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Abstract

Background: Much of the recent success in protein structure prediction has

been a result of accurate protein contact prediction–a binary classification prob-

lem. Dozens of methods, built from various types of machine learning and deep

learning algorithms, have been published over the last two decades for predicting

contacts. Recently, many groups, including Google DeepMind, have demonstrated

that reformulating the problem as a multi-class classification problem is a more

promising direction to pursue. As an alternative approach, we recently proposed

real-valued distance predictions, formulating the problem as a regression problem.

The nuances of protein 3D structures make this formulation appropriate, allowing

predictions to reflect inter-residue distances in nature. Despite these promises, the

accurate prediction of real-valued distances remains relatively unexplored; possibly

due to classification being better suited to machine and deep learning algorithms.

Methods: Can regression methods be designed to predict real-valued distances as

precise as binary contacts? To investigate this, we propose multiple novel methods

of input label engineering, which is different from feature engineering, with the

goal of optimizing the distribution of distances to cater to the loss function of the

deep-learning model. Since an important utility of predicted contacts or distances

is to build three-dimensional models, we also tested if predicted distances can

reconstruct more accurate models than contacts.

Results: Our results demonstrate, for the first time, that deep learning meth-

ods for real-valued protein distance prediction can deliver distances as precise as

binary classification methods. When using an optimal distance transformation

function on the standard PSICOV dataset consisting of 150 representative pro-

teins, the precision of top-NC long-range contacts improves from 60.9% to 61.4%

when predicting real-valued distances instead of contacts. When building three-

dimensional models, we observed an average TM-score increase from 0.61 to 0.72,
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highlighting the advantage of predicting real-valued distances.
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Chapter 1

Introduction & Background

One of the most complex problems in biology, how an amino acid sequence folds

into a three-dimensional shape, i.e., the protein folding problem, has challenged

researchers since the 1960s [1]. Despite the fact that the problem is of substantial

medical [2] and various biological [3] significance, there are still many barriers in

researchers’ ability to generate protein models with reliable accuracy. Expensive

laboratory methods such as Nuclear Magnetic Resonance (NMR) and X-ray crys-

tallography provide high-resolution three-dimensional (3D) structural information

[4, 5], but often fail when applied on difficult proteins [6]. As more informative

data and capable computing resources became available, in-silico methods for

predicting models were introduced to compensate for some of the disadvantages

and limitations of these laboratory methods. Early on, these in-silico methods

demonstrated accuracy behind that of the standard laboratory techniques, likely

due to the hardware limitations and the computational complexity of the problem

[7]. One milestone in the narrowing of this performance gap was the proposal of

using inter-residue contacts, or utilizing distances d < 8 Å (Angstrom) as binary

indicators of protein active sites in the 1970’s [8, 9]. This is particularly useful

because the analysis of a protein’s active sites is important in determining the

overall functionality of the protein [10]. As one of the first methods to define
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and utilize contacts, in [9], authors generate a contact map by pairing the carbon

alpha atoms within 8 Å of each other. This pairing process provided a template

with which the amino acids could be arranged into a 3D model, and also allowed

for computationally generated protein models to yield models similar in accuracy

to medium resolution NMR and X-ray crystallography generated structures [11].

More recently, several innovations such as the integration of co-evolution signals

and machine learning techniques have significantly improved both the precision of

contact prediction methods [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23] and the

accuracy of in-silico protein 3D models [24, 25, 26].

From the origin of constraint-guided protein structure prediction, a question still

remains—can we computationally predict real-valued distances? Inter-residue con-

tacts have undoubtedly improved the accuracy of 3D models, and they have served

as a viable substitute when real-valued distance information is not available [27].

However, inter-atomic forces within proteins naturally occur as continuous real-

values. While contact predictions are usually accompanied by corresponding prob-

abilities, they lack the granularity required for accurate 3D model reconstruction.

Protein structures also contain far fewer contacts than non-contacts [28]. This

makes 3D model building based solely on contact information more dependent

on the conformational algorithms which actually generate the 3D models. This

disconnect in the field has begun to be addressed in recent years, with newer

methods [29] such as AlphaFold [30], trRosetta [31], and RaptorX [28] adopting

binned (multi-classification) methods. In parallel to these efforts to continue the

multi-class classification formulation, real-valued distance prediction is emerging

as an alternative approach of substantial potential [27, 29, 32, 33].

