
University of Missouri, St. Louis University of Missouri, St. Louis 

IRL @ UMSL IRL @ UMSL 

Dissertations UMSL Graduate Works 

11-12-2021 

Forecasting Demand for Optimal Inventory with Long Lead Times: Forecasting Demand for Optimal Inventory with Long Lead Times: 

An Automotive Aftermarket Case Study An Automotive Aftermarket Case Study 

Chris Anderson 
University of Missouri-St. Louis, canfw@umsystem.edu 

Follow this and additional works at: https://irl.umsl.edu/dissertation 

 Part of the Business Analytics Commons, Management Sciences and Quantitative Methods 

Commons, and the Operations and Supply Chain Management Commons 

Recommended Citation Recommended Citation 
Anderson, Chris, "Forecasting Demand for Optimal Inventory with Long Lead Times: An Automotive 
Aftermarket Case Study" (2021). Dissertations. 1105. 
https://irl.umsl.edu/dissertation/1105 

This Dissertation is brought to you for free and open access by the UMSL Graduate Works at IRL @ UMSL. It has 
been accepted for inclusion in Dissertations by an authorized administrator of IRL @ UMSL. For more information, 
please contact marvinh@umsl.edu. 

https://irl.umsl.edu/
https://irl.umsl.edu/dissertation
https://irl.umsl.edu/grad
https://irl.umsl.edu/dissertation?utm_source=irl.umsl.edu%2Fdissertation%2F1105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1398?utm_source=irl.umsl.edu%2Fdissertation%2F1105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/637?utm_source=irl.umsl.edu%2Fdissertation%2F1105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/637?utm_source=irl.umsl.edu%2Fdissertation%2F1105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1229?utm_source=irl.umsl.edu%2Fdissertation%2F1105&utm_medium=PDF&utm_campaign=PDFCoverPages
https://irl.umsl.edu/dissertation/1105?utm_source=irl.umsl.edu%2Fdissertation%2F1105&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:marvinh@umsl.edu


Copyright, Christopher J. Anderson, 2021 

 

Forecasting Demand for Optimal Inventory with Long Lead Times: 

An Automotive Aftermarket Case Study 

 

 

Christopher J. Anderson 

 

Master of Business Administration – Pepperdine University, 1990 

B.S. Electrical Engineering – Southern Illinois University, 1984 

 

 

 

A Dissertation Submitted to The Graduate School at the University of Missouri–St. Louis 

in partial fulfillment of the requirements for the degree 

Doctor of Business Administration with an Emphasis in Operations Management 

 

 

 

December 2021 

 

 

 

 

Advisory Committee 

 

Keith Womer, Ph.D. 

Chairperson 

 

George A. Zsidisin, Ph.D. 

 

Hung-Gay Fung, Ph.D. 

 



Forecasting Demand with Long Lead Times 2 

Copyright, Christopher J. Anderson, 2021 

Abstract 

 

Accuracy in predicting customer demand is essential to building an economic 

inventory policy under periodic review, long lead-time, and a target fill rate.  This study 

uses inventory and customer service level as a stock control metric to evaluate the 

forecast accuracy of different simple to more complex predictive analytical techniques. 

We show how traditional forecast error measures are inappropriate for inventory control, 

despite their consistent usage in many studies,  by evaluating demand forecast 

performance dynamically with customer service level as a stock control metric that 

includes inventory holdings costs, stock out costs, and fill rate service levels. A second 

contribution includes evaluating the utility of introducing more complexity into the 

forecasting process for an automotive aftermarket parts manufacturer and the superior 

inventory control results using the Prais-Winsten, an econometric method, for non-

intermittent demand forecasting with long-lead times. This study will add to the limited 

case study research on demand forecasting under long lead times using stock control 

metrics, dynamic model updating, and the Prais-Winsten method for inventory control. 

 

Keywords: inventory control, Prais-Winsten, automotive parts, customer service 

level, stock control, rolling origin cross-validation, dynamic model updating. 
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Chapter 1: Introduction 

 

Many businesses that carry inventory either have too much of it, which is 

expensive, or too little, leading to stockouts and lost sales. Inventory constitutes the most 

significant portion of current assets for most manufacturing firms tying up significant 

organizational capital (Singh & Verma, 2018). An essential factor in firms achieving 

optimal inventory is demand forecasting (Kocer, 2013), part of the sales and operational 

planning process. Managers need to identify suitable sources of external data and simple 

analytical tools that are easy to use to reliably gauge the effectiveness of demand 

forecasts and draw conclusions on what inventory to order (Blackburn, Lurz, Priese, Göb, 

& Darkow, 2015). Long lead times can lead to inaccurate forecasts caused by delays in 

replenishment, which is one of the many reasons for poor inventory management (i.e., 

supplier delivery performance, poor material yields, poor supplier quality, inappropriate 

order quantities). Accuracy in forecasting demand is crucial to developing a good 

inventory policy and managing an effective supply chain. The use of complex forecasting 

methods increases the opportunities for errors in judgment, understanding, prediction, 

and explanatory power (Green & Armstrong, 2015), so simple analytical methods are 

essential for practical use and easier assimilation. Simple forecasting and accurate 

demand planning are large factors in appropriately managing optimal inventory. 

This study focuses on demand forecasting under long lead times using dynamic 

model parameter updating for exponential smoothing (ES), its variants double ES, triple 

ES; linear regression, autocorrelation using the Prais-Winsten transformation, and some 

more straightforward time series methods naïve and simple moving average (SMA) as we 
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seek to answer the question: do complex forecasting methods increase forecasting 

accuracy? The study will also add exogenous data from Google Trends to answer: Can 

exogenous data improve demand forecasting? 

The related literature typically addresses optimal inventory and demand 

forecasting as separate questions. However, the availability of cost information will 

estimate the economic effects of changing forecast parameters on inventory. Finally, the 

study will examine the relationship between traditional forecast measures of accuracy, 

such as Mean Error (ME), Root Mean Squared Error (RMSE) or Mean Absolute Error 

(MAE), and customer service level (CSL) as stock control metric in the calculation of 

economic order quantity (EOQ), which consider measures like holdings costs, ordering 

costs, and service levels based on fill rate. All to answer the question: how can CSL stock 

control metrics be used to evaluate forecast accuracy?  

The overall goal is to determine the best use of historical data to make ordering 

decisions with long lead times and find a relatively easy to use optimal inventory policy 

with periodic review and a target fill rate using CSL stock control metrics for an 

automobile aftermarket parts company without introducing too much complexity into the 

forecasting process.  Moreover, it adds to the limited empirical research on demand 

forecasting under long lead times, CSL stock control metrics, and dynamic model 

parameter updating. This study will try to answer the question: Can a procedure be 

developed that is likely to be adopted? 

Analytics 

Big data and predictive analytic (BDPA) tools used to improve decision making 

and material flow are rapidly evolving within supply chain analytics, growing in response 
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to the volumes of data made available in the Internet age. The analytical methods used in 

supply chain analytics fall into three types: descriptive analytics, predictive analytics, or 

prescriptive analytics (Souza, 2014). Descriptive analytics looks at past events up to the 

present (real-time) and tries to answer what happened or what is happening. For example, 

analyzing radio frequency identification (RFID) location data to understand how material 

flowed through the plant to streamline material flow, optimize material handling, or track 

inventory. Predictive analytics evaluates the output from descriptive analytics to forecast 

or predict the likelihood of what will happen at a future time. For example, predictive 

maintenance uses past machine failure data to estimate the likelihood of critical 

components failing to schedule machine maintenance cycles. 

Prescriptive analytics builds on both the descriptive and predictive analytics 

outputs to determine the best course of action or what should happen, or how it can be 

made to happen. For example, using data on past deliveries to determine how long it will 

take (lead time) for the supplier deliveries, or using past production data to determine the 

turnaround time to fill the order, or using both to prescribe the order quantity, given the 

variability in demand, supplier lead time, and production lead time. Another example is 

using past sales ordering or demand data from previous customers to determine how 

much stock was needed (order quantity) to meet the demand to determine the stocking 

order for a new customer account. New customers have no previous sales data to 

calibrate the stocking order, but there is data on similar customers and their order patterns 

to estimate new account ordering. Predictive and prescriptive analytics are very similar. 

The difference is that predictive analytics is focused on the outcome, while prescriptive 

analytics considers various future situations to prescribe a course of action. 
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In the last few decades, interest in data science, machine learning, and the use of 

big data has exploded, bringing with it a host of new conferences, journals, software 

companies, and even prizes for forecasting research (R. Fildes, Nikolopoulos, Crone, & 

Syntetos, 2008b). Interest in supply chain analytics has grown alongside data science, 

emphasizing predictive analytics for demand forecasting.  

Predictive Analytics Assimilation 

Supply chain organizations have collected and stored vast amounts of digital data 

for years (Dekker, Pinçe, Zuidwijk, & Jalil, 2013). These datasets have enabled the 

growth in supply chain management (SCM) data analytics techniques involving data 

mining and statistical analysis to develop more accurate predictive analytics to forecast 

behavior. The collection and sharing of information along the supply chain result in a 

more intelligent supply chain armed with analytical tools and techniques to be more 

efficient and allow more data-driven decisions (Govindan, Cheng, Mishra, & Shukla, 

2018), and improve profitability. Effectively utilizing vast amounts of historical and real-

time data to improve the organizations' performance and their supply chains are what big 

data and predictive analytics (BDPA) promises. Assimilating predictive analytic methods 

into the organization is one area of sustaining and disruptive technology research growing 

in importance within both academics and practitioners of SCM.  

BDPA is used to solve complex supply chain problems and improve overall 

business process performance (Wang, Gunasekaran, Ngai, & Papadopoulos, 2016). 

Problems like the bullwhip effect, demand forecasting, order flow along the supply chain, 

and optimizing flow use analytics to improve business performance. There are many 

opportunities inside existing processes using descriptive analytics, forecasting future 
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demand with predictive analytics, and making better decisions using prescriptive 

analytics. Although, companies struggle with assimilating methods with a sufficient 

understanding to utilize the forecasts to make better decisions. 

BDPA assimilation across the organization and occurs in three phases starting 

with acceptance, moving on to a routine, and ending in the assimilation of BDPA (Hazen, 

Overstreet, & Cegielski, 2012). The acceptance stage encompasses the growing 

awareness of BDPA and how well stakeholders understand the scope of BDPA in their 

job. The routine phase begins when the organization's systems of governance are altered 

to incorporate BDPA. Furthermore, assimilation occurs when BDPA has spread through 

all affected business processes. BDPA assimilation research has found a positive 

association with both organizational performance (OP) and supply chain performance 

(SCP) (Gunasekaran et al., 2017). Once assimilated, data is parsed into actionable 

knowledge items displayed with visual dashboards to identify problems (Bumblauskas, 

Nold, Bumblauskas, & Igou, 2017). While some have found data quality or data security 

a significant barrier (Verma, Bhattacharyya, & Kumar, 2018), others believe the most 

significant barriers to BDPA adoption are learning how to use BDPA to improve 

performance (LaValle, Lesser, Shockley, Hopkins, & Kruschwitz, 2011). Some have 

suggested a tiered model involving the three primary elements of management, 

technology, and human capability (Akter, Wamba, Gunasekaran, Dubey, & Childe, 

2016).  BDA skills, talent, and management capability are emerging as the strongest 

indicator of BDA success, suggesting a well-developed approach to recruiting analytics 

talent (Court, 2015) will help achieve a sustainable competitive advantage with BDA. To 

assist in overcoming these barriers, Lamba and Singh (2018) found the most significant 
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driving enablers for big data deployment and use are top management commitment, 

financial backing, BDPA skills, organizational BDPA infrastructure, and a change 

management program. 

There are many positive SCM effects to using BDPA, ranging from increased 

supply chain visibility, efficiency, and maintenance to improved integration, 

collaboration, and product design (Kache & Seuring, 2017). BDPA has evolved into a 

vital strategic component adding a new competitive advantage for those companies that 

fully embrace its' assimilation into the organization. Companies that have learned to sift 

through substantial amounts of historical supply chain and public data have positioned 

themselves to improve decision making and deliver the efficiency and effectiveness they 

desire, with lower costs, greater global SCM capabilities, increased BDPA skills, and a 

sustainable competitive advantage. Assimilating BDPA technology and methods into the 

organization is the key to securing a competitive advantage. 

The evaluation process starts with the baseline forecast that the company uses 

now compared with various forecasting methods and the additional predictor variables to 

determine the new improvement level. The intent is to compare what the automotive parts 

manufacturer is currently doing for forecasting to methods for demand forecasting based 

on predictive analytics research that combines exogenous data. We will use stochastic 

inventory models, stock control, and customer service level metrics to evaluate the 

performance of the demand forecasts. This study intends to address uncertain demand 

using a prescriptive analytics approach to determine optimal inventory. Although data 

from the automotive aftermarket space is the primary focus, the study methods apply to 

other companies or markets seeking to solve the uncertain demand problem.  
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Optimal Inventory  

Previous research into optimal inventory policy has focused almost exclusively on 

customer demand using various forms of the Economic Order Quantity (EOQ) model to 

determine the inventory level (Harris, 1990; Li & Arreola-Risa, 2017; Napier, 2014; 

Souza, 2014).  These studies often assume that demand is stable or easily estimated from 

historical demand data, and the lead times are shorter. In the automotive sector, they 

ignore the highly irregular stochastic demand patterns and many external variables that 

influence them, including customer forecasts, the number of registered cars on the road, 

or Google searches by potential customers, and the long lead times of foreign suppliers. 

Other studies on spare parts demand suggest integrating automotive data from failure 

rates or installed base information with a combination of forecasting techniques (Van Der 

Auweraer, Boute, & Syntetos, 2019). 

Increasing forecast accuracy has been the focus of countless studies (Danese & 

Kalchschmidt, 2011; Robert Fildes, 2006; Peidro, Mula, Poler, & Lario, 2009). Some 

inventory management research on intermittent demand suggests using stock control 

metrics to evaluate performance instead of traditional measures of error dispersion for 

forecast accuracy (Sagaert, Kourentzes, Vuyst, Aghezzafa, & Desmet, 2018; Syntetos & 

Boylan, 2005, 2006; Teunter & Duncan, 2009; Tiacci & Saetta, 2009). Kourentzes, 

Trapero, and Barrow (2020) propose using stock control metrics of service level 

(turnaround time) and fill rate.  

