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Creating Walk-Through Images
from a Video Sequence of a
Dynamic Scene

Abstract

Tour into the picture (TIP), proposed by Horry et al. (Horry, Anjyo, & Arai, 1997,
ACM SIGGRAPH ’97 Conference Proceedings, 225–232) is a method for generating a
sequence of walk-through images from a single reference image. By navigating a 3D
scene model constructed from the image, TIP provides convincing 3D effects. This
paper presents a comprehensive scheme for creating walk-through images from a
video sequence by generalizing the idea of TIP. To address various problems in
dealing with a video sequence rather than a single image, the proposed scheme is
designed to have the following features: First, it incorporates a new modeling
scheme based on a vanishing circle identified in the video, assuming that the input
video contains a negligible amount of motion parallax effects and that dynamic ob-
jects move on a flat terrain. Second, we propose a novel scheme for automatic
background detection from the video, based on 4-parameter motion model and
statistical background color estimation. Third, to assist the extraction of static or
dynamic foreground objects from video, we devised a semiautomatic boundary-
segmentation scheme based on enhanced lane (Kang & Shin, 2002, Graphical Mod-
els, 64(5), 282–303). The purpose of this work is to let users experience the feel of
navigating into a video sequence with their own interpretation and imagination
about a given scene. The proposed scheme covers various types of video films of
dynamic scenes, such as sports coverage, cartoon animation, and movie films, in
which objects are continuously changing their shapes and locations. It can also be
used to produce a variety of synthetic video sequences by importing and merging
dynamic foreign objects with the original video.

1 Introduction

1.1 Motivation

Real-time generation of photorealistic images is a recurring theme in
computer graphics. Recently, a novel approach for real-time realistic image
generation called image-based rendering has received much attention. Tour
into the picture (TIP), proposed by Horry, Anjyo, and Arai (1997), is one of
the image-based methods for generating a sequence of walk-through images
from a single reference image. By navigating a 3D scene model constructed
from the image, TIP provides convincing 3D effects. Assuming that the image
has one vanishing point, Horry et al. proposed a scene-modeling scheme called
“spidery mesh,” with which users can make what they imagine in the 2D im-
age become real in 3D.
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Due to widely available video imaging devices such as
camcorders or CCTVs and the growth of the Internet,
which abounds with digitized movie files, video clips are
now emerging as familiar sources for image-based tech-
niques. This trend motivates the need for a more gen-
eral version of an image-based navigating scheme that
can deal with video sequences. However, we cannot
directly apply the original TIP to video sequences be-
cause TIP is designed to handle just a still image. While
various image-based techniques have been proposed,
most of them use a set of still photographs (Chen &
Williams, 1993; Chen, 1995; McMillan & Bishop,
1995; Gortler, Grzeszczuk, Szeliski, & Cohen, 1996;
Levoy & Hanrahan, 1996) rather than video sequences.
Moreover, previous work on video sequences usually
focused on automatic reconstruction of structures from
static scenes in which only the camera moves around
fixed objects (Tomasi & Kanade, 1992; Beardsley, Torr,
& Zisserman, 1996; Fitzgibbon & Zisserman, 1998).

This paper presents a scheme for creating walk-
through images from videos by generalizing the idea of
TIP. To address various problems in dealing with a
video sequence rather than a single image, the proposed
scheme is designed to have the following features: First,
it adopts a new modeling scheme based on the notion
of a vanishing circle, which is more general and simpler
than that of TIP. Second, we propose a novel scheme
for automatic background detection from the video
taken with camera rotation and zoom. Third, for effi-
cient extraction of static or dynamic foreground objects
from the video, we present a semiautomatic boundary-
segmentation scheme based on enhanced lane (Kang &
Shin, 2002a).

The proposed scheme aims at helping users experi-
ence the feel of navigating into the video sequence with
their own interpretation of the scene, and create new
synthetic videos by importing and compositing foreign
objects according to their own imaginations. Our
scheme covers various types of video films of dynamic
scenes such as TV broadcast, cartoon animation, and
movie films, where objects are allowed to change their
shapes and locations continuously.

1.2 Related Work

McMillan and Bishop (1995) explained image-
based rendering with the notion of a plenoptic function,
which defines the radiant energy to an eye position
through every incident direction. For example, an envi-
ronment map is a sample of a plenoptic function at a
fixed viewpoint (Lippman, 1980; Miller et al., 1992;
Chen, 1995). An image-based rendering scheme based
on environment maps has a major limitation in that the
viewpoint is fixed. One way to relax this limitation is to
use a warp function that describes the relative move-
ment of each pixel with respect to camera movement
(Chen & Williams, 1993; Darsa, Silva, & Varshney,
1995; McMillan & Bishop). Alternatives are to con-
struct a light field from a set of plenoptic samples such
as multiple reference images taken at regular grid points
(Gortler et al., 1996; Levoy & Hanrahan, 1996; Sloan,
Cohen, & Gortler, 1997).

TIP, proposed by Horry et al. (1997), generates real-
istic walk-through images by constructing a simple 3D
scene model from a 2D image. However, with the as-
sumption that the image has a single vanishing point,
their modeling scheme requires major modification
when the image contains multiple vanishing points or
no clearly identified vanishing point. Liebowitz, Crimi-
nisi, & Zisserman (1999) presented algorithms for com-
puting plane rectification or plane orientation to recon-
struct architectural models from a single image,
exploiting various geometric constraints such as parallel-
ism and orthogonality.

Recently, Kang, Pyo, Anjyo, & Shin (2001) proposed
a new modeling scheme for TIP based on a vanishing
line that is simpler than that of Horry et al., and yet
more general to cover a broader class of input images.
They also showed that their modeling scheme is natu-
rally extended to navigation into a panoramic image, by
introducing the notion of a vanishing circle. Compared
to conventional panoramic-image viewers (such as
QuickTimeVR�), their method can provide the real
sense of walk-through or navigation into the panoramic
scene by enabling continuous camera translation as well
as rotation. In this paper, their modeling scheme for a
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single planar or panoramic image is further extended to
a video sequence.

The image-based rendering techniques described
above are common in that they all use one or more
static images to obtain 3D scene information for gener-
ating an image viewed from a new viewpoint. On the
other hand, some researchers, especially in the field of
computer vision, have concentrated on automatically
extracting 3D information from video sequences (To-
masi & Kanade, 1992; Beardsley et al., 1996; Fitzgib-
bon & Zisserman, 1998). These approaches have usu-
ally focused on static scenes, which contain relatively
simple architectural models such as buildings or houses.
Thus, they cannot be applied to objects that are moving
arbitrarily or changing their shapes continuously, for
example, pedestrians and soccer players. Thus, dynamic
scenes of this kind have usually been the target of 2D
motion tracking or segmentation (Mitsunaga,
Yokoyama, & Totsuka, 1995; Vieren, Cabastaing, Post-
aire, 1995; Hoch & Litwinowicz, 1996; Wren, Az-
arbayejani, Darrell, & Pentland, 1997), rather than that
of 3D model reconstruction.

1.3 Overview

In this paper, we present an image-based naviga-
tion scheme for video sequences of dynamic scenes.
While a previous version of our work has been pub-
lished (Kang & Shin, 2002b), this paper provides a
more detailed and extended description of this work.
Our scheme is based on the following assumptions:
First, the input video is composed of a continuous se-
quence of images for a scene. Second, only a negligible
amount of motion parallax effects appear in the video.
Third, the terrain on the ground (which appears in the
video) is smooth enough so that it can be modeled as a
single plane. In general, most of the video sequences
containing dynamic scenes satisfy these assumptions,
that is, dynamic objects seldom move on a rough ter-
rain, and it is hard to make a large amount of camera
translation (which causes a strong parallax effect) while
tracking the moving objects with the video camera at
the same time.

