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ABSTRACT
The magnetoresistance of thin nickel films grown on molybdenum disulfide was measured in perpendicular magnetic fields as high as 90 kOe.
Films with thicknesses of 20 nm provided continuous surfaces for measurement. The magnetoresistance was found to be linear with respect
to the applied magnetic field with no sign of saturation. There was also no evidence of hysteresis or temperature dependence between 100 to
300 K. STM measurement showed the deposited Ni forms a continuous film of extremely small nanoclusters. However, the field dependence
of magnetoresistance was found to be significantly larger than bulk Ni, which is in turn larger than Ni with nanoscale grains. We expect the
unusual magnetoresistance behavior to arise from some property of the Ni-MoS2 interface.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/9.0000291

I. INTRODUCTION

Understanding the fundamental properties of thin ferro-
magnetic films is important for developing new technologies in
spintronics and related areas.1,2 Being able to manipulate the
properties of materials using the emergent physics of nanoscale
materials, or by determining the threshold for bulk-like behavior are
both important aspects of such research. The properties of ultra-
thin ferromagnetic films can deviate significantly from their bulk
counterparts.3,4

Molybdenum disulfide is a layered semiconducting material
with high interest for its electro-optical properties,5 especially in sin-
gle or finite layer form as a semiconducting analog to graphene.6,7

MoS2 also presents an interesting substrate for the growth of metal
films. Its relatively inert van der Waals terminated surface bonds
weakly to deposited metals and allows for significant adatom dif-
fusion. The weak interfacial bonding also reduces the importance of
strain induced by lattice mismatch, which is considerable for most
metals and is about 20% for Ni/MoS2. Transmission electron micro-
scopy studies have shown that a variety of FCC metals can grow
epitaxially on MoS2, despite the large lattice mismatch, although Ni
is not among them.8

Our own studies have shown that several noble metals display
electronic growth to create novel quantized nanometer scale films on
MoS2.9–11 However, our recent density functional theory (DFT) cal-
culations show no evidence for quantization in the density of states
for Ni/MoS2.12 Instead, the calculations show the Ni electronic struc-
ture is very bulk-like even for a 6 atomic layer film. Interestingly, the
metallic character and spin polarization of the Ni film extends into
the uppermost MoS2 layer, with underlying MoS2 layers maintaining
bulk semiconducting properties. In this work, we explore the struc-
tural and magneto-transport properties of Ni films grown on MoS2
to determine potential for device applications.

II. METHODS
A. Film growth and microscopy

Samples were prepared by depositing Ni onto the cleaved
surface of commercially available MoS2 (SPI supplies) in a vac-
uum chamber with a base pressure of 5 × 10−10 mbar. Deposition
occurred at room temperature using a 2 mm Ni wire (99.995% pure)
in a mini electron-beam evaporator (MANTIS QUAD-EV). A flux
monitor was used to maintain a consistent deposition rate. The
deposition rate was calibrated from resulting scanning tunneling
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microscopy images (STM). The error in determining film thick-
ness from the STM images is estimated to be ±20%. Thinner nickel
films, on the order of 2 nm, were deposited onto MoS2 crystals fixed
to sample holders appropriate for STM measurements. Prepared
samples were transferred in situ to the adjacent variable tempera-
ture STM head (Omicron). STM tips were mechanically cut from
a 0.25 mm Pt90Ir10 wire. Scanning parameters used in this study
were relatively consistent. The tunneling bias typically ranged from
0.75 to 1.5 V and the current set point varied from 0.5 to 5 nA.
No significant differences were observed between extremal scanning
parameters. Thicker Ni films, on the order of 20 nm, were deposited
onto MoS2 affixed to glass slides for magnetoresistance measure-
ments. Between growth and transport measurements, the samples
were exposed to ambient conditions for several hours. This expo-
sure is known to induce the formation of a surface oxide layer, but
one which is less than 3 nm thick.13

B. Magnetoresistance measurements
Resistance measurements were performed with a Quantum

Design DynaCool PPMS system using the Electrical Transport
Option (ETO). The standard in-line four-point probe method was
used for the measurements, with a drive current of 0.01 mA. Mag-
netic field strengths up to 90 kOe were applied perpendicular to the
plane of the Ni film.

C. Density functional calculations
Density functional calculations were performed using the

projector augmented-wave method (PAW),14 implemented in
the Vienna ab initio simulation package (VASP)15 within the
generalized-gradient approximation (GGA).16 The integration
method17 with a 0.05 eV width of smearing is used, along with the
cut-off energy of the plane-waves of 500 eV. Structural optimization
is performed with the energy convergence criteria of 10-2 meV, while
the total energy and electronic structure calculations are performed
with a convergence criteria of 10-3 meV. The Brillouin zone integra-
tion of thin-film cells is performed with a k-point mesh of 6 × 6 × 1.
The van der Waals interaction is included in the calculations, using
the zero damping DFT-D3 method of Grimme.18 Periodic boundary
condition is imposed for all calculations. Some of the results and fig-
ures are obtained using the MedeA® software environment.19 Most
of the calculations are performed using Extreme Science and Engi-
neering Discovery Environment (XSEDE) resources located at the
Pittsburgh Supercomputing Center (PSC),20 and the resources of the
Center for Functional Nanomaterials (CFN) at Brookhaven National
Laboratory (BNL).

