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ABSTRACT

Forghaniarani, Mozhdeh. Bayesian Approach to the Mixture of Gaussian Random Fields
and its Application to an fMRI Study. Published Doctor of Philosophy
dissertation, University of Northern Colorado, 2021.

Due to the functional nature of fMRI data, random field theory is used as a remedy

to the multiple comparisons problem in brain signal detection. Traditionally, a Gaussian

random field model is fitted to the functional data using this approach. However, fMRI

data are not homogeneous, and there exist multiple underlying classes in functional data,

so traditional inferential methods may fail. Here, we proposed a new model for signal

detection in fMRI data in which we addressed the heterogeneity in such data. The

proposed model is a mixture of two Gaussian random fields. We developed a Bayesian

approach for hypothesis testing by using the notion of Bayes factor in

infinite-dimensional parameter spaces. For such spaces, the Bayes factor is defined based

on the concept of the Radon-Nikodym derivative. In our model, the Bayes factor is

interpreted as the inverse of the expected value of a likelihood ratio with respect to the

prior density of the model parameters. Obtaining the Bayes factor in infinite-dimensional

parameter spaces is not analytically tractable, and we needed to compute it through

numerical methods. Our methodology is empirically justified by Monte Carlo simulations

and illustrated by an analysis of the simulated dataset.
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CHAPTER I

INTRODUCTION

Modern and advanced technologies of data collections, in recent years have

produced very detailed and informative images, many extremely complex. Some of these

advanced technologies of collecting data are positron emission tomography (PET),

magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), and

satellite imaging methods. The imaging technique used in a medical setting to produce

images of the inside of the human body is known as Magnetic resonance imaging (MRI).

MRI is based on the principles of nuclear magnetic resonance, a spectroscopic technique

used by scientists to obtain microscopic chemical and physical information about

molecules. An MRI scanner consists of a large and very strong magnet in which the

patient lies. A radio wave antenna is used to send signals to the body and then receive

signals back. These returning signals are converted into images by a computer attached to

the scanner. Images of almost any part of the body can be obtained using MRI technique,

although MRI Scanners are more suitable for looking at the non-bony parts or soft tissues

of the body like the brain and nerves. These tissues are seen much more clearly with MRI

than with regular x-rays and CAT scans. A disadvantage of MRI is its higher cost

compared to a regular x-ray or CAT scan. Also, CAT scans are frequently superior for

looking at the bones to MRI.
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While MRI concentrates on the structure of the brain, functional MRI(fMRI) is a

technique introduced to obtain functional information from the central nervous system.

This technique extends anatomical imaging of MRI to include localization of the active

brain areas during perceptions, actions, visual and cognitive tasks. Activation of an area

of the brain causes an increase in blood flow in that area which is greater than that needed

to keep up with the oxygen demands of the tissues. It results in a net increase in

intravascular oxyhemoglobin and a decrease in deoxyhemoglobin. Deoxyhemoglobin is

paramagnetic, resulting in a decrease to signal tensity coming from the tissues. Less

deoxyhemoglobin as a consequence of an increase in blood flow results in an overall

increase in signal, (Pauling & Coryell, 1936). Sophisticated image processing techniques

are used to brain images of these flow changes. The fMRI technique offers opportunities

for the investigation of the human brain’s functional organization. Such techniques deal

with the area of the body (for example brain) in which we see an increase in blood flow,

or “activation”, due to stimulation conditions. The main statistical problem in signal

detection is to specify the regions of the brain in which the signal (activation) exists and

separate them from the rest of the brain where no activation can be detected (the noise).

Statistical Analysis of Functional Magnetic
Resonance Imaging Data

The problem of signal detection in fMRI data is statistically equivalent to a

problem of hypothesis testing. Regarding the nature of fMRI data, the multiple

comparisons problem is the consequence of numerous statistical tests being done in each

image. The most common method to deal with the multiple comparison problem is the

Bonferroni correction method, (Bender & Lange, 2001). However, applying the
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Bonferroni method to fMRI data would not be appropriate because first, fMRI data

includes a large number of small elements, pixels/voxels, should be tested. Also, some

degree of spatial autocorrelation exists in the data. Therefore, to solve the multiple

comparison problem in the fMRI study, several other methods were proposed which

“random field theory” is one of them, Bennett et al. (2009).

When applying the random field theory, statistical inferences are mostly done in

abstract infinite-dimensional spaces. Because of the complexity of “abstract inference”,

researchers have been confronted with challenging theoretical problems. Grenander

(1981) and Adler (1981) are the pioneers of developing theoretical aspects of “abstract

inference”. Fundamental parts of random field theory were developed by Adler in 1981,

and it was later applied by Worsley to the fMRI study to solve the multiple comparison

problem in testing the signal. Worsley et al. (1992) and Worsley (1994) have shown that

the images of the brain can be modeled as a Gaussian random field X(t), where t ∈ RN is

a location vector in the brain C ⊂ RN , N = 3. To test the signal, they chose Xmax the

global maxima of the random field in C as the test statistic for detecting signals in the

brain. To reduce the signal-to-noise ratio, it is common to spatially smooth the images

with a filter before analysis. The Matched Filter Theorem of signal processing states that

a signal added to white noise is best detected by smoothing with a filter whose shape

matches that of the signal f(t). Siegmund and Worsley (1995) considered the situations

that, after smoothing by the Gaussian kernel, observations can be decomposed into a fixed

signal plus a random noise, where the noise is modeled as a particular stationary Gaussian

random field in N -dimensional Euclidean space. The signal is assumed that has the form

of a known function centered at an unknown location and multiplied by an unknown
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amplitude. There are many examples where the signal scale or width is assumed to be

known after smoothing. However, Siegmund and Worsley (1995) considered the case

where the width of the signal is unknown. Therefore, their proposed Gaussian random

field model was in an N + 1-dimensional space, N -dimension for the location t, and one

dimension for the width of the smoothing kernel, σ. Such a smooth random field, X(t, σ)

is known as the “Gaussian scale-space random field”. They studied the classical testing

problem to detect the signal, and their test statistic was the maximum of the “Gaussian

scale-space random field”. They used “the expected Euler characteristic of the excursion

set” of the random field and “the volume of tubes” to derive an approximate distribution

of Xmax under the null hypothesis of no signal. Most of the methods introduced in the

references are based on classical likelihood ratio methods introduced by Grenander

(1981) using the Radon-Nikodym derivative. Shafie and Noorbaloochi (2001) extended

the definition of Bayes factor by using Radon-Nikodym derivative to abstract spaces, and

introduced the Bayesian testing for signal detection in noisy images for the cases that the

observations can be decomposed into an unknown signal and a random noise. They

assumed that both signal and noise are the elements of a Hilbert space.

Problem Statement

In practical situations, we have often an idea about the area that the signal can

occur. Especially for the Gaussian scale-space random field, we may have a piece of

historical information about the amplitude, location, and scale of the signal. Therefore it

would be very useful if we use this information in the Bayesian viewpoint for signal

detection.
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The main work of this dissertation is based on the study of the Bayesian testing

for signal detection in Gaussian scale-space random field in the cases that shape of the

signal is known, and the scale, location and amplitude parameters have some known prior

distribution.