One issue that arises with real-valued distance prediction formulated as a regres-

sion problem, instead of binned multi-classification or binary classification, is the

tendency of the model to optimize itself to predict larger inter-residue physical

distances over smaller ones. This is due to the fact that there is typically more

10



larger distances than shorter, contact-range, distances for a given protein, and

thus the loss function will prioritize correcting the prediction of these larger dis-

tances first. However, smaller inter-residue distances are more useful for various

biological and physiological applications [34], and for distance-guided modeling.

As one solution, in our recent work, we proposed a real-valued distance prediction

method to address this by reciprocating the distances such that a small physical

distance translates into a large loss and vice versa [32]. Similarly, as another so-

lution, flooring distances to a fixed threshold such as 16 Å was proposed in the

DeepDist method [29]. Despite attempts to predict real-valued distances, these

methods remain inferior, in terms of contact prediction precision, to the binary

classification methods. If any of these forms of input label engineering for input

real-valued distances–flooring or transforming–can be extended to perform with

accuracy competitive to that of binary classification methods, it will open many

new possibilities to predict distances as they naturally occur.

This work explores various label engineering strategies implemented for real-valued

distance regression, their accuracy when compared to contacts, and the quality

of the 3D models yielded. As one solution, we propose and explore real-valued

distance prediction methods which focus on small distances by reciprocating the

distances such that a small physical distance translates into a large loss and vice

versa. We further examined the design of an optimal transformation function, the

impact of the function the distribution of actual distances, and the performance

of transformation-based predictions in the generation of 3D models. Similarly, as

another solution, we rigorously test the flooring of input distances set to various

fixed thresholds paired with different loss functions to gauge their impact on per-

formance. We then generate models with the predictions yielded by this method

and compare them with both transformation and contact generated models. As

each of these proposed methods have demonstrated the capability to predict with

competitive contact precision, we then combine the distance flooring and transfor-

mation strategies to see if they can complement each other in a way which yields

11



a higher accuracy. We show that each of these methods predict and generate con-

tacts with the same or better accuracy than models trained on binary data, and

that the granularity implicit to real-valued distances offers a number of benefits

for improving the accuracy of generated 3D models.
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Chapter 2

Methods

2.1 Dataset

We use the standard development set consisting of 3,456 representative protein

chains used by the DEEPCOV [35], DEEPCON [36], and PDNET [32] methods.

As test sets, we use 150 proteins in the PSICOV dataset [35] and 131 hard proteins

from the Continuous Automated Model Evaluation (CAMEO) dataset, which were

used to benchmark the trRosetta method [31]. After building multiple sequence

alignments (MSA) from the ‘fasta’ sequences of these protein structures, as the

input features, we utilize co-evolution features, secondary structures, position-

specific scoring matrix derived features, statistical potentials, alignment statistics,

and Atchley factors. The PSICOV test set is relatively easier than the CAMEO

set due to the availability of high quality MSAs [31].
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2.2 ResNet Architecture

We develop two-dimensional (2D) deep residual neural network (ResNet) based

methods for contact and distance prediction. Each residual block consists of a

batch normalization layer, followed by a rectified linear units (ReLU) activation,

64 convolutional filters of 3 x 3 kernel size, another convolutional layer with ReLU

activation, and a dropout layer with a dropout rate set to 0.3. The second convo-

lutional layer in each residual block has alternating dilation rates of 1, 2, and 4.

Alternating dilation rates have been found to slightly improve the precision [29, 31,

30]. An additional convolutional layer with a single filter at the end of the network

generates a single channel 2D contact or distance map. For contact prediction, we

set the last activation to ‘sigmoid’ and for real-valued distance prediction we leave

it to ReLU. For our experiments, we build a deep ResNet consisting of 64 residual

blocks having around 4,747,941 network parameters. The loss function for each

function is set to logarithmic hyperbolic cosine (LOGCOSH) with ‘rmsprop’ as

the optimizer. The time required for each epoch on these parameters averages to

be approximately 17.5 minutes when trained on a GTX 1080 Ti. The models were

trained with: a crop size of 128, 128 epochs, 64 blocks, and 64 filters per layer.

Training and generating predictions for the test sets requires approximately 30

hours.