Figure 1 shows the process flow diagram of our tour
into video (TIV) scheme. First, a single background
image is generated from an input video sequence. The
background image covers all the region viewed from the
entire sequence of frames, and contains only the static
entities in the scene, that is, the background and static
foreground objects. We generate the background image
by employing an automatic background-detection tech-
nique (Francois & Medioni, 1999; Stauffer & Grimson,
1999) in conjunction with an image-alignment (regis-
tration) algorithm based on a 4-parameter motion
model to compute a camera pose for each frame (Shum
& Szeliski, 1998).

For each static foreground object, a corresponding
region is interactively extracted from the background
image, for which we use a highly interactive image-
segmentation tool called “enhanced lane” (Kang &
Shin, 2002a). For dynamic foreground objects, regions
should be identified in each frame. With the camera
poses and the background image obtained from the
background detection process, we can extract the
boundary information of dynamic foreground objects in
each frame by applying a connected component algo-
rithm on a difference image between each frame and its
background image (Horn, 1986). For frames with in-
correct segmentation results due to noises or ambigu-
ities, we go through an iterative segmentation process
to correct the given boundary from frame to frame. This
iterative process is composed of three steps, including

Figure 1. Schematic of TIV.
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enhanced lane, block matching, and active contour
(Kass, Witkin, & Terzopoulos, 1987).

Given the background and the foreground informa-
tion thus extracted, we construct the 3D scene model,
which consists of a background model and foreground
models. The modeling scheme for video sequences pre-
sented here evolved from that for a single image, in that
it receives a single background image as an input. The
background model is first constructed based on a van-
ishing circle detected in the background image. For
static or dynamic foreground objects, we first place 2D
polygons bounding the extracted objects in the back-
ground image or the reference frame. They are then
modeled as polygons in 3D space and attached to the
background model after their 3D coordinates are com-
puted. The regions inside their corresponding 2D poly-
gons serve as their foreground texture maps (called
“foreground image”) where only the exact portion of
each object is marked as visible.

With the constructed scene model and all the texture
images prepared, the dynamic scene can be navigated by
positioning the camera and successively creating images
viewed from new viewpoints. Note that the polygon for
each dynamic foreground object is continuously chang-
ing its shape and location on the scene model from
frame to frame. It is also possible to create a new syn-
thetic video sequence by importing foreign objects, ei-
ther static or dynamic, into the scene. Because all the
foreground objects are modeled as polygons with tex-
tures, even complex objects with arbitrary colors can be
inserted to enrich the virtual environment. The capabil-
ity for generating augmented reality (AR) of this type
can be used for postproduction in the film industry
(Milgram, Shumin, Drascic, & Grodski, 1993; Azuma,
1997; Azuma et al., 2001).

The remainder of this paper is organized as follows:
In Section 2, we present an automatic background-
image generation method. Section 3 discusses the semi-
automatic boundary-segmentation process, with which
static or dynamic foreground objects can be effectively
extracted from a video sequence. In Section 4, the con-
struction scheme for the background model and the
foreground object models is described in detail. Section
5 provides some experimental results with example

video sequences. Finally, we conclude this paper and
suggest some future extensions in Section 6.

2 Background-Image Generation

To construct a single background image from an
input video sequence, successive frames in the sequence
should be aligned first. The image-alignment (or regis-
tration) algorithm in this work uses a 4-parameter mo-
tion model that can handle camera rotation and zoom
(Shum & Szeliski, 1998). Each registered frame is then
projected onto a spherical base object to generate a sin-
gle image. An appropriate color value is assigned to each
pixel of the resulting image so that the pure background
information remains with all the dynamic foreground
objects removed. This process is called background de-
tection, for which we adopt a pixel-based adaptive, sta-
tistical model (Francois & Medioni, 1999; Stauffer &
Grimson, 1999). Figure 2 shows the block diagram for
our background-image generation process.

2.1 Image Registration

For aligning frames in the video sequence, we em-
ploy the 4-parameter motion model proposed by Shum
& Szeliski (1998), which incorporates both camera ro-
tation and zoom. Compared to the traditional 8-param-
eter motion model (Bergen, Anandan, Hanna, & Hingo-
rani, 1992), this model provides faster and more robust

Figure 2. Block diagram for background-image generation.
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convergence to the aligned position. Another benefit of
this model is that it explicitly computes the camera pose
for each frame, which is essential for generating a back-
ground image on a base object other than a plane. As
mentioned in the previous section, we assume that mo-
tion parallax effects are negligible in the input video.
That is, the factor of camera translation can be ignored
so that we can fix the camera position at a single point
in 3D.

When two images are taken from the same viewpoint
but in different directions, the relationship between the
two images can be described by a planar homography
(Hartley & Zisserman, 2000). Thus, one image is
warped into another using a 3 � 3 matrix H as x� �

Hx, where x � (x, y, 1) and x� � (x�, y�, 1) are homo-
geneous coordinates, and � indicates equality up to
scale. For a camera centered at the origin, the relation-
ship between an image point x and its corresponding
3D point p � (X, Y, Z) can be described by x � KRp,
where K and R are a simplified camera calibration ma-
trix and a 3D rotation matrix, respectively. Without loss
of generality, we assume that the origin of the pixel co-
ordinate is at the image center. The planar homography
H between two frames k and k � 1 is then given by

H � KkRkRk�1
�1 Kk�1

�1 (1)

where Kk and Rk respectively denote the camera calibra-
tion matrix and the rotation matrix for frame k. The
rotation matrix can be recovered by incrementally up-
dating Rk based on the angular velocity (�x, �y, �z), and
a focal length fk of Kk can be adjusted by setting fk4
(1 � ek)fk, where ek is the incremental change of the
focal length.

We initially place the current frame k and the previous
frame k � 1 at the same position. To align the two
frames, we find q � (�x, �y, �z, ek), which minimizes
the squared error metric

E�q� � �
i

	Ik�x�i� � Ik�1�xi�

2 (2)

The least squares problem given by Equation 2 can be
solved through the standard procedure in Press, Flan-
nery, Teukolsky, and Vetterling (1992). By minimizing

E(q), we estimate the incremental rotation vector (�x,
�y, �z) and the incremental change of the focal length
ek, after which Rk and Kk can be updated.

2.2 Projection on a Base Object

After the camera pose for the current frame is ob-
tained by the image-registration process, the frame is
projected onto a base object to create a single back-
ground image. While there can be various candidates for
the base object, including a plane, a cylinder, a sphere,
and a cube (Chen, 1995), in this paper we focus mainly
on the sphere, as it is the most general type. For exam-
ple, a spherical base object can deal with the entire view-
ing range covered by the video sequence even if it cov-
ers more than 180° in the horizontal direction, and
more than 90° in the vertical direction.

The projective mapping is done by using the camera
pose information (rotation matrix Rk and focal length
fk). For example, we can construct a spherical back-
ground image by first converting each pixel x̂ � (�, �)
on this image into its corresponding 3D direction vec-
tor p � (cos � cos �, sin � cos �, sin�), and then deter-
mining its mapping onto each frame k using x � KkRkp
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dated spherical background image (Figure 3a).1

In case we choose a cylinder as a base object, each
pixel x̂ � (�, z) on the cylindrical background image is
converted to the 3D direction vector p � (cos �, sin �,
z) to get the corresponding pixel x on each frame (Fig-
ure 3b).