Recalling that the study of random fields is the study of random functions, in

modeling fMRI data, we are modeling random functions indexed by a location vector t in

the brain C ⊂ R3. When modeling brain activity, it is common to model functional data

of the brain by using one Gaussian random field. However, assuming that the brain region

being homogeneous is not practical. Therefore, when the functional data are not

homogeneous, and there exist multiple classes of functional data, modeling images as one

random field like a Gaussian random field may fail in signal detection. In the next section,

we explain our model that can be a solution to this issue.

Purpose of Study

The motivation of this dissertation is to detecting signals embedded in the brain

functional imaging data, so-called “signal detection”. Considering that the brain region is

heterogeneous, there exist multiple classes of functional data, when studying fMRI data.

In this work, we propose a new model so-called “mixture of Gaussian random fields”, to

incorporate both functional and heterogeneous properties of the data. In the current study,

the images are modeled as a mixture of two Gaussian random fields, however, most

results can be extended to the class of finite mixtures of Gaussian random fields with

more than two components.
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Research Questions

In this study, the averaged image obtained from fMRI technology is modeled as a

mixture of two real-valued Gaussian scale space random fields X1 and X2. The model can

be formulated as

X = zX1 + (1− z)X2 (1)

where,

p(z) =


π z = 1

1− π z = 0

The objectives of this dissertation is to propose a Bayesian test statistic to test the

existence of signal in the cases that shape of signals are known, and the amplitude,

location, and scale parameters in two random fields,

θ1 = (ξ1, t0, σ01) and θ2 = (ξ2, s0, σ02) have some known prior distributions. Testing the

existence of signal is statistically equivalent to the problem of testing the following

hypotheses:


H0 : ξ1 = 0 & ξ2 = 0

H1 : ξ1 > 0 & ξ2 > 0

In this dissertation, we demonstrate the methodology to investigate the following

research questions:
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Q1 How to develop a Bayesian approach for testing the signal in the mixture
model X(t, σ) for two-dimensional images?

Q2 How the performance of the Bayes factor can change with respect to different
parameter schemes?

Definition of Terms

Amplitude. The amplitude of a wave refers to the maximum amount of

displacement of a particle on the “medium” from its rest position. In a sense, the

amplitude is the distance from rest to crest.

Euler characteristic (EC). A topological measure of the statistical parametric

map after thresholding.

Excursion set. A set of points where a random field exceeds a fixed threshold

value.

Finite dimensional distributions. A collection of distribution functions for a

random field.

Functional magnetic resonance imaging (fMRI). A neuroimaging technique

used to study brain functions.

Gaussian kernel. A smoothing kernel used to smooth data.

Gaussian random field. A type of random field where all of the finite

dimensional distributions are multivariate joint Gaussian (normal) distributions.

Pixel. A measure of unit in a two-dimensional image.

Random fields. A collection of random variables defined over a subset of

N -dimensional Euclidean space.
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Scale space. A range of smoothing widths is used to create an extra scale

dimension to the data.

Smoothing kernel. A function used to filter images.

Spatial smoothing. A procedure that replaces the BOLD signal in a voxel with

the average of BOLD signals from neighboring voxels.

Voxel. A measure of unit in a three-dimensional image.

Width of the smoothing kernel. A parameter used to determine the amount of

spatial smoothing applied to the image. In current study it was controlled by σ.
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CHAPTER II

REVIEW OF LITERATURE

As it is claimed earlier, the motivation of this dissertation is to detecting signals

embedded in the brain functional imaging data, so called “signal detection”. Because in

the current study, the images are modeled as a finite mixture of Gaussian random fields, in

this chapter, we introduce the main approaches in signal detection which are based on the

random field theory. Before we begin our own study of random fields in the next chapter,

we should take time for a brief review of the theories related to our study on random

fields. In this chapter, we will study general properties of random fields. Also, we

introduce the class of Gaussian random fields and its properties. The focus of this chapter

is on the Bayesian approach in the signal detection which proposed by Shafie and

Noorbaloochi (2001), and extended by Rohani et al. (2006). Their approach and

methodologies are foundation of this dissertation. Furthermore, in this chapter, we are

going to have an introduction about mixture models in general, and the Gaussian mixture

model as a specific case.

The format of this chapter is as follows. In section 1, we give an introduction

about the main approaches based on the random field theory in signal detection. In

section 2, we review some of the general concepts and definitions in the mathematical

foundations of random fields. In section 3, Gaussian random fields as one of the most

important random fields are introduced and some of their properties are briefly reviewed.
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In section 4, we explain about the notion of Radon-Nikodym derivative and its

interpretation in hypothesis testing. In section 5, we review the likelihood and Bayesian

approaches for signal detection when the image is modeled as a Gaussian random field. In

section 6, we introduce mixture models, and Gaussian mixture models. Also, we review

the problem related to identifiability in mixture models.

Introduction

Random field theory as a sophisticated mathematical work was developed by

Adler in 1981, and later the theory was applied extensively by Keith Worsley in the study

of brain functional imaging to rectify the multiple comparisons problem. Worsley et al.

(1992), and Worsley (1994) have shown that the images of the brain can be modeled as a

Gaussian random field X(t), where t ∈ RN is a location vector in the brain

C ⊂ RN , N = 3. Siegmund and Worsley (1995) assumed that images can be decomposed

into a deterministic signal and a homogeneous N -dimensional Gaussian random field so

called as random noise. They considered the situations that the signal has the form of a

known function, i.e a Gaussian form, centered at an unknown location t0, and multiplied

by an unknown amplitude ξ, with an unknown parameter σ0 as the width of signal.

Usually before analysis, the images may be spatially smoothed to enhance the signal to

noise ratio. By the Matched Filter Theorem in the signal processing, a signal which is

added to a white noise is best detected by smoothing with a filter whose shape matches

that of the signal, f(t). Siegmund and Worsley 1995 considered a Gaussian kernel to

smooth the image which was modeled as a Gaussian random field. In their model, the

scale of Gaussian kernel, σ is unknown, and they considered it as an extra dimension for
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the space of the random field. The smooth random field in their model, X(t, σ) is known

as a Gaussian scale space random field.

In this work, we employ Gaussian scale space random field models, and we

consider the unknown σ as a new index-parameter for the random functions in a Hilbert

space.

To detect the signal in Gaussian scale space random field, Siegmund and Worsley

(1995) studied the classical testing. Their test statistic was the maximum of the Gaussian

random field in a (N + 1)-dimensional “scale space”, N -dimensions for the location and

one dimension for the width or scale of the smoothing kernel. They used the expected

Euler characteristic of the excursion set of the random field to derive an approximate

distribution of Xmax under the null hypothesis of no signal. Shafie and Abravesh (2016)

showed that for Gaussian scale space, Xmax is equivalent to the likelihood ratio test

statistic.

In practical situations, specially for Gaussian random fields, we may have a

historical information about the amplitude, location and scale of the signal. This

information can be used in the Bayesian viewpoint for signal detection. Another

preference of Bayesian approach in signal detection is the ability to apply different

smoothing functions to the sample path. Shafie and Noorbaloochi (2001) introduced the

Bayesian testing for signal detection in noisy images. They extended the definition of

Bayes factor to abstract spaces by using Radon-Nikodym derivative. They assumed that

observations can be decomposed into an unknown signal plus a random noise but they

considered the cases that both signal and noise are the elements of a Hilbert space.

