprocessed, we could begin the model

training process. We began with a bidirectional LSTM architecture that

worked well in our previous work [25]. However, it soon became apparent that

this model was too powerful for these datasets. Even after simplifying the

model to a vanilla LSTM, one epoch of training will learn the entire training

set for most of the sub-datasets, causing a loss of generalization. Figure 17

shows the model’s performance on the training split of the second sub-dataset
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when trained for one epoch with a vanilla LSTM. It also shows the model’s

performance on the test set. The model achieves a RMSE of 0.43 on the

training, but only a RMSE of 10.38 for the test. It is clear that the LSTM

model performs well on the temporal N-CMAPSS dataset, but we need the

model to generalize better.

To reduce a model’s performance on its training set, regularization techniques

are often used. A common regularization technique for neural networks is

dropout [67]. A dropout layer is essentially a normal neural network that

drops nodes and their connections with a random probability. This takes away

the reliability of the presence of any given hidden unit in a neural network,

reducing the ability for an architecture to overfit.

Along with dropout layers, there are a variety of variations on the dropout

layer that can reduce overfitting in recurrent neural networks [53]. One such

variation that we found useful for this problem was recurrent dropout [60].

Recurrent dropout is applied to the cell update vector, the arguments to

the g function in Equation 9. This is different than forward dropout, as it

targets the recurrent connections of an LSTM. This, combined with dropout

layers, allows us to target overfitting in multiple parts of an LSTM network,

improving the generalization of our model.

Using these regularization techniques, we are able to improve the performance

on the test set of sub-dataset two from a RMSE of 10.38 to a RMSE of 8.627.

This is a drastic improvement that would have a large impact on the accuracy
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Figure 17: Evidence of overfitting on sub-dataset two. The top depicts the
training performance, the bottom the test.

of this model if used in a real-world scenario.
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3.5.2 Model Architecture

With methods of regularization, we began to train the LSTM models on each

of the sub-datasets. Our hyperparameter selection method was as follows.

1. Train vanilla LSTM for one epoch

2. Add dropout layer with 10% dropout

3. Iteratively add 10% dropout until model performance drops

4. Train a model with 5% less dropout, continue with the best of this and

the previous model

5. Perform the previous two steps for recurrent dropout if needed

6. Repeat for the next sub-dataset

On most of the sub-datasets, this simple training methodology led to great

performance, as will be discussed in the next section. The final hyperparam-

eters that were selected are shown in Table 6. It is possible that different

hyperparameters could lead to slightly better performance, especially due to

the stochastic nature of LSTM model training, but these are the ones that

worked best for us. Pseudocode for our entire LSTM model training process

can be seen in Algorithm 1.
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Algorithm 1 Preprocessing and hyperparameter selection for LSTM models
X train, X test ← splits from current sub-dataset

y train, y test ← X train[RUL], X test[RUL]

X train.drop(RUL), X test.drop(RUL)

MinMaxScaler.fit(X train)

X train ← MinMaxScaler.predict(X train)

X test ← MinMaxScaler.predict(X test)

PCA.fit(X train)

X train, X test ← PCA.predict(X train)[0:4], PCA.predict(X test)[0:4]

X train ← X train.reshape(X train.n rows, 10, 5)

X test ← X test.reshape(X test.n rows, 10, 5)

d out ← 0.0

prev model ← LSTM(nodes=16, epochs=1, Dropout=d out, X train, y train)

curr rmse, prev rmse ← 9999

while curr rmse ≤ prev rmse do

d out ← d out + 0.1

prev rmse ← RMSE(prev model.predict(X test), y test)

curr model ← LSTM(nodes=16, epochs=1, Dropout=d out, X train, y train)

curr rmse ← RMSE(curr model.predict(X test), y test)

if curr rmse < prev rmse then

prev model ← curr model

end if

end while

curr model ← LSTM(nodes=16, epochs=1, Dropout=d out-0.05, X train, y train)

curr rmse ← RMSE(curr model.predict(X test), y test)

if min(curr rmse, prev rmse) > 13 then

repeat previous while with recurrent dropout

end if
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Figure 18: Our LSTM model architecture.