Case: Automotive Aftermarket Manufacturer  

Only a limited number of case studies develop and implement solutions to 

inventory control problems using real data, a recurring topic in the advancement of 
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inventory theory, using more realistic demand assumptions into inventory models. This 

case study involves a monthly periodic review inventory system with non-stationary 

stochastic demand, fixed replenishment setup costs (distant offshore supplier freight 

fees), linear holding and penalty costs over a fixed planning horizon, and a deterministic 

lead time of 120 days. The problem focuses upon how much inventory to replace to 

minimize total expected costs while maintaining a 95% customer service level (CSL), 

which is also tied into their customer contracts. 

The data is provided by a business-to-business automotive aftermarket 

manufacturer that provides parts to large auto parts distributors and retailers. The 

company is close to outgrowing its current warehouse space and is interested in 

alternatives to increasing inventory stocking levels. The company's marketing strategy 

focuses on maintaining sufficient inventory coverage of parts to guarantee a target fill 

rate of 95% and a customer order fill rate of one week. Otherwise, the company faces 

significant contractual penalties with some of its largest customers. This 95% CSL, along 

with inventory, will be used as boundary conditions to evaluate the demand forecast 

accuracy of the various models.  

Due to the variety of parts the company makes, the focus will be on clutch parts 

made of individual component parts and used as replacement parts for manual 

transmissions for trucks, sport utility vehicles (SUV), and sport model performance cars. 

The clutch conveys power from the engine to the gearbox without disrupting the engine 

transmission while a gear is selected. The engine must be disengaged from the 

automobile's wheels since the engine is continually rotating, whether the wheels are 

spinning or not. Common parts that are included in the clutch kits include the pressure 
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plate, clutch or friction disc with a friction material, release bearings, flywheel, associated 

hydraulic components, and alignment tools. Clutch parts are sold both separately as 

packaged parts or bundled together as clutch kits (kitted parts). Replacing a clutch can be 

an expensive, labor-intensive operation requiring the complete disassembly of the clutch 

itself. Providing clutch kits can save the customer from replacing a related clutch part in 

the future while also assisting the installer with standard replacement parts to complete 

the work.  

 

The company receives raw material parts that are converted into packaged parts 

and kitted parts (see Figure 1. Flow of Parts) before they are combined into orders for 

distributors. A single raw material part can be used in several different clutch kits. Once 

the raw part is committed to a clutch kit, it is not available for another kit without 

significant additional rework and handling costs. They use a batch production scheduling 

process that targets 30 days of finished goods inventory, consisting of packaged parts and 

kitted parts, plus 30 days of raw parts inventory for a target total of 60 days of inventory. 

They focus on carrying sufficient raw material and finished goods inventory to prevent 

stockouts from their Asian suppliers (those with extended lead times) and prevent costly 

fulfillment penalties that are imposed by large distributors for failing to meet service 

Figure 1.  Flow of Parts 
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level agreements. Extended lead times have resulted in carrying excess raw materials 

inventory of one year or more on many items, which is well beyond their stated goal.  

The company places new orders each month for new materials from various 

suppliers located from the U.S. to Asia. The lead-time from Asian suppliers includes 

waiting and transport time (via the Pacific Ocean, into a west coast port and continues by 

land-based trucking), averaging 16 weeks, with an order review period of 4 weeks of 

lead-time, 12 weeks of sea travel transport, port clearance, and domestic transportation. 

The company has provided 54 months of historical manual transmission clutch data that 

consists of customer demand orders, supplier purchase orders, and the resulting monthly 

inventory levels. We will also investigate correlations with external data sources to 

improve demand forecast accuracy and establish the optimum inventory policy for the 

inventory's highest cost items.  

The company’s demand forecasting is performed using four inputs. First, a linear 

time trend (Excel 'forecast' function) predicts demand in the next four months. Second, 

salespeople provide input on account changes like retail store openings, closing, and new 

accounts. Third, some large accounts provide a forecast of stocking changes or request to 

stock balance inventory from various stores. Finally, adjustments are made based on 

sales, marketing, or economic conditions, plus the purchasing manager's judgment to 

inform the reorder quantity. The firm believes there may be better forecasting approaches 

that would allow more efficient use of their current warehouse space and inventory of 

parts on hand. The company would be interested in those methods, provided they are not 

too cumbersome or difficult to utilize with existing personnel. 
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The remainder of this paper is structured as follows: Chapter 2, the critical 

literature is reviewed that relates to determining optimal inventory, forecasting methods 

used for demand forecasting, the criteria for evaluating forecast accuracy, and ending 

with the use of intermittent data and exogenous variables. In Chapter 3, the measures and 

details of the proposed solution's experimental structure are presented, followed, in 

Chapter 4, by the intended results, contribution, and conclusion of the paper. 
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Chapter 2: Literature Review 

 

The concepts underlying optimal inventory can be considered either in the simple 

case where demand is constant amongst other known quantities or the more complex case 

where demand is dynamic, random, and less specific (Arrow, Harris, & Marschak, 1951). 

Research into the simple case dates back to Ford W. Harris, a production engineer back 

in 1913, struggling with production lot sizes and determining the number of parts to make 

(Harris, 1913). He determined the economic lot size by balancing the setup costs with the 

stocking or holding cost. If one makes too little (or bought), then the order frequency 

increases, and set up (or ordering) costs rise, but if one makes too much, then the order 

frequency drops, and holding costs rise. This balance became known as the economic 

order quantity (EOQ) Equation (1), a constant demand, continuous time scale, and 

infinite time horizon model, frequently used to resolve inventory purchasing and planning 

problems under an assumed deterministic demand (Wilson, 1934). 

 

The basic formula for EOQ                                                                                              (1) 

 

The parameters used in the formula for EOQ are K, D, and h and represent the 

fixed ordering cost, constant demand, and holding cost per unit of time (usually over a 

year), respectively. The order cost (K) includes ordering administration, receiving 

inspection, material handling, and any equipment set up (required for manufacturing). 

The demand (D) denotes the constant deterministic demand. The inventory-holding cost 

(h) takes into account the cost of capital (i.e., the weighted average cost of capital, which 

includes both equity and debt) invested in inventory units, the cost of warehouse space, 

taxes, insurance, scrap, obsolescence, or "shrinkage,” and even opportunity cost of 
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retaining old inventory. Typical inventory-holding costs average around 20% of the cost 

of total inventory held (Waters, 2008). Due to differences in product cost per unit weight 

or unit area or space, inventory holding costs can vary significantly (Gurtu, 2021).  

Research into inventory management has led to many variations of the EOQ 

model (Cárdenas-Barrón, Chung, & Treviño-Garza, 2014), which have been developed to 

account for price-dependent supply and demand (Teksan & Geunes, 2016), supply 

disruptions (Snyder, 2014), back-ordering (Sphicas, 2014), quantity discounts 

(Taleizadeh & Pentico, 2014), living items ((Rezaei, 2014), cold items (Bozorgi, Pazour, 

& Nazzal, 2014), deteriorating items (Sicilia, González-De-La-Rosa, Febles-Acosta, & 

Alcaide-López-De-Pablo, 2014), and continuous improvement (Sarkar & Moon, 2014), 

to name a few of the different supply chain situations. The EOQ model delivers a near-

optimal solution if demand is mainly constant with slight variation (Schwarz, 2008), but 

demand is frequently not deterministic, often it is stochastic and non-stationary. The 

simple case assumed stationary demand due to the computational complexity involved in 

identifying other demand patterns. Extended supply chains consisting of multiple firms 

exacerbate forecasting errors leading to exaggerated order swings, this is known as the 

bullwhip effect (H. L. Lee, Padmanabhan, & Whang, 1997) where uncertainty increases 

as lead time increases between firms. Information sharing is necessary to reduce order 

variation at the highest level of a multi-level supply chain (Dejonckheere, Disney, 

Lambrecht, & Towill, 2004). 

When demand is random and less certain, we use the (Q, r) stochastic model, 

where Q represents the fixed quantity ordered (current inventory level + on order 

inventory – any backorder amount) when inventory decreases below r a fixed reorder 
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point (Zheng, 1992). When using stochastic demand, the upper bound for relative error 

was determined to be 11.8 percent (Axsäter, 1996), whereas there is no boundary for the 

deterministic EOQ. The dynamic version of EOQ, first derived by Wagner and Whitin 

(1958), provides mean demand estimates for EOQ. The reorder point r must account for 

the uncertain demand while awaiting resupply. It includes a buffer known as safety stock 

needed to prevent stockouts due to errors in forecasting and lead time expectations. It 

works well for calculating the next order. However, it does not work well for a series of 

forecasted orders over a determined planning horizon (Vargas, 2009) or when future 

orders occur at a random price (Sana, 2011). These stochastic models assume a known 

probability distribution to simplify the problem, but if it is unknown, Bertsimas and 

Thiele (2006) provide a more robust optimization approach.  

Demand can be stochastic and non-stationary, typical for many component parts 

and subassembly providers, requiring considerably more safety stock than within 

stationary demand situations (Graves, 1999; Strijbosch, Syntetos, Boylan, & Janssen, 

2011). The (s, S) inventory policy is used both in stationary and non-stationary demand 

cases and has proven optimal when the holding and shortage costs are linear (Scarf, 

1959). A periodic review control system for stochastic demand is widely used in 

inventory management situations where a continuous review is not practical. Inventory is 

controlled by ordering on fixed periodic review intervals (R) with fluctuating order 

quantities placed to bring the inventory position up to a certain level (S) (Hadley & 

Whitin, 1963). The Periodic-Review, order-up-to-level systems (R, S) (Silver, Pyke, & 

Peterson, 1998) is a standard replenishment method, although not as responsive and more 

expensive than the (Q, r) policy, ranging from a few percent to as much as 41% (Rao, 
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2003). However, it is simpler to operate and is frequently used when coordinating 

shipping containers from overseas suppliers with constant lead time (L). Suppliers also 

prefer periodic review systems because of the lower uncertainty of order timing. 

Silver and Bischak (2011) derived a simple expression for safety stock in (R, S) 

systems based on the fill rate (under normally distributed demand) and standard deviation 

of the demand forecast errors over the replenishment period R+L, Equation (2). 

SS = k * σL+R                  (2) 

Where k is a safety factor (i.e., NORMSINV(fill rate) function in excel for the 

desired fill rate) and σL+R  is the standard deviation of demand forecast errors over the 

replenishment period R+L. Using forecast errors, instead of the more popular demand 

variance to calculate safety stock, results in 15% lower safety stock at the same level of 

customer service (Zinn & Marmorstein, 1990) for shorter lead times. 

Forecasting Methods 

The demand process is the primary source of uncertainty, leading us to the next 

critical factor in inventory costs, selecting the correct forecasting method (R Fildes & 

Kingsman, 2011). For example, using a moving average can cause the bullwhip effect 

(Dejonckheere, Disney, Lambrecht, & Towill, 2003), whereas choosing an autoregressive 

method outperforms the exponential smoothing approach (Chandra & Grabis, 2005) and 

reduces the bullwhip effect. Some methods are chosen for the type of data available, 

forecasting simplicity, error, and utility of the results (R. Fildes, Nikolopoulos, Crone, & 

Syntetos, 2008a).  
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Table 1. Forecasting Methods 

FORECAST 

METHOD 

ACRONYM DESCRIPTION INPUTS 

Naive Method  RFW Uses the previous data 

point in the sequence as 

the forecast. 

- Data 

series 

 

Naive Drift Method  RFWD Uses the previous data 

point in the sequence plus 

average change over time 

(drift) as the forecast. 

- Data 

series 

 

Linear Regression LM Based on the regression of 

a certain number of 

previous data points (i.e., 

12 or 18). 

- Data 

series 

 

Simple Moving 

Average 

SMA Based on the average of a 

certain number of previous 

data points (i.e., 12 or 18). 

- Data 

series 

 

Brown's Method of 

Single Exponential 

Smoothing 

SES Utilizes a weighted 

average of historical data 

and alpha as a smoothing 

constant to assign 

exponentially smaller 

weights to previous data. 

- Data 

series 

- Alpha 

Holt's Method of 

Double Exponential 

Smoothing 

DES Utilizes SES applied to 

both level and trend using 

alpha as a smoothing 

constant and beta as a 

trend constant. 

- Data 

series 

- Alpha 

- Beta 

Holt-Winters 

Method 

automatically 

selecting Single or 

Double smoothing 

parameters 

DESZ Utilizes SES applied to 

level, trend, and season 

using alpha as a smoothing 

constant, Beta as a trend 

constant. 

- Data 

series 

- Alpha 

- Beta 

Prais-Winsten 

Regression 

PW Uses an iterative ordinary 

least squares (OLS) 

method to recursively 

estimate beta and error 

autocorrelation rho at 

convergence. 

- Data 

series 

- Rho 

- Beta0 

- Beta1 

- Beta2 
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Strasheim (1992) performed a study of the 17 most popular forecasting techniques 

at the time using traditional statistical measures (mean error, mean absolute error, sum of 

squared error, mean squared error, and standard deviation of errors), for automotive spare 

parts and concluded that Brown's method of Exponential Smoothing consistently 

provided the most acceptable forecasts, was stable, insensitive to the smoothing constant 

chosen, the lowest cost variance was reliable for limited demand  

history, and was easy to understand. 

In this study, we will focus on Brown's Method of Exponential Smoothing (ES), 

and its variant double exponential smoothing. The data was found to be non-stationary 

and did not possess any seasonality, so seasonality models like triple exponential 

smoothing were ruled out. The primary forecasting methodologies are summarized in 

Table 1. Forecasting Methods. 

Naïve Method (RFW) Uses the previous data point in the sequence as the 

forecast. The Naïve Method with drift is a variant of the Naïve Method, which uses the 

previous data point in the sequence plus the average change over time (drift) as the 

forecast. 

Linear Regression (LM) is a linear approach for modeling the relationship 

between a certain number of previous data points (i.e., 12 or 18) known as the 

independent or explanatory variables using a linear predictor function with estimated 

model parameters to determine the dependant variable.  
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Simple Moving Average (SMA) is based on the mean or average of a certain 

number of previous data points (i.e., 12 or 18). There are no model parameters to 

calculate, so the model is very simple. 