2.3 Distance and Contact Evaluation

We evaluate our ResNet methods trained with various transformation functions

using the standard precision metrics [37, 38] for evaluating predicted contacts—

precision of top L/5, top L, and top NC contacts. Here, L is the number of

valid residues in the corresponding native structure and NC is the total number

of contacts in the native structure. Also, as defined by the Critical Assessment
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of protein Structure Prediction (CASP) organizers, we define a residue pair as a

contact if their carbon-beta atoms (alpha in case of glycine) are less than 8 Å

apart. The method with which distances are converted to contact probabilities for

evaluation is to take real-valued distance predictions d and apply the function p =

4/d, where p denotes the contact probability. This allows a predicted distance d =

8.0 Å to generate a contact probability of p = 0.5, and any distances d < 4 Å are set

to p = 1.0, or a definite contact. For the evaluation of distances, we use the mean

absolute error, root mean squared error, and local distance difference test (LDDT)

score [39] using DISTEVAL available at http://deep.cs.umsl.edu/disteval/.

2.4 Label Engineering

Our first set of experiments examined the effects of transforming the real-valued

inter-residue distances using various novel rational functions. Since the goal be-

hind real-valued distance prediction is to optimize the deep learning model for pre-

dicting smaller, more useful [10] inter-residue distances, a transformation function

f(d) is applied to the true distance before it is passed to the model as transformed

labels to compute loss. These transformation functions, in general, reciprocate the

distribution of distances such that a distance larger than a threshold r Å trans-

forms to a smaller value, and a distance less than r transforms to a larger value.

For example, in the PDNET method, where the transformation function is 100/d,

and the associated threshold is 10 Å. Ideally, these transformation functions should

change the distribution such that distances larger than r are compressed into a

smaller range and distances smaller than r are stretched over a bigger range (see

Figure 2.1B). During training, a deep ResNet model only receives the trans-

formed distance values as output labels, and hence predicts transformed distances

as well. To obtain actual distance values (in Å), an inverse of the transformation

function, must be carried out on the predicted distance during the evaluation of
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the model’s predictions. If a model predicts a transformed distance d′, the inverse

function f -1(d′) is applied to obtain the actual predicted distance d Å. For exam-

ple, if we take the transformation function 100/d, and the input distance d = 8 Å,

then we get the transformed distance d′ = 12.5, which can then be converted back

to the original distance by performing inverse function 100/d′. It is important to

note that this may be considered label engineering but not feature engineering.

To study the effect of transformation visually, we also plotted the distance distri-

butions as density plots before and after transformation, highlighting the regions

around r.

In our second set of experiments, we floor the distances larger than a certain

threshold t, i.e., d[d > t] = t, as it allows the model to focus on the prediction

of shorter physical distances. This focus is due to the model quickly learning to

predict the threshold t for the entire distance map (see Figure 2.1C). We tested

thresholds t = 9, 10, 11, ..., 22 for models with loss functions set to mean squared

error (MSE) and LOGCOSH. We also tested the effects of combining this approach

with the previously mentioned approach of distance transformation.

2.5 Distance Evaluation via 3D Model Recon-

struction

The ultimate assessment of predicted contacts and distances is their power to guide

3D modeling. To apply this assessment, a series of experiments were conducted

converting the distances and contacts into model-ready constraints between car-

bon beta atoms. This generation of models yields a direct visual comparison be-

tween distance-generated, contact-generated, and true structure 3D models. This

serves to illustrate the point that, intuitively, the increased granularity and regres-

sion based nature of real-valued distance predictions may allow for more accurate
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Figure 2.1: Illustration of how loss is affected by (A) no label en-
gineering, (B) flooring, and (C) transformation. The three matrices
in the first row represent the distance labels Y , the matrices in the
second row represent the predictions P , and the last row shows the
absolute difference |Y −P |. Without label engineering, loss is higher
for larger distances but shorter distances are important to predict
correctly. Flooring the labels resolves this to an extent but transfor-
mation inverses the distances so the loss is inversely proportional to
the true distance values.
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3D protein structures when compared to the same experiments utilizing binary

contact-based information. The initial round of model building was carried out

on the PSICOV 150 set, using an upgraded version of the CONFOLD method,

[40] where it accepts a real-valued distance map as an input, instead of a contact