Rohani et al. (2006) studied the Bayesian testing for signal detection in Gaussian scale
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space random field in the cases that shape of the signal is known, and the scale, location

and amplitude parameters have some known prior distributions. They considered both

cases of smooth and non-smooth scale space Gaussian random fields. They studied the

generalization of Bayes factor for Gaussian scale space random fields by using

Radon-Nikodym derivative. Their approach is the foundation of this study, therefore, in

this chapter, we will explain about their methodology in Bayesian testing more in details.

General Concept

In this section, we will have a brief excursion through the mathematical

foundations of probability and random fields which will be used in this thesis.

Definition II.1. A vector or linear space is a set L along with two operations defined on

its elements, addition and scalar multiplication, under which L is algebraically closed.

That is, for any x, y ∈ L, and α ∈ R, the sum x+ y and the scalar product αx are also

elements of L. Furthermore, the operations conform to distributive laws, i.e.

α(x+ y) = αx+ αy.

These are the familiar properties of N-dimensional Euclidean space, RN . In

dealing with random fields, however, we encounter function spaces which is vector spaces

whose elements are functions.

Definition II.2. (Aubin, 1977) A norm on a linear space L is a non-negative real-valued

function satisfying

i. ||x|| > 0 for x 6= 0 ∀x ∈ L

ii. ||x|| = 0⇐⇒ x = 0
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iii. ||αx|| = |α| ||x|| ∀α ∈ R, ∀x ∈ L

iv. ||x+ y|| ≤ ||x||+ ||y||, ∀x, y ∈ L.

Definition II.3. A linear space L equipped with a norm || · ||, is called a normed linear

space , and denoted by (L, || · ||).

In general there are many possible norms that can be defined on a given vector

space. For Rn, the common norm is the Euclidean norm

||x||2 ≡

 n∑
i=1

x2
i

1/2

Given a norm, we can measure the distance between two vectors by defining a function

known as a metric, d(x, y) = ||x− y||.

A norm also carries with itself the abstract notion of distance, and so a normed

linear space is also a metric space. In the context of function spaces, the only norm we

will need to consider is the so called p-norm, defined by

||f ||p ≡
[ˆ
|f |p dµ

]1/p

(1)

Definition II.4. A linear space is said to be complete if and only if each Cauchy sequence

(that is, each sequence such that ||xn − xm|| → 0 as n,m→∞) converges to a point in

the space. In effect, completeness guarantees that there is always an x in the space that the

sequence converges to it.
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Definition II.5. An inner product on a (real) linear space H is a real-valued function

defined on H ×H , denoted 〈.|.〉, with the following properties:

i. 〈x, x〉 ≥ 0 ∀x ∈ H

ii. 〈x, x〉 = 0 ⇐⇒ x =

iii. 〈x, y〉 = 〈y, x〉 ∀x, y ∈ H

iv. 〈αx+ βy, z〉 = α〈x, z〉+ β〈y, z〉. ∀x, b ∈ R, ∀x, y, z ∈ H

Definition II.6. A linear space with an inner product is called an inner product space.

So a space with an inner product is automatically a normed space because when

an inner product is given we can always define a norm by

||x|| ≡
√
〈x, x〉 (2)

Definition II.7. A complete normed liner space (L, || · ||) whose norm comes from an

inner product is called a Hilbert space.

Euclidian N-space is a Hilbert space with its inner product being to the standard

dot product.

Definition II.8. We say that two vectors x and y in a Hilbert space are orthogonal, and

write x⊥y, if

〈x, y〉 = 0.

Similarly, a vector x is said to be orthogonal to a set S ⊂ L, denoted x ⊥ S, if x ⊥ y for

all y ∈ S.
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Definition II.9. A set B in Hilbert space H is called an orthogonal system or

orthonormal if:

i. ||x|| = 1, ∀x ∈ B,

ii. x ⊥ y, ∀x, y ∈ B such that x 6= y.

In addition, B is said to be complete if the only x ∈ H such that x ⊥ B is x = 0.

Theorem II.1. (Ash, 1972) Let B = {xα, α ∈ I} be an orthonormal subset of the Hilbert

space H . The following conditions are equivalent:

i. B is an orthonormal basis.

ii. B is a complete orthonormal set.

iii. B spans H , i.e. it is the smallest closed subspace of H containing all elements of

B.

iv. For all x ∈ H , x =
∑

α〈x, xα〉xα.

v. For all x, y ∈ H, 〈x, y〉 =
∑

α〈x, xα〉〈xα, y〉.

vi. For all x ∈ H, ||x||2 =
∑

α |〈x, xα〉|2.

One of the most important properties of Hilbert space is that its elements can be

approximated by projecting them onto some convenient subspace, typically one of finite

dimension.
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Theorem II.2. (Orthogonal projection Theorem) Let M be a closed linear subspace of an

Hilbert space H . Then there exists a unique mapping πM of H to M such that for every

x ∈ H ,

x− πM(x)⊥y, y ∈M.

Theorem II.3. If H is a separable Hilbert space, then every complete orthogonal systems

is countable. If {en} is such a system, we have for all x ∈ H

x =
∞∑
n=0

〈x, en〉en

and

||x||2 =
∞∑
n=0

〈x, en〉2.

Here, we want to introduce measure spaces, therefore, we review the required

definitions.

Definition II.10. (Williams, 1991) Let X be a space. A, a collection of subsets of X is an

algebra if:

i. X ∈ A

ii. A ∈ A ⇒ Ac ∈ A

iii. A,B ∈ A ⇒ A ∪B ∈ A

Definition II.11. (Williams, 1991) A is a σ-algebra if it is an algebra and for

An ∈ A, n ∈ N, we have ∪An ∈ A.
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Definition II.12. A space X and a σ-algebra A on X is called a measurable space

(X ,A).

Definition II.13. (Williams, 1991) Let (X ,A) be a measurable space. A map

µ : A → [0,∞] is a measure if it is countably additive, meaning if Ai ∩ Aj = φ for

{An : n ∈ N} ⊂ A, then

µ (∪nAn) =
∑
n

µ (An)

A measure µ assigns positive numbers to sets A : µ(A) ∈ R. For example where

A is a subset of Euclidean space, µ(A) can be length, area, or volume. Or if A is an event,

µ(A) can be the probability of the event.

Definition II.14. (Williams, 1991) The triple (X ,A, µ) is called a measure space.

Definition II.15. (Williams, 1991) A measure space (Ω,A,P) is a probability space if

P(Ω) = 1. In this case, P is called a probability measure.

Definition II.16. A random variable X(ω) is a real-valued measurable function in a

probability space.

If (Ω,F , µ) is a measure space, and f is a real valued Borel measurable function

on this space, such that for given p > 0,
´

Ω
|f|pdµ <∞. Then the collection of all such

functions, denoted by Lp(Ω,F , µ), is a function space (Ash (1972)).