Exponential Smoothing (ES), introduced by Brown (1959), is a standard method 

of demand forecasting with a smoothing constant (alpha) used for inventory management 

within various enterprise resource planning applications. Brown worked as an analyst for 

the US Navy and first introduced ES demand forecasting as a method for inventorying 

spare parts (Gass & Harris, 2000) as an improvement over SMA. ES is also called Single 

Exponential Smoothing (SES) or exponential moving average, where alpha is derived 

from the weighted mean or SMA allocating more weight to recent data while applying an 

exponentially decaying weight to past events.  

Charles Holt modified ES to include support for trends (beta), now called Double 

Exponential Smoothing (DES) or Holt-method. Charles Holt and Peter Winters 

developed Triple Exponential Smoothing (ETS in Excel) as an extension of the ES 

model to use both trend and seasonality (gamma). The level (magnitude), trend 

(direction), seasonality (recurring pattern length), and residuals of the model are easily 

calculated with a minimum amount of data (Holt, 1957). Change in seasonality can be 

selected as additive or multiplicative, representing either linear or exponential changes. 

ES is popular because it does not require the time series to be stationary, and it is mainly 

robust when the appropriate model is chosen (Gardner, 1985, 2006). There are 30 

possible ES parameter combinations to select to minimize the forecast error using 

arithmetic, multiplicative, or damping for the error, trend, or seasonality parameters. 
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The Prais-Winsten model (Prais & Winsten, 1954) is an econometric model that 

accounts for autoregressive AR(1) serial correlation of errors in a linear regression 

model. The autoregressive model specifies that the dependant variable is linearly based 

on its values and some additional precise terms. Prais-Winsten is a variant of the 

Cochrane–Orcutt estimation, which deletes the initial observation.  The model recursively 

estimates the coefficients and the error autocorrelation until sufficient convergence of the 

AR(1) coefficient is accomplished. 

Intermittent Data 

Intermittent data is expected in inventory control situations with less popular 

selling or used parts. Syntetos, Boylan, and Croston (2005) defined intermittent spare 

parts demand based on the count of zero demand periods occurring over a given number 

of time periods. The Average Demand Interval (ADI) is the average interval between two 

consecutive periods, with non-zero demand (Costantino, Di Gravio, Patriarca, & Petrella, 

2018). Johnston and Boylan (1996) suggest using an ADI greater than 1.25 for 

intermittent demand. 

Average time interval between two demand occurrences 

ADI =  

                     Total number of periods  

 

                                Total number of periods 

or    =  

                     Total number of non-zero periods  

 

Syntetos et al. (2005) further categorized intermittent demand based on ADI (P) 

and the Coefficient of Variation squared (CV2 = (Standard Deviation / Mean)2 ). They 

determined the cut-off values as 1.32 and 0.49 for P and CV, respectively, which  

(3) 

(4) 

https://en.wikipedia.org/wiki/Linear_prediction
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leads to parts classified into four groups: Erratic, Lumpy Smooth, and Intermittent, which 

is illustrated in Figure 2. SBA Classification. The SBA method is commonly used for all 

but smooth, which uses Croston's method. 

Exogenous Data 

 There has been a lot of research into using exogenous variables for predictive 

analytics within the econometrics field to develop theories on the economy's economic 

modeling. Many BDPA methods are now being applied to supply chain analytics' 

evolving field because of the Internet age's widely available data.  

Some studies have looked into the problem of forecasting demand (see Table 2. 

Exogenous Automotive Research), choosing many different types of forecasting 

methods. Some of the methods are chosen for the type of data available, simplicity, error, 

and utility of the results (R. Fildes et al., 2008a). Simple models like the Naïve or SMA 

are unable to use exogenous data. Complex forecasting methods have been used to 

integrate exogenous variables as predictors or covariates such as Autoregressive 

 

Figure 2. SBA Classification 
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Integrated Moving Average (ARIMA) with Seasonality (SARIMA), Exponential 

Smoothing with Covariates (ESCov), Variable Mean Response (VMR), Vector 

Autoregressive (VAR) with exogenous variables (VARX), and finally, Vector Error 

Correction (VECM) with exogenous variables (VECMX). 

 

Table 2. Exogenous Automotive Research 

 

Study Method Measure Exogenous Data 

Blackburn et al. 

(2015) 
ESCov MAPE BASF-process industry 

Chuang and Chiang 

(2016) 
VMR Fit Statistic 

Days Supply, Personal 

Income, Inventory 

Cortés and Borrego  
Croston's 

method 

MAD, MSE, 

MAPE 
Service parts 

Fantazzini and 

Toktamysova 

(2015) 

VECM, 

VECMX, VAR, 

BVAR 

MSPE 

Google data and 

economic variables: BC, 

CCI, CPI, EURIBOR, 

GDP, PI, UR, PP for car 

sales. 

Gao, Xie, Cui, Yu, 

and Gu (2018) 

VAR, VECM, 

ARMA 
RMSE, MAPE, 

Exogenous variables: 

consumer confidence 

index (CCI), steel 

production, CPI, and 95# 

unleaded gasoline price 

on car sales  

Wayne Smith, 

Coleman, Bacardit, 

and Coxon (2019) 

Expectation‐

Maximisation 

(EM) algorithm 

Replacement % 
Invoice, mileage, make, 

model, brake disc 

W Smith, Coleman, 

Bacardit, and 

Coxon (2018) 

empirical 

cumulative 

density function 

(ECDF) 

Replacement % 
Invoice, mileage, make, 

model, 

Qin and Yun (2012) 

SVR, ARIMA, 

Multiple 

Regression, 

Combined 

Model 

MAPE, 

Variance 
Auto Parts 
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Evaluation Criteria 

An underlying principle of demand forecasting is the proposition that a good fit 

using past data will lead to a realistic future forecast. For this to be true, there must be a 

discernible pattern, even an irregular pattern, that can be discerned from the data and 

relied on to repeat in the future. Model fit is usually determined by minimizing forecast 

error using either Root Mean Square Error (RMSE), Mean Squared Error (MSE), or 

Mean Absolute Error (MAE), to name a few. Gneiting (2011) found that demand 

forecasting methods optimized for the in-sample mean errors (absolute error and squared 

error) produce optimal predictions based on mean demand. Using maximum likelihood 

estimation will result in optimal mean demand predictions ensuring unbiased in-sample 

forecasts. However, there is no later guarantee of an unbiased or accurate prediction out-

of-sample (Barrow & Kourentzes, 2016). Gardner (2006) found more robustness with 

MAE against demand changes resulting in optimal median demand forecasts (Gneiting, 

2011). However, inventory management does not require optimality based on a median or 

mean demand forecast. Inventory management uses demand forecasts to determine the 

reorder frequency, order quantity, and safety stock level.  

Forecasting methods based on time series analysis are used to forecast demand in 

a future period. Demand model parameters are calculated using a forecast performance 

metric such as MSE, which penalizes overestimating and underestimating demand 

equally. In stock control situations, backorders or stockouts can be more costly than 

holding inventory. This results in a bias with the MSE optimization model penalizing 

under- and over-predictions unequally. Orders are made in each interval based on a 

dynamic forecasting model prediction of demand, where model parameters are 
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recalculated at each interval; however, the forecasting model projections do not account 

for the optimization process bias, instead of minimizing the (symmetric) error between 

the forecasts and the actual demand. 

Customer service levels (CSL), made of the ratio of filled demand (demand not 

including backorders) to total demand, have been used to measure forecast performance 

(Boylan, Syntetos, & Karakostas, 2008) but must be constrained by another measure; 

otherwise, a 100% CSL can be achieved given enough inventory. 

Some inventory management research on intermittent demand suggests using 

stock control metrics to evaluate performance instead of traditional mean error 

calculations (Sagaert et al., 2018; Syntetos & Boylan, 2005, 2006; Teunter & Duncan, 

2009; Tiacci & Saetta, 2009) or demand rates (Kourentzes, 2014). One recurring theme in 

the research is that accurate, unbiased in-sample forecasts using MSE may over-fit the 

out-of-sample prediction resulting in a low-performing forecast. For example, an exact 

forecast (based on optimal MSE) with a lot of daily variances may exhibit greater 

operational difficulty in scheduling production than a consistent but less accurate forecast 

(R Fildes & Kingsman, 2011; Sagaert et al., 2018). Others have found that decreasing 

forecast bias may be more important than forecast accuracy (Sanders & Graman, 2009; 

Syntetos & Boylan, 2001). Kourentzes et al. (2020) propose using stock control metrics 

based on service level (turnaround time) and fill rate and combining them into a signal 

variable, which mixes the order error cost into one metric and simplifies the multivariate 

problem into single optimization. This is in line with the business' contractual service 

level and fill rate requirements. Others have focused on automotive parts using a 

simulation to find the forecast stock control parameters that would lead to optimal 
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inventory stocking (Bruzda, 2020; Kourentzes et al., 2020; Rego & Mesquita, 2015). 

Some researchers have found that combining several forecasts into a single model has 

been shown to reduce forecasting errors and the constraints inherent in a single model 

(Barrow & Kourentzes, 2016). 

Rolling Origin Cross-Validation 

One method of evaluating forecast models is to split the data into two data sets; 

the first is the in-sample data or training set, and the second is the out-sample data, 

holdout, or test set. Forecast models are applied to the training set, the model parameters 

are calculated, and the models are evaluated based on errors measures like MSE. This is a 

“fixed origin” method and is useful for time series forecasting, but in inventory control 

situations, decisions are made in every interval.  

An alternative method used in time-series forecasting is rolling origin cross-

validation. The forecast origin is updated at each interval as new data is incorporated into 

the forecast and new smoothing parameters are estimated (Tashman, 2000). The last 

interval in the training set is known as the forecast origin, which changes at each new 

interval. The lead time intervals, made up of the time between the forecast origin and the 

forecast, comprise the forecast horizon or prediction interval. A rolling origin evaluation 

averages multiple forecast errors providing a better understanding of model performance 

(Hyndman & Athanasopoulos, 2018). A fixed-sized rolling window of constant length 

may be added, which replaces the oldest data with the latest data to consider changes in 

the environment. Figure 3. Rolling Origin with Constant In-Sample Window illustrates a 

rolling origin from 29 observations with a fixed-sized window representing 17 origins 
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starting at origin 12. Hyndman and Athanasopoulos (2018) suggest using the lowest 

RMSE when evaluating the best forecasting model on a rolling forecasting origin. 

 

Company Adoption 

BDPA can be used to solve supply chain performance problems that may include 

high inventories, stockouts, late deliveries, and expedited fulfillment costs. However, to 

realize the promise of BDPA, it is not just a matter of introducing the technology and 

methods into the organization. One must fully understand and embrace the new methods. 

Green and Armstrong (2015) reviewed research comparing simple and complex 

forecasting methods. They concluded there was little support for the proposition that 

complexity enhances forecast accuracy. However, as complexity is introduced into the 

organization, it becomes harder to understand or explain the models, inhibiting adoption. 

The effective assimilation of any new information technology (IT) methods must 

Figure 3 Rolling Origin with Constant In-Sample Window 
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incorporate changes in the organization's procedures, practices, and technology (Leonard, 

1988). Mu, Kirsch, and Butler (2015) highlighted the importance of identifying the 

organization's need for new methods and technology and then actively managing the 

technology change after implementation to increase assimilation. According to the task-

technology fit (TTF) model, user adoption occurs when the technology meets the 

requirements of the task assigned (Goodhue & Thompson, 1995) and the user recognizes 

the usefulness and ease of technology, but not if it fails to enhance their job performance 

(C.-C. Lee, Cheng, & Cheng, 2007). The technology acceptance model (TAM) is similar 

in asserting that the perceived usefulness positively influences the assimilation and 

adoption of BDA (Verma et al., 2018). Organizations must link BDPA to business 

strategy, make it easy for the users, and insert it into their organizational processes so that 

the right decisions can be made at the right time.  
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Chapter 3: Research Methodology 

 

The research methodology used historical data from an automotive company and 

external data from Google Trends combined with several forecasting methods to 

determine their accuracy for inventory control under long lead times. First, a description 

of the measures used followed by the methods and procedure observed to obtain the study 

results. 

Measures 

An automotive aftermarket manufacturer that provides parts to large parts 

distributors and retailers has provided ten years of historical data on clutch parts and 

clutch kits that consist of customer purchases constrained by their purchase agreements. 

The data includes request date, date received, price, item, quantity, and ship date. The 

second set of data includes monthly on-hand inventory levels for each stock-keeping unit 

(SKU). Reliable demand predictions could effectively lower inventory costs, increase 

Figure 4. Clutch Part Aggregate Demand 
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available warehouse space, and improve cash flow. Accurate demand forecasts, both for 

the next quarter and the next month, would help control inventory.  

This study examines the forecasts obtained by evaluating demand over 54 months 

(see Figure 4. Clutch Part Aggregate Demand). The data is comprised of 1,111,111 rows 

of invoice data covering the period January 2016 to July 2020, plus monthly onhand 

inventory levels for all clutch parts. The sales demand is primarily for clutch kits or kitted 

parts, comprised of multiple component parts, and each component is used in one or more 

kits. The company utilizes a bill of materials (BOM) defining the components used in 

each kit. There are 128 raw material suppliers, but the study focuses on 16 suppliers that 

require 120 days (predication interval of 4 months) of lead time for materials delivered 

from Asia. All kits and component packaged parts 

break down into 1,033 raw material parts that are 

ordered from the 16 suppliers. Table 3. Shows the 

parts breakdown. 899 of the parts are uncommon, 

new, or old representing intermittent demand, 

leaving 134 that have regular order flow (ADI = 1) 

or non-intermittent demand.  

The study will focus on a sample of 100 non-intermittent parts (see Figure 5. 

Smooth Parts Sample), representing 9.7% of the 1,033 parts from the 16 Asian suppliers. 

When inventory levels are compared to sales, they appear to follow two different 

patterns. Improved forecasting methods coupled with a new inventory policy that moves 

with sales would save the company money. 

Table 3. SBA Classification 
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Figure 5. Smooth Parts Sample 

 

 

Exogenous Variables 

An essential aspect to improving forecast accuracy will be using big data analytics 

to look ahead and get as close to the customer as possible (Cachon & Fisher, 2000) by 

using customer interaction data, website page views, point of sale data, or other proxy 

variables as covariates to predict demand (Cohen, 2015). Internet search engines are a 

convenient choice to use as a proxy for demand. External variables under investigation 

include Google searches, clutch failure rate assumptions, and past automotive registration 

data. Google has become a leading search engine with an 87% market share (Chris, 

 -

 5,000

 10,000

 15,000

 20,000

 25,000

 30,000

 35,000

 40,000

 45,000

 50,000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

U
n

it
s

Axis Title

Demand On-Hand Inventory



Forecasting Demand with Long Lead Times 37 

Copyright, Christopher J. Anderson, 2021 

2020). The automotive manufacturer also uses customer communications or industry 

knowledge to adjust the forecasts. 

