University of Missouri, St. Louis

UMSL Global

1-1-1978

Effects of the European Community's Agricultural Policy on International Trade in Grains

Emilio Pagoulatos

Angelos Pagoulatos

David L. Debertin

Follow this and additional works at: https://irl.umsl.edu/cis

Part of the International and Area Studies Commons

Recommended Citation

Pagoulatos, Emilio; Pagoulatos, Angelos; and Debertin, David L., "Effects of the European Community's Agricultural Policy on International Trade in Grains" (1978). *UMSL Global*. 114. Available at: https://irl.umsl.edu/cis/114

This Article is brought to you for free and open access by IRL @ UMSL. It has been accepted for inclusion in UMSL Global by an authorized administrator of IRL @ UMSL. For more information, please contact marvinh@umsl.edu.

Occasional Paper #788 July 1978

Effects of the European Community's Agricultural Policy on International Trade in Grains

Emilio Pagoulatos

David Debertin

Angelos Pagoulatos

EFFECTS OF THE EUROPEAN COMMUNITY'S AGRICULTURAL POLICY

ON INTERNATIONAL TRADE IN GRAINS

by

Emilio Pagoulatos, David Debertin and Angelos Pagoulatos*

*The authors are, respectively, Associate Professor of Economics and Research Associate of the Center for International Studies at the University of Missouri-St. Louis; Associate Professor of Agricultural Economics at the University of Kentucky; and Assistant Professor of Agricultural Economics at the University of Kentucky.

EFFECTS OF THE EUROPEAN COMMUNITY'S AGRICULTURAL

POLICY ON INTERNATIONAL TRADE IN GRAINS

Emilio Pagoulatos, David Debertin and Angelos Pagoulatos

Trade in temperate zone agricultural products has largely remained outside the trend towards liberalization that has characterized international trade in the last thirty years. One of the most debated issues in this regard has been the European Community's Common Agricultural Policy (CAP) and its effects on world trade. While several studies have suggested that the adoption of the CAP has stimulated internal trade and slowed down third countries' farm exports to the EEC, their estimates were not derived from a model that takes account of supply, consumption and trade relationships (See Carney, Knox, Sorenson and Hathaway, Thorbecke and Pagoulatos).

It is the objective of this paper to evaluate the impact of the CAP on production, consumption and intra-EEC and world trade, based on an econometric model describing the operation of markets for grains in the European Community. The model contains thirty behavioral and five technical relationships and is based on annual data covering the 1953-72 period. The parameters of the structural relationships are simultaneously determined and are estimated by three-stage least squares.

We begin with a brief description of agricultural and trade policies in the EEC. Next we discuss the theoretical specification of the model and the statistically estimated equations. Finally we evaluate the model's forecasting ability within the sample period and an attempt is made to capture the effect of the adoption of the CAP on world trade.

E.E.C.'S AGRICULTURAL AND TRADE POLICIES FOR GRAINS

Protection of the European Community's market for agricultural commodities is based on the Common Agricultural Policy (CAP), which was adopted in 1962 and became fully operative by 1968.¹ The CAP was designed to assure the maintenance of high farm incomes through a variety of regulations that differ between commodities. These regulations constitute the CAP's "market or price" policy and involve support prices fixed well above world market prices, variable levies on imported agricultural products from extra-EEC sources and the exporting of surplus production with the aid of export subsidies (or "restitutions"). The costs of financing this system are met through a Common Fund established from the proceeds of the import levies and contributions from the member governments.

Even though the market or price policies of the CAP differ from commodity to commodity, there are some common features which result in free trade between member states, a common system of protection against non-member countries and a common price and income policy internally. The common price policy relies, basically, on a "variable-levy" system of protection which is applied to all commodity groups in-

The calculation of the "variable levies" to be applied on imports from non-EEC countries involves three steps: (1) a <u>target</u> or <u>indicative price</u> is determined and is a theoretical price towards which the common market price should tend; (2) a <u>threshold price</u> is fixed at which imports from non-member countries can enter the EEC and which is lower than the target price by the transportation cost from the port of entry; and (3) the <u>import levy</u> is computed on a daily basis as the difference between the threshold price for a commodity and the world price.