Given a probability space (Ω,F , µ), the measure space Ł2(Ω,F , µ) is a Hilbert

subspace of measurable functions on (Ω,F , µ) with respect to the inner product below:

〈f, g〉 ≡
ˆ

Ω

fgdµ (3)
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Now suppose (Ω,F , P ) is a probability space, T is an N -dimensional Euclidian space

and (T,B, λ∗N) is the Lebesgue measure space. So the space of squared integrable real

functions, denoted by L2(T,B, λ∗N) is a Hilbert space. Therefore any measurable random

field with finite second moment, can be considered as a Hilbert valued random object

from (Ω,F , P ) to L2(T,B, λ∗N).

Another definition that we need is the definition of a Gaussian measure. To

introduce that, we need to review some more definitions as follow.

Definition II.17. Let m be a measure on (H,B). Its characteristic functional φ(y) is

defined for any y ∈ H by

φ(y) =

ˆ
H
ei<x,y>dm(x).

If m is a probability measure onH then φ is a positive definite continuous

function onH and |φ(y)| ≤ 1.

Definition II.18. If m is a measure onH then its mean µ is an element ofH defined by

< µ, y >=

ˆ
H
< x, y > dm(x)

for all y ∈ H.

If
´
H ||x||dm <∞, then µ exists and

||µ|| ≤
ˆ
H
||x||dm(x).



19

Definition II.19. If m is a measure onH then its covariance operator is a bilinear

functional onH, defined by

< Sy1, y2 >=

ˆ
H
< y1, x > . < y2, x > dm(x)

We should note that the covariance is a symmetric positive definite bilinear

functional.

Definition II.20. A Gaussian measure m onH is one such that for every vector y ∈ H

the distribution of < x, y > is a one-dimensional Gaussian distribution. Equivalently m is

a Gaussian measure iff its characteristic functional has the form

φ(y) = exp

[
i < µ, y > −< Sy, y >

2

]

where µ is its mean and S is its covariance.

In this work, the Gaussian measure m with mean µ and covariance S on a Hilbert

space is denoted by HN(µ, S).

As we will see in the next chapters, in practical situations we need the eigenvalues

and eigenfunctions of the covariance function. Thus we introduce an approach to compute

theses values. Now let T be a compact interval inRN and suppose that on T × T we have

a continuous, real-valued, non-negative definite (covariance) function R(s, t). Consider

the integral equation

ˆ
T

R(s, t)φ(t)dt = λφ(s), for s ∈ T (4)
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Definition II.21. A nonzero number λ for which there exists a function φ satisfying (4)

such that
´
T
|φ(t)|2dt <∞ is called eigenvalue of the integral equation. The

corresponding function φ is called an eigenfunction.

In general the integral equation (4) will yield an infinite number of eigenvalues

λ1, λ2, · · · with corresponding eigenfunctions φ1, φ1, · · · . One can assume that the

sequence of eigenvalues is non-increasing and the eigenfunctions are orthonormal, i.e.

ˆ
T

φi(t)φj(t)dt =


1 for i = j

0 for i 6= j

. (5)

So these eigenfunctions form an orthonormal basis for L2(T,B, λ∗N).

General Concepts in Random Fields

The study of random fields is the same as the study of random functions. A

random field is in fact a random function which is defined over some Euclidean spaces.

As an example of a random field, consider an ocean surface that is parameterized by a

hypothetical zero plane passing through the surface of ocean by the point (t1, t2). Let the

function X(t1, t2, t3) denote the height of ocean above the point (t1, t2) at time t3.

Assuming X being random in some sense is reasonable, and so we can model X as a

three- dimensional random field. If we hold time t3 fixed, we obtain a two-dimensional

field; (See Adler, 2010).

Adler (2010) gave two different approaches to defining a random field. We chose

the following definition that satisfies this study; this definition of a random field is more

natural in a modeling context.
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Definition II.22. Let (Ω,F , P ) be a probability measure. A collection of random

variables {X(t), t ∈ RN} equipped with a collection of distribution functions Ft1,··· ,tn on

Bn, n = 1, 2, · · · , and tj’s ∈ RN is called a random field if for an arbitrary finite set of

t1, · · · , tn, and a collection of measures Ft1,··· ,tn on Bn

Ft1,··· ,tn(B) = P [(X(t1), · · · , X(tn)) ∈ B], ∀B ∈ Bn (6)

We should recall that B denotes the Borel σ-algebra generated by the half-open

intervals inR, I = (a1, b1] .

The collection of all such measures or equivalently the corresponding distribution

functions is known as the family of finite dimensional (fi-di) distributions of the random

field X , and in general it is the fi-di distributions that we work with in the study of a

random field.

For a random field X(t), the mean and covariance functions can be defined

respectively as,

m(t) = E[X(t)]

R(s, t) = E[(X(s)−m(s))(X(t)−m(t))]

In the random variables case, two variables X and Y are equivalent if

P{X = Y } = 1. This implies that, for all purposes, these variables are indistinguishable.

Two random fields X(t) and Y(t) are said to be equivalent fields if

P{X(t) = Y (t)} = 1 for every t ∈ RN
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Two equivalent processes generate equivalent measures but are not necessarily

indistinguishable in every sense. But when we are dealing with separable fields only,

equivalent fields are indistinguishable.

As in the stochastic processes, in the study of random fields there is a powerful

property known as homogeneity or stationarity.

Definition II.23. (Adler, 2010) A real-valued random field X(t) is said to be strictly

homogeneous or stationary if, for each arbitrary k, and any real number x1, · · · , xk and

any (k+1) points τ , t1, · · · , tk in RN the following condition on its fi-di distributions is

satisfied:

Ft1,··· ,tk(x1, · · · , xk) = Ft1+τ ,··· ,tk+τ (x1, · · · , xk).

Definition II.24. (Adler, 2010) A real-valued random field X(t) is said to be weakly

homogeneous if for any points t, s in RN , the covariance function exists and the following

two conditions are satisfied:

E[X(t)] = constant,

R(s, t) = Cov[X(s), X(t)] = R(s− t)

Definition II.25. (Adler, 2010) A weakly homogeneous random field is called an

isotropic if the covariance function R(s, t) depends only on the distance between t and

s, (||t− s||).

Gaussian Random Fields

Same as the case of Gaussian random variables, Gaussian random fields have

some interesting properties that make them as the most important random fields. A
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random field whose all fi-di distributions are multivariate Gaussian distributions is known

as Gaussian random fields. A Gaussian random field X(t) is completely determined once

we specify its mean and Covariance functions. It can be easily seen from the form of

multivariate normal density that if a real-valued Gaussian field has a constant mean and a

covariance function that is dependent only on s− t, then the field is homogeneous.

Now suppose (Ω,F , P ) is a probability space, T an N -dimensional Euclidian

space and (T,B, λN) is the Lebesgue measure space. Also it is known that the space of

squared integrable real functions with respect to λN on T is a Hilbert space, which is

denoted by L2(T,B, λN). Therefore any measurable random field, with finite second

moment, can be considered as a Hilbert valued random object from (Ω,F , P ) to

L2(T,B, λN). Now, let X(t) be a Gaussian random field on (Ω,F , P ) with mean m(t)

and covariance function R(s, t), then the probability measure induced by X on

L2(T,B, λN) is a Gaussian measure on this Hilbert space, whose mean is m(t) and the

covariance operator is obtained as

S(f(t)) =

ˆ
T

R(s, t)f(s)dλN(s) (7)

This Gaussian measure on the Hilbert space L2(T,B, λN) is a Hilbert normal denoted by

HN(µ, S). For more details, (See Rohani, 2003). Several important properties of

Gaussian random fields which we will apply in this study are,

(i) Every linear combination of Gaussian random fields is a Gaussian random field.