2.3 Background Detection

While projecting each frame on the base object,
each pixel on the constructed image should be updated
with an appropriate color value. To obtain a pure back-
ground image from a sequence of images, we adopt a
pixel-based adaptive, statistical background-detection
method based on a Gaussian mixture model (Francois

1Similarly, x̂ � (�, �) can be obtained from point x on frame k us-
ing p � Rk

�1Kk
�1x and finding the intersection between p and the

base sphere.
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& Medioni, 1999; Stauffer & Grimson, 1999). Com-
pared to previous approaches for statistical background
detection (Koller et al., 1994; Friedman & Russell,
1997), this model is more effective in dealing with
scenes where the background color of each pixel may
dynamically change by object movements, shadows, etc.
The intensity values of a pixel over time are considered
as a stochastic process, which means a time series of
pixel values. For each pixel x̂ on the background image
IB, we keep track of its history

�zi : zi�IB�x̂, i�, 1 � i � k� (3)

where IB (x̂, i) is the intensity value at x̂ at the ith
frame in the sequence. The recent history of each pixel

is modeled by a mixture of N Gaussian distributions and
the probability of observing the current pixel value is

P�zk� � �
i�1

N

�i,k��zk,�i,k,	i,k
2 � (4)

where N is the number of distributions, �i,k is an esti-
mate of the weight (indicating the number of oc-
curences of the intensity value that is accounted for by
this Gaussian) of the ith Gaussian in the mixture at time
k, and where � is the corresponding Gaussian probabil-
ity density function with a mean value �i,k and a vari-
ance 	i,k

2 .
Every new pixel value zk is checked against the exist-

ing N Gaussian distributions to find if a match occurs. A
match is defined as a pixel value within the standard de-
viation (possibly multiplied by a positive constant) of a
distribution. When two or more matches occur, only
the best matched distribution is chosen by comparing
the relative distance from the average value normalized
by the standard deviation. If none of the N distributions
match the current pixel value, the least probable distri-
bution is replaced with a distribution with the current
value as its mean, an initially high variance, and low
prior weight given by users.

The weights of the ith distributions at time k, �i,k, are
adjusted as follows:

�i,k � �1 � 
��i,k�1 � 
�i,k (5)

where 
 is the learning rate, and �i,k is 1 for the model
that is decided as a best match and 0 for the remaining
models. This formulation renormalizes the weights au-
tomatically.

The � and 	 parameters for unmatched distributions
remain the same. The parameters of the distribution
that matches the new observation are updated as fol-
lows:

�k � �1 � 
��k�1 � 
zk (6)

	k
2 � min�	min

2 ,�1 � 
�	k�1
2 � 
�zk � �k�1�

2� (7)

where a minimum variance 	min
2 is introduced as a

threshold to keep the variance from decreasing below a
minimum value in case there is little change in a pixel

Figure 3. Projection on a base object.
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value over a long period of time (Francois & Medioni,
1999).

After all the parameters are updated, we determine
the current background distribution as the one with the
highest value of �/	, which means the distribution has
the most supporting evidence and the least variance.
Thus, the complete background image is obtained when
this update procedure is done for all the pixels and for
all the frames.2 Figure 4 shows a background image ob-
tained from an example input video sequence taken
from a rotating camera.

3 Foreground-Image Generation

The foreground (texture) image for a static fore-
ground object is extracted just once from the back-
ground image, by placing a bounding quadrangle
around it. To generate a complete foreground image,
we first need the boundary information to distinguish
the exact portion of the foreground object from the
background portion within the foreground image. For
effective extraction of the boundary information, we
developed a highly interactive image-segmentation tool

called enhanced lane (Kang & Shin, 2002a). Based on a
graph search over the localized window that follows the
feature points, the enhanced lane provides both accu-
racy and time-efficiency in tracking the target boundary
interactively, as will be described later in this section.
After the boundary extraction, we assign an alpha value
of 1 inside the object boundary and 0 elsewhere so that
realistic 3D effects can be produced during the naviga-
tion.

For a dynamic foreground object, its foreground im-
age is provided at each frame, as the object may change
its boundary shape from frame to frame. Thus,
foreground-image generation for a dynamic foreground
object boils down to boundary extraction at each frame
in the video sequence. The boundary information of the
dynamic objects can be obtained from the result of the
background-detection process. We first warp each frame
k using its camera pose information given by the regis-
tration process, and generate the difference image Ik

D by
computing �x � x̂�. Then, we can extract the dynamic
foreground objects by applying a connected component
algorithm (Horn, 1986) with appropriate threshold val-
ues for the foreground pixels on this difference image
(see Figure 5).

However, this statistical result may be inaccurate (at
least partially) in some frames due to noises or ambigu-
ities. Thus, we also provide an iterative boundary-
correction scheme, especially for some intermittent se-

2After the process, if there are regions in the background still oc-
cluded by some foreground pixels (due to insufficient movement), the
occluded regions are restored by employing inpainting techniques
(Efros & Leung, 1999; Bertalmio, Sapiro, Caselles, & Ballester,
2000).

Figure 4. Background image obtained from example input video.

Figure 5. The foreground images from example input video.
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quences of frames that have incorrect boundary-seg-
mentation results. As shown in Figure 6, our boundary-
correction scheme is composed of three iterative steps.
First, the enhanced lane is used to trace the initial
boundary curve of the object in the starting frame that
needs correction, and the boundary curve is then auto-
matically tracked by snakes in the successive frames.
Also, the positions of the seed points in the next frame
are estimated by applying block matching, for better
guidance of the snake curve (Mitsunaga et al., 1995;
Hoch & Litwinowicz, 1996). This automatic boundary-
tracking process is repeated in the successive frames un-
til a digression occurs in a certain frame, where the con-
structed boundary is again postedited by the enhanced
lane. After the object boundary is determined for all the
frames, the foreground image of the object is con-
structed by locating a bounding box in which only the
foreground pixels inside the boundary are marked as
visible (Figure 5c).

3.1 Enhanced Lane

Based on a graph search paradigm, the enhanced
lane regards an image as a directed graph in which pixel
corners and oriented pixel edges represent the vertices
of the graph and its arcs, respectively. To each oriented
pixel edge, a set of features is assigned to give its local
cost. Then, the problem of constructing the best
boundary segment between any two points specified on
the boundary is reduced to finding the minimum-cost

path between the two vertices in the graph. The local
cost is computed from the various edge features such as
gradient magnitude, gradient direction, Laplacian zero-
crossing, etc.

On an input image set as a directed graph, enhanced
lane constructs a path map in a local window centered at
a seed point on the target boundary. As a cursor moves
along the boundary, the minimum-cost path from the
seed point to the cursor is dynamically displayed, which
gives an impression that the path automatically snaps at
the target boundary. The path map is then incremen-
tally updated along the cursor movement to extend the
path inside the window sequence, and when a digres-
sion occurs the path map is reinitialized with a new seed
point to start a new segment. The complete boundary is
obtained with a sequence of these path segments com-
prising a closed path (see Figure 7). Enhanced lane is
more powerful than its predecessors such as intelligent
scissors (Mortensen and Barrett, 1995) or live wire (Fal-
cao et al., 1998) in that it always guarantees strictly
bounded response time regardless of image size, and
reduces the digressions by its path map localization,
which leads to better accuracy.

Figure 8 shows the strength of our technique. With
previous techniques (Mortensen & Barrett, 1995; Fal-
cao et al., 1998), the target path in this figure results in
one or more digressions during segmentation since they
look only for a globally optimal path. The enhanced
lane, however, is more accurate in that it provides a bet-

Figure 6. Block diagram for boundary-correction process.

Figure 7. Enhanced lane: (a) The minimum-cost path is displayed

as the cursor moves along the boundary; (b) A new seed point is

created where the digression is inevitable; (c) The complete boundary

is identified.
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ter chance to extract the target path without digressions
by localizing the search domain around the target path
and performing incremental path-map expansion. Also,
the localization of the path map gives better time effi-
ciency than the previous techniques that are based on
global graph search. Thus, it is capable of segmenting
complex foreground objects from an arbitrary back-
ground of a noisy, low-contrasted image with interactive
speed. It also provides powerful postediting capability
for correcting a part or all of the given boundary curve.
For more details on the enhanced lane, see Kang and
Shin (2002a).