3.5.3 Training of Comparison Models

We also trained Random Forest (RF) and Temporal Convolutional Network

models (TCN) to compare against our LSTM models. The RF model was

trained to serve as a baseline classical machine learning model. The TCN

models were trained to compare the LSTM’s performance on this task with

another state-of-the-art model.
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Dataset No. Epochs Hidden Units Dropout Recurrent Dropout

1 1 16 0 0
2 1 16 0.25 0
3 1 16 0.35 0
4 1 16 0.3 0.35
5 1 16 0.1 0
6 1 16 0.35 0.55
7 1 16 0.15 0
8a 1 16 0.25 0
8c 1 16 0.25 0

Table 6: Selected hyperparameter values for N-CMAPSS sub-datasets.

We trained the Random Forest model on sub-dataset 1. We used 100 es-

timators with 6 cores working in parallel. We also trained the Temporal

Convolutional Network on sub-dataset 1. We used 4 convolutional filters

and followed the regularization hyperparameter selection algorithm described

above for the LSTM to select the amount of dropout used. This led to a

dropout layer with dropout of 0.3. The TCN was trained for 1 epoch.

We only train these models on the first sub-dataset to save computational time

and resources. Training on one sub-dataset is enough to allow for comparison

between models for at least one failure mode. We trained TCNs on other

sub-datasets, but the performance followed the same pattern as on the first

sub-dataset.
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3.6 Results

After the models were trained, we used the models to predict RUL for the

respective test sets. We tracked the metrics of RMSE and NASA’s scoring

function (sc in Equation 2). The results of each of the LSTM models are

shown in Table 7. As can be seen, the best performance was on DS 1 with a

RMSE of 6.304 and a NASA score of 0.637. This outperforms every model in

the literature, except for one [20], using a simple LSTM network.

A visual comparison of the performance of each of the sub-datasets can be

seen in Figure 19. As displayed, the LSTM model performs the worst on DS4

and DS6. Figure 20 displays the predicted values on top of the true RUL

values for eight of the sub-datasets (dataset 8a is omitted as it is similar to

8c).

The performance of the Random Forest, Temporal Convolutional Network,

and LSTM model trained on DS 1 can be seen in Table 8. As can be seen,

the LSTM outperforms each of the other model types. The Random Forest

performs the worst, obtaining a RMSE of 13.065 and NASA score of 1.77.

The TCN performs slightly worse than the LSTM (but still notably better

than the RF) with a RMSE of 8.83 and a NASA score of 0.8.

3.6.1 Observations and Analysis

Some interesting observations can be gained from analyzing the models’

predictions.
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Dataset No. R2 RMSE NASA Score

1 0.934 6.304 0.637
2 0.793 8.627 0.934
3 0.789 9.778 0.890
4 0.494 17.997 2.030
5 0.862 8.692 1.205
6 0.4864 16.405 2.554
7 0.831 10.735 0.847
8a 0.534 12.338 1.130
8c 0.595 10.934 1.129

Table 7: Performance of each LSTM model on its respective test set.

Model R2 RMSE NASA Score Improvement

RF 0.715 13.065 1.770 51.7%
TCN 0.870 8.830 0.8 28.6%

LSTM 0.934 6.304 0.637

Table 8: Performance of each model type on sub-dataset 1. The improvement
is 1 - RMSELSTM/RMSEMODEL, quantifying how much better the LSTM is.

First, we will consider the LSTM models. The LSTM models perform notably

worse on DS4 and DS6. The models achieve a RMSE of 17.997 and 16.405

with a NASA score of 2.03 and 2.554 for DS4 and DS6, respectively. The

model trained on DS4 has a worse RMSE but a better NASA score than the

model trained on DS6. Both of these metrics seem substantially higher than

the same metrics for the other sub-datasets. Usually, this would mean that

the models are struggling to learn some pattern in the data. However, we

observed that these two were the most overfit models. Without much effort,

the LSTM would learn the training set. As a consequence, these models
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Figure 19: Visual comparison of LSTM model performance on each sub-
dataset.

needed recurrent dropout. After applying recurrent dropout to their training,

we were able to get decent performance from them but not as good as the

other models.

By looking at their prediction graphs in Figure 20, we can see that the model

trained on DS6 is making reasonable predictions, it just overestimates the

RUL (hence the high NASA score). Conversely, the model trained on DS4

makes the least-reasonable predictions of the eight models shown. It is clearly

struggling to model the linear trend towards failure as well as the other

models. This leads to the question, why are the models trained on DS4 and

DS6 performing worse? There are a couple of possible explanations. The first

explanation comes from the differences in the content of the sub-datasets.