Also, derivatives of any differentiable Gaussian random field are also Gaussian

random fields.
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(ii) Let dW(t) be a Gaussian white noise, and k(t, s) be a deterministic function, then

X(t) =

ˆ
RN
k(t,h)dW (h) (8)

will be a Gaussian random field. The function k(t,h) is called the kernel function.

This kind of random field has many applications in image processing (Worsley et

al., 1992; Worsley, 1994; Siegmund & Worsley, 1995). Note that by an

appropriate selection of the kernel function, one can smooth a Gaussian white

noise.

(iii) Let dW(t) be a Gaussian white noise, and

X(t) =

ˆ
RN
k(t,h)dW (h)

The mean and covariance function of X(t) are

m(t) = 0 , R(t, s) =

ˆ
RN
k(t,h)k(s,h)dh

Radon-Nikodym Derivative and Hypothesis Testing

Radon-Nikodym derivative is one of the fundamental concepts of the methodology

in this thesis. We begin this section by reviewing Radon-Nikodym theorem, and its

generalization. Then, we discuss the relationship of the classical and Bayesian test

statistic with Radon-Nikodym(R-N) derivative.
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Theorem II.4. (Radon-Nikodym Theorem) Let (X ,A, µ) be a σ -finite measure space,

and suppose ν � µ. Then there exists µ-measurable function f , such that

ν(A) =

ˆ
A

fdµ ∀A ∈ A

The function f = dν
dµ

is the Radon-Nikodym derivative of ν w.r.t. µ.

We should note that ν � µ⇔ ν has a density w.r.t. µ.

The following corollary is a generalization of Radon-Nikodym Theorem.

Corollary II.1. Let P0 and P1 be probability measures on (X ,F1) . There exists a set

A0 ∈ F1 with P0(A0) = 0, and a non-negative P0-measurable function f , such that for

every A ∈ F1

P1(A) =

ˆ
A

f(x)dP0(x) + P1(A ∩ A0) (9)

The function f is called the Radon-Nikodym (R-N) derivative of P1 with respect

to P0, and denoted by

f(x) =
dP1

dP0

(x) (10)

and so in general the Radon-Nikodym derivative can be defined as


+∞ for x ∈ A0

f(x) for x /∈ A0

.
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If the set A0 has P1(A0) = 1, two measures P0 and P1 is said to be perpendicular

to each other, and in this case A0 plays the role of a critical region and will allow us,

without any errors, to discriminate between H0 and H1. If P1 and P0 are equivalent then

P1(A0) = 0 and the second part of r.h.s. in (9) is zero, and f 6= 0 with P0-probability 1.

Intermediate cases occur when P0 and P1 neither perpendicular nor equivalent, but

surprisingly seldom for cases of practical interest. Now, first, we discuss the role of R-N

derivative in testing hypothesis using the likelihood approach, and then we introduce the

Bayesian testing procedure by applying R-N derivative.

Likelihood Approach

In this part, we briefly discuss the likelihood approach for testing hypothesis in a

random field. At first the simple null hypothesis (H0) versus the simple alternative

hypothesis (H1) is considered.

Simple Alternative Hypothesis

Suppose X is a sample space corresponding to random object X , F1 a σ-field of

subsets of X , and Θ = {θ0, θ1} is the parameter space. In the standard Neyman-Pearson

approach for testing H0 against H1, we deal with the subset W of the sample space (the

critical region), and the decision rule that if the observed sample x ∈ W , we reject H0;

otherwise we accept it. Of course, and because of the existence of errors of type I, α, and

type II, β, we are interested in decision rules that balance these errors. The famous

Neyman-Pearson lemma tells us how to minimize the probability of second error for fixed

error of type I . The Neyman-Pearson lemma is based on the likelihood ratio. The

Radon-Nikodym derivative plays the role of likelihood ratio in an abstract space. So the
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basic problem is to calculate the Radon-Nikodym derivative and analyze its properties.

By the corollary II.1, a Radon-Nikodym derivative can be interpreted as of the likelihood

ratio.

The following lemma gives the critical region for testing simple hypothesis

H0 : θ = θ0, against H1 : θ = θ1.

Lemma II.1. (Neyman-Pearson lemma) Let f(x) be Radon-Nikodym derivative of P1

with respect to P0. Also let for a given c ≥ 0 the critical region W be of the form

W = {x| f(x) ≥ c} ⊂ X (11)

Then no other critical region at the same level of significance has greater power,

i.e. if W ′ is such that P0(W ′) ≤ P0(W ), then P1(W ′) ≤ P1(W ).

This lemma introduces the methodology of finding the best critical region W at

the given level of significance.

Composite Alternative Hypothesis

Now we consider testing the simple null hypothesis H0 : θ = θ0, against the

composite alternative hypothesis H1 : θ 6= θ0. Suppose X is the sample space, and Θ is

the parameter space. Again we suppose for every θ ∈ Θ,Pθ is a probability measure on

(X ,F1). Therefore following generalized likelihood ratio test statistics, we can define a

test statistic as:

f(x) = sup
θ∗∈Θ

fθ∗(x) = sup
θ∗∈Θ

dPθ∗

dPθ0
(x) (12)
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where dPθ∗
dPθ0

(x) is the Radon-Nikodym derivative of Pθ∗ with respect to Pθ0 . However as in

the classical case, f(x) itself has not necessarily the Radon-Nikodym derivative

interpretation. Therefore the Neyman-Pearson lemma for abstract space in testing the

simple null hypothesis versus the simple alternative is not extended to the simple against

composite alternative hypothesis testing. But we can define the critical region W same as

the simple hypothesis case, of the form

W = {x| sup
θ∗∈Θ

fθ∗(x) ≥ c}.

Bayesian Approach

Here, we review the Bayesian testing of simple hypothesis versus a simple or

composite alternative. For this, suppose again X is the sample space corresponding to a

random object X , F1 is a σ-field of subsets of X .

Simple Alternative Hypothesis

Let Θ = {θ0, θ1}, and (Θ,F2) be a parameter space. For testing simple hypothesis

H0 : θ = 0, against H1 : θ = 1, in a Bayesian approach, Radon-Nikodym derivative f(x)

in (3) can be applied as a test statistic. Here, π0 and π1 are denoted as the two prior

probabilities of θ = 0 and θ = 1, and P0 and P1 as a probability measures on (X ,F1),

respectively, under the null and alternative hypotheses. Rohani et al. (2006) by the

following theorem extended the classical construction of the best Bayesian test.

Theorem II.5. If P1 is absolutely continuous with respect to P0 and if the prior

probabilities of the two hypotheses H0 and H1 are π0 and π1, respectively, the best test is
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given by the critical region

W = {x|f(x) >
π0

π1

}

Composite Alternative Hypothesis

Now we consider testing the simple null hypothesis H0 : θ = θ0 against the

composite hypothesis H1 : θ 6= θ0. Suppose X is an observable quantity with density

f(x | θ), where θ, the parameter of interest, and X both are elements of the Euclidian

space RN .