3.2 Block Matching

To estimate the positions of the seed points in the
next frame, we adopt a block-matching technique, start-
ing from their positions in the current frame (Tekalp,
1995). Let Ik and Ik�1 denote the current frame and the
next frame, respectively. For each block in Ik centered at
a seed point, our goal is to find the most similar block
in Ik�1. In order to find the best match between pat-
terns, we use a variance-normalized correlation as a
measure of similarity (Burt, Yen, & Xu, 1982):

Ci �x, d� � �i�x, d��
n

Fk�x,n�Fk�1�x � d, n�, (8)

where

Fj�a, b� � Ij �a � b� � �Ij �a�/�	j
2�a�. (9)

Here, correlation Ci is computed between the ith block
in the current image Ik centered at point x and a pattern
in the next image Ik�1 centered at point x � d, where n

denotes the displacements within the block. �I stands for
the mean value of the block being considered, 	2 de-
notes its variance. Simple multiplication is used as the
comparison operator. Thus, finding the best matching
block in Ik�1 is equivalent to computing d, which maxi-
mizes Ci.

The weight function �i(x, d) is given as follows:

�i�x, d)�i �Ik�1
D �x � d�� � �1 � i� max��Ik�1

D ��, �10�

where �Ik�1
D � is the gradient magnitude image of Ik�1

D ,
that is, the difference image between Ik�1 and the corre-
sponding region in the background image obtained af-
ter the background-detection process as discussed in
Section 2. Because this statistically estimated boundary
information is not always accurate, we introduce i

(�0) to denote its credibility, which is adjusted if the
current frame goes through any postediting process:

i,k�1 � �1 � 
�i,k � 
�i, (11)

where 
 is the learning rate, and �i is 0 if this point has
been modified by the enhanced lane and 1 otherwise. As
shown in Equation 10, when the credibility gets low, a
fixed value of the maximum gradient is used instead.

3.3 Active Contour

The given boundary curve in the current frame is
automatically tracked in the next frame by employing
active contour or snakes (Kass et al., 1987). A snake is
an energy-minimizing curve guided by internal and ex-
ternal forces. The internal force imposes a piecewise
smoothness constraint on a snake, and the external force
moves the snake toward strong image features such as
points, lines, edges, or contours. As image (external)
forces for attracting snakes at each frame k, we use the
gradient map of the difference image �Ik

D�. This can be
further convolved with a Gaussian smoothing filter (G	

� �Ik
D�) to attract a distant snake. Also, the positions of

the seed points determined by block matching serve as
additional external constraints to guide the snake.

Figure 9 shows our iterative boundary-correction pro-
cess applied to an example frame sequence. The en-
hanced lane initializes the boundary curve in the first

Figure 8. Advantages of enhanced lane.
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gradient map of the difference image �Ik
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� �Ik
D�) to attract a distant snake. Also, the positions of

the seed points determined by block matching serve as
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Figure 9 shows our iterative boundary-correction pro-
cess applied to an example frame sequence. The en-
hanced lane initializes the boundary curve in the first

Figure 8. Advantages of enhanced lane.
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frame (Figure 9a). In the next frame, the new locations
of the seed points (blue dots) are estimated by block
matching (Figure 9b), and then the boundary curve is
automatically adjusted by snakes (Figure 9c). This auto-
matic boundary-tracking process is repeated from frame
to frame until a path digression occurs, which is again
postedited by enhanced lane,3 as indicated by the white
arrows in Figure 9d. Note that the interactive postedit-
ing process also includes insertion, displacement, and
removal of seed points. Figure 10 shows some of the
test results of our dynamic boundary-correction method
on various sample video sequences.

4 Scene-Model Construction

Given the background and the foreground infor-
mation thus extracted, we construct the 3D scene
model consisting of a background model and fore-
ground object models. The background model is ob-
tained from the background image, provided with the
vanishing circle. Foreground objects are divided into
two types, static or dynamic, each of which is con-
structed by its own modeling scheme.

4.1 Background Model

Since the background image can be thought of as
a panoramic (either spherical or cylindrical) image, we

can directly use the modeling scheme for TIPP (Tour
Into the Panoramic Picture) (Kang et al., 2001). We
first introduce the notion of the vanishing circle, on
which our scheme for constructing the background
model is based.

4.1.1 Vanishing Circle. In obtaining a spherical
background image from video, the environment in the
video viewed from the camera is mapped onto the
base sphere centered at the camera position. Our as-
sumption of an environment with a flat terrain naturally
leads to a scene model consisting of a ground plane with
the camera (or eye) placed above it. As shown in Figure
11, suppose there are parallel lines A and B on the
ground plane. When these lines are viewed from the
camera, they are projected onto the base sphere as arcs
A� and B�, respectively. These arcs A� and B� intersect at
a point on the base sphere, which is referred to as a van-
ishing point. As A and B on the ground plane take on
arbitrary inclinations, the set of all vanishing points on
the sphere form a circle on the base sphere. This circle is
said to be a vanishing circle, and is analogous to the

3On average, the enhanced lane is applied every �5–6 frames in
our experiments.

Figure 9. Boundary correction: (a) Enhanced lane; (b) Block

matching; (c) Snake; (d) Enhanced lane.

Figure 10. The segmented results for various input video sequences.
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vanishing line for a planar image. The vanishing circle
for a cylindrical base object can be obtained in a similar
way.

4.1.2 Model Construction. The vanishing circle
divides the base sphere into two disjoint hemispheres.
The lower hemisphere corresponds to the ground plane
in the 3D environment, and the upper hemisphere cor-
responds to the space above the ground plane. Thus,
the vanishing circle can be thought of as the horizon
that separates the earth, represented by the ground
plane, from the sky. If we inversely project the vanishing
circle back to the scene, it is mapped to a set of points at
infinity on the ground plane. Each of these points is an
ideal point in the direction from the viewpoint to a
point on the vanishing circle.

Based on this observation, we first specify the location
of the vanishing circle and then project the upper hemi-
sphere of the base sphere on the back hemisphere, which
has an arbitrarily large radius centered at the camera
position. The lower hemisphere is projected onto the
ground plane. In practice, the back hemisphere is set to
have some finite radius to avoid computational diffi-
culty. This is equivalent to slightly moving down the
vanishing circle to set the intersection between the
ground plane and the hemisphere at a finite distance.

The correspondence between the points on the base
sphere (�1–6) and those on the background model
(�1–6�) is shown in Figure 12. We assume that the

base sphere and the camera are centered at the origin,
the initial camera view-up vector is toward the �z direc-
tion, the ground plane is parallel to the x-y plane, and
the height of the camera from the ground plane is h.
Thus, a point (�, �) on a base sphere is projected to the
point (�h cos � sin �/cos �v, �h sin � sin �/cos �v,
�h cos �/cos �v) on the back hemisphere if � � �v;
otherwise, it goes to (h cos � tan �, h sin � tan �, �h)
on the ground plane, where �v denotes the angle be-
tween the positive z-axis and the vector from the origin
to a point on the vanishing circle (Kang et al., 2001).
Similarly, Figure 13 shows the correspondence between
the points on the base cylinder and those on its back-
ground model. In this case, the vanishing circle divides
the base cylinder into lower and upper cylinder, which
correspond to the ground and the space above, respec-
tively. Note that with a cylindrical base object, holes
appear at the centers of the two disjoint regions.

Based on the above correspondence formulation, we
can now map each pixel (�, �) on the background im-
age onto the corresponding point on the 3D back-
ground model. Figure 14 shows a background model
constructed from an example video sequence. We inten-
tionally used hand-drawn video frames to clearly show
the relationships between the individual frames and the

Figure 11. Vanishing point and vanishing circle.