‘RR’ file. All distances predicted below 12 Å were used to build 20 models with

non-relaxed distance constraints, i.e. with predicted distance itself as the upper

and lower bound. For each protein, the model with minimum energy is selected

as the top model for evaluation. We also validated the CONFOLD findings with

a light round of Rosetta [41] model building via the Static AbinitioRelax tool

of the Rosetta platform, where distances or contacts were passed in as weighted

constraints via the BOUNDED function. More detail on our use of the Rosetta

model building process can be found in S1.
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Chapter 3

Results

3.1 Optimizing Transformation Functions for Real-

valued Distance Predictions

The real-valued distance prediction method using the transformation function

100/d in the PDNET method [32] performed slightly worse than the contact pre-

diction method on both test datasets. The precision of top L long-range contacts

was 67.1% for the distance prediction method and 68.4% for the contact predic-

tion method on the PSICOV dataset, and 46.2% vs 47.2% on the CAMEO set.

To develop a real-valued distance prediction method that can surpass the contact

precision benchmark, the first logical step was to generalize this transformation

function in the form s/d and search for values of s which yield a high precision.

We tested values of s much higher than 100, such as 300, and observed decrease

in precision. However, smaller values such as 6 and 10 showed improved perfor-

mance. Specifically, on the PSICOV set, the precision of top L long-range contacts

for s = 6, 10, 100, and 300 were 66.9%, 67.5%, 67.1%, and 66.6% respectively. In

Figure 3.1, we graphed these four transformation functions where the plot shows

that the region above the 100/d transformation yields poor precision compared
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Figure 3.1: Distance transformations of the form d′ = s/d for
s = {6, 10, 100, 300}. For a residue pair i and j where i 6= j, since d
is always greater than around 3.5 Å, the range for x-axis is chosen
to be > 3.5.

to the region below. These results suggest that we focus our search for optimal

transformation function between 6/d and 100/d.

The concept behind the development of a transformation function is to convert

small physical distances, i.e., around 8 Å, into larger transformed values in order

to observe a very high loss for small distances. Thus, the next step in our search

was to refine the transformation function such that the distribution of transformed

values stretches the distribution for smaller input distances. A plausible idea was

to increase the steepness with which the translated distances d′ become large as

the true distance d approaches 3.5 Å (the minimum input distance). To this end,

we examined the effects of exponentiating the function. We initially squared the

transformation function, resulting in (10/d)2, which generates a curve in which

y approaches 8.2 as x approaches 3.5 Å. This yielded a significant breakthrough

in terms of precision, outperforming the original transformation functions of the
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form s/d. This new transformation function also performed similar to the contact

precision method (binary). Specifically, on the PSICOV set, (10/d)2 has a preci-

sion of 68.5% and the contact prediction method has a precision of 68.4%, when

top L long-range contacts are evaluated. We further generalized this transforma-

tion function into the form (s/d)k where k is the exponent that requires further

optimization. Next we tested k = 3, which performed worse. In summary, trans-

formation functions with k = 1, 2, 3 resulted in precision values of 67.5%, 68.5%,

and 67.7% respectively. This result suggests that high precision is observed for

1 < k < 3. Therefore, next we tested additional values for k including 1.8 (9/5),

2.2 (11/5), 2.33 (7/3), and 2.5 (5/2), and observed the highest precision around

k = 7/3. The precision of top L long-range contacts with this transformation

function (10/d)7/3 is 68.5% which is similar to the results of a binary predictor

and with k = 2. This function, however, performs better than with k = 2 and the

binary prediction method when top NC contacts are evaluated. Since we observed

similar performance between s=6 and s=10, we also tested s = 6 with k set to 7/3,

and obtained precision similar to s = 10. Table 3.1 summarizes our evaluations

and Figure 3.1 visualizes all of the transformation functions plotted on the range

[3.5, 16].

The average precision of the transformation functions tested above, on the contact

evaluation metrics PL/2 and PL/5, seems to be slightly lower than the contact-based

predictions evaluated on the same metrics. This gap is likely due to contact predic-

tions having a slight advantage on smaller input numbers of contacts, such as PL/5,

as the top most confident contacts may be slightly more accurate in this range

over the top most confident distances. Since the transformation-based methods

are more precise in terms of PL and PNC than the contact-based method, we can

observe the trend that the more rigorous the evaluation of contacts, i.e., consid-

ering more contacts, the better real-valued distance-based predictions perform.
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Figure 3.2: Distance transformations of the form d′ = (10/d)k

for k = {3, 2/5, 7/3, 11/5, 2, 9/5}. k around 7/3 delivers optimal
precision. For a residue pair i and j where i 6= j, since d is always
greater than around 3.5 Å, the range for x-axis is chosen to be > 3.5.