Along with the variable levies, <u>intervention prices</u> are employed to ensure that a satisfactory level of prices is achieved in the EEC. The intervention price is between 90-95% of the target price and constitutes a guaranteed price at which government agencies will undertake support buying if the market price shows a tendency to fall below the intervention price. In conclusion, the CAP keeps market prices within two limits; the upper limit is the threshold price and the lower limit is the intervention price. If excess demand or rising costs in the market for an agricultural commodity tend to raise the market price above the threshold price,

then imports from extra-EEC sources enter the community to fill the gap in demand. If an excess supply causes the market price to fall below the intervention price, the EEC Commission will have to enter the market and support the price.

One effect of the adoption of the CAP has been to raise internal producer prices (threshold prices) above world market (or import) prices, which approximates the degree of import protection in the EEC. The degree of protection has been particularly high in the case of butter, milk, cheese, poultry meat, wheat, oats and rye (O.E.C.D. 1974, Pagoulatos, Sampson and Yeats). In addition to resulting in higher prices for farm products and a higher degree of protection, the adoption of the CAP has stimulated domestic production. As a result the overall degree of selfsufficiency has increased for most agricultural commodities and growing surpluses have accumulated for grains, dairy products and sugar. The increase in agricultural self-sufficiency, the rise in the degree of import protection and the removal of nearly all trade barriers between member nations has reduced net import requirements of temperate zone goods from non-members, while the growing surpluses of several commodities and the policy of export restitutions has stimulated agricultural exports.

A number of studies (Carney, Knox, Sorenson and Hathaway, Thorbecke and Pagoulatos) have suggested, on the basis of actual performance, that the adoption of the CAP--especially the "variable levy" system of protection--has stipulated intra-EEC trade and slowed down third countries' farm exports to the EEC. The quantitative estimates obtained in these studies did not derive from an econometric model that takes account of supply, consumption and trade relationships in the European Community. The remaining sections of this study estimate such a model and attempt an evaluation of the impact of the CAP on world trade.

GENERAL MODEL SPECIFICATION

The grain sector in the EEC can be disaggregated into several commodity groups for which sub-models are established. The estimated model includes five commodity groups selected on the basis of data availability, and the fact that all are covered by the variable-levy protection system.³ Each commodity submodel includes a domestic supply equation, a market demand equation, a change in stocks equation, an export to non-EEC countries equation, an intra-EEC import equation, an import from the U.S. equation and an equation for imports from the rest of the world. Specification of these relationships is explained below. Domestic Production

The theory underlying the domestic supply side is the traditional agricultural response to price. The quantity of domestic production in a particular year is primarily the result of farmer's production decisions, weather conditions and available technology. Lack of data for the EEC on uniform weather-conditions and on some inputs (e.g. labor employed in each crop) prevented the use of the production function approach. Production out of domestic sources in period t is a function of the product price (P_t), acreage (A_t) and the amount of total fertilizer consumption (F_t). Thus, the supply function is specified as

(1) Q = f(P, A, F)t 1 t t t t

Prices of the various commodities are treated as exogenously determined, since they are fixed each year by decisions made by the EEC Commission. Domestic Demand

Economic theory suggests that quantity demanded per capita is a function of the income level, the price of the commodity and the price of related commodities. Thus the per capita market demand equation is specificed as

(2) $PCC_t = f_2 (YP_t, p_t, PR_t)$

where YP_t is the real EEC per capita GNP, P_t is the product price, and PR_t is the price of related products.

Change in Stocks

Changes in stocks are expected to be a function of current prices, and a general shift variable such as the level of commodity consumption. Consequently, the specification of the function of changes in stocks is

(3) $DST_t = f_3 (C_t, P_t)$

where C_t is the level of demand at time t, and P_t is the price.