There are two Bayesian criteria for testing H0, the Bayes factor and the Bayesian

posterior probability of H0, Berger (2013).

Bayes factor

The Bayes factor for assessing a null hypothesis H0 against an alternative H1

generally is defined as

B(x) =
P
(
H0 | x

)
P
(
H1 | x

) ÷ P (H0)

P (H1)

Let G(θ) be a continuous prior distribution of θ over its parameter space, Θ. It is easy to

see that for the above sharp null testing problem, the Bayes factor is equivalent to

B =
f(x|θ0)

mG(x)
(13)

where

mG(x) =

ˆ
f(x|θ)dG(θ) (14)
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The Bayes factor incorporates prior information with the sample information in the

likelihood. It can be considered as a weighted likelihood ratio of H0 to H1, where the

weight function for a Bayesian is the prior distribution G(θ). So it can be used to evaluate

evidence against a null hypothesis, and its interpretation is the same as that of the usual

likelihood ratio. For example,B = 0.2 means that the observations support for H1 is five

times of that of H0, Rohani et al. (2006). In other words, ifB < 1, the null hypothesis H0

is not supported. Similarly, ifB > 1, H0 will be supported. And ifB = 1, H0 and H1 are

not preferred over each other.

From Jeffreys (1998), the common grading of the Bayes factor is given in Table 1.

Table 1

Bayes Factor Grading

Grade Bayes Factor (B) Result
0 B > 1 H0 supported
1 10−1/2 < B < 1 Weak evidence against H0,
2 10−1 < B < 10−1/2 Evidence against H0 substantial
3 10−3/2 < B < 10−1 Evidence against H0 strong
4 10−2 < B < 10−3/2 Evidence against H0 very strong
5 0 < B < 10−2 H0 Evidence against H0 decisive

Posterior probability

If a Bayesian specifies the prior probability π0 on H0 in addition to G, then the

posterior probability of H0 is

P (H0|x) =

[
1 +

(1− π0)

π0

.
mG(x)

f(x|θ0)

]−1

(15)

=

[
1 +

(1− π0)

π0

.
1

B

]−1



31

For the Bayes factor criteria, the results in (12) and (13) are for finite-dimensional

sample spaces. By extending these results to the abstract sample spaces, Shafie and

Noorbaloochi (2001) showed that f(x | θ) is the Radon-Nikodym derivative. Now we

review their measure theoretic approach that they applied to generalize the notion of

Bayes factor for infinite dimensional sample spaces.

Let PG(A) =
´

Θ
Pθ(A)dG(θ) be the marginal probability measure of X on

(X ,F1). Then for a given θ0 ∈ Θ, Pθ0(A) and PG(A) are both probability measures on

(X ,F1). The following lemma which is based on Grenander (1981) essentially ensures

that the most powerful non-randomized tests are based on the R-N derivative of P1 with

respect to P0.

Lemma II.2. (Rohani, 2003) Let for any θ0 ∈ Θ, Pθ0 be a probability measure on

(X ,F1). Then there exists a set A0 ∈ F1 with PG(A0) = 0, and a nonnegative

PG-measurable function f , such that for every A ∈ F1

Pθ0(A) =

ˆ
A

f(x)dPG(x) + Pθ0(A ∩ A0) (16)

where the function f is called the Radon-Nikodym (R-N) derivative of Pθ0 with respect to

PG, and denoted by

f(x) =
dPθ0
dPG

(x)

Regarding the above lemma, for testing H0 : θ = θ0 against H1 : θ 6= θ0, Shafie

and Noorbaloochi (2001) defined the Bayes factor as
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B(x) =


∞ x ∈ A0

f(x) x /∈ A0

(17)

They showed that the two extreme cases in corollary II.1 can also occur in this

case. If the set A0 has Pθ0(A0) = 1, then two measures PG and Pθ0 is said to be

perpendicular to each other, and in this case A0 as a critical region will allow us, without

any error, to discriminate between H0 and H1. If Pθ0 and PG are equivalent then the

second part of the right hand side in (16) is zero and Pθ0(A0) = 0 and f 6= 0 with

PG-probability 1.

Lemma II.3. (Rohani, 2003) Let (Θ,F2, G) be a probability space and for any θ ∈ Θ, Pθ

be a probability measure on (X ,F1). In addition, suppose that PG is the marginal

probability measure of X on (X ,F1). If all of Pθ’s (θ ∈ Θ) are equivalent, then PG is

equivalent to all of them.

Theorem II.6. (Rohani, 2003) Under the conditions of lemma (II.3), there exists

A0 ∈ F1 with PG(A0) = 0, for which the Bayes factor for testing H0 : θ = θ0 versus

H1 : θ 6= θ0 is given by

B(x) =


∞ x ∈ A0[´

dPθ
dPθ0

(x)dG(θ)
]−1

x /∈ A0

(18)
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Note that f(x) =
dPθ0
dPG

(x) is R-D derivative of Pθ0 with respect to PG, and

dPθ0
dPG

(x) =

[
dPG
dPθ0

(x)

]−1

=

[ˆ
Θ

dPθ
dPθ0

(x)dG(θ)

]−1

.

f(x | θ) = dPθ
dPθ0

(x), the density of Pθ with respect to Pθ0 can be considered as the

likelihood function.

Signal Detection in the Gaussian Random Fields

In this section, we review the likelihood and Bayesian approaches for signal

detection in the Gaussian scale space random field. Suppose that a signal is present and

we observe the field satisfying

dZ(t) = ξσ
−N/2
0 f

[
σ−1

0 (t− t0)
]
dt + dW (t) (19)

where f , the shape function is a positive, and smooth function satisfying
´
f(t)2dt = 1.

Here, our choice of shape function is the Gaussian form of

f(t) = π−N/4 exp(−||t||2/2) (20)

Also, t0 ∈ RN is the unknown location of the signal, and the unknown parameters

ξ ≥ 0, and σ0 > 0 are respectively represent the amplitude and scale of the signal, and

dW is assumed to be a Gaussian white noise.

A random field satisfying (19), assuming f is Gaussian, is a non-smooth Gaussian

random field. Figure (1) shows a sample path of a non-smooth Gaussian random field.
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Figure 1

A sample path of spherical Gaussian random field

For smoothing the random field in (19), two scenarios could be considered in this

study. First, the width of smoothing kernel σ being fixed, and second, the scale space

method where the kernel width σ is not fixed. Here, we have chosen the second scenario.

After smoothing the random field in (19) with the kernel of σ−N/2k
[
σ−1(h− t)

]
, where k

is chosen to equal f , and σ is unknown, we have the Gaussian scale space random field,

X(t, σ) = σ−N/2
ˆ
f
[
σ−1(h− t)

]
dZ(h) (21)
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which has the mean and covariance functions as follow (see Siegmund & Worsley, 1995),

µ(t, σ; ξ, t0, σ0) = ξ(σ0σ)−N/2
ˆ
f
[
σ−1

0 (h− t0)
]
f
[
σ−1(h− t)

]
dh (22)

R
(
(t1, σ1), (t2, σ2)

)
= σ1σ2

−N/2
ˆ
f
[
σ−1

1 (h− t1)
]
f
[
σ−1

2 (h− t2)
]
dh (23)

Figure 2 is a realization of a Gaussian scale space random field.