Figure 12. Point correspondences between the base sphere and

the background model.
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background model. Note that only a part of the base
sphere (and thus the background model) is covered by
the given frames. The actual mapping from the video
frames to the background model is implemented by tex-
ture mapping. The background texture image is ob-
tained by first segmenting out the static foreground ob-
jects from the background image and filling in the holes
by inpainting techniques (Efros & Leung, 1999; Bertal-
mio et al., 2000). We divide the image into two disjoint
subimages using the line on the background image cor-
responding to the vanishing circle of the base sphere.

The upper subimage serves as a texture map for the
back hemisphere, and the lower subimage for the
ground plane.

When we use hardware texture mapping, we have to
make sure all the texture maps are for linear (line-to-
line) perspective mapping. Since the spherical image
basically contains a line-to-arc map, we cannot directly
use the lower subimage as a texture map for the ground
plane. Thus, we first need to convert the lower subim-
age into a linear map, using a projective mapping from
the base sphere onto the ground plane. However, the
upper subimage does not need this type of preprocess-
ing because it will be used for sphere-to-sphere map-
ping, which is essentially a linear mapping because the
back hemisphere is implemented as a tessellated polyhe-
dron for hardware texture mapping.

4.2 Foreground Model

4.2.1 Static Foreground Model. A static fore-
ground object extracted from the background image is
modeled as a polygon (usually a quadrangle bounding
the extracted object) standing on the ground plane (see
Figure 15). We first compute the 3D coordinates for
the two vertices of the polygon on the ground plane,
which form the bottom edge (points q1 and q2 in the
figure). These points have corresponding points p1 and

Figure 13. Point correspondences between the base cylinder and

the background model.

Figure 14. Background model constructed from a video sequence.

Figure 15. Static foreground model for a video sequence.
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p2 on an original frame, which are projected onto the
base sphere using the camera-pose information obtained
from the image-registration process (as described in Sec-
tion 2.2). Then the 3D coordinate for q1 is computed
by the simple intersection test between the ground
plane and the line connecting O (camera) and the point
on the base sphere projected from p1. The coordinate
for q2 is obtained similarly. The 3D coordinates of these
bottom vertices automatically give the depth informa-
tion of the foreground polygon. Note that these two
vertices on the ground may be assigned different depth
values, which means the foreground polygon is not nec-
essarily parallel to the view plane. Assuming that the
foreground polygon stands vertically to the ground
plane, the coordinates of the remaining vertices in the
polygon are also automatically computed using similar
intersection tests.

As in the case of the background model, the render-
ing of the foreground objects is performed by texture
mapping. The foreground (texture) image for each ob-
ject corresponds to the region inside the foreground
polygon in the background image. Since the spherical
background image is a nonlinear texture map, we con-
vert it into a linear map to correct the foreground im-
age. To do this, we first set the bounding rectangle of a
foreground polygon on its corresponding 3D plane in
the background model. Then we project onto this rect-
angle the portion of the background image that is visi-
ble from the camera through the rectangle. The result-
ing image on the rectangle provides a correct linear map
to be used as a foreground texture image. As described
in Section 3, we assign alpha values of 1 inside the seg-
mented portion of the foreground texture and 0 else-
where, to show clear 3D effects around the object
boundaries during scene navigation.

As proposed in Horry et al. (1997), a foreground ob-
ject can have a hierarchical structure in a more complex
environment (Figure 16a). Also, if a foreground object
has a curved structure at the lower boundary on the
ground plane, it is approximated by a group of piece-
wise planar models. This type of model is especially use-
ful for an object that spans a wide range in a horizontal
direction (Figure 16b). When there are foreground ob-
jects occluding others in the image, the occluded por-

tions of the foreground objects should be restored to
generate an image from a new viewpoint, by employing
inpainting techniques (Efros & Leung, 1999; Bertalmio
et al., 2000). Thus, multiple foreground images are re-
quired in this case so that each occluded object can be
associated with its corresponding foreground image
(Figure 16c).

4.2.2 Dynamic Foreground Model. Dynamic
foreground objects are also modeled as polygons and
attached to the constructed background model. Because
they do not appear in the background image and they
change their shapes and locations from frame to frame,
an independent foreground model should be con-

Figure 16. Extended foreground models.
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structed at each frame. The foreground polygons in
each frame are first mapped onto the the base object
using the transformations obtained by the registration
process. Then their vertex coordinates in the scene
model are computed similarly, as described in Section
4.2.1. After all the frames are processed, we obtain a
sequence of foreground polygons that have independent
shapes and locations for each frame. During the render-
ing process for an output video production, all the dy-
namic foreground objects are played back in the scene,
that is, they are placed on the scene model and rendered
one frame at a time, as shown in Figure 17. Note that
we once again assign an alpha value of 1 only inside the
segmented portion of the dynamic foreground texture
at each frame, to show clear boundaries for the objects
during rendering.

5 Experimental Results

Figure 18 shows the result that our TIV scheme
produced with a sample video. The input video contains
dynamic motion of foreground objects with a fixed
camera. Figures 18a through 18d show the initial frame,
the background image, the specifications for the vanish-
ing circle and the foreground polygons, and the seg-
mented results of the foreground objects. The back-
ground model is constructed by specifying the vanishing

circle in the background image. The boundaries of fore-
ground objects are extracted for each frame as described
in Section 3. Once the scene model is constructed, the
user can interactively navigate the scene by controlling
the camera position and orientation. Figures 18e
through 18h show samples from the original video se-
quence, and Figures 18i through 18l show the corre-
sponding walk-through images seen from another view-
point. Note that 3D effects are achieved from camera
navigation due to the depth information assigned to
foreground objects and the difference in viewpoints.

Figure 19 illustrates another result of TIV with a sam-
ple video containing a camera motion. Figures 19a
through 19d show some of the initial frames. The back-
ground image is first generated after frame-by-frame
image registration and automatic background detection,
and the scene model is then constructed given the back-
ground image. Figures 19e through 19h show walk-
through images seen from another viewpoint at each
corresponding frame. Figures 19i through 19l show an
example synthetic video sequence obtained by inserting
a virtual dynamic object, and Figures 19m through 19p
show another synthetic video sequence after inserting
another virtual dynamic object imported from other
video source.

The input video in Figure 20 is a cartoon animation
clip. Cartoon animation can be thought of as the most

Figure 17. Dynamic foreground models for a video sequence.

Figure 18. Tour into the video with a fixed camera.
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ground image is first generated after frame-by-frame
image registration and automatic background detection,
and the scene model is then constructed given the back-
ground image. Figures 19e through 19h show walk-
through images seen from another viewpoint at each
corresponding frame. Figures 19i through 19l show an
example synthetic video sequence obtained by inserting
a virtual dynamic object, and Figures 19m through 19p
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suitable input for TIV because it usually consists of a set
of conspicuous 2D dynamic objects with a relatively
static background. Thus, we can achieve both efficiency
and robustness in going through each of the three pro-
cesses, background detection, scene-model construc-
tion, and boundary segmentation. In Figure 21, TIV is
applied to a video clip where the background is also dy-
namic (because of the flow of water). To model the dy-
namic background, we use a video texture rather than a
static texture, that is, a minimum number of frames are
extracted and used to cover the periodic movement of

the water.4 Thus, the output video sequence can have
all three types of movements simultaneously, including
those of the foreground, the background, and the cam-
era.