Foreign Trade

Imports represent an additional source of agricultural supply, while exports constitute another component of the demand for agricultural products. Consequently, exports are specified as a function of the product price (P_t) , product output (OWQ_t) and per capita GNP (YD_t) in the rest of the world.

(4) $X_t = f_4$ (OWQ_t, P_t, YD_t)

Imports from EEC sources are treated as a function of real per capita GNP (YP_t), EEC production (Q_t) and price (P_t)

(5) $ECM_{t} = f_{5} (YP_{t}, Q_{t}, P_{t})$

The domestic product price is included in the import equations rather than an import price since the two are one and the same under the variable-levy protection system.⁴

Finally, import demand from the U.S. is specified as

(6) $USM_t = f_6 (Q_t, DST_t, YP_t, P_t, RP_t, QUS_t)$ where QUS_t is the product output in the U.S. An identity that defines imports from other non-EEC sources completes the model

(7) $M_t = PCC_t \times POP_t - Q_t + DST_t + X_t - ECM_t - USM_t$ where POP_t is total population in the EEC.

The model specified above was estimated by three-stage least squares using annual data from 1953-72. The estimated equations, the identities and variable definitions are presented in Table 1.

MODEL VALIDATION AND PREDICTION

An extensive number of validation measures were calculated to evaluate the efficacy of the model as a predictive device within the sample period. Values for key validation measures are presented in Table 2. The comparatively low Root Mean Square Errors for all equations suggest that the model would reproduce sample data with a high degree of accuracy. The Theil coefficients were cal-culated based on changes in endogenous variables and were acceptable except for U.S. exports of rice and other grains. The correlations between actual and predicted values were high for all equations of the model predicting also a high proportion of turning points (except the equations for U.S. exports of wheat and other grains) over the 1953-72 period.

THE EFFECT OF THE CAP

In order to obtain an approximate order of magnitude of the quantitative effects of the CAP, the estimated model was used to derive for the years 1968-72 (the period when the single market state of the CAP was in operation), the value of imports from intra-EEC (ECM), from the U.S. (USM) and from other non-EEC sources (M) under free-trade conditions. The free-trade ideal situation was approximated by equating domestic prices in the Common Market to world prices (Table 3).

The results of Table 3 lead to the following tentative conclusions: (a) domestic production has been stimulated and consumption discouraged by the CAP especially for barley and corn; (b) trade diversion, where intra-EEC imports

increase due to a shift from low-cost producers outside the European Community to higher-cost producers within the Community, was the common experience of all commodity groups under consideration except barley; and (c) the extent of diversion of trade from non-EEC sources was particularly severe in the case of corn and barley, as recent estimates of the degree of CAP protection have suggested. (Sampson and Yeats).

The above evidence suggests that the adoption of the CAP has affected the pattern of farm trade flows between the Common Market and the rest of the world. A qualification that must be kept in mind is a crucial assumption of our methodology, that existing world prices would have prevailed even under freetrade conditions for agricultural products. *Emilio Pagoulatos is Associate Professor of Economics and Research Associate of the Center for International Studies of the University of Missouri-St. Louis; David Debertin and Angelos Pagoulatos are, respectively, Associate and Assistant Professor of Agricultural Economics at the University of Kentucky. Financial support from the Kentucky Agricultural Experiment Station and the Center for International Studies of the University of Missouri-St. Louis is gratefully acknowledged.

¹Prior to the formation of the European Community, the six original members had engaged in different policies directed toward protection of the farm sector through price supports, subsidy measures and import controls. The adoption of the C.A.P. was largely an attempt to eliminate the diversity of pre-EEC farm support systems of the individual members and still preserve their protectionist nature. Furthermore, not all of the original six were equally protectionist. The Netherlands, for example, has traditionally had the least protected agriculture as compared to the other members.

 2 For a detailed discussion of the set of policy measures and the institutional arrangements of the CAP, see Hudson, Marsh and Ritson, and O.E.C.D. 1974.

³The individual products included in this study are: wheat, rice, barley corn, and other grains (rye, oats, sorghum and millet). Data sources are O.E.C.D., and U.N., F.A.O.