Google Trends Search Data 

We propose using Google Trends search data, which provides information on 

users' relative searches at a given geographic region and time (monthly, weekly, or daily).  

Google Trends data is 'broad matched,' meaning keyword strings are reduced to popular 

searches for the most meaningful words in the string. Search results are calculated using 

an anonymized unbiased sample. The Google Index (Google, 2020) provides an estimate 

using the ratio of the number of queries relative to a particular category (clutches) 

concerning all queries in the selected region (United States) at a given point of time (See 

Figure 6. Google Trends for "clutch") and then the data is indexed to 100 (the maximum 

search interest for that time and location).  

Figure 6. Google Trends for "clutch" 
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Therefore results may vary from day to day, and only searches with significant 

volume are tracked. Moreover, researchers can use Google Trends to produce real-time 

forecasts, but we will use it as a forecasting indicator of clutch demand. It is unclear 

whether the Google data is stationary because Google divides the searches by the total 

searches in the week and geographic area.  

The study believed there was a first-order positive autocorrelation in the Google 

Trends data based on observing the regular pattern in the data series. It also exhibits first-

order positive autocorrelation meaning the time series errors are correlated with their past 

values. Equation 8 represents the relationship of the forecasted demand of a part number 

with the formula for Google trend (equation 9) with respect to time. Equation 10 results 

from inserting Eq. 9 into Eq. 8. 

Yt = β0 + β1t + β2Gt + ϵt  (8) 

Gt = ϒ0 + ϒ1t + ϒ2M + ϒ3M
2 + δt   (9) 

Yt = β0 + β1t + β2ϒ0 + β2ϒ1t + β2ϒ2M + β2ϒ3M
2 + εt  + δt  (10) 

Where: 

Yt = Forecasted SKU demand for the current period 

Gt = Google Trends for the current period 

t = Time period, months since the first observation 

β = vector of coefficients 

ϵt = residual error term 

ϒ = vector of coefficients 
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M = current calendar month 

δt = residual error term 

This led to adding the econometric Praise Winston method to account for the 

autoregressive AR(1) serial correlation of errors in relation to time (see Step Three – 

Analyze Data). 

Methods 

The automotive company is currently using the forecast function within Microsoft 

Excel software to create and manage its demand forecasts. The study will use the Excel 

forecasting method as a baseline indicating the actual performance of the company. The 

Excel forecast function provides six different outputs. The new FORECAST has replaced 

the old FORECAST function.LINEAR, which predicts future values using a simple time 

trend of historical data. The FORECAST.ETS variant predicts future values based on 

Exponential Triple Smoothing (ETS), which considers error, trend, and seasonality 

components.  

The FORECAST.ETS function requires consistent intervals, but it will work with 

up to 30% of the periods with no demand (to consider intermittent data) before reverting 

to a linear time trend, which then becomes the same as FORECAST.LINEAR. The 

confidence interval (+/- offset for the upper and lower bounds) is output using 

FORECAST.ETS.CONFINT function. The recurring pattern length or seasonal interval is 

output using FORECAST.ETS.SEASONALITY function. The remaining forecast 

parameters and the error statistics of the forecast are output using 

FORECAST.ETS.STAT and includes:  
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• Alpha is the weighting component used for smoothing recent data points.  

• Beta is the trend component detected in the time series. 

• Gamma is the seasonality component detected in the time-series. 

• MASE is a forecast accuracy measure. 

• SMAPE (symmetric mean absolute percentage error) is a percentage or 

relative error measure of forecast accuracy. 

• MAE is a measure for the average size of the prediction errors. 

• RMSE is a measure of the predicted and observed differences. 

• Step size detected in the time series. 

The study uses the forecast error for evaluating the forecasting model 

performance through rolling origin cross-validation. Safety stock is based on the variance 

of forecasts error, which is the forecasted demand minus the actual demand. A positive 

error means we forecasted too high, and negative means we did not forecast enough. The 

estimated inventory expected in the current period is a function of the inventory on hand 

at the end of the last period plus the sum of the next four months of expected incoming 

deliveries (which are the orders placed over the last four months) minus the four times 

the forecasted demand (which is also the naive estimate of expected demand in the next 

four months). The actual order placed is either the calculated demand forecast from the 

model plus safety stock minus the estimated inventory expected to be on hand or zero 

(because enough expected inventory is available or on order over the next four periods). 

The naive forecast assumes the last month's actual demand is the only important 

one, so all future forecasts are equal to the last period's actual demand. The SES model is 

similar; producing a forecast without a trend will have a constant value in the prediction 
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intervals. The models are all based on forecasting four months ahead to consider the four-

month lead time. Actual demand is collected at the end of each month and used to 

estimate demand and inventory for each of the next four months in all models. Therefore, 

the formula for each model needs to be adjusted accordingly. The standard SES formula 

(equation 5) is a weighted average using a smoothing constant α, of the form: 

Ft+1 = α * At + (1- α) * Ft                                      (5) 

Where: 

Ft+1 = Forecast for the current period, 

Ft  = Forecast demand for the last period, 

At  = Actual demand for the last period, 

α = smoothing constant (between 0 and 1). 

Since the forecast is for four months ahead (Ft+4), At+3, At+2, and At+1  are not known. 

Therefore, the actual formula used is of the form 

Ft+4 = α * Ft+3 + (1- α) * Ft+2 

Ft+3 = α * Ft+2 + (1- α) * Ft+1 

Ft+2 = α * Ft+1 + (1- α) * At+1 

Ft+1 = α * At + (1- α) * Ft 

The SES method ends up forecasting a constant level, which means that 

subsequent forecasts become the value of Ft+1 in the future. Additional parameters are 

added to determine the trend (DES) or seasonality (TES). The standard DES formula 
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(equation 6) adds a second equation to calculate the trend (equation 7) using a coefficient 

β, of the form: 

Ft+1 = α * At + (1- α) * (Ft + Bt)                                      (6) 

Bt+1  = β * (Ft+1  - Ft) + (1 – β) * Bt                                 (7) 

Where: 

• Bt+1 = forecast for the current period, 

• Bt = forecast for the previous period, 

• β = trend smoothing coefficient (between 0 and 1). 

Procedure 

A hierarchical test process will evaluate the baseline forecast that the company 

uses now and then test adding methods and data to see the level of improvement gained 

over the baseline. The plan is to explore the performance of different forecasting models 

using a seven-step process illustrated in Figure 7. Procedure Steps.  

 

 

The first three steps are to collect, prepare, and analyze the data to be used in 

forecasting. The next two steps are to estimate demand and determine the next order 

Figure 7. Procedure Steps 
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quantity. The second to last step is to evaluate the performance of the various forecasting 

models. The last step is to add an exogenous variable to the models that accept an 

external regressor and repeat the process to determine the impact of external data. 

Step One – Collect Data 

Several meetings with the automotive company supported the data gathering 

process. These sessions enabled the creation of a historical image of how inventory 

management and the ordering steps are performed, which led to identifying appropriate 

variables for the project from existing computer applications and data sources. The 

variables collected for the project included: customer orders (including date, part, unit 

cost, price, quantity, and notices of future order events), suppliers, supplier purchase 

orders, monthly on-hand inventory, and the bill of materials used for making both 

packaged and kitted parts. 

Step Two – Prepare Data 

Daily customer order demand data was obtained, indicating orders for packaged 

parts and kitted parts. However, raw material parts are ordered monthly from suppliers 

(see Figure 1. Flow of Parts), requiring a conversion of finished goods into monthly 

totals of raw material parts. Many of the individual raw materials are identified as being 

used in multiple finished goods. The customer order data was imported into MS-Access, 

converted into a time series for monthly demand by part number or SKU, and then 

converted into monthly raw material part totals using the bill of materials to create the 

raw demand that is ordered from the suppliers.  

A monthly time series of customer notices by raw part was created to consider 

any advanced notices that were obtained in advance for stock balancing, returns, or 
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inventory changes at the retail customer sites. Finally, A time series was created out of 

monthly on-hand inventory by raw material part. 

Step Three – Analyze Data 

The time-series data was imported into MS-Excel to be examined, sorted, and 

classified. A total of 1,033 raw material part numbers resulted from the data preparation 

that was classified into 899 intermittent and 134 non- intermittent parts. The data was 

checked for outliers and used an ADI = 1 to select the non-intermittent parts from the 

intermittent parts (Boylan et al., 2008 Syntetos et al., 2005) to exclude irregular data, 

intermittent data, inactive (zero demand), newer, and older negative demand parts. Older 

parts tend to be at the end of the life cycle, which results in more returns than sales. The 

study focused on a sample of 100 non-intermittent parts out of a total of 433 non-

intermittent parts. Upon inspection of the data, it was determined that seasonality could 

be excluded due to its poor performance, which led to the selection of some classical 

nonseasonal forecasting methods. 

The Google Trends data appeared to exhibit a clear pattern suggesting that it 

increases with time and that it cycles with the month of the year. Rewriting Eq. 10 into 

the reduced form of the structural equation (a recursive system) results in equation 11. 

Yt = α0 + α1t + α2M + α3M
2 + φt  (11) 

Equation 12 defines the first-order autocorrelation in the error term φt. To get 

what was estimated in Eq. 10, we solve Eq. 11 for φt-1. Substituting the result into Eq. 12 

and then substituting that into Eq. 11 at time t and rewriting again. That is the equation 

that is estimated for all but the first time period of the Praise-Winston transformation. 
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φt = γt + ρφt-1 
 (12) 

Where: 

Yt = Forecasted SKU demand for the current period 

M = current calendar month 

φt = residual autocorrelated error term εt + δt 

γt = residual error term 

ρ = estimated AR(1) model errors coefficient 

The Google Trends exogenous data had a first-order positive autocorrelation 

meaning the time series is correlated with its past values. The Autocorrelation (ACF) bar 

chart depicts the correlation coefficients between the Google Trends time series and its 

lagged values. Figure 8. Google Trends Autocorrelation Plot shows a significant spike 

(correlation of 1) at lag 0 followed by a decreasing wave alternating between statistically 

insignificant (or close to it) positive and negative correlations indicating a higher-order 

autoregressive term may not by in the data. The corresponding partial autocorrelation 

(PACF) in Figure 9. Google Trends Partial Autocorrelation Plot shows a steady decay 

toward zero after the first significant lag indicating a first-order moving average process 

with autocorrelation. Figures 8 and 9 indicate Google Trends data differences follow an 

autoregressive AR(1) process with a first-order moving average. This indicated using the 

Prais-Winsten method, which is an iterative process designed for producing unbiased and 

efficient estimates that account for error autocorrelation. By comparison, the company 

data did not appear to exhibit an AR(1) process. 
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Step Four – Forecast Demand 

A series of forecasting models will then be used to determine the best fit using in-

sample data (years 1-5) to train and test the models, adjust model parameters, and 

determine covariance relationships with the exogenous variables. The same initial 

Figure 8. Google Trends Autocorrelation Plot 

 

 

Figure 9. Google Trends Partial Autocorrelation Plot 
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starting conditions were used to initialize the models, and then the study ignored the first 

twelve months to evaluate the performance, thereby excluding the starting conditions.  

 

Table 4. R Model Calls 

 

FORECAST 

METHOD 

ACRONYM R Function Call R Library 

Naive Method  

(random 

walk) 

RWF rwf(fwin) Forecast 

(version 8.15) 

Naive Drift 

Method  

(random walk 

with drift) 

RFWD rwf(fwin, drift=TRUE) Forecast 

(version 8.15) 

Linear 

Forecast 

LM alm(fwin~Mwin,df,distribution="dnor

m") 
Greybox 

(version 1.0.0) 

Simple 

Moving 

Average  

SMA sma(fwin, num, h=hz) Smooth 

(version 3.1.2) 

Brown's 

Method  

using 

addititive 

errors with no 

trend or 

seasonaility 

SES es(fwin, 

model="ANN",h=hz,holdout=FALSE) 
Smooth 

(version 3.1.2) 

Holt's Method 

using 

addititive 

errors with 

trend and no 

seasonality 

DES es(fwin, 

model="AAN",h=hz,holdout=FALSE) 
Smooth 

(version 3.1.2) 

Holt's Method 

using the best 

additive, 

multiplicative, 

or damping 

errors with 

trend and no 

seasonality 

DESZ es(fwin, 

model="ZZN",h=hz,holdout=FALSE) 
Smooth 

(version 3.1.2) 

Prais-Winsten 

  

PW prais_winsten(demand.v[1:n] ~ 

mo.v[1:n]+mo_sq.v[1:n], 

data=demand.df) 

Prai

s  

(version 0.1.1) 
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Given the initial prediction interval of four, the first four forecasts and the first 

order was prepopulated with the mean demand over the first 12 months. The starting 

inventory was based on the actual on-hand inventory, and the first four deliveries were 

based on the actual deliveries received for each part. 

The programming environment R was used to construct the models, estimate all 

of the parameters, and analyze the results (R Core Team, 2013). Table 4. R Model Calls 

lists the exact R function calls and libraries used for the chosen forecasting methods. The 

ES models were used from the Smooth package because of its support of external 

regressors (xreg). ES function call options were limited to additive errors to simplify the 

study. There are 30 potential models, but with no seasonality, there are only ten models 

that remain. The “Z” option was used (DESZ) to check alternative models' multiplicative 

errors and dampened trend, and then the model with the lowest Akaike information 

criteria corrected (AICc) was selected by the ES function. 

Step Five – Determine Order 

Orders are determined using the (R, S) policy proposed by Silver, Pyke, and 

Peterson (1998, p. 275), in which the inventory position is assessed over the time horizon 

(R+L), and ff R is less than S, the order-up-to-level at the end of each order review period 

R, a new order is issued to replenish the stock, bringing the inventory level up to S. In 

this study, any unmet demand is backlogged, and supply capacity is not constrained. The 

R value in this study is determined by the fixed monthly shipping schedules for delivery 

instead of being selected by the EOQ cost optimization approach. For a given target 

service level α, the forecasted quantity S must cover the demand over the order review 

interval R and the purchase delivery lead time L. Safety stock SS Equation (2) is based on 



Forecasting Demand with Long Lead Times 49 

Copyright, Christopher J. Anderson, 2021 

the target service level α converted into a safety factor k, making the inverse cumulative 

distribution function of demand over the (R+L) interval plus the demand forecast errors 

standard deviation for the replenishment period (R+L).  