22



Table 3.1: Comparison of the contact precision of top L/5, L/2, L
and NC long-range contacts when various transformation functions
are used for label engineering. For all experiments, similar ResNet
models were trained (residual blocks = 64, filters per layer = 64,
epochs = 128, and training window = 128). L is the length of the
protein sequence and NC is the total number of true contacts in
the corresponding native structure. Precision values of a contact
prediction method are listed in the last row for reference.

PSICOV 150 CAMEO 131

Transformation Recovery PL/5 PL/2 PL PNC PL/5 PL/2 PL PNC

d′ = (10/d)7/3 d = 10/d′
3/7

91.3 82.6 68.5 61.4 71.6 61.0 48.0* 45.1

d′ = (6/d)7/3 d = 6/d′
3/7

91.0 83.1 69.2* 61.9* 71.1 60.4 47.6 45.2*

d′ = (10/d)5/2 d = 10/d′
2/5

91.2 82.7 68.7 61.1 70.7 60.4 47.5 44.3

d′ = (10/d)11/5 d = 10/d′
5/11

91.9 83.0 68.3 60.5 71.1 60.4 47.4 44.1

d′ = (10/d)9/5 d = 10/d′
5/9

91.6 82.5 68.1 60.1 71.8 61.6 47.8 44.9

d′ = (10/d)2 d = 10/
√
d′ 91.8 82.8 68.5 60.6 71.0 59.8 47.0 44.4

d′ = (10/d)3 d = 10/ 3
√
d′ 91.9 83.0 67.8 59.5 70.4 59.2 46.4 42.5

d′ = 10/d d = 10/d′ 90.8 81.6 67.5 60.3 69.2 58.6 45.7 42.7
d′ = 6/d d = 6/d′ 91.0 80.8 66.9 60.2 70.1 58.7 46.7 44.0
d′ = 300/d d = 300/d′ 90.4 81.2 66.7 58.8 67.4 57.4 45.2 41.8
d′ = 100/d** d = 100/d′ 91.7 82.1 67.1 59.3 70.3 59.4 46.2 42.9

Binary (contacts) N/A 93.4 84.2 68.4 61.0 74.3 61.3 47.2 44.5
*Cases with precision higher than the contact predictor
**Method used in PDNET
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3.2 How Distance Transformation Changes the

Distribution of Distances

To study and visualize how various transformation functions reciprocate the dis-

tribution of inter-residue distances, we plotted the distributions of distances before

and after the transformation, using the 150 representative proteins in the PSICOV

set. As shown in Figure 3.3, the distribution of protein distances is roughly nor-

mal with a mean of around 20 Å[42]. Figure 3.3 shows how reciprocating the

distances flips the highlighted range from the left of distribution to the right. For

example, the 100/d transformation translates the range [3.5, 8] in the original dis-

tribution to [28.6, 12.5] in the transformed distribution. In the distribution plot

we highlight the distribution range for 3.5 < d < 8 Å, the range where contacts

are defined, and 3.5 < d < 8 Å, the range useful for model reconstruction. These

transformations also stretch the range in the distribution for smaller distances less

than our scalar s and compress the range for large distance values greater than

s. Our hypothesis is that this reciprocating and stretching/squeezing effect on

the distribution allows the model to optimize its loss on the originally smaller

distances. The pairing of distribution stretching and loss optimization allows the

model to more easily discriminate amongst small distances.