⁴The tariff equivalent of variable levy protection in the EEC is

 $TE_t = \frac{P_t}{WP_t} - 1$, where WP_t is the world price of a good.

Since the import price is $MP_t = WP_t$ (1 + TE_t) = P_t, it reduces to the domestic product price level.

REFERENCES

- [1] Carney, M.K., "Agricultural Trade Intensity: The European Markets and the U.S.", American Journal of Agricultural Economics, 55 (November 1973):
 637-640.
- [2] Hudson, J.F., The Common Agricultural Policy of the European Community, Foreign Agricultural Service M-255, U.S.D.A., Washington, D.C.: November, 1973.
- [3] Knox, D., The Common Market and World Agriculture: Trade Patterns in Temperate Zone Foodstuffs, New York: Praeger Publishers, 1972.
- [4] Marsh, J. and C. Ritson, Agricultural Policy and the Common Market, London: P.E.P., Chatham House, 1971.
- [5] O.E.C.D., Food Consumption Statistics, Paris: O.E.C.D. (various issues)
- [6] O.E.C.D., Agricultural Policy of the European Economic Community, Paris: O.E.C.D., 1974.
- [7] Pagoulatos, E., "The Effect of E.E.C.'s Common Agricultural Policy on United States Farm Exports: An Empirical Estimate", *Rivista* Internationale di Scienze Economiche e Commerciali, 24 (March 1977): 220=231.
- [8] Sampson, G.P. and a.J. Yeats, "An Evaluation of the Common Agricultural Policy as a Barrier Facing Agricultural Exports to the European Economic Community", American Journal of Agricultural Economics, 59 (February, 1977): 99-106.
- [9] Sorenson, V.L. and D. E. Hathaway, The Grain-Livestock Economy and Trade Patterns of the EEC, Michigan State University, Research Report No. 5, 1968.
- [10] Thorbecke, E. and E. Pagoulatos, "The Effects of European Economic Integration on Agriculture" in Bela Balassa, (ed.) European Economic Integration, Amsterdam: North-Holland, 1975.
- [11] U.N., F.A.O., Monthly Bulletin of Agricultural Economics and Statistics, Rome: F.A.O. (various issues).

Table 1. Three Stage Least Squares Estimates of the Common Market Grains Model - 1953 - 1972.^a

사람이 나는 것 같아요. 그는 것 같아요. 그는 것 같아요. 그는 것 같아요. 그는 것을 많아요. 그는 것을 하는 것 같아요. 그는 것 같아요. 그는 것 같아요. 가지 않아요. 나는 것 같아요. 나는	21
I. <u>Wheat</u>	
(I.1) $WQ_t = -32183.9 + 3.33WA_t + 2.39F_t + 690.05WP11_t$ (8975.0) (.580) (.173) (376.1)	•
(I.2) $PCWC_t = 758.01 - 14.76YP_t - 65.66WP11_t + 239.96BP1_t$ (465.1) (165.7) (63.6) (99.0)	
(I.3) $DWST_t = 444.06074WC_t + 169.89WP11_t$ (2947.9) (.067) (285.5)	
(I.4) $WX_t = -1473.090154W0WQ_t - 88.95WP11_t + 2.90 YD_t$ (2847.4) (.033) (264.4) (.875)	• •
(I.5) WECM _t = $-3346.9 + 1844.09YP_t + 64.57WP11_t + .038WQ_t$ (1801.1) (923.0) (169.7) (.072)	
(I.6) $WUSM_t = 2973.08189WQ_t304DWST_t + 2916.7YP_t + 189.15WP11_t - 1.49WQUS (2743.3) (.058) (.409) (1106.9) (184.7) (1.40) -92.91BP3_t (187.5)$	t
(I.7) $WM_t = PCWC_t \times POP_t - WQ_t + DWST_t + WX_t - WECM_t - WUSM_t$	
II. <u>Rice</u>	- - - -
(II.1) $RQ_t = 616.68 + 4.18 RA_t - 50.05RP1_t$ (124.7) (.826) (9.31)	•
(11.2) $PCRC_t = 176.88 - 146.42YP_t + 2.16RP1_t + 7.24TIME$ (54.1) (63.6) (1.91) (3.61)	
(II.3) $DRST_t = 256.84180RC_t - 7.14RP1_t$ (74.4) (.057) (4.05)	
(II.4) $RX_t = 424.190193ROWQ_t + 20.28RP1_t033YD_t$ (156.2) (.006) (18.21) (.081)	
(II.5) $\text{RECM}_{t} = -269.14 - 5.86YP_{t} + 17.51RP1_{t} + .184RQ_{t}$ (85.0) (32.2) (5.08) (.081)	-
(11.6) $RUSM_t = 110.08145RQ_t + .299DRST_t + 21.32YP_t - 12.19RP1_t + 2.66RQUS_t$ (135.9) (.128) (.346) (62.32) (8.33) (.847)	
(II.7) $RM_t = PCRC_t \times POP_t - RQ_t + DRST_t + RX_t - RECM_t - RUSM_t$	