As shown in Table 2, DS4 only contains failure of the fan. DS6 contains
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Figure 20: True vs Predicted RUL for each sub-dataset.
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failure of the LPC and HPC. DS5 also contains failure of the HPC and DS5

has great performance, so maybe there is something about the fan or HPC

being degraded that makes accurately generalizing to test engines difficult.

A second possible explanation could lie in the distributions of the data. We

chose to use the pre-split N-CMAPSS dataset, but maybe these splits do

not contain the same difficulties. In this case, maybe the training sets are

easier for the model to predict while the test sets contain some unseen or

complex issue for one or more of the engines modeled. This would lead to

the overfitting issues that we see in these two sub-datasets.

While it is interesting to look at what the model did not predict well, equally

interesting observations can be gained from looking at the best models. The

best model was the model trained on DS1, with the models trained on DS2,

DS3, and DS7 close behind. The first model achieved a RMSE of 6.304 and a

NASA score of 0.637. This is among the best in the literature, only behind

the physics/deep learning hybrid model. (See Table 1.) This showcases the

power of the LSTM for this problem. Using a simple LSTM model with

10 cycles of timesteps, we are able to achieve performance better than or

comparable to much more complex or specialized machine learning models.

Analyzing the prediction graph for DS1 from Figure 20, we see that the model

appears to model the RUL of the engines very well. The predictions almost

completely cover the true RUL values. When the prediction is off, it appears

to be underpredicting, which is better than overpredicting in this problem.

We believe that this same performance could be achieved on all of the other
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sub-datasets with an LSTM model with the perfect hyperparameters and

even more regularization.

In all of the figures in the left-hand column of Figure 20, there is a prediction

spike about a third of the way through each test engine’s data. There is clearly

some characteristic about the data that is causing this heightened prediction.

Despite this, the models appear to be resilient, immediately jumping back

down to reasonable predictions. This data that caused the prediction spike

was included in the models’ next 10 inputs, assuming that it is one observation

that led to it, but the LSTM has learned to ignore it. This gives a good

potential for a real-world application of these models. They appear to be

strong predictors that are not impacted by an inconsistent prediction.

A final LSTM observation can be seen in nearly every graph in Figure 20.

When these LSTM models are making incorrect predictions, they appear to

be off by a constant. The models are consistently predicting a few cycles

fewer or more than the actual RUL. However, most of the models capture

the trend towards failure extremely well. This could be a generic issue that is

solved with a better-generalizing model, or it could be a potential limitation

of the vanilla LSTM. If the models could learn that they are simply off by

a constant, some of the models would be nearly perfect. Future work could

explore this idea, modifying the LSTM to deal with this issue or introducing

a second model that predicts the constant that the LSTM is off by. These

two models could be combined to potentially improve the performance of the
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already-powerful LSTM.

Next, we will consider the predictions of the two comparison models, the

Random Forest and Temporal Convolutional Network. These can be seen in

Figure 21. At a glance, the Random Forest model has clearly not learned to

model the remaining useful life well. It is making nonsensical predictions. In a

way, this could have been expected. The Random Forest model was not given

the same regularization as the LSTM and TCN models (applying dropout

does not really make sense for a Random Forest). Additionally, Random

Forest models are not designed to work with sequential data. They are often

decent predictors on sequential data, but they do not contain the ability to

capture time dependence like the LSTM and TCN models do. A Random

Forest model appears to be a bad predictor of aircraft engine remaining useful

life.

Conversely, the Temporal Convolutional Network shows a promising prediction

graph. For the most part, it seems to model failure well. Interestingly, we still

see the same spikes about a third of the way through each of the test aircraft

engines as we did for the LSTM predictions for DS 1 in Figure 20. The

TCN appears to lead up to these spikes more than the LSTM, temporarily

predicting a higher RUL than the engine has until the prediction spike

happens. The largest flaw of the TCN model can be seen as the remaining

useful life drops. The TCN model predicts a constant value for the remaining

useful life (20) instead of predicting below it. This renders the model useless
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Figure 21: True vs Predicted RUL for RF and TCN models for DS 1.

past a RUL of 20. This phenomenon only appeared after adding dropout

to the Temporal Convolutional Network. A TCN without regularization

performed substantially worse in terms of pure RMSE and NASA score, but
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the predictions seemed much more realistic. Perhaps a usable TCN model

would have to sacrifice some in terms of performance metrics in order to

maintain a model that realistically models RUL.