3.3 Comparison with PDNET-Distance and PDNET-

Contact

Our experiments to optimize the transformation function were performed using a

shallower version of the ResNet architecture used in PDNET with depth set to

64 instead of 128 and training window set to 128 instead of 256. This allowed

our deep learning training jobs to complete faster. For a complete comparison
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Figure 3.3: Distribution of inter-residue distances (d) in pro-
tein structures (1st plot), 100/d (2nd plot), (100/d)2 (3rd plot), and
(100/d)7/3 (4th plot). A representative set of 150 proteins in the PSI-
COV set were used to obtain the distance distribution. In all plots,
two distance ranges of interest, 3.5 < d < 8 and 8 ≤ d < 16, are
highlighted using green and red color respectively. The first range
defines an inter-residue contact, and the second range is important
for building 3D models.
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with PDNET-Distance, which uses the 100/d transformation function, we also

trained new models at depth 128 and window size 256 as done in the PDNET

method using the optimal transformation function (10/d)7/3. Our new model with

the optimal transformation function performed considerably better than PDNET-

Distance with around 3 to 4 percentage points higher precision when top L or top

NC long-range contacts are evaluated, on both PSICOV and CAMEO sets (see

Table 3.2). The new transformation function used in our real-valued distance pre-

diction model also demonstrated an approximate 1 percentage point improvement

in PNC over PDNET-Contact, the contact prediction method, and 0.8 percentage

points improvement in PL on both the PSICOV and CAMEO sets. Notably, all

these models—PDNET-Contact, PDNET-Distance (with 100/d transformation),

and our distance prediction method (with (10/d)7/3 transformation)—have the

same number of training parameters.

3.4 Flooring Threshold Optimization

As an alternative approach to predicting real-valued distances, instead of recip-

rocating the distances using transformation functions, we trained various ResNet

models by flooring the maximum distances to thresholds t = 9, 10, ..., 30, i.e., all

distances higher than t are set to t during training. We also trained models by

combining these two approaches, i.e., distance transformation and flooring. Specif-

ically, we trained three sets of ResNet models at various thresholds: a) trained

using the (10/d)7/3 using ‘LOGCOSH’ loss function, b) trained without distance

reciprocation using the ‘LOGCOSH’ function, and c) with mean squared error

loss function. We evaluated the sets of models using three metrics—precision

of top L long-range contacts, Cβ-LDDT score, and mean absolute error (MAE)

of all medium and long-range distances predicted to be below 15 Å—with the

help of DISTEVAL available at http://deep.cs.umsl.edu/disteval/. Our results,
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Figure 3.4: Evaluation of distances predicted for the PSICOV
dataset (left column) and CAMEO (right column) dataset using
the metrics, precision of top L long-range contacts, Cβ-LDDT, and
mean absolute error (MAE), for three methods—transformation us-
ing (10/d)7/3 along with LOGCOSH loss (T+LOGCOSH), no trans-
formation along with mean squared loss (NT+MSE), and no trans-
formation along with LOGCOSH loss (NT+LOGCOSH).
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summarized in Figure 3.4, show that when no transformation function is used,

increasing t decreases the precision and Cβ-LDDT scores. However, when opti-

mal transformation is applied, flooring has minimal effect on precision and other

metrics. When comparing the transformation and flooring approaches, we can see

that transformation compresses large distances into a small range, whereas flooring

removes them entirely. This gives the transformation-based model an advantage

as it is able to optimize for large distance prediction when possible. Significantly

high Cβ-LDDT scores are observed for all three sets around t = 16. This is likely

because of the ‘radius’ parameter set to 15 Å, by default, in calculating the score

[39]. These results also reveal the weakness of this metric—by training a model at

t = 16 high Cβ-LDDT scores can be obtained—highlighting why multiple metrics

should be used when evaluating predicted distances. However, when paired with

the use of a transformation function, flooring can significantly improve Cβ-LDDT.

Overall, the question of what threshold to use, we find, depends on the purpose

of predicting real-valued distances. If only the predicted distances below a lower

threshold such as 10 Å will be used for building 3D models, training a model at a

threshold of 14 Å or 16 Å may work slightly better than no flooring. In general,

however, simply using the optimal transformation function without any flooring,

should work well for most applications of predicted real-valued distances.

3.5 Model Reconstruction Using Real-valued Dis-

tances

For a more rigorous evaluation of predicted real-valued distances, we reconstructed

3D models using CONFOLD [40] due to its reliance solely on distance or contact

based information. All of the protein chains in the PSICOV and CAMEO datasets

were used as input for the CONFOLD model reconstruction experiments. We eval-

uated the top-one model (not the best model) using TM-score [43] and GDT-TS
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[43]. To establish a baseline for 3D model quality, we generated models using

contact predictions generated by PDNET-Contact, which yielded a TM-Score of

0.51 and a GDT-TS of 49. Next, to assess the reconstruction value of our optimal

translation function’s ((10/d)7/3) predictions to that of PDNET-Contact, we con-

verted the real-valued distances into binary contacts by translating all distances

below 8 Å as contacts and the rest as non-contacts. This generated 3D models

with an accuracy similar to the PDNET-Contact method. Next, we built models

using the real-valued distances predicted up to 8 Å, without relaxation, capped

to 8 Å. Ideally, this should improve the reconstruction accuracy because it pro-

vides more granulation information for the reconstruction tool to build models.