Table 1. - continued.

III. Barley (111.1) BQ = -6798.3 + 2.78BA + .732F + 266.32BP1 t (1801.9) (.533)t (.251)t (305.8) t (III.2) $PCBC_t = 339.7 + 478.09YP_t - 33.80BP3_t + .498MP1_t$ (429.4) (109.4) t (43.1) (29.0) t (III.3) DBST_t = -2329.0 - .071BC_t + 341.4BP3_t (954.5) (.021)(107.3)(III.4) $BX_t = -3817.37 - .134B0WQ_t + 209.7BP3_t + 3.88YD_t$ (1125.6) (.046) (138.2) (.815) (III.5) $BECM_t = 627.33 + 1844.6YP_t - 280.5BP3_t + .011BO_t$ (881.0) (818.7) (106.5) (.074) (III.6) $BUSM_t = -1400.4 + .134BQ_t - .153DBST_t - 2197.5YP_t + 241.7BP3_t + 5.43BQUS_t$ (1312.1) (.138) (.629) (1475.9) (133.2) (1.54) - 92.51MP1+ (87.9)(III.7) $BM_{+} = PCBC_{+} \times POP_{+} - BQ_{+} + BX_{+} - BECM_{+} - BUSM_{+}$ IV. Corn $MQ_t = -11965.56 + 3.42MA1_t + .962F_t + .685.4MP2_t$ (IV.1) ~ (.177)~ (180.2) (1951.3) (1.17)(IV.2) $PCMC_t = -629.39 + 1012.97YP_t - 2.29MP1 - 6.53TIME$ (482.0) (602.4) (19.2) (34.5) $DMST_{t} = 157.04 - .0104MC_{t} - 13.12MP1_{t}$ (406.1) (.010) (58.2) (IV.3) (406.1) (.010) $MX_t = -1424.05 - .005MOWQ_t - 21.01MP1_t + 1.37YD_t$ (IV.4)(365.08) (.005) (60.6)(.37)(IV.5) MECM_t = $-1953.9 - 471.49YP_t + 119.95MP1_t + .330MQ_t$ (1335.9) (1049.9) 🎽 (145.7) (.134)(IV.6) $MUSM_t = -6904.5 - .481MQ_t - .111DMST_t + 9993.2YP_t - 16.6MP1_t - .185MQUS_t$ (4493.7) (.246) t (.929) t (2012.6) t (294.7) t (.663) 10.7BP3+ (415.6)

(IV.7) $MM_t = PCMC_t \times POP_t - MQ_t + DMST_t + MX_t - MECM_t - MUSM_t$

Table 1. - continued.