Recalling the assumption of k = f , we can write the expanded form of (21) as

follows

X(t, σ) = (σ0σ)−N/2ξ

ˆ
f
[
σ−1

0 (h− t0)
]
f
[
σ−1(h− t)

]
dh (24)

+σ−N/2
ˆ
f
[
σ−1(h− t)

]
dW (h)

If we denote the first and second term in (24) respectively by µ and W ∗, we have

X(t, σ) = µ(t, σ ; ξ, t0, σ0) +W ∗(t, σ) (25)

where µ(t, σ ; ξ, t0, σ0) is given in (22), and W ∗(t, σ) is an N-dimensional Gaussian

random field with zero mean, unit variance and covariance function given in (23).

In the next theorem proved by Parzen (1961), the generalized likelihood ratio test

statistic for the hypothesis H0 : ξ = 0, against H1 : ξ > 0 is obtained. The theorem shows

that the generalized likelihood ratio test for smoothed Gaussian random field in (21) is the

global maxima of the sample path, as stated in (Siegmund & Worsley, 1995).
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Figure 2

A sample path of a smoothed spherical Gaussian random field

Theorem II.7. Let X(t, σ) be a Gaussian random field in the form of (24) with k = f ,

where dW is a white noise. For testing the null hypothesis H0 : ξ = 0 against the

composite alternative H1 : ξ > 0, the generalized likelihood ratio test statistic obtained

from (12) is equivalent to

Xmax = sup
t
X(t).

Corollary II.2. Suppose X(t, σ) is a Gaussian random field of the form (24), with kernel

k = f , then the mean of this random field has the form of ξR((t, σ), (t0, σ0)), and the

covariance function R
(
(t1, σ1), (t2, σ2)

)
, is as in (23).

In the next theorem, Parzen (1961) obtained the generalized likelihood ratio test

statistic for the hypothesis H0 : ξ = 0, against H1 : ξ > 0. This theorem shows that the
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generalized likelihood ratio test for smooth Gaussian random field (24) is the global

maxima of the sample path, (see Siegmund & Worsley, 1995).

Theorem II.8. Let X(t, σ) be a Gaussian random field in the form of (24) with k = f ,

where dW (t) is a white noise. For testing the null hypothesis H0 : ξ = 0 vs. the

composite alternative H1 : ξ > 0, the generalized likelihood ratio test statistic obtained

from (12) is equivalent to

Xmax = sup
t,σ

X(t, σ).

Recalling that HN(µ, S) denotes a Gaussian measure on a Hilbert space where µ

and S are, respectively, its mean and covariance operators, based on the above theorem,

Rohani (2003) found the log of likelihood ratio by obtaining the Radon-Nikodym

derivative of P ∗1 = HN(µ∗, S) with respect to P0 = HN(0, S). Moreover, he used it to

make the Bayesian statistical testing which we will review it later here.

log[fµ∗(x)] = log[
dP ∗1
dP0

(x)] = ξx(t∗, σ∗)− ξ2/2 (26)

A good approximation of the P -value associated with the generalized likelihood

ratio test statistic Xmax, for smooth (or non-smooth) scale space random fields, is the use

of expected Euler characteristic of the excursion set, (see Siegmund & Worsley, 1995).

Definition II.26. The excursion set of N -dimensional random field X(t, σ) above the

level x in a subset T of RN is defined as

Ax(X,T ) = {t ∈ T : X(t, σ) ≥ x}, T ⊂ RN ,
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and denoted by Ax.

As the threshold level x increases, from a theorem presented by Adler (2010), for

very high thresholds near the global suprimum of X(t, σ), the Euler characteristic is 1 if

Xmax > x, and zero otherwise. Thus the expected Euler characteristic of the excursion set

approximates the P -value of Xmax, (Hasofer, 1978),

P{Xmax ≥ x} ≈ E[χ(Ax)]

For the two dimensional case, the Euler characteristic counts the number of

connected components of a set, minus the number of “holes”. The advantage of this

approximation is that it can be found exactly. Siegmund and Worsley (1995) have used

the expected Euler characteristic in scale space Gaussian random fields.

Now we review the Bayesian testing which Shafie et al. (2003) proposed for signal

detection in noisy image that its shape is unknown and considered as element of a Hilbert

space. For the case of a smooth Gaussian random field, Rohani et al. (2006) found the

Bayes factor of simple hypothesis H0 : ξ = 0 against H1 : ξ > 0.

Corollary II.3. Let X(t, σ) be the Gaussian random field

X(t, σ) = µ(t, σ ; ξ, t0, σ0) +W ∗(t, σ),

where

µ = (σ0σ)−N/2ξ

ˆ
f
[
σ−1

0 (h− t0)
]
k
[
σ−1(h− t)

]
dh,
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W ∗ = σ−N/2
ˆ
k
[
σ−1(h− t)

]
dW (h),

and dW (t) is a white noise and width of the signal, σ is unknown. Assume ρ is the

covariance function of W (t), and R(ρ1/2) is the range of ρ1/2. For testing H0 : ξ = 0

against H1 : ξ > 0, if µ(t, σ ; ξ, t0, σ0) ∈ R(ρ1/2), then P0 and PG are equivalent and the

Bayes factor is

dP0

dPG
=

[ˆ
(ξ,t,σ)

exp[ξx(t, σ)− ξ2/2]dG(ξ, t)

]−1

(27)

We should note that the above Bayes factor is the inverse of Radon-Nikodym

derivative of PG w.r.t P0.

Two Dimensional Case

In this part, we review the application of results in the previous part to a

2-dimensional smooth Gaussian scale space random field which is done by Rohani

(2003).

Let X(t, σ) be a Gaussian scale space random field with the form (24), where

T = [0, 1]× [0, 1] whose mean and variance respectively are zero and one, and covariance

function comes from (23). Given a number of smooth path functions and prior

distribution function on θ = (ξ, (t01, t02), σ0), Rohani (2003) calculated the

Radon-Nikodym derivative in (27) for 2-dimensional case as follows.

B(x) =

[ˆ
(t01,t02,σ0)

Φ(x)

φ(x)
dG2(t01)dG3(t02)dG4(σ0)

]−1

(28)
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where φ(.) and Φ(.) denote the density and distribution functions of the standard

Gaussian, and x = x(t01, t02, σ0). In the above, priors on the parameters of interest

(ξ, t01, t02, σ0) are assumed mutually independent and noted as

G1(ξ), G2(t01), G3(t02), G4(σ0), where ξ has an improper prior distribution on [0,∞).

In the next chapter, we generalize the above Bayes factor for the Gaussian random

field mixture models.

Finite Mixture Models and Identifiability

Finite mixture models are very popular statistical modeling techniques for

different random phenomena. The best use of these models is when multiple populations

contribute to the observed outcome, and there exists an unobserved heterogeneity. In

other words, the population from which we are sampling is heterogeneous, and there are

multiple sub-populations.

The simplest finite mixture models are a class of models that combine a finite

number of probability distribution functions, so called components, to better model the

data.

A finite mixture density of Y with C components is given by

Y ∼
C∑
i=1

πif
(
· | θi

)
(29)

For the weight components πis, it holds

C∑
i=1

πi = 1 and πi > 0, ∀ i = 1, . . . , C
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Figure 3

A mixture of two bi-variate Normal densities

In 29, it assumes that data Y are drawn from a density modeled as a convex

combination of components each specified by f .