We observed this expected improvement when building models using CONFOLD.

These results demonstrate that when we build models using distance constraints

capped at the threshold of contact definition, the models’ accuracy is on par or

better than using contact constraints. The true significance of real-valued dis-

tances should be uncovered if we utilize all predicted distances up to a certain

threshold, higher than the 8 Å threshold for defining contacts. Although, when

we step away from these constraints and allow for the usage of the distance con-

straints up to 12 Å, we see a significant jump in model accuracy. Top-one models

generated by the real-valued distance predictor with non-relaxed constraints up to

12 Å had an average TM-Score of 0.70 and GDT-TS of 62 when they were built

using CONFOLD. Due to the incorporation of larger distances, we hypothesized

it would be beneficial to the model building process to utilize constraints which

relaxed more the larger the predicted distance is. This method yielded models

with TM-Score and GDT-TS marginally more precise than the static constraint

generation method. Table 3.2 summarizes our reconstruction results. Similar

trends were observed for reconstructions using Rosetta[41].

As an example, to demonstrate the value of predicting real-valued distances over
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Table 3.2: Evaluation of transformation and flooring methods using
contact precision metric, distances evaluation metrics, and 3D model
evaluation. All metrics were calculated using the DISTEVAL tool.
All ResNet models have same total number of parameters and were
trained with same hyper-parameters (256 x 256 window size, 128
residual blocks, 64 filters per layer). Models were reconstructed using
CONFOLD and Rosetta, and top-one models were evaluated.LDDT
is calculated only using Cβ-atoms with minimum separation 6 and
R value of 15 Å. PCC is Pearson corr. coeff. between dpred < 15
with dtrue with minimum separation 12. PL is precision of top L
long-range contacts.

Method PL LDDT MAE PCC TM-Score GDT-TS

PSICOV 150 Dataset:

PDNET-Contact 69.5 N/A N/A N/A 0.51 0.49
PDNET-Distance 67.5 0.47 1.9 0.67 0.64 0.57
d′ = (10/d)7/3 (using d < 8Å) - - - - 0.58 0.50
d′ = (10/d)7/3 & LOGCOSH loss 70.3 0.53 2.0 0.67 0.70 0.62
d[d > 16] = 16 & MSE loss 67.1 0.54 2.4 0.65 0.60 0.52
d[d > 16] = 16 & LOGCOSH loss 67.9 0.54 2.0 0.70 0.57 0.65
d[d > 16] = 16 & d′ = (10/d)7/3 70.3 0.59 2.6 0.65 0.68 0.61

CAMEO 131 Dataset:

PDNET-Distance 46.7 0.40 3.7 0.48 0.40 0.30
d′ = (10/d)7/3 (using d < 8Å) - - - - 0.38 0.23
d′ = (10/d)7/3 & LOGCOSH loss 49.1 0.45 4.4 0.47 0.43 0.33
d[d > 16] = 16 & MSE loss 46.8 0.50 5.4 0.47 0.38 0.28
d[d > 16] = 16 & LOGCOSH loss 47.8 0.48 4.4 0.49 0.40 0.30
d[d > 16] = 16 & d′ = (10/d)7/3 49.5 0.53 6.8 0.46 0.42 0.33
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contacts, we discuss the case of reconstructing chain A of the protein ‘1vhu’. The

set of reconstructions implemented for this case were carried out using predicted

contacts and real-valued distances as constraints for guiding Rosetta’s ab intio

reconstruction method. Additional information on the Rosetta configuration used

can be found in S1. For this protein, we select the top-one model reconstructed

using Rosetta with contacts predicted using PDNET-Contact as input, had a

TM-score 0.49. Next, we used our new deep learning model trained using the

new translation function ((10/d)7/3) and predicted real-valued distances for this

protein chain. From this distance map, we first kept only the distances predicted

below 8 Å and reconstructed models using Rosetta. The top-one in this case has

a TM-score 0.55, where the slight improvement highlights the value of real-valued

distances over the use of binary information. When we use predicted distances up

to 16 Å, however, the TM-score of the top-one model increases considerably to 0.8.