<u>Other</u>	Grains	<u>S</u>				944		
(V.1)	^{GQ} t	= - 1112.6 (3250.9	57 + 2.110)) (.386	GA + .958F 5) ^t (.229) ^t	- 464.7GP5 (149.7)			
(V.2)	PCGCt	= 1107.4 (319.8)	264.8YP (390.9)	- 60.12GP5 (15.23)	t + 1.32TIM (22.0)	E + 72.2BP1 _t (21.2)		
(V.3)	DGST _t	= 4146.1 - (1348.1)	.263GC _t (.064)	- 49.20GP5 _t (71.44)			8	
(V.4)	^{GX} t	= - 66.46 (370.1)	0008G0 (.006)	DWQ _t + 38.47 (22.5)	GP5 _t			
(V.5)	GECM _t	= - 54.92 (319.1)	+ 192.0Y	Pt + 24.39GP (19.6)	5 _t 015GQ (.018)	t		
(V.6)	GUSMt	= 5527.9 - (4840.1) + 348.9E (297.2)	.333GQ _t (.272) ^{3P3} t	+ .783DGST _t (1.32)	- 774.1YP (1273.8)	- 408.46GP5 _t (312.5)	+ .367GQ (1.64)	ous _t
(V.7)	GMt	= PCGC _t x	POP _t - G	$Q_t + DGST_t +$	GX _t - GECM	t - GUSM _t		

Where:

WQ = EEC wheat production at time t PCWC = EEC wheat consumption per capita DWST = change in wheat stocks WX = wheat exports to non-EEC countries WECM = intra-EEC wheat imports WUSM = EEC wheat imports from the U.S. WM = other extra-EEC imports WA = EEC wheat acreage F = EEC fertilizer consumption WP11 = EEC producer wheat price BP1 = EEC producer barley price YP = real GNP per capita in the EEC YD = real GNP per capita in other OECD countries (except EEC) WOWQ = wheat production in other OECD WQUS = wheat production in the U.S. **POP = EEC population** RQ = EEC rice production PCRC = EEC rice consumption per capita DRST = change in rice stocks RX = rice exports to non-EEC countries RECM = intra-EEC rice imports RUSM = EEC rice imports from the U.S. RM = other extra-EEC rice imports RA = EEC rice acreage TIME = t = (0, 1, 2, ..., n)RP1 = EEC producer rice price ROWQ = rice production in other OECD RQUS = rice production in the U.S.

Table 1. - continued.

	BQ = EEC barley production	
	PCBC = EEC barley consumption per capita	
	JBST = change in barley stocks	
	BX = barley exports to non-EEC countries	
	3ECM = intra-EEC barley imports	
	BUSM = EEC barley imports from the U.S.	e
ľ	BM = other extra-EEC barley imports	
ć	BA = EEC barley acreage	
	MP1 = EEC consumer corn price	,
	BOWQ = barley production in other OECD	
	BP3 = EEC wholesale barley price	
	BQUS = barley production in the U.S.	
	MQ = EEC corn production	
	PCMC = EEC corn consumption per capita	
	DMST = change in corn stocks	:
	MX = corn exports to non-EEC countries	
	<pre>MECM = intra-EEC corn imports</pre>	
1	MUSM = EEC corn imports from the U.S.	
	MM = other extra-EEC corn imports	,
	MA1 = EEC corn acreage	
	MP2 = EEC producer corn price	
	MOWQ = corn production in other OECD	
	$\psi \cup S = corn production in the U.S.$	
	GU = EEL OTNER GRAIN PRODUCTION	
	PLGU = EEL OTHER GRAIN CONSUMPTION PER CAPITA	
	PGST = Change in other grain stocks	
	GA - OUHER GRAIN EXPORTS LU NON-EEU COUNTRIES	
j	CUCM - FILLA-EEU OLHER YRAIN IMports CUCM - EEC othon gnoin imports from the U.S.	
Ì.	GUSM = EEU OTNER GRAIN IMPORTS TROM THE U.S.	
	GM = Other extra-EEC other grain hiports	
	GA = EEU Olner grain acreage	
•	COMO - athen grain production in athen OECD countries	
	GOWE = Other grain production in other VELD Countries	•
	avus = other grain production in the U.S.	

^aStandard errors are in parentheses.