The order (O) placed (equation 13) in this case is the forecasted demand (S) plus 

safety stock (SS) minus the expected inventory (I) over (R+L). The value I(R+L)  (equation 

14) includes the current on-hand inventory (H), but also needs to account for the expected 

deliveries (orders placed R+L periods in the past) minus the expected demand over (R+L) 

minus the customer notices (N) regarding known future demand. 

 O = S + SS – I(R+L)                                                              (13) 

 I(R+L) =  𝐻 +  ∑ 𝑂𝑡−𝑅−𝐿
𝑡  - ∑ 𝐹(𝑆)𝑡+𝑅+𝐿

𝑡  - ∑ 𝑁𝑡+𝑅+𝐿
𝑡             (14) 

Where: 

O = Order placed 

S = forecasted demand 

I = Expected deliveries ∑ 𝑂𝑡−𝑅−𝐿
𝑡  (orders placed R+L periods in the past) 

H = End of last period inventory 

SS = Safety Stock (equation 2) 

F(S) = Order up to level based on forecasted demand 

N = Customer notices ∑ 𝑁𝑡+𝑅+𝐿
𝑡  (known orders placed R+L periods in the past) 

Step Six – Evaluate Performance 

The evaluation of forecasting methods generally consists of examining a sample 

of forecast errors, testing the starting assumptions, testing the in-sample data fit, and then 
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assessing outputs or out-of-sample data fit. Mathematically, this can be done using scale-

dependent, scale-independent measures, or, in the case of demand forecasting for 

inventory, stock control metrics can be used. Scale-dependent measure mean error (ME), 

Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute 

Error (MAE), among others. ME should be near to 0 to show whether forecasts are 

skewed high or low. MSE averages the square of the errors and defines how close the 

forecast is to the actual data. It is used to represent demand variability. RMSE is the 

square root of the MSE and one of the most popular goodness-of-fit measures. It 

penalizes large errors more than small ones because it squares them first; if the mean 

error is near to zero, it is approximately the standard deviation of the errors. MAE 

averages the absolute values of all errors instead of squaring the errors resulting in greater 

tolerance of intermittent shocks or large errors.  

The scale-independent measures Mean Absolute Percentage Error (MAPE) and 

Mean Scaled Percentage Error (MSPE), which help compare multiple series. MAPE 

measures the errors in percentage terms, which is better for data with a large variance like 

compound growth, inflation, or seasonality. Furthermore, MSPE averages each error as a 

standard average error ratio, preventing undefined or infinite values generated for 

intermittent demand (periods of zero demand). Armstrong (2001) concluded that using 

scale-independent measures to evaluate in-sample fit was not helpful in evaluating 

predictive performance. Some error measures are believed to be more effective than 

others in assessing time-series forecasts. He rated them as fair or reasonable in terms of 

dependability, construct validity, outlier protection, and whether or not they control for 

difficulty. Therefore, no scale-independent measures are used. 
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The calculation of the error will be done through rolling origin cross-validation, 

which produces 30 rolling origins starting at origin 24 from 54 observations using a 

fixed-sized window of 12. As new data is integrated into the prediction, new smoothing 

parameters are computed. The forecast origin is updated at each interval resulting in 30 

training sets of 12 observations and an average error of 30 test sets of four predictions 

each, one for each month in the prediction interval. This average error figure is then used 

to compute the ME, RMSE, and MEA for the models. Figure 10. Rolling Origin Cross-

Validation with Constant In-Sample Window depicts the rolling origin plan. The study 

will use the lowest RMSE to evaluate the error using cross-validation with a  rolling 

forecasting origin (Hyndman & Athanasopoulos, 2018) and then compare it to the stock 

control metrics. 

 

Figure 10. Rolling Origin Cross Validation with Constant In-Sample Window 
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Financial, operational, and service-related indicators are used to assess ordering 

and inventory performance (Petropoulos, Wang, & Disney, 2019) in business operations. 

System expenses such as inventory holding, backlogs, and orders are examples of 

financial metrics, whereas order and inventory variance are examples of operational 

measures. Finally, customer service level and fill rate are service-related measures. 

Instead of minimizing the historical demand forecast error, Kourentzes et al. (2020) used 

cost derived from inventory evaluations that resulted in reduced forecast accuracy but 

substantial increases in forecast bias (up to 62 percent) for the out-of-sample portion. 

However, they improved on the out-of-stock or inventory on hand performance. 

The forecast accuracy criteria will be determined using the holding cost of capital 

of 5% per year and stockout cost of 90% of the potential profit of the part (part list price 

minus part cost) combined with the customer service-level goal of 95% for understanding 

the impact on operating performance for a given forecast model. The stockout cost is 

much higher than inventory holding costs due to the large contractual penalties that some 

of the largest distributors impose for unfilled orders. The best fit will be determined using 

the lowest inventory value overall and over the last thirteen periods. The study will 

compare the performance of stock control metrics against forecasting error measures ME, 

RMSE, and MAE. 

Step Seven – Add Exogenous Variable and Repeat 

Exogenous data from Google Trends will be used with the individual forecast 

models to investigate whether it will lead to an increase in forecast accuracy. Table 5. R 

Xreg Model Calls exhibits the function call with the integration of the xreg variable. The 

accuracy of each forecast model will then be compared against the baseline forecasts 
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obtained in the first iteration, and the results will be analyzed to determine the level of 

improvement. Some of the simpler models RWF, RWFD, and SMA do not support 

external variables. The regression-based models LM and PW are statistical techniques 

that predict the result of a response variable using one or more explanatory factors. 

 

Table 5. R Xreg Model Calls 

FORECAST 

METHOD 

ACRONYM R Function Call R Library 

Naive Method  

(random walk) 

RWF No support of external regressors NA 

Naive Drift 

Method  

(random walk 

with drift) 

RFWD No support of external regressors NA 

Linear Forecast LM alm(fwin~Mwin+Gwin, 

df,distribution="dnorm") 
Greybox 

(version 

1.0.0) 

Simple Moving 

Average  

SMA No support of external regressors NA 

Brown's Method  

using addititive 

errors with no 

trend or 

seasonaility 

SES es(fwin,model="ANN",h=hz,holdout

=FALSE, xreg=Gwin) 
Smooth 

(version 

3.1.2) 

Holt's Method 

using addititive 

errors with trend 

and no 

seasonality 

DES es(fwin,model="AAN",h=hz,holdout

=FALSE, xreg=Gwin) 
Smooth 

(version 

3.1.2) 

Holt's Method 

using the best 

addititive, 

multiplicative, 

or damping 

errors with trend 

and no 

seasonaility 

DESZ es(fwin,model="ZZN",h=hz,holdout=

FALSE, xreg=Gwin) 
Smooth 

(version 

3.1.2) 

Prais-Winsten  PW prais_winsten(demand.v[1:n] ~ 

mo.v[1:n]+mo_sq.v[1:n]+Gtrends.v[1

:n], data=demand.df) 

Prais  

(version 

0.1.1) 
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However, the ES models have some theoretical issues supporting external data using the 

state-space framework. The smooth library package es() function does support external 

regressors. It first estimates the parameters for the primary variable and then estimates 

constant parameters for the exogenous variable for all the exogenous observations. 

Predictions for each variable are made and then utilized in the final forecast, with more 

weight placed on the ES model than on the exogenous variables. 

In conclusion, our procedure enabled us to answer our study question and assess 

the performance of our proposed forecasting methods. The data, results, and analysis 

after following the procedures are presented in the following section. 
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Chapter 4: Results 

 

The impact of different forecasting methods with long lead times for inventory 

control was evaluated. First, a discussion of the results of the different forecasting 

methods is followed by an examination of the factors that are influencing the results of 

the study. 

Single Forecasting Model Results 

The study averaged the results of the eight Individual forecasting model 

performances of resulting from the 100 non-intermittent part numbers sampled under 

study. The results are shown in Table 6. Average Forecasting Model Performance. The 

usage of a single forecasting method turned out to be less than ideal as none of the 

forecasting methods achieved an average target CSL of 95% over all time periods and 

part numbers. The Naïve method with drift (RWFD) performed the best over all the time 

periods at 89.6% but with a very high average model inventory cost of $37,917, as 

compared to the average actual on-hand inventory costs of $248 that the company 

experienced over the same time period using their linear method combined with their 

experience and judgment.  

The traditional forecasting error measures (using cross-validation ) with the 

lowest AIC or MAE came in at 482.6, and 23.79 respectively, using the Linear method in 

the study. The lowest RMSE of 32.67 was from the Simple Moving Average (SMA) 

method. Yet, the linear method had the fifth-highest cost of $52,504, and SMA had the 

fourth-highest cost of  $53,149. Cross-Validation could not be calculated for the Prais-

Winsten model because the Forecast library in R did not work with or support the use of 
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the Prais-Winsten function from the Prais package leading to NA values for the cross-

validation calculations. The addition of Google Trends as an external regressor improved 

performance only slightly, but not significantly enough, ranging from no change to 

0.02% difference, to confirm that it should not be used in any forecasting method. In 

addition, the linear function with exogenous regressors was not supported by the Forecast 

library and the cross-validation function.  

The performance in the last 13 months provides the greatest value since we are 

looking at the ability of fully trained forecasting models (over a range of 12 to 29 

periods) to predict future performance over the last 13 months. Table 7. Average 

Table 6. Average Forecasting Model Performance 
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Forecast Model Performance in the Last 13 Months shows The Prais-Winsten model 

performed the best over the last 13 months. It was the only model to achieve an average 

CSL of 95.9%, beating the target CLS by 0.9%, and with a much lower average inventory 

cost of $2,858, the lowest of the eight models.  The Naïve models and the Linear model 

came close, but with larger inventories of almost twice as much as the Prais-Winsten 

method. 

 

Table 7. Average Forecast Model Performance in the Last 13 Months 
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Upon a closer examination of the single Prais-Winsten model inventory cost, 

shown in Figure 11. Prais-Winsten Last 13 Month Inventory Cost, a dramatic drop-off 

performance occurs after 90% of the part numbers with a subset of 10% of the part 

numbers performing poorly. It can be seen that only two of the part numbers accounted 

for 74% of the total overage, which is $210,653 of the $285,800 total inventory cost.  

 

By removing the last 10 of the part numbers, then it can be seen that the total 

model cost of inventory is $15,431 compared with the actual on-hand cost of $20,994. 

Figure12. Prais-Winsten Last 13 Month Inventory Cost Excluding the Last 10 Part 

Numbers shows 49 of the part numbers with lower cost compared to 42 of the part 

numbers with somewhat negative performance, but overall producing $5,431 in total cost 

savings. The Prais-Winsten model produced a 26% lower cost using 90% of the parts 

Figure 11. Prais-Winsten Last 13 Month Inventory Cost 
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numbers. The ten parts that were excluded appeared to exhibit non-normal behavior with 

various spikes in demand. This was determined to be because of a new major account.   

 

 

 

These spikes are illustrated in Figure 13. Part 360098 Sales Demand and 

Inventory shows the non-normal demand (blue line) causing the forecasting models to 

have difficulty ordering enough inventory, given the four-month lead time, to prevent 

stockouts. The green line shows the model's inventory results compared to the actual 

results the company experienced. The company tends to keep more inventory on hand 

because of the potential stockout penalties, and it was noticed that the company did not 

stock out during any of these spikes in demand. 

 

Figure 12. Prais-Winsten Last 13 Month Inventory Cost Excluding the Last 10 Part Numbers 
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The company explained that the spikes are caused by sales and marketing lift 

promotional programs when bringing on a new account. When a major new account is 

brought onboard, the company might agree to accept stock from the distributor to 

refurbish or rework. Then some of this stock is sent back out to the account’s other 

distribution locations. This stock is not ordered from their Asian suppliers, and the 

rework is mostly repackaging, which can be done quickly to ship rapidly. The parts that 

are returned may not be the same quantity as those that are shipped out, resulting in a 

stock rebalancing with no significant change in total inventory because they immediately 

had the stock ready to ship, and they did not have to wait four months for resupply.   

In addition, the order data that was sent included a request date and a ship date. 

Sometimes the customer will hold an order for four to eight weeks because their store is 

not ready to receive the stock. This delay was not accounted for in the data, which means 

Figure 13. Part 360098 Sales Demand and Inventory 
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the company did have advanced notice of an order and reacted accordingly by ordering 

enough inventory. The demand data used for this project included this rebalancing and 

held orders, but the advanced stocking orders were not included in the prior notice data 

table. Since the lift adjustment could not be made, it caused these spikes in the demand 

data picture. 

The use of a single forecasting model to predict future demand across several 

different parts numbers can perform poorly and appears to be less robust or agile to 

respond to the variation in demand even when using a sample of 100 non-intermittent and 

low CV2 classified parts. It is possible that using different forms of classification, data 

clustering, and demand prediction (Steuer, Hutterer, Korevaar, & Fromm, 2018) could 

lead to better results. Clearly, each forecasting method is different, just like the 

differences found in each of the individual part number demand patterns.  

Multiple Forecasting Model Results 

Choosing the optimal forecasting model for each part number produced much 

better results. Table 8. Select Forecasting Model Performance shows the total inventory 

cost performance of each model optimized around individual raw part numbers leading to 

a significant improvement over the one-size-fits-all approach. Six of the eight or 75% 

forecasting models (highlighted in red) did better than their actual performance. Again, 

the few non-normal demand part numbers caused the Prais-Winsten model to perform 

poorly, just like before. 
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Figure 14. Part Number Models over the Last 13 Month Inventory Cost 

Table 8. Select Forecasting Model Performance 
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The inventory cost resulting from the performance of the individual models is 

shown in Figure 14. Part Number Models over the Last 13 Month Inventory Cost. Each 

part number is sorted from those that did the best to worst. The total cost excluding the 

last three of the part numbers is $12,639 compared to the actual cost of $23,942, resulting 

in a difference of $11,303 in savings (see Figure 15. Part Number Models Last 13 Month 

Inventory Cost Excluding 3 Part Numbers) made up of 62 of the part numbers with 

$13,360 lower cost and 35 of the part numbers with $2,057 in higher cost. The total is 

47% lower than the company's actual performance and almost twice the performance of a 

single Prais-Winsten model, which was 26%. 