This demonstrates that the granularity of real-valued distance maps provide an

advantage to the reconstruction process. This model also captures the beta-sheets

observed in the true structure and the orientation of the helices are more aligned

with the true model (see Figure 3.5). Also, the disparity of information provided

by contacts and distances is illustrated in the visualization of predicted and true

contact/distance heatmaps in Figure 3.5.
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Figure 3.5: Chain A of 1vhu is shown for three different model
building strategies, the first being contact, then real distance at 8
and 16 Å thresholds. It effectively shows the difference in struc-
ture accuracy as well as the granularity of information provided by
distance maps as opposed to contacts.
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Chapter 4

Conclusion

Initial exploration into the performance of label engineering strategies for real-

valued distances shows promise for accurate de novo structure prediction. When

comparing these strategies, such as flooring and transformation, we found that

both strategies may prove advantageous depending on the situation. Flooring is

simple to implement. Transformation, however, shows promise on difficult targets,

and when the target is likely to have many large (d > 12 Å) distances. Both of

these methods show promise in terms of contact prediction precision, besting the

PDNET-contact method on PNC and PL, hinting toward the idea that real-valued

distances perform better than contacts when evaluated upon a larger number

of known contacts. The final layer of validation, 3D model reconstruction, dis-

played similar trends to those observed in the other precision metrics. The models

generated by both real-valued distance based strategies, transformation and floor-

ing, outperformed the PDNET-Contact generated models on both the PSICOV

and CAMEO sets. When compared with each other, the two real-valued distance

based methods generated models of similar accuracy for the PSICOV set, although

the models generated by the transformation based strategies, including PDNET-

distance, outperformed any flooring strategies on the more difficult CAMEO set.
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We look forward to seeing the rise of real-valued distance based prediction meth-

ods, and anticipate that others will propose methods to compensate for the hurdles

accompanied with regression based prediction. Transformation and flooring may

provide a stepping stone to further progress the accuracy of regression techniques,

and this paper may lay a foundation for those looking to predict inter-residue

distances as close as possible to how they appear in nature.
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Chapter 5

Supplementary Material

5.1 S1: Model Reconstruction Using Rosetta

All model building carried out using Rosetta was done via the Static AbinitioRelax

tool. In order to convert real-valued distance predictions into the Rosetta con-

straints format, the constraints function SCALARWEIGHTEDFUNC was used

with a constant weight of 0.1, which was found to yield the most accurate models

among the constant values 0.01, 0.1, and 1.0. The constraints function BOUNDED

was used to build the models constrained by the various distance bound gener-

ation methods discussed below due to the ease with which the distances can be

converted to a range. The margin of error was kept at a constant 0.5 throughout

these experiments. Each constraint line took the following format:

AtomPair CB a CB b SCALARWEIGHTEDFUNC 0.1 BOUNDED u l

0.5 NOE

With a and b denoting the carbon beta atoms the distance is predicted to be

between, and u and l denoting the upper and lower bounds, methods for the

generation of which are discussed below.
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The first constraint generation method used to build Rosetta models applied a non-

relaxed bound strategy with a ceiling set to 16 Å; as retaining predicted distances

greater than this threshold tended to decrease model accuracy. The non-relaxed

bounds were calculated via taking the predicted distance d, and then calculating

the upper bound u via u = d+ 0.1 and the lower bound l via l = d−0.1. Then, to

constrain the distances to a range on par with that of contacts, we applied the same

non-relaxed constraint generation method except with a ceiling set to 8 Å. This

allowed us to compare real-valued distance prediction performance to contacts

on the same [0,8] Å range. Lastly, we took the contact predictions generated by

PDNET-Contact, and generated constraints with static bounds when a contact is

predicted to occur, i.e., p > 0.5. These static bounds were set according to the

contact range and the minimum distance our model generator processes, or u = 8.0

and l = 3.5 Å. Each of these constraint generation methods were applied to build

each chain in the PSICOV 150 set, with 200 Rosetta models being generated for

each.
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