The rendering speed is dependent on the number of
foreground objects in the image and the image size.
The entire scheme is implemented in C�� with
OpenGL library on Intel Pentium PC (PIII 800 MHz
processor and 512 MB memory) equipped with
nVIDIA GeForce2GTS graphics processor. On average,
the output sequence of images with 640�480 pixels is
generated at an interactive rate (over 100 frames/s).
Note that the scene navigation is done in real time once
the complete dynamic scene model is constructed as a
preprocess. In our experiments, the preprocessing time
for each input video took less than an hour, although it
could vary depending on the length of the video and
the number of objects in the scene. In general, the
semiautomatic boundary correction (described in Chap-
ter 3) takes up most of the preprocessing time, espe-
cially when the input video contains objects with un-
clear boundaries.

6 Conclusions and Future Work

We have proposed a novel scheme for producing
a sequence of walk-through images from a video

4Although we used the video-texture-based dynamic background
only in this example, it could also be used in other input videos, espe-
cially to recover shadows.

Figure 19. Tour into the video with a moving camera.

Figure 20. Tour into the cartoon animation.

Figure 21. Tour into the video with dynamic background.

652 PRESENCE: VOLUME 13, NUMBER 6

suitable input for TIV because it usually consists of a set
of conspicuous 2D dynamic objects with a relatively
static background. Thus, we can achieve both efficiency
and robustness in going through each of the three pro-
cesses, background detection, scene-model construc-
tion, and boundary segmentation. In Figure 21, TIV is
applied to a video clip where the background is also dy-
namic (because of the flow of water). To model the dy-
namic background, we use a video texture rather than a
static texture, that is, a minimum number of frames are
extracted and used to cover the periodic movement of

the water.4 Thus, the output video sequence can have
all three types of movements simultaneously, including
those of the foreground, the background, and the cam-
era.

The rendering speed is dependent on the number of
foreground objects in the image and the image size.
The entire scheme is implemented in C�� with
OpenGL library on Intel Pentium PC (PIII 800 MHz
processor and 512 MB memory) equipped with
nVIDIA GeForce2GTS graphics processor. On average,
the output sequence of images with 640�480 pixels is
generated at an interactive rate (over 100 frames/s).
Note that the scene navigation is done in real time once
the complete dynamic scene model is constructed as a
preprocess. In our experiments, the preprocessing time
for each input video took less than an hour, although it
could vary depending on the length of the video and
the number of objects in the scene. In general, the
semiautomatic boundary correction (described in Chap-
ter 3) takes up most of the preprocessing time, espe-
cially when the input video contains objects with un-
clear boundaries.

6 Conclusions and Future Work

We have proposed a novel scheme for producing
a sequence of walk-through images from a video

4Although we used the video-texture-based dynamic background
only in this example, it could also be used in other input videos, espe-
cially to recover shadows.

Figure 19. Tour into the video with a moving camera.

Figure 20. Tour into the cartoon animation.

Figure 21. Tour into the video with dynamic background.

652 PRESENCE: VOLUME 13, NUMBER 6



stream of a dynamic scene. To generalize the original
idea of TIP to video input, our scheme is designed to
have the following three components: background
detection, foreground extraction, and scene model
construction. Assuming that the input video contains
no strong parallax effects, we apply an automatic
background-detection algorithm based on a 4-
parameter motion model that deals with camera
rotation and zoom. While the foreground objects
are also extracted from the video as a by-product of
the background-detection process, we have also pro-
vided an efficient, iterative boundary-correction
mechanism based on active contour and enhanced
lane. Finally, we have incorporated a new 3D model-
construction method based on a vanishing circle de-
tected in the scene. Our scheme also facilitates an
augmented video production by allowing static or
dynamic foreign objects to be imported into the
scene.

The general objective of our scheme is to let users
produce, through interactive control, walk-through im-
ages from a given video sequence in real time. Thus, in
a sense, it enables people to experience the feel of 3D
navigation in an originally 2D video. Another goal is to
help them synthesize a new augmented video by incor-
portating virtual objects in the original dynamic scene.
While our scheme employs various automatic tech-
niques to minimize most of the tedious jobs for han-
dling an excessive number of frames in the sequence, it
is also designed to provide users with highly interactive
control so that diverse results can be produced from a
single input video, reflecting their own interpretation
and imagination. The proposed scheme can process var-
ious types of videos containing dynamic scenes, such as
sports coverage, cartoon animation, and movie films, in
which objects are changing their shapes and locations
continuously in a relatively static background. The pos-
sible applications of our scheme include vision-based
Virtual Reality (VR), augmented video production, ad-
vanced video editing, virtual tour systems, etc.

We can think of a number of research topics for fur-
ther extensions. In our current implementation, we
made the simplifying assumptions that the input video
contains a negligible amount of motion parallax effects

and that dynamic objects move on a flat terrain. In or-
der to deal with a video with significant parallax effects,
our motion model should be extended to incorporate
camera displacement also. Thus, the resulting mosaic
representation would include the intensity image plus a
corresponding depth map for a scene (Irani, Anandan,
& Hsu, 1995). This type of representation is also useful
for constructing more sophisticated foreground models
(Shade, Gortler, He, & Szeliski, 1998; Oh, Chen,
Dorsey, & Durand, 2001). For dynamic objects that are
not moving on the ground (e.g., jumping or flying ob-
jects), additional information should be provided (either
automatically or interactively) to remove ambiguity in
computing their 3D locations. For example, the depth
of a jumping object could be inferred from neighboring
frames in which the object touches the ground or other
objects.

As shown in some experimental results, the back-
ground image in the scene model can also be made dy-
namic by employing video texture (Schodl, Szeliski,
Salesin, & Essa, 2000), that is, a texture map consisting
of a sequence of time-coherent images. This is especially
useful for describing a scene with a dynamic back-
ground, restoring shadows, and creating an infinite
stream of images with either random play or video
loops. Finally, when a part of the scene is occluded by a
foreground object, the occluded portion (or “hole”)
could be restored by employing automatic hole-filling
techniques such as texture synthesis and image inpaint-
ing (Efros & Leung, 1999; Bertalmio et al., 2000).
Texture-synthesis techniques could also be used to ex-
trapolate the information outside the background re-
gion covered by the footage, which may provide more
immersive effects during camera navigation (Efros &
Leung, 1999).
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foreground object, the occluded portion (or “hole”)
could be restored by employing automatic hole-filling
techniques such as texture synthesis and image inpaint-
ing (Efros & Leung, 1999; Bertalmio et al., 2000).
Texture-synthesis techniques could also be used to ex-
trapolate the information outside the background re-
gion covered by the footage, which may provide more
immersive effects during camera navigation (Efros &
Leung, 1999).

Acknowledgments

For the first author, this research was supported by University
IT Research Center Project, and for the second author by the
National Research Laboratory Program of the Ministry of Sci-
ence & Technology, and the Brain Korea 21 Program of the
Ministry of Education & Human Resources Development.

Kang and Shin 653



References

Azuma, R., 1997. A survey of augmented reality. Presence:
Teleoperators and Virtual Environments, 6(4), 355–385.

Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., &
MacIntyre, B., 2001. Recent advances in augmented reality.
IEEE Computer Graphics and Applications, 21(6), 34–47.

Beardsley, P., Torr, P., & Zisserman, A., 1996. 3D model
aquisition from extended image sequences. Proceedings of
the 4th European Conference on Computer Vision, 683–695.

Bergen, J., Anandan, P., Hanna, K., & Hingorani, R., 1992.
Hierarchical model-based motion estimation. Proceedings of
the 2nd European Conference on Computer Vision (ECCV
’92), 237–252.

Bertalmio, M., Sapiro, G., Caselles, V., & Ballester, C., 2000.
Image inpainting. ACM SIGGRAPH 2000 Conference Pro-
ceedings, 417–424.

Burt, P., Yen, C., & Xu, X., 1982. Local correlation measures
for motion analysis: A comparative study. IEEE Conference
on Pattern Recognition and Image Processing, 14–17.