 

 

Using a different model for each part number is slightly more computationally 

intensive. However, if this were done every month, it would not be necessary to 

recompute the past months. Only the new data would need to be added each month, and 

Figure 15. Part Number Models Last 13 Month Inventory Cost Excluding 3 Part Numbers 
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the new parameters could be optimized, and possibly a new model could be selected 

based on its performance that month.  

Results Summary 

In answer to the first research question: Do complex forecasting methods increase 

forecasting accuracy?  Yes, using an optimal model for individual part numbers worked 

even better. Selecting the complex model Prais-Winsten as a single model over the whole 

time series performed best at 96%, but it incurred 11x greater cost. If we exclude last 10 

of the most volatile part numbers due to non-normal behavior, then the total model 

inventory cost would be $5,431 or 26% lower than the company’s current method of 

inventory control. Using the forecasting model that performed the best for an individual 

part number created a total model inventory cost of $11,303 or 47% lower than their 

current method of inventory control, when we exclude the last three of the part numbers 

due to non-normal behavior. 

In answer to the second research question: Can exogenous data improve demand 

forecasting? Maybe, but using Google Trends was not significantly better. The Google 

data appeared promising at the start, but after analysis, it turned out to be insignificant. 

However, the Google Trends data was helpful in finding an autoregressive AR(1) process 

with a first-order moving average. This indicated the use of the Prais-Winsten method, an 

iterative process designed for dealing with AR(1) errors., which led to it being added as a 

forecasting method in this study. 

In answer to the third research question: Can stock control metrics be used to 

evaluate forecast accuracy? Yes, using inventory costs is better than forecast error 

because it is in dollar terms, so everyone can easily understand the impact to the bottom 
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line. Imprecise forecasting projections are costly to businesses, resulting in stockouts and 

lost revenues, as well as overstocking and failing to fulfill service level agreements 

resulting in incurring penalties (Kourentzes et al., 2020). Stock control includes more 

factors than looking at forecast error in terms like RMSE or MAE. Syntetos, 

Nikolopoulos, and Boylan (2010) note that forecasting methods utilized as an input to 

inventory control should be assessed on their effects on inventory control.  

There is also the effect of safety stock, customer service expectations, and current 

levels of inventory on hand that all inform the order. A business is more concerned with 

the effects of forecast error on CSL and inventory levels than the value of forecast error. 

Translating the forecast error into an inventory cost number provides better feedback for 

stock control. The company currently tracks monthly fill rates, but it does not have a 

method for order accuracy beyond their fill rate. The research results support the use of 

the Prais-Winsten method for non-intermittent demand as an improved method over the 

linear model they are using today. The company believes they could save even more 

using optimized models for each part number.  

In answer to the fourth research question: Can a procedure be developed that is 

likely to be adopted? Yes. The purchasing manager currently aggregates different inputs 

to inform his judgment on the final order quantity, including using the linear time trend in 

an Excel spreadsheet to estimate demand in the next four months.  A routine can be 

developed from within MS Excel or Power BI calling an R or Python program to perform 

the complex forecasting. The selected model that performs the best could be deployed 

into the organization and validated against future data (periods +1, 2, 3). In each future 

month, the parameters of the forecast model would be updated with the new data.   
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Chapter 5: Discussion 

 

The study provided a solution to demand forecasting based on predictive analytics 

of automotive aftermarket company data combined with exogenous data from Google 

Trends.  The contribution to practice includes stock control metrics to determine forecast 

accuracy and evaluate whether forecast model complexity leads to better results. 

Although an improvement in forecast accuracy was not obtained by using external 

Google Trends, it is still possible that other data sources could lead to such improvement.  

The resulting optimal inventory policy should not be difficult to implement and 

produce cost savings over the company's current method. An optimal inventory policy 

would lead to lower inventory uncertainty and a significant rise in warehouse space 

utilization while maintaining a high CSL demanded by customers and the company’s 

marketing strategy. 

The study illustrates the inadequacy of simple univariate models used for 

forecasting that did not perform better than the complex models like Prais-Winsten, an 

econometric model rarely used in demand forecasting for inventory control or automotive 

parts. The study shows how forecast models that consider stock control metrics can 

provide more significant inventory optimization over traditional accuracy measures. 

Moreover, the study adds to the limited empirical research on demand forecasting using 

predictive analytics with long lead times, exogenous variables, stock control metrics, and 

dynamic model updating, and the use of Prais-Winsten for demand forecasting for 

automotive parts. 
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Limitations 

There were a few limitations of the study based on the research design and 

provided data. The company only provided 54 months of data the was usable due to a 

change in accounting systems that made the older data difficult to reconcile with the new 

accounting system. Utilizing more data would have allowed larger training sets for the 

forecasts.  

The study design focused on 100 nonintermittent sample parts in order to reduce 

computational complexity; therefore, none of the intermittent parts were included in the 

study. Adding intermittent part numbers would have provided greater certainty regarding 

the overall inventory performance for the whole company.  

Data governance was an issue with the company. There did not appear to be clear 

historical records of the advanced notice data making it difficult to break out the non-

normal behavior that was known to be occurring. Also, the historical stockout costs were 

estimated at 90% of profit, but the actual costs were estimated to vary by more due to 

changes in customer discounts, promotions, supplier costs, and quantity purchase 

discounts. 

The study's final limitation stemmed from the constraints of the ‘R’ language 

libraries used for computation. None of the libraries supported stock control metrics for 

evaluation. The study was also unable to overcome computing cross-validation numbers 

using exogenous regressors for unsupported forecasting models. Given more time, the 

study could overcome some of these limitations in ‘R’ libraries or data. 
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Extensions and Future Research 

This study provides the opportunity for several future possibilities to extend these 

research findings. Further research into how easily the new forecast method is adopted, 

used, and performed in the future could be explored better to understand continuous 

utilization, adaptation, and changes. 

There were 100 non-intermittent and low CV2 classified parts. Further 

exploration of the remaining intermittent and non-intermittent parts could be investigated 

to determine if better performance can be obtained with new, more sophisticated, and 

different models that could produce even better results. 

The company’s judgment worked quite well in the past without using safety stock 

in their ordering policy. Although research studies have shown the advantages of both 

safety stock (Chu & Shen, 2010; Kang, Ullah, & Sarkar, 2018) and statistical forecasting 

methods, businesses continue to rely on their judgment integrated with demand 

forecasting, frequently described as “integrating forecasting” methods (Arvan, Fahimnia, 

Reisi, & Siemsen, 2019; Baecke, De Baets, & Vanderheyden, 2017; Syntetos, 

Nikolopoulos, Boylan, Fildes, & Goodwin, 2009). A model could be developed to 

understand how well their current judgment performance works, both with and without 

safety stock, and then integrate the existing heuristics used for forecasting judgment into 

a standard ordering policy while also measuring effectiveness. 

 Combining several forecasts into a single model has been shown to reduce 

forecasting errors and reduce the constraints inherent in a single model (Barrow & 

Kourentzes, 2016).  Additional research into different sources of exogenous data like 
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using the companies own website searches, hits, or individual customer ordering patterns 

might lead to additional improvement.  

Understanding how automotive parts age and the production cycle is also crucial 

to raw material purchasing. As automobiles age, they become less popular and expensive 

to maintain, which results in demand for automotive parts declining. This results in 

retailers using stock balancing of older inventory or negative demand to the 

manufacturer. At the same time, as the purchasing cycle improves, it is essential for 

production planning to improve and become more efficient. Significant opportunities for 

improvement would exist for production planning, material handling, and inventory 

usage to understand how this negative demand due to aging, along with committed raw 

material parts, affects finished goods inventory. Furthermore, a replication of this study 

in other firms and industries would be valuable. 

There is also the use of clustering analysis to break down large groupings of data 

items into smaller groups based on their similarities while considering the complex bill of 

material relationships between items (Srinivasan & Moon, 1999). There is also the use of 

K‑nearest‑neighbor (KNN), which Nikolopoulos, Babai, and Bozos (2016) used to 

forecast intermittent automotive spare parts demand. KNN is a classification method that 

identifies similarities in each object to nearby objects (named tuples) with a similarity 

index. These tuples are explained by n characteristics corresponding to a place in an n-

dimensional space. The KNN method finds k tuples most similar to a particular tuple. 

These classifications result in the development of clusters of objects that are comparable. 

KNN can also be used to reduce the dimensionality of data in regression analysis 

situations. 
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Conclusions 

Demand forecasting with long lead times is challenging to obtain an accurate 

forecast. In this paper, we use the data from an automotive clutch manufacturing 

company, which consisted of over 1,033 imported raw parts with lead times of four 

months. Monthly forecasting of part demand resulted in an assessment of various simple 

and complex forecasting methods. The comparison results show that the forecasts 

obtained using a single Prais-Winsten econometric method inventory order policy with 

safety stock were more accurate than those obtained by other classical forecasting 

methods and produced a 26% improvement over the current company use of the linear 

method that is coupled with judgment and does not use safety stock.  

In addition, the forecasts obtained using the best method for individual part 

numbers produced a 47% improvement over the current linear method used by the 

company. The paper also shows how traditional forecast error measures were 

inappropriate and that using the stock control metrics, CSL, and inventory cost is superior 

for non-intermittent demand, despite their consistent usage for evaluating forecast error in 

many forecasting studies. The research results support the use of the Prais-Winsten 

method for non-intermittent demand with long-lead times and using multiple forecasting 

models that are optimized to individual part numbers for an inventory order policy. 
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Appendix – R Program Code 

# Load Libraries 

library(forecast) 

library(prais) 

library(smooth) 

 

###START 

 

# LOOP all SKUs using Exogenous regressors 

xreg_sw <- "FALSE" 

 

for (sw in (1:2)) { # xreg_sw loop 

 

#load company dataframe from excel delimited 

Company.df = read.delim("Data_inv_sales_not100cv-smooth.txt", header = TRUE) 

last <- 54 

 

#Replace missing data with "0" 

Company.df[Company.df==""] <- 0 

demand_o.v     <<- vector("integer", length = last) 

onhand_inv.v  <<- vector("integer", length = last) 

notice.v  <<- vector("integer", length = last) 

date.v    <<- seq(as.Date("2016-1-1"), as.Date("2020-6-1"), by = "months") 

 

#load Google dataframe from excel delimited 

Google.df = read.delim("GoogleTrends.txt", header = TRUE) 

Gtrends.v <- vector("integer", length = last) 

Gtrends.v <- as.integer(Google.df[1:last]) 

Gwin.ts <<- ts(Gtrends.v, start=c(2016,1), freq=12) 

eXreg  <- "GoogleTrends" 

 

N <- 100 # total SKU 100 

results.df  = data.frame( 

   sku         = character(N), 

   cost        = numeric(N), 

   price       = numeric(N), 

   Hcsl       = numeric(N), 

   MHcsl       = character(N), 

   MCSLmethod  = character(N), 

   MTinvC      = numeric(N), 

   LcvRMSE     = numeric(N), 

   McvRMSE     = character(N), 

   RMSETinvC   = numeric(N), 

   Laic        = numeric(N), 

   Maic        = character(N), 
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   aicTinvC    = numeric(N), 

   MTinv_Tgtcsl= numeric(N), 

   MTinv_Tgt   = character(N), #Model of Lowest Inv to meet Target CSL 

   MCSLmethTgt = character(N), 

   MTinv_TgtC  = numeric(N), 

   Act_invC    = numeric(N), 

   L13_CSL     = numeric(N), 

   L13_invC    = numeric(N), 

   L13_ActinvC = numeric(N), 

   L13_MTinv   = character(N), 

   L13_avg     = numeric(N), 

   L13_sd      = numeric(N), 

   L13_cv2     = numeric(N), 

   L_avg       = numeric(N), 

   L_sd        = numeric(N), 

   L_cv2       = numeric(N), 

   hz          = integer(N), 

   win         = integer(N), 

   eXreg       = character(N), 

   fill_rate   = numeric(N) 

) 

irate  <- 0.05/12 # annual interest rate 

discount  <- -0.9 # % of profit for backorder 

fill_rate <- 0.99 

win       <<- 12  # 12-period rolling window 

hz        <<- 4   # 4-period forecast lead time 

stwin     <<- 12  # start window ignores first 12 mo 

mo.v      <<- rep(1:12,5) 

mo.v    <<- mo.v[1:54] 

mo_sq.v   <<- mo.v * mo.v 

Nmo.v     <<- seq(54) 

Nmo.ts    <<- ts(Nmo.v, start=c(2016,1), freq=12) 

 

#model "N"=none, "A"=additive, "M"=multiplicative, Ad=AdditiveDamped, 

"Z"=automatically selected and "C"=combine 

 

# CV Forecast Methods 

flm  <- function(y, h) {  

   df <- data.frame(fwin.cv, Mwin.cv) 

   mod <- alm(fwin.cv ~ Mwin.cv, df, distribution="dnorm") 

   forecast(mod,h=hz,interval="p") 

} 

flmp <- function(y, h) {  

   df <- data.frame(y, Mwin.cv) 

   mod <- alm(demand.ts ~ Mwin.cv, df, distribution="dpois") 

     forecast(mod,h=hz,interval="p") 
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  } 

   

  fses <- function(y, h) { forecast(es(y, model="ANN"), h=h) } 

  fdes <- function(y, h) { forecast(es(y, model="AAN"), h=h) } 

  ftes <- function(y, h) { forecast(es(y, model="ZZN"), h=h) } 

   

  fma  <- function(y, h) { forecast(sma(y, win), h=h) } 

  fpw  <- function(y, h, x1, x2, x3) { forecast(prais_winsten(y ~ x1 + x2, data=x3), h=h) } 

   

  fgpw <- function(y, h, x1, x2, x3, xreg) { forecast(prais_winsten(y ~ x1 + x2 + xreg, 

data=x3), h=h,interval="p") }   

  fglm <- function(y, h, xreg) { 

     df <- data.frame(fwin.cv, Mwin.cv, Gwin.cv) 

     mod <- alm(fwin.cv ~ Mwin.cv+Gwin.cv, df, distribution="dnorm") 

     forecast(mod,h=hz,interval="p") 