Equation <u>Variable</u>	Root Mean ^a Square Error	Correlation between Actual and <u>Predicted</u>	New Theil ^b Coefficient		
WQ	1287.1	.96	.60		
PCWC	.015	.65	.93		
WECM	564.3	.82	.92		
WUSM	434.3	.59	1.00		
RQ	59,5	.81	.83		
PCRC	.0007	.65	1.01		
RECM	18.7	.79	1.19		
RUSM	29.9	.78	1.49		
BQ	842.8	.97	.77		
PCBC	.0097	.85	.99		
BECM	234.9	.93	.93		
BUSM	205.9	.86	.79		
MQ	775.0	.97	1.05		
PCMC	.0057	.98	.89		
MECM	422.9	.91	1.03		
MUSM	3821.1	.86	1.08		
GQ	555.7	.85	.75		
PCGC	.0042	.92	.69		
GECM	63.7	.84	.83		
GUSM	568.7	.53	1.81		

Table 2.--Validation of Three Stage Least Squares Model

^aThe figures are expressed in 1000 metric tons except PCWC, PCRC, PCBC, PCMC, and PCGC which are in 1000 metric tons per person.

b Theil Coefficients are based on first differences, not actual variates.

Commodity		Production		Consumption		Intra-EEC Imports		Imports from U.S.			Other non-EEC Imports				
	Year	Q	Q 1	C	ĉ		ECM	ECM	ECM-ECM	USM	USM	USM-USM	M	A M	M-M
Wheat	68 69 70 71 72	32018 31368 29509 34075 35372	28153 29133 29650 29923 31460	3381 3262 3103 4128 3821	8 29961 0 28754 1 37867 6 34417 6 30925		1472 3187 2441 2588 3531	1428 1677 1843 1948 2167	44 1510 598 640 1364	1587 1333 1973 1274 1600	1457 1774 2067 1770 1847	130 -441 -94 -496 -247	2127 2463 2262 2497 2108	1666 0 6955 3786 0	461 2463 -4693 -1289 2108
Rice	68 69 70 71 72	730 769 735 778 645	822 873 850 841 724	91 94 74 75 79	8 929 9 728 6 673 5 707 2 812		87 80 70 90 126	64 70 71 80 111	23 10 -1 10 15	168 146 124 104 86	186 160 139 137 98	-18 -14 -15 -33 -12	154 145 191 229 235	14 0 0 203	140 145 191 229 32
Barley	68 69 70 71 72	15155 15719 13957 15901 17698	13982 14695 16277 15366 15620	1708 1741 1599 1851 1874	9 18558 4 19938 4 19540 1 20645 4 21727		1560 2140 1898 1509 1518	2471 2822 2418 2721 3001	-911 -682 -520 -1212 -1483	280 31 80 469 103	182 209 0 12 263	98 -178 80 457 -160	1209 1011 2038 1998 2309	1021 1394 1481 2622 2881	188 -383 557 -624 -572
Corn	68 69 70 71 72	9444 10634 12843 14079 13978	7662 7894 10714 11625 11648	1978 1922 2304 2 5 38 2600	1 19678 2 21814 9 23236 4 24266 3 25508		808 1409 1513 3029 3883	478 430 1277 1795 1679	330 979 236 1234 2204	6279 4871 5377 5515 5510	6242 7200 6687 6437 7039	37 -2329 -1310 -922 -1529	4144 3445 4219 3955 2958	6207 7252 5495 5318 6339	-2063 -3807 -1276 -1363 -3381
Other Grains	68 69 70 71 72	12571 12165 10537 12366 11984	13154 13356 13428 13381 13370	1433 1328 1182 1436 1229	7 14786 7 13849 8 15650 2 14360 0 13146		273 348 363 262 542	201 228 282 266 288	72 120 81 -4 254	453 131 502 475 90	405 327 958 170 221	48 -196 -456 305 -131	1106 918 1191 1181 636	1290 475 1892 788 55	-184 443 -701 393 581

TABLE 3: Estimates of Trade Diversion in the EEC as Compared to Free Trade (1000 metric tons)

 10^{1} , C, ECM, USM, M are figures estimated under world prices. Others are actual figures.