III. RESULTS AND DISCUSSION
The initial stages of growth for Ni/MoS2 are not highly uniform.

The initial growth mode for Ni on MoS2 is shown in Fig. 1. Nanome-
ter scale Ni films are highly granular, with typical cluster sizes
ranging from one to three nanometers. This creates a continuous,
yet inhomogeneous, film.

In comparison to the growth of Au or other noble metals on
MoS2, Ni behaves far differently. Noble metals exhibited electronic
growth modes resulting in quantized length scales and atomically

FIG. 1. STM topography of 2nm thick Ni film deposited at room temperature
on MoS2. System forms interconnected clusters with typical sizes ranging from
1-3 nm.

flat nanostructures.9–11 The Ni clusters are instead highly rounded,
displaying a Volmer-Weber growth mode.

The differences in growth modes between Ni and the noble
metals Pd, Ag, and Au can be related to differences in binding ener-
gies and lattice mismatch. Figure 2 compares these quantities as
calculated by DFT. Here, the binding energies, Ebinding are calculated
as follows:

Ebinding = Emetal/MoS2 − Emetal − EMoS2 .

FIG. 2. Calculated lattice mismatch (black line and squares), and binding energies
(blue line and circles) of Ag, Au, Pd, and Ni. Atoms are numbered as indicated in
the figure.
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Here, Emetal/MoS2 is the energy of two monolayers of MoS2 with a
single metal atom placed at its surface (in the optimized geome-
try), Emetal is the energy of a single metal atom, placed in a “box,”
and EMoS2 is the energy of two monolayers of MoS2 in a thin film
geometry.

Ni binds most strongly to the MoS2 surface and has the largest
lattice mismatch. In particular, the Ni-MoS2 binding energy is
around three times stronger than for Au or Ag. Thus, the relative
mobility of Ni adatoms would be far less than that of the noble met-
als. These qualities would predict lesser film quality for the Ni/MoS2
system and explain the formation of Ni nanoclusters.

Our large field transverse magnetoresistance measurements
are shown in Fig. 3. We can see the surface oxide layer has very
little impact. The zero-field resistance is about 100 Ω at room
temperature, indicating metallic conduction.

Measurements were taken with the magnetic field perpendicu-
lar to the film plane (and hence the transport current). No significant
hysteretic effects were seen as the field was cycled from zero to
90 kOe and back. The linear fit to data collected while ramping up
and down the magnetic field is shown in Fig. 3. The fit is quite good,
with an uncertainty in the slope of 2%. These results were consistent
for data taken on samples anywhere from 200K to 340K. The curves
were always quite linear, with no signs of saturation.

The data indicate a field dependence for the magneto-resistance
of m = −0.064%/kOe. This negative slope is consistent with mea-
surements performed near room temperature in both single crystal
and polycrystalline Ni films.21 Based on the film topography seen
in Fig. 1, we expect the magneto-resistance to behave similarly to
Ni with nanoscale grains. Interestingly, measurements performed
by Isnaini et al. indicate the field dependence weakens with smaller
grain sizes.22 Ni foils with tens of nanometer grain sizes had
m ≈ −0.01%/kOe, micrometer grain size had m ≈ −0.02%/kOe, and
bulk Ni results with m < −0.03%/kOe. Given magnetoresistance
tends to decrease with decreasing grain size, there appears to be a

FIG. 3. Transverse magnetoresistance measurements on a 20 nm thick Ni film
grown on an MoS2 substrate.

different origin for the relatively high field dependence seen in our
magnetoresistance measurements.

As seen in the inset of Fig. 3, the resistance tends to increase at
lower temperatures. This is consistent with semiconducting behav-
ior and indicates the MoS2 substrate has a significant contribution
to the transport properties of the system. However, pure MoS2
does not show significant magnetoresistance effects for fields up to
8 T.23 However, this same study showed the inclusion of a graphene
layer at the MoS2 surface induced significant, and non-saturating,
magnetoresistance behavior below 150 K. The magnetoresistance of
disordered semiconductors can behave similarly to our measure-
ments of the Ni/MoS2 system.24 Given the MoS2 substrates are single
crystal, any potential disorder in the substrate would have to arise at
the interface.

Non-saturating magnetoresistance behavior has been seen for
finite layer MoS2 systems coupled to ferromagnetic insulators.23

However, in this study the magnetoresistance was only significant
when the MoS2 was less than ten layers thick. Enhanced anisotropic
magnetoresistance was seen in permalloy/MoS2 bilayers,25 with
MoS2 layers 50 nm thick, but there was no evidence for a lack of
saturation in the magnetoresistance. The behavior seen here using
single crystal bulk MoS2 substrates is similar to that found in disor-
dered and/or finite layer systems. From DFT measurments,12 we also
expect a high degree of hybridization for the MoS2 layer in contact
with Ni. Overall, this indicates the behavior seen here is influenced
by characteristics of the Ni/MoS2 interface.

IV. CONCLUSIONS
When deposited upon MoS2, nickel forms continuous films

composed of extremely small nanoclusters. Ni has a very different
growth profile as compared to noble metals, which is likely due to
a much stronger bonding to the substrate. The Ni films are metallic
and display significant magnetoresistive behavior. Unlike previous
studies on Ni solids with nanoscale domains, the field dependence
for magnetoresistance is significantly larger than the bulk value.
We expect the different behavior arises from some characteristic of
the Ni-MoS2 interface, but further studies are needed to accurately
determine the origin of this behavior.
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