Chen, S., 1995. QuickTime VR: An image-based approach to
virtual environment navigation. ACM SIGGRAPH ’95 Con-
ference Proceedings, 29–38.

Chen, S., & Williams, L., 1993. View interpolation for image
synthesis. ACM SIGGRAPH ’93 Conference Proceedings,
279–288.

Darsa, L., Silva, B., & Varshney, A., 1995. Navigating static
environments using image-space simplification and morph-
ing. Proceedings of the 1997 Symposium on Interactive 3D
Graphics, 25–34.

Efros, A., & Leung, T., 1999. Texture synthesis by non-
parametric sampling. Proceedings of the IEEE International
Conference on Computer Vision, 1033–1038.

Falcao, A., Udupa, J., Samarasekera, S., Sharma, S., Hirsch,
B., & Lotufo, R., 1998. User-steered image segmentation
paradigms: Live wire and live lane. Graphical Models and
Image Processing, 60(4), 233–260.

Fitzgibbon, A., & Zisserman, A., 1998. Automatic 3D model
aquisition and generation of new images from video se-
quences. Proceedings of the European Signal Processing Con-
ference (EUSIPCO ’98), 1261–1269.

Francois, A., & Medioni G., 1999. Adaptive color background
modeling for real-time segmentation of video streams. Pro-
ceedings of the International Conference on Imaging Science,
Systems, and Technology, 227–232.

Friedman, N., & Russell, S., 1997. Image segmentation in
video sequences: A probabilistic approach. Proceedings of the

Thirteenth Conference on Uncertainty in Artificial Intelli-
gence.

Gortler, S., Grzeszczuk, R., Szeliski, R., & Cohen, M., 1996.
The lumigraph. ACM SIGGRAPH ’96 Conference Proceed-
ings, 43–54.

Hartley, R., & Zisserman, A., 2000. Multiple view geometry in
computer vision. Cambridge, UK: Cambridge University
Press.

Hoch, M., & Litwinowicz, P., 1996. A semi-automatic system
for edge tracking with snakes. Visual Computer, 12(2), 75–
83.

Horn, B., 1986. Robot vision. Cambridge, MA: MIT Press.
Horry, Y., Anjyo, K., & Arai, K., 1997. Tour into the picture:

Using a spidery mesh interface to make animation from a
single image. ACM SIGGRAPH ’97 Conference Proceedings,
225–232.

Irani, M., Anandan, P., & Hsu, S., 1995. Mosaic based repre-
sentations of video sequences and their applications. Pro-
ceedings of ICCV ’95, 605–611.

Kang, H., Pyo, S., Anjyo, K., & Shin, S., 2001. Tour into the
picture using a vanishing line and its extension to panoramic
images. EuroGraphics 2001 Conference Proceedings, 132–
141.

Kang, H., & Shin, S., 2002a. Enhanced lane: Interactive im-
age segmentation by incremental path map construction.
Graphical Models, 64(5), 282–303.

Kang, H., & Shin, S., 2002b. Tour into the video: Image-
based navigation scheme for video sequences of dynamic
scenes. ACM VRST 2002 Conference Proceedings, 73–80.

Kass, M., Witkin, A., & Terzopoulos, D., 1987. Snakes: Ac-
tive contour models. Proceedings of the First International
Conference on Computer Vision, 259–268.

Koller, D., Weber, J., Huang, T., Malik, J., Ogasawara, J.,
Rao, B., & Russell, S., 1994. Towards robust automatic
traffic scene analysis in real-time. Proceedings of the Interna-
tional Conference on Pattern Recognition, 126–131.

Levoy, M., & Hanrahan, P., 1996. Light field rendering.
ACM SIGGRAPH ’96 Conference Proceedings, 31–42.

Liebowitz, D., Criminisi, A., & Zisserman, A., 1999. Creating
architectural models from images. EuroGraphics ’99 Confer-
ence Proceedings, 39–50.

Lippman, A., 1980. Movie maps: An application of the optical
videodisc to computer graphics. ACM SIGGRAPH ’80
Conference Proceedings, 32–43.

McMillan, L., & Bishop, G., 1995. Plenoptic modeling: An
image-based rendering system. ACM SIGGRAPH ’95 Con-
ference Proceedings, 32–43.

Milgram, P., Shumin, S., Drascic, D., & Grodski, J., 1993.

654 PRESENCE: VOLUME 13, NUMBER 6

References

Azuma, R., 1997. A survey of augmented reality. Presence:
Teleoperators and Virtual Environments, 6(4), 355–385.

Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., &
MacIntyre, B., 2001. Recent advances in augmented reality.
IEEE Computer Graphics and Applications, 21(6), 34–47.

Beardsley, P., Torr, P., & Zisserman, A., 1996. 3D model
aquisition from extended image sequences. Proceedings of
the 4th European Conference on Computer Vision, 683–695.

Bergen, J., Anandan, P., Hanna, K., & Hingorani, R., 1992.
Hierarchical model-based motion estimation. Proceedings of
the 2nd European Conference on Computer Vision (ECCV
’92), 237–252.

Bertalmio, M., Sapiro, G., Caselles, V., & Ballester, C., 2000.
Image inpainting. ACM SIGGRAPH 2000 Conference Pro-
ceedings, 417–424.

Burt, P., Yen, C., & Xu, X., 1982. Local correlation measures
for motion analysis: A comparative study. IEEE Conference
on Pattern Recognition and Image Processing, 14–17.

Chen, S., 1995. QuickTime VR: An image-based approach to
virtual environment navigation. ACM SIGGRAPH ’95 Con-
ference Proceedings, 29–38.

Chen, S., & Williams, L., 1993. View interpolation for image
synthesis. ACM SIGGRAPH ’93 Conference Proceedings,
279–288.

Darsa, L., Silva, B., & Varshney, A., 1995. Navigating static
environments using image-space simplification and morph-
ing. Proceedings of the 1997 Symposium on Interactive 3D
Graphics, 25–34.

Efros, A., & Leung, T., 1999. Texture synthesis by non-
parametric sampling. Proceedings of the IEEE International
Conference on Computer Vision, 1033–1038.

Falcao, A., Udupa, J., Samarasekera, S., Sharma, S., Hirsch,
B., & Lotufo, R., 1998. User-steered image segmentation
paradigms: Live wire and live lane. Graphical Models and
Image Processing, 60(4), 233–260.

Fitzgibbon, A., & Zisserman, A., 1998. Automatic 3D model
aquisition and generation of new images from video se-
quences. Proceedings of the European Signal Processing Con-
ference (EUSIPCO ’98), 1261–1269.

Francois, A., & Medioni G., 1999. Adaptive color background
modeling for real-time segmentation of video streams. Pro-
ceedings of the International Conference on Imaging Science,
Systems, and Technology, 227–232.

Friedman, N., & Russell, S., 1997. Image segmentation in
video sequences: A probabilistic approach. Proceedings of the

Thirteenth Conference on Uncertainty in Artificial Intelli-
gence.

Gortler, S., Grzeszczuk, R., Szeliski, R., & Cohen, M., 1996.
The lumigraph. ACM SIGGRAPH ’96 Conference Proceed-
ings, 43–54.

Hartley, R., & Zisserman, A., 2000. Multiple view geometry in
computer vision. Cambridge, UK: Cambridge University
Press.

Hoch, M., & Litwinowicz, P., 1996. A semi-automatic system
for edge tracking with snakes. Visual Computer, 12(2), 75–
83.

Horn, B., 1986. Robot vision. Cambridge, MA: MIT Press.
Horry, Y., Anjyo, K., & Arai, K., 1997. Tour into the picture:

Using a spidery mesh interface to make animation from a
single image. ACM SIGGRAPH ’97 Conference Proceedings,
225–232.