  } 

  fglmp <- function(y, h, xreg) { 

     df <- data.frame(y, Mwin.cv, xreg) 

     mod <- alm(y ~ Mwin.cv+xreg, df, distribution="dpois") 

     forecast(mod,h=hz,interval="p") 

  } 

  fgses <- function(y, h, xreg, newxreg) { forecast(es(y, model="ANN", holdout=FALSE, 

xreg=xreg), h=h) } 

  fgdes <- function(y, h, xreg, newxreg) { forecast(es(y, model="AAN", holdout=FALSE, 

xreg=xreg), h=h) } 

  fgtes <- function(y, h, xreg, newxreg) { forecast(es(y, model="ZZN", holdout=FALSE, 

xreg=xreg), h=h) } 

 

mean_fcst  <- function(y, h, n) {  

  fcst <<- predict(y,h=h,interval="p") 

  forecast.v[n+1] <<- round(fcst$mean[h], digits=0) 

  Pforecast.v[n+1]<<- round(sum(fcst$mean[1:h]), digits=0) # 4-period forecast sum 

  for (i in seq(h)) { Pfcst.mat[n+1,i] <<- fcst$mean[i] } 

  return(round(fcst$mean[h], digits=0)) 

} 

  

#LOOP through part number SKUs 

for (f in (1:N)) { 

 

 #load vectors with company SKU data 

 RM   <<- as.character(Company.df[f,1]) 

 cost   <<- as.numeric(Company.df[f,2]) 

 price   <<- as.numeric(Company.df[f,3]) 

 demand_o.v  <<- as.integer(Company.df[f,4:57]) 

 notice.v  <<- as.integer(Company.df[f,58:111]) 

 onhand_inv.v  <<- as.integer(Company.df[f,112:165])  
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 profit  <- price - cost 

 part.v  <<- c(RM, cost, price, profit) 

 

 

 CSL.df <<- data.frame( 

    model_name.v = c("Naive", "Naive Drift", "Brown SES","Holt DES","Holt 

DESZ","Linear","Moving Average","Prais Winsten"), 

    CSL     = 0.0, 

    inv_low  = 0, 

    inv_high = 0, 

    inv_rang = 0, 

    cvME     = 0.0, 

    cvRMSE   = 0.0, 

    cvMAE    = 0.0, 

    aic     = 0.0, 

    method   = "NA", 

    Tinv_neg = 0.0, 

    Tinv_pos = 0.0, 

    Tinv     = 0.0, 

    Tinv_negC= 0.0, 

    Tinv_posC= 0.0, 

    TinvC    = 0.0, 

    ActinvC  = 0.0, 

    L13_CSL  = 0.0, 

    L13_invC = 0.0, 

    L13_ActinvC = 0.0, 

    L13_MTinv_Tgt = " " 

 ) 

 

 # Initialize Start Conditions 

 demand.v <<- demand_o.v - notice.v 

 start    <- round(mean(demand.v[1:12]), digits=0) 

 demand.ts   <- ts(demand.v, start=c(2016,1), freq=12) 

  

 #LOOP through Methods 

 write.table(RM, "results.csv", sep = ",", col.names = TRUE, append = T) 

 for (fn in (1:8)) { 

   

  # Initialize Vectors 

  forecast.v   <<- vector("integer", length = last) 

  level.v   <<- vector("integer", length = last) 

  trend.v   <<- vector("integer", length = last) 

  season.v   <<- vector("integer", length = last) 

  alpha.v   <<- vector("integer", length = last) 

  beta.v    <<- vector("integer", length = last) 

  method.v    <<- vector("character", length = last) 
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  SS.v    <<- vector("integer", length = last) 

  order.v   <<- vector("integer", length = last) 

  ExpInvB4_order.v <<- vector("integer", length = last) 

  delivery.v   <<- vector("integer", length = last) 

  EOP_Inv.v   <<- vector("integer", length = last) 

  forecast_err.v   <<- vector("integer", length = last) 

  order_err.v   <<- vector("integer", length = last) 

  Inv_err.v   <<- vector("integer", length = last) 

  Psim_fc.v   <<- vector("integer", length = last) 

  Pforecast.v  <<- vector("integer", length = last) 

  Pfcst.mat   <<- matrix(0, nrow = last, ncol = 5)   

  

  forecast.v[1]  <- start 

  Pforecast.v[1]  <- forecast.v[1]*hz 

  SS.v[1:5] <- round(qnorm(fill_rate) * sd(demand.v[1:12]), digits=0) 

  order.v[1]  <- start 

  ExpInvB4_order.v[1]  <- start 

  delivery.v[1]   <- start 

 # delivery.v[1:(hz+1)] <- start 

  for (d in (1:3)) { delivery.v[d+1] <- onhand_inv.v[d+1] - (onhand_inv.v[d] - 

demand_o.v[d+1]) } 

  EOP_Inv.v[1]  <- onhand_inv.v[1] 

  order_err.v[1]  <- order.v[1] - demand.v[1] 

  Inv_err.v[1]  <- EOP_Inv.v[1] - demand.v[1] 

   

         message(paste("SKU", f, RM, "method loop", fn, CSL.df$model_name.v[fn], 

"Xreg=", xreg_sw, "start=", start, "Fill Rate:", fill_rate)) 

         write.table(paste(RM, "method loop", fn, CSL.df$model_name.v[fn]), "results.csv", 

sep = ",", col.names = TRUE, append = T) 

 

  # Loop through orders(n) 

  for (n in (1:(last-1))) { 

      fwin <<- window(demand.ts, end=2016+(n-1)/12) 

      Gwin <<- window(Gwin.ts,end=2016+(n-1)/12) 

      Mwin <<- window(Nmo.ts, end=2016+(n-1)/12) 

      if (xreg_sw == "TRUE") demand.df <<- data.frame(demand.v[1:n], mo.v[1:n], 

mo_sq.v[1:n], Gtrends.v[1:n]) 

      else demand.df <<- data.frame(demand.v[1:n], mo.v[1:n], mo_sq.v[1:n]) 

       

      if (fn == "1") {  # Naive 

   fit1 <- rwf(fwin) 

   mean_fcst(fit1, hz, n) 

      } else if (fn == "2") {  #Niave w/Drift     

   if (n == "1") {   # cannot forecast a single period 

       forecast.v[n+1]  <- start 

       Pforecast.v[n+1] <- forecast.v[n+1]*hz 
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   } else {  

       fit1 <- rwf(fwin, drift=TRUE) 

       mean_fcst(fit1, hz, n) 

   } 

      } else if (fn == "3") {  # "Brown SES ANN" 

   if (n < stwin) {   # cannot forecast a single period 

      forecast.v[n+1]  <- start 

      Pforecast.v[n+1] <- forecast.v[n+1]*hz 

   } else {  

      if (xreg_sw == "TRUE") { fit1 <- es(fwin,model="ANN",h=hz,holdout=FALSE, 

xreg=Gwin) } 

      else { fit1 <- es(fwin, model="ANN",h=hz,holdout=FALSE) } #Additive errors w/no 

trend or season  

      forecast.v[n+1]<- round(fit1$forecast[hz], digits=0) 

      Pforecast.v[n+1]<- round(sum(fcst$mean[1:hz]), digits=0) # 4-period forecast sum 

                           for (i in seq(hz)) { Pfcst.mat[n+1,i] <- fcst$mean[i] } 

      alpha.v[n+1] <- fit1$persistence[1] 

      level.v[n+1] <- fit1$states[1] 

      method.v[n+1]<- fit1$model 

   }    

      } else if (fn == "4") {   # "Holt DES AAN" 

   if (n < stwin) {   # cannot forecast a single period 

      forecast.v[n+1]  <- start 

      Pforecast.v[n+1] <- forecast.v[n+1]*hz 

   } else {  

      if (xreg_sw == "TRUE") { fit1 <- es(fwin,model="AAN",h=hz,holdout=FALSE, 

xreg=Gwin) } 

      else { fit1 <- es(fwin, model="AAN",h=hz,holdout=FALSE) } #Additive errors 

w/trend  

      forecast.v[n+1]<- round(fit1$forecast[hz], digits=0)  

      Pforecast.v[n+1]<- round(sum(fcst$mean[1:hz]), digits=0) # 4-period forecast sum 

                           for (i in seq(hz)) { Pfcst.mat[n+1,i] <- fcst$mean[i] }       

      alpha.v[n+1] <- fit1$persistence[1] 

      level.v[n+1] <- fit1$states[1] 

      method.v[n+1]<- fit1$model 

   } 

      } else if (fn == "5") {  # "Holt DES ZZN" 

   if (n < stwin) {   # cannot forecast a single period 

      forecast.v[n+1]  <- start 

      Pforecast.v[n+1] <- forecast.v[n+1]*hz 

   } else { 

      if (xreg_sw == "TRUE") { fit1 <- es(fwin,model="ZZN",h=hz,holdout=FALSE, 

xreg=Gwin) } 

      else { fit1 <- es(fwin, model="ZZN",h=hz,holdout=FALSE) } #Additive errors 

w/trend   

      forecast.v[n+1]<- round(fit1$forecast[hz], digits=0)   
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      Pforecast.v[n+1]<- round(sum(fcst$mean[1:hz]), digits=0) # 4-period forecast sum 

     for (i in seq(hz)) { Pfcst.mat[n+1,i] <- fcst$mean[i] } 

      alpha.v[n+1] <- fit1$persistence[1] 

      level.v[n+1] <- fit1$states[1] 

      method.v[n+1]<- fit1$model 

   }      

      } else if (fn == "6") {  # "Linear" 

   if (n < stwin) {   # cannot forecast a single period 

      forecast.v[n+1]  <- start 

      Pforecast.v[n+1] <- forecast.v[n+1]*hz 

      Pfcst.mat[ n+1,1:(hz+1)] <- forecast.v[n+1] 

   } else { 

      if (xreg_sw == "TRUE") {  

         df   <- data.frame(fwin, Mwin, Gwin) 

         fit1 <- alm(fwin~Mwin+Gwin, df,distribution="dnorm") 

      } else { 

         df   <- data.frame(fwin, Mwin) 

         fit1 <- alm(fwin~Mwin,df,distribution="dnorm") 

      } 

      mean_fcst(fit1, hz, n) 

   } 

      } else if (fn == "7") {  # SMA 

   if (n < stwin) {   # cannot forecast a single period 

      forecast.v[n+1]  <- start 

      Pforecast.v[n+1] <- forecast.v[n+1]*hz 

   } else {  

      if (n < win) { num = n } else { num = win } 

      fit1 <- sma(fwin, num, h=hz) 

      forecast.v[n+1]<- round(fit1$forecast[hz], digits=0)   

      Pforecast.v[n+1]<- round(sum(fit1$forecast[1:hz]), digits=0) # 4-period forecast sum 

      for (i in seq(hz)) { Pfcst.mat[n+1,i] <- fcst$mean[i] } 

   } 

      } else if (fn == "8") { # "Prais Winsten" 

   if (n < stwin) {   # cannot forecast a single period 

      forecast.v[n+1]  <- start 

      Pforecast.v[n+1] <- forecast.v[n+1]*hz 

   } else { 

      if (xreg_sw == "TRUE") {  

         fit1 <- prais_winsten(demand.v[1:n] ~ mo.v[1:n]+mo_sq.v[1:n]+ Gtrends.v[1:n], 

data=demand.df) 

         b4  <- fit1$coefficients[4] # Gtrends.v  

      } else {  

         fit1 <- prais_winsten(demand.v[1:n] ~ mo.v[1:n]+mo_sq.v[1:n], data=demand.df)  

      } 

      e  <- summary(fit1) 
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      dw <- e$dw[1] # Durbin-Watson statistic  2< autocorrelation (AC), 0=No AC, >2 

Neg AC 

      method.v[n+1] <- paste("DW=", round(dw, digits=2)) 

       

      rho<- fit1$rho[length(fit1$rho)] 

      b1 <- fit1$coefficients[1] # intercept 

      b2 <- fit1$coefficients[2] # mo.v 

      b3 <- fit1$coefficients[3] # mo_sq.v 

       

      if ( n > 53) { 

         forecast.v[n+1] <- 0 

         Pfcst.mat[ n+1,] <- 0 

      } else if (xreg_sw == "TRUE") {  

         err <- demand.v[n] - (rho * demand.v[n-1]) - ((1-rho) * b1) - (b2 * (mo.v[n] - rho * 

mo.v[n-1])) - (b3 * (mo_sq.v[n] - rho * mo_sq.v[n-1])) - (b4 * (Gtrends.v[n] - rho * 

Gtrends.v[n-1])) 

         forecast.v[n+1] <- round(I(rho^hz)*err + b1 + b2 * mo.v[n+1] + b3 * mo_sq.v[n+1] 

+ b4 * Gtrends.v[n+1] + 0.5, digits=0) 

         for (i in seq(hz)) {  

            Pfcst.mat[ n+1,i] <- round(I(rho^i)*err + b1 + b2 * mo.v[n+i] + b3 * 

mo_sq.v[n+i] + (b4 * Gtrends.v[n+1]) + 0.5, digits=0)  

         } 

      } else {  

         err <- demand.v[n] - (rho * demand.v[n-1]) - ((1-rho) * b1) - (b2 * (mo.v[n] - rho * 

mo.v[n-1])) - (b3 * (mo_sq.v[n] - rho * mo_sq.v[n-1]))  

         forecast.v[n+1] <- round(I(rho^hz)*err + b1 + b2 * mo.v[n+1] + b3 * mo_sq.v[n+1] 

+ 0.5, digits=0) 

         for (i in seq(hz)) {  

            Pfcst.mat[ n+1,i] <- round(I(rho^i)*err + b1 + b2 * mo.v[n+i] + b3 * 

mo_sq.v[n+i] + 0.5, digits=0)  

         } 

      }  

      Pforecast.v[n+1] <- round(sum(Pfcst.mat[ n+1,1:hz]), digits=0) 

   } 

      } # end model IF 

      if (n > hz) { forecast_err.v[n] <- forecast.v[n-hz] - demand.v[n]} # cannot determine 

error of last data points beyound hz (no demand) 

      else { forecast_err.v[n] <- forecast.v[n] - demand.v[n+hz] } 

      order_err.v[1]    <- order.v[n] - demand.v[n] 