3.7 Conclusion

In this paper, we attempted to solve the problem of aircraft engine remaining

useful life prediction using a data-driven approach. We used the newly-

released N-CMAPSS dataset of simulated aircraft flights to train and test our

machine learning model. Following the suggestion of a previous paper that

worked on this problem [26], we explored the use of LSTMs for this problem.

We started by preprocessing the data. Our preprocessing began with normal-

izing the data. Next, we performed principal components analysis to reduce

the complexity of the data. We selected the first five principal components

to be the factors we would train our model on, as they explained over 90%

of the variance. Finally, we reshaped the data to include a timestep of 10,

giving each data point the context of the previous 10 data points.

When beginning model training, we noticed that the LSTM models were

overfitting the training sets extremely quickly. To combat this, we used

dropout in the form of a dropout layer and recurrent dropout within the

LSTM. We iteratively trained 9 LSTM models on the sub-datasets of N-

CMAPSS. We also trained Random Forest and Temporal Convolutional

Network models on the first sub-dataset. All of our LSTM models achieved
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good results, with our first model performing better than almost every model

in the literature, only being outperformed by a physics/deep-learning hybrid

model that is tailored to this problem [20]. Our LSTM model outperformed

the RF and TCN models. We analyzed the performance of our models on each

sub-dataset to highlight some potential challenges within the N-CMAPSS

dataset. Additionally, we looked at the predictions of each model on their test

sets to see what kind of predictions the models are making on unseen data.

This demonstrated the success of many of our models and points directly to

what gaps in performance future models will need to fill.

3.7.1 Future Work

Future work should further explore additional methods of reducing overfitting

on the sub-datasets. Despite using recurrent dropout and a dropout layer,

we were unable to achieve even performance among each model. The model

trained on sub-dataset four is the most notable example. The model trained

on that dataset was easily overfitting, but our methods of reducing the training

performance did not improve its generalizability to the same degree as on the

other sub-datasets.

Future work should also consider methods of shifting predictions for RUL

prediction problems. Many of our models appeared to be off by a constant

for individual test aircraft engines. Finding a way to correctly reduce this

constant while still modeling the trend of failure would greatly improve the

performance on this and many more prognostics datasets.
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Finally, future work should consider the training of an LSTM on the entirety

of the N-CMAPSS dataset. This could lead to a model that can predict the

remaining useful life of aircraft engines for any failure mode.
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4 Conclusion

In this thesis, I began by introducing the problem of device failure and

the theory behind RNNs and LSTMs. I followed by demonstrating two

applications of LSTMs for RUL prediction. First, I predicted the RUL of

hard-disk drives on a time window of 60 and 120 days away from failure.

By training a bidirectional LSTM model 60 days from failure, I was able

to achieve state-of-the-art performance with an accuracy of 96.4%. In this

problem, I was also able to demonstrate the effectiveness of standardizing

data per device as well as its impacts on extrapolation. Finally, I predicted

the RUL of aircraft engines using NASA’s N-CMAPSS dataset. I trained 8

LSTM models on each of the sub-datasets. I was able to achieve a RMSE of

6.3 which is the second-best of all the models in the literature. Additionally, I

compared the performance of an LSTM model to the performance of Random

Forest and Temporal Convolutional Neural Network models, demonstrating

the LSTMs superior predictive capabilities. By applying LSTMs to these two

problems, I have demonstrated the predictive performance of LSTMs on the

problem of remaining useful life prediction.

This thesis provides evidence for the effectiveness of LSTM models for RUL

prediction. I also provided an in-depth look at the model development process

for these types of problems. The experimentation I performed is reproducible

and should be able to be transferred to other RUL prediction and sequential

data prediction problems. In these experiments, I encountered problems such
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as overfitting and lack of generalization. I explored potential solutions to these

general machine learning problems that were able to improve the performance

of the models on their respective tasks. These solutions could be applied to

a variety of models across the field of machine learning. I hope that models

like the ones I have presented can be implemented in these real-world devices

and systems to improve their reliability and maintenance, eventually helping

to prevent the pressing problem of device failure.
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