Irani, M., Anandan, P., & Hsu, S., 1995. Mosaic based repre-
sentations of video sequences and their applications. Pro-
ceedings of ICCV ’95, 605–611.

Kang, H., Pyo, S., Anjyo, K., & Shin, S., 2001. Tour into the
picture using a vanishing line and its extension to panoramic
images. EuroGraphics 2001 Conference Proceedings, 132–
141.

Kang, H., & Shin, S., 2002a. Enhanced lane: Interactive im-
age segmentation by incremental path map construction.
Graphical Models, 64(5), 282–303.

Kang, H., & Shin, S., 2002b. Tour into the video: Image-
based navigation scheme for video sequences of dynamic
scenes. ACM VRST 2002 Conference Proceedings, 73–80.

Kass, M., Witkin, A., & Terzopoulos, D., 1987. Snakes: Ac-
tive contour models. Proceedings of the First International
Conference on Computer Vision, 259–268.

Koller, D., Weber, J., Huang, T., Malik, J., Ogasawara, J.,
Rao, B., & Russell, S., 1994. Towards robust automatic
traffic scene analysis in real-time. Proceedings of the Interna-
tional Conference on Pattern Recognition, 126–131.

Levoy, M., & Hanrahan, P., 1996. Light field rendering.
ACM SIGGRAPH ’96 Conference Proceedings, 31–42.

Liebowitz, D., Criminisi, A., & Zisserman, A., 1999. Creating
architectural models from images. EuroGraphics ’99 Confer-
ence Proceedings, 39–50.

Lippman, A., 1980. Movie maps: An application of the optical
videodisc to computer graphics. ACM SIGGRAPH ’80
Conference Proceedings, 32–43.

McMillan, L., & Bishop, G., 1995. Plenoptic modeling: An
image-based rendering system. ACM SIGGRAPH ’95 Con-
ference Proceedings, 32–43.

Milgram, P., Shumin, S., Drascic, D., & Grodski, J., 1993.

654 PRESENCE: VOLUME 13, NUMBER 6



Applications of augmented reality for human-robot commu-
nication. Proceedings of the International Conference on In-
telligent Robots and Systems, 1467–1472.

Miller, G., Hoffert, E., Chen, S., Patterson, E., Blackketter,
D., Rubin, S., Applin, S., Yim, D., & Hanan, J., 1992. The
virtual museum: Interactive 3D navigation of a multimedia
database. Journal of Visualization and Computer Anima-
tion, 3, 183–197.

Mitsunaga, T., Yokoyama, T., & Totsuka, T., 1995. AutoKey:
Human assisted key extraction. ACM SIGGRAPH ’95 Con-
ference Proceedings, 265–272.

Mortensen, E., & Barrett, W., 1995. Intelligent scissors for
image composition. ACM SIGGRAPH ’95 Conference Pro-
ceedings, 191–198.

Oh, B., Chen, M., Dorsey, J., & Durand, F., 2001. Image-
based modeling and photo editing. ACM SIGGRAPH 2001
Conference Proceedings, 433–442.

Press, W., Flannery, B., Teukolsky, S., & Vetterling, W.,
1992. Numerical recipes in C: The art of scientific comput-
ing. Cambridge, UK: Cambridge University Press.

Schodl, A., Szeliski, R., Salesin, D., & Essa, I., 2000. Video
textures. ACM SIGGRAPH 2000 Conference Proceedings,
489–498.

Shade, J., Gortler, S., He, L., & Szeliski, R., 1998. Layered

depth images. ACM SIGGRAPH ’98 Conference Proceed-
ings, 231–242.

Shum, H., & Szeliski, R., 1998. Construction and refinement
of panoramic mosaics with global and local alignment. Pro-
ceedings of the Sixth International Conference on Computer
Vision (ICCV’98), 953–958.

Sloan, P., Cohen, M., & Gortler, S., 1997. Time critical lumi-
graph rendering. Proceedings of the Symposium on Interactive
3D Graphics, 17–23.

Stauffer, C., & Grimson, W., 1999. Adaptive background
mixture models for real-time tracking. Proceedings of the
IEEE Computer Vision and Pattern Recognition, 246–252.

Tekalp, A., 1995. Digital video processing. Upper Saddle River,
NJ: Prentice Hall.

Tomasi, C., & Kanade, T., 1992. Shape and motion from im-
age streams under orthography: A factorization method.
International Journal of Computer Vision, 137–154.

Vieren, C., Cabestaing, F., & Postaire, J., 1995. Catching
moving objects with snakes for motion tracking. Pattern
Recognition Letters, 16, 679–685.

Wren, C., Azarbayejani, A., Darrell, T., & Pentland, A., 1997.
Pfinder: Real-time tracking of the human body. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
19(7), 780–785.

Kang and Shin 655

Applications of augmented reality for human-robot commu-
nication. Proceedings of the International Conference on In-
telligent Robots and Systems, 1467–1472.

Miller, G., Hoffert, E., Chen, S., Patterson, E., Blackketter,
D., Rubin, S., Applin, S., Yim, D., & Hanan, J., 1992. The
virtual museum: Interactive 3D navigation of a multimedia
database. Journal of Visualization and Computer Anima-
tion, 3, 183–197.

Mitsunaga, T., Yokoyama, T., & Totsuka, T., 1995. AutoKey:
Human assisted key extraction. ACM SIGGRAPH ’95 Con-
ference Proceedings, 265–272.

Mortensen, E., & Barrett, W., 1995. Intelligent scissors for
image composition. ACM SIGGRAPH ’95 Conference Pro-
ceedings, 191–198.

Oh, B., Chen, M., Dorsey, J., & Durand, F., 2001. Image-
based modeling and photo editing. ACM SIGGRAPH 2001
Conference Proceedings, 433–442.

Press, W., Flannery, B., Teukolsky, S., & Vetterling, W.,
1992. Numerical recipes in C: The art of scientific comput-
ing. Cambridge, UK: Cambridge University Press.

Schodl, A., Szeliski, R., Salesin, D., & Essa, I., 2000. Video
textures. ACM SIGGRAPH 2000 Conference Proceedings,
489–498.

Shade, J., Gortler, S., He, L., & Szeliski, R., 1998. Layered

depth images. ACM SIGGRAPH ’98 Conference Proceed-
ings, 231–242.

Shum, H., & Szeliski, R., 1998. Construction and refinement
of panoramic mosaics with global and local alignment. Pro-
ceedings of the Sixth International Conference on Computer
Vision (ICCV’98), 953–958.

Sloan, P., Cohen, M., & Gortler, S., 1997. Time critical lumi-
graph rendering. Proceedings of the Symposium on Interactive
3D Graphics, 17–23.

Stauffer, C., & Grimson, W., 1999. Adaptive background
mixture models for real-time tracking. Proceedings of the
IEEE Computer Vision and Pattern Recognition, 246–252.

Tekalp, A., 1995. Digital video processing. Upper Saddle River,
NJ: Prentice Hall.

Tomasi, C., & Kanade, T., 1992. Shape and motion from im-
age streams under orthography: A factorization method.
International Journal of Computer Vision, 137–154.

Vieren, C., Cabestaing, F., & Postaire, J., 1995. Catching
moving objects with snakes for motion tracking. Pattern
Recognition Letters, 16, 679–685.

Wren, C., Azarbayejani, A., Darrell, T., & Pentland, A., 1997.
Pfinder: Real-time tracking of the human body. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
19(7), 780–785.

Kang and Shin 655




	Creating walk-through images from a video sequence of a dynamic scene
	Recommended Citation

	University of Missouri-St. Louis
	From the SelectedWorks of Henry Kang
	December, 2004

	Creating Walk-Through Images from a Video Sequence of a Dynamic Scene
	tmpj8aTe6.pdf