 

      if (n > hz) { 

        SS.v[n+1] <-  round(qnorm(fill_rate) * sd(forecast_err.v[(n-hz):n]) + .5, digits=0) 

        delivery.v[n+1] <- order.v[n-(hz-1)] 

        ExpInvB4_order.v[n+1] <- EOP_Inv.v[n] + sum(order.v[(n-(hz-1)):n]) - 

Pforecast.v[n+1] - sum(notice.v[(n-(hz-1)):n]) 
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      } else {  # n < hz 

        delivery.v[(n+hz)] <- order.v[n]  

        ExpInvB4_order.v[n+1] <- EOP_Inv.v[n] + sum(delivery.v[(n+1):(n+hz)]) - 

Pforecast.v[n+1] - sum(notice.v[(n+1):(n+hz)]) 

      } 

      order.v[n+1]  <- max((forecast.v[n+1] + SS.v[n+1] - ExpInvB4_order.v[n+1]),0) 

      order_err.v[n+1] <- order.v[n+1] - demand.v[n+1] 

      EOP_Inv.v[n+1] <- EOP_Inv.v[n] + delivery.v[n+1] - demand_o.v[n+1] 

      Inv_err.v[n+1] <- EOP_Inv.v[n+1] - demand.v[n+1] 

 

  } # End order loop 

  forecast_err.v[n+1] <-  0 

 

  #Output Model Detail 

  print(part.v) 

  if (xreg_sw == "TRUE") {  

     ordering.df <- data.frame(date.v, demand_o.v, notice.v, forecast.v, SS.v, order.v, 

ExpInvB4_order.v, delivery.v, EOP_Inv.v, forecast_err.v, Pforecast.v, alpha.v, beta.v, 

method.v, level.v, trend.v, onhand_inv.v, Gtrends.v) 

  } else { 

     ordering.df <- data.frame(date.v, demand_o.v, notice.v, forecast.v, SS.v, order.v, 

ExpInvB4_order.v, delivery.v, EOP_Inv.v, forecast_err.v, Pforecast.v, alpha.v, beta.v, 

method.v, level.v, trend.v, onhand_inv.v) 

  } 

  print(ordering.df) 

  write.table(ordering.df, "results.csv", sep = ",", col.names = TRUE, row.names=FALSE, 

append = T) 

   

  # Determine CV Errors 

  fwin.cv <<- window(demand.ts, start=2017, end=2016+last/12) 

  Gwin.cv <<- window(Gwin.ts,start=2017, end=2016+last/12) 

  Mwin.cv <<- window(Nmo.ts, start=2017, end=2016+last/12) 

  mo_sq.cv<<- Mwin.cv * Mwin.cv 

  if (xreg_sw == "TRUE") demand.df <<- data.frame(fwin.cv[13:n], Mwin.cv[13:n], 

mo_sq.cv[13:n], Gwin.cv[13:n]) 

  else demand.df <<- data.frame(fwin.cv[13:n], Mwin.cv[13:n], mo_sq.cv[13:n]) 

       

  if (fn == "1") {   

     err  <- tsCV(fwin.cv, rwf, h=hz, window=win) # Naive 

  } else if (fn == "2") {  

     err  <- tsCV(fwin.cv, rwf, drift=TRUE, h=hz, window=win) #Naive Drift 

  } else if (fn == "3") { 

     if (xreg_sw == "TRUE") { err <- tsCV(fwin.cv, fgses, h=hz, window=win, 

xreg=Gwin.cv) } 

     else { err <- tsCV(fwin.cv, fses, h=hz, window=win) } #Brown SES     

  } else if (fn == "4") {  
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     if (xreg_sw == "TRUE") { err <- tsCV(fwin.cv, fgdes, h=hz, window=win, 

xreg=Gwin.cv) } 

     else { err <- tsCV(fwin.cv, fdes, h=hz, window=win) } #Holt DES  

  } else if (fn == "5") { 

     if (xreg_sw == "TRUE") { err <- tsCV(fwin.cv, fgtes, h=hz, window=win, 

xreg=Gwin.cv) } 

     else { err <- tsCV(fwin.cv, ftes, h=hz, window=win) } #Holt DESZ 

  } else if (fn == "6") {  

     if (xreg_sw == "TRUE") { err <- tsCV(fwin.cv, fglm, h=hz, window=win, 

xreg=Gwin.cv) } 

     else { err <- tsCV(fwin.cv, flm, h=hz, window=win) } #Linear 

  } else if (fn == "7") {  

     err <- tsCV(fwin.cv, fma, h=hz, window=win) #Moving AVG 

  } else if (fn == "8") {  

     if (xreg_sw == "TRUE") { err <- tsCV(fwin.cv, fgpw, h=hz, window=win, 

x1=Mwin.cv, x2=mo_sq.cv, x3=demand.df, xreg=Gwin.cv) } 

     else { err <- tsCV(fwin.cv, fgpw, h=hz, window=win, x1=Mwin.cv, x2=mo_sq.cv, 

x3=demand.df) } #PW 

  }  

 

  Arange.v  <- onhand_inv.v[win:last] 

  ActinvC <- (sum(Arange.v[Arange.v>0]) * cost * irate) + (sum(Arange.v[Arange.v<0]) 

* profit * discount) 

  results.df$Act_invC[f] <- ActinvC 

  CSL.df$ActinvC[fn]     <- ActinvC 

   

  CSL.df$method[fn] <- method.v[last] 

   

  CSL.df$cvRMSE[fn] <- signif(sqrt(mean(err^2, na.rm=TRUE)),digits=6) 

  CSL.df$cvMAE[fn]  <- signif(mean(abs(err), na.rm=TRUE),digits=6) 

  CSL.df$cvME[fn]   <- signif(mean(err, na.rm=TRUE),digits=6) 

 

  idemand.v <- demand.v[win:last] 

  irange.v  <- EOP_Inv.v[win:last] 

  CSL.df$inv_low[fn] <- min(irange.v) 

  CSL.df$inv_high[fn]<- max(irange.v) 

 

  CSL.df$Tinv_neg[fn] <- sum(irange.v[irange.v<0]) 

  CSL.df$Tinv_pos[fn] <- sum(irange.v[irange.v>0]) 

  CSL.df$Tinv[fn]     <- CSL.df$Tinv_pos[fn] - CSL.df$Tinv_neg[fn] 

 

  CSL.df$Tinv_negC[fn] <- CSL.df$Tinv_neg[fn] * profit * discount 

  CSL.df$Tinv_posC[fn] <- CSL.df$Tinv_pos[fn] * cost * irate 

  CSL.df$TinvC[fn]     <- CSL.df$Tinv_posC[fn] + CSL.df$Tinv_negC[fn] 

 

  CSL.df$inv_rang[fn]<- abs(min(irange.v) - max(irange.v)) 
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  CSL.df$CSL[fn] <- (sum(idemand.v) + sum(irange.v[irange.v<0], na.rm = TRUE)) / 

sum(idemand.v) 

   

  if (fn < 3) {   # Naive 

    CSL.df$aic[fn] <- 0   

  } else if (fn < 6) {  # ES 

    CSL.df$aic[fn] <- signif(fit1$ICs[1],digits=5)  

  } else if (fn < 7) {  # Linear 

    CSL.df$aic[fn] <- signif(AIC(fit1),digits=5)  

  } else if (fn < 8) {  # SMA 

    CSL.df$aic[fn] <- signif(fit1$ICs[1],digits=5) 

  } else if (fn < 9) {  # Prais-Winsten 

    CSL.df$aic[fn] <- c("NA") 

  } else if (fn < 10) {  # lm w/Poisson Distribution 

    CSL.df$aic[fn] <- signif(AIC(fit1),digits=5) 

  }  

   

  irange_len     <- length(irange.v) 

  sub_irange.v        <- irange.v[(irange_len-12):irange_len] 

   

  CSL.df$L13_CSL[fn]  <- (sum(idemand.v[(irange_len-12):irange_len], na.rm = TRUE) 

+ sum(sub_irange.v[sub_irange.v<0], na.rm = TRUE)) / sum(idemand.v[(irange_len-

12):irange_len], na.rm = TRUE) 

    CSL.df$L13_invC[fn] <- (sum(sub_irange.v[sub_irange.v>0], na.rm = TRUE) * cost * 

irate) + (sum(sub_irange.v[sub_irange.v<0], na.rm = TRUE) * profit * discount) 

 

         sub_onhand_inv.v    <- onhand_inv.v[(last-12):last] 

         L13_ActinvC      <- (sum(sub_onhand_inv.v[sub_onhand_inv.v>0], na.rm = TRUE) 

* cost * irate) + (sum(sub_onhand_inv.v[sub_onhand_inv.v<0], na.rm = TRUE) * profit 

* discount) 

   CSL.df$L13_ActinvC[fn] <- L13_ActinvC 

 

 } # End method loop 

  

 #Descriptive Statistics 

 results.df$sku[f]   <- RM 

 results.df$cost[f]  <- cost 

 results.df$price[f] <- price 

 results.df$fill_rate[f] <- fill_rate 

 

 maxCSL <- which.max(CSL.df$CSL) 

 results.df$Hcsl[f]      <- max(CSL.df$CSL) 

 results.df$MHcsl[f]     <- CSL.df$model_name[maxCSL] 

 results.df$MCSLmethod[f]<- CSL.df$method[maxCSL] 

 results.df$MTinvC[f]    <- CSL.df$TinvC[maxCSL] 
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 minRMSE <- which.min(CSL.df$cvRMSE) 

 results.df$LcvRMSE[f]   <- CSL.df$cvRMSE[minRMSE] 

 results.df$McvRMSE[f]   <- CSL.df$model_name[minRMSE] 

 results.df$RMSETinvC[f] <- CSL.df$TinvC[minRMSE] 

  

 minaic <- which.min(CSL.df$aic[3:7]) 

 results.df$Laic[f]      <- min(CSL.df$aic[3:7]) 

 results.df$Maic[f]      <- CSL.df$model_name[minaic] 

 results.df$aicTinvC[f]  <- CSL.df$TinvC[minaic] 

 

 results.df$HTinv_neg[f] <- max(CSL.df$Tinv_neg) 

 results.df$LTinv_pos[f] <- min(CSL.df$Tinv_pos) 

 results.df$LTinv[f]     <- min(CSL.df$Tinv) 

  

 Tinv_sort <- order(CSL.df$TinvC) 

 target    <- 0.944 

 for (x in (1:length(Tinv_sort))){ 

    if (CSL.df$CSL[Tinv_sort[x]] > target) {  

       results.df$MTinv_Tgtcsl[f] <- CSL.df$CSL[Tinv_sort[x]] 

       results.df$MTinv_Tgt[f]    <- CSL.df$model_name[Tinv_sort[x]] 

       results.df$MCSLmethTgt[f]  <- CSL.df$method[Tinv_sort[x]] 

       results.df$MTinv_TgtC[f]   <- CSL.df$TinvC[Tinv_sort[x]] 

       results.df$Mbought_Tgt[f]  <- CSL.df$bought[Tinv_sort[x]] 

       break 

    } else { 

       results.df$MTinv_Tgtcsl[f] <- results.df$Hcsl[f] 

       results.df$MTinv_Tgt[f]    <- results.df$MHcsl[f] 

       results.df$MCSLmethTgt[f]  <- results.df$MCSLmethod[f] 

       results.df$MTinv_TgtC[f]   <- results.df$MTinvC[f] 

       results.df$Mbought_Tgt[f]  <- results.df$bought[f] 

    } 

 } 

  

 Tinv_sort <- order(CSL.df$L13_invC) 

 results.df$L13_CSL[f]     <- CSL.df$L13_CSL[Tinv_sort[1]] 

 results.df$L13_invC[f]    <- CSL.df$L13_invC[Tinv_sort[1]] 

 results.df$L13_ActinvC[f] <- CSL.df$L13_ActinvC[Tinv_sort[1]] 

 results.df$L13_MTinv[f]   <- CSL.df$model_name.v[Tinv_sort[1]] 

 for (x in (1:length(Tinv_sort))) {  

    if (CSL.df$L13_CSL[Tinv_sort[x]] > target) {  

       results.df$L13_CSL[f]   <- CSL.df$L13_CSL[Tinv_sort[x]] 

       results.df$L13_invC[f]  <- CSL.df$L13_invC[Tinv_sort[x]] 

       results.df$L13_MTinv[f] <- CSL.df$model_name.v[Tinv_sort[x]] 

       break 

    } 

 } 
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 results.df$L13_avg[f] <- mean(idemand.v[(irange_len-12):irange_len], na.rm = TRUE) 

 results.df$L13_sd[f]  <- sd(idemand.v[(irange_len-12):irange_len], na.rm = TRUE) 

 results.df$L13_cv2[f] <- (results.df$L13_sd[f] / results.df$L13_avg[f])^2 

 results.df$L_avg[f] <- mean(idemand.v, na.rm = TRUE) 

 results.df$L_sd[f]  <- sd(idemand.v) 

 results.df$L_cv2[f] <- (results.df$L_sd[f] / results.df$L_avg[f])^2 

 results.df$win[f]   <- win 

 results.df$eXreg[f] <- xreg_sw 

 results.df$hz[f]    <- hz 

 print(RM) 

 print(CSL.df) 

 # Write results to a file 

 #write.table(descriptive.list, "results.csv", sep = ",", col.names = TRUE, 

row.names=FALSE, append = T) 

 write.table(RM, "results.csv", sep = ",", col.names = TRUE, row.names=FALSE, append 

= T) 

 write.table(CSL.df, "results.csv", sep = ",", col.names = TRUE, row.names=FALSE, 

append = T) 

 #write.table(descriptive.list, "results_sum.csv", sep = ",", col.names = TRUE, 

row.names=FALSE, append = T) 

 rmout.df <- data.frame(RM, cost, price, ActinvC) 

 write.table(rmout.df, "results_sum.csv", sep = ",", col.names = TRUE, 

row.names=FALSE, append = T) 

 write.table(CSL.df, "results_sum.csv", sep = ",", col.names = TRUE, 

row.names=FALSE, append = T) 

 write.table(results.df[f,], "results_sum.csv", sep = ",", col.names = TRUE, 

row.names=FALSE, append = T) 

} # End SKU loop of part numbers 

write.table(results.df, "results_SKU.csv", sep = ",", col.names = TRUE, 

row.names=FALSE, append = T) 

# LOOP again using Exogenous regressors 

xreg_sw <- "TRUE" 

} # END xreg_sw LOOP 
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