When a mixture distribution is consisting of C Gaussian components

Xi ∼ N (µi,Σi) , and mixture weights be πi for i = 1, . . . , C, we have a Gaussian

mixture model,

Y ∼
C∑
i=1

πiφXi(x)

In other words, the density of a Gaussian mixture is a convex combination of

Gaussian densities. Figure (3), courtesy of Green (2019), shows a mixture of two

bi-variate Normal densities.

Any finite mixture model is generally being represented by its parameter vector Θ,

which consists of the component weights, πis, and component parameters, θis of specefic
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distributions in the mixture. Due to a mapping from parameter space to the model space,

identifiability is very important to obtain model parameter estimates. In fact, in the finite

mixture models, estimating and testing parameters of distributions can be meaningfully

discussed if the family of mixing distributions is identifiable. For a model to be

identifiable, the mapping from the parameter space into the model space should be

one-to-one. So that the result of mapping would be a unique parameter vector,

(Forghaniarani & Shafie, 2020).

Let Θ denote the space of parameters for C component mixtures, a mixture model

in (29) is identifiable if the following condition is fulfilled:

∀i, j ∈ {1, . . . , C} : i 6= j ⇒ θi 6= θj

“In a pioneer work, Teicher (1961) studied the identifiability of finite mixtures and

showed that the class of all mixtures of a one-parameter additively-closed family of

distributions is identifiable. Since then, identifiability has been proved in many special

cases. Teicher (1963) proposed a sufficient condition for the identifiability of a finite

mixture and applied it to the Normal and Gamma families”, (Forghaniarani & Shafie,

2020).

Now consider a mixture model that its components are Gaussian distribution of

functions, i.e. Gaussian processes or Gaussian random fields. This type of Mixtures is an

interesting and useful alternative to mixture of high-dimensional Normals. Huang et al.

(2014) studied identifiability of a mixture of Gaussian processes as follows,

Y (t) ∼
C∑
c=1

πcN
{
µc(t), Gc(s, t)

}
(30)
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where C be a latent class variable with a discrete distribution P (C = c) = πc for

c = 1, 2, · · · , C. Moreover, N
{
µc(t), Gc(s, t)

}
denotes a Gaussian process

{X(t) : t ∈ T} with mean µc(t), and covariance function Cov{X(s), X(t)} = Gc(s, t).

And T is a closed and bounded time interval [0, T ]. As a condition of identifiability in

(30), they proved the following theorem.

Theorem II.9. Suppose Gc(s, t) is a positive definite and bivariate smooth function of s

and t and µc(t) is a smooth function of t for any c = 1, . . . , C. Let

S =
{
t ∈ T :

(
µi(t), Gi(t, t)

)
=
(
µj(t), Gj(t, t)

)
for some 1 ≤ i 6= j ≤ C} . If the

complement of S is not empty, then the proposed mixture of Gaussian processes in (30) is

identifiable.

We will use the above theorem to conclude the identifiability of the mixture of

Gaussian random fields provided in the next chapter.
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CHAPTER III

METHODOLOGY

In this study, the averaged image obtained from fMRI technology is modeled as a

mixture of two real-valued Gaussian scale-space random fields X1(t, σ1) and X2(t, σ2),

t ∈ T ⊂ RN , with their mean functions µ1(t, σ1) and µ2(t, σ2) and covariance functions

R1

(
(t1, σ11), (t2, σ12)

)
and R2

(
(t1, σ21), (t2, σ22)

)
. The model can be formulated as

X(t, σ1, σ2) = zX1(t, σ1) + (1− z)X2(t, σ2) (1)

where,

p(z) =


π z = 1

1− π z = 0

The objective of this dissertation is to propose a Bayesian procedure to test the

existence of signal in the cases that shape of signals are known, and the amplitude,

location, and scale parameters in two random fields,

θ1 = (ξ1, t0, σ01) and θ2 = (ξ2, s0, σ02) have some known prior distributions. Testing the

existence of signal is statistically equivalent to the problem of testing the hypotheses such

that
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H0 : ξ1 = 0 & ξ2 = 0

H1 : ξ1 > 0 & ξ2 > 0

Outlines of this chapter demonstrate the methodology to investigate the following

research questions:

Q1 How to develop a Bayesian approach for testing the signal in the mixture
model X(t, σ) for two-dimensional images?

Q2 How the performance of the Bayes factor can change with respect to different
parameter schemes?

In this chapter, we assume that our images are realizations of a mixture of two

homogeneous Gaussian scale space random fields. We suppose that each component of

the mixture has a signal with the form of a known function, here a Gaussian form,

centered at an unknown location t0, and multiplied by an unknown amplitude ξ. We also

assume that the parameter of scale or width of signal, σ0 is not known.

Our objective is to detect the signal when images are modeled as (1). Therefore, in

section 1, we will give more details about the model, and discuss its identifiability. In

section 2, we obtain the R-N derivative for the mixture model (1). In section 3, for model

(1), we discuss the likelihood ratio test statistic for testing the signal when the model is a

mixture of two Gaussian random fields. In section 4, we propose the Bayesian procedure

by employing the Radon-Nikodym derivative in the signal detection problem and apply

our approach to the two-dimensional case. In section 5, as side work, we present the

Gibbs sampling method that through it, we estimate π for a two-dimensional case. In
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section 6, we provide the simulation scheme for the numerical study on the model (1) in a

two-dimensional case.

Gaussian Random Field Mixture Model
and its Identifiability

Assume that we have two real-valued Gaussian scale space random fields

X1(t, σ1) and X2(t, σ2), each satisfying

X(t, σ) = µ(t, σ ; ξ, t0, σ0) +W ∗(t, σ) (2)

Wherefore, their mean functions would be

µ(t, σ; ξ, t0, σ0) = ξ(σ0σ)−N/2
ˆ
f
[
σ−1

0 (h− t0)
]
f
[
σ−1(h− t)

]
dh (3)

and their covariance functions would be

R((t1, σ1), (t2, σ2)) = σ1σ2
−N/2

ˆ
f
[
σ−1

1 (h− t1)
]
f
[
σ1
−1(h− t2)

]
dh (4)

Let θ1 = (ξ1, t0, σ01) and θ2 = (ξ2, s0, σ02) be the corresponding parameter

vectors to X1 and X2 where ξ1 ≥ 0, t0 ∈ T ⊂ RN and σ01 > 0 respectively represent the

amplitude, location and scale of the signal in X1, and ξ2 ≥ 0, s0 ∈ T and σ02 > 0

respectively represent the amplitude, location and scale of the signal in X2. Therefore, the
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Gaussian mixture model (1) can be written as

X(t, σ1, σ2) = zµ1(t, σ1 ; ξ1, t0, σ01) + (1− z)µ2(t, σ2 ; ξ2, s0, σ02) (5)

+zW ∗
1 (t, σ1) + (1− z)W ∗

2 (t, σ2)

where,

p(z) =


π z = 1

1− π z = 0

Here, Wj
∗(t, σj), j = 1, 2, is a smooth N-dimensional Gaussian random field with zero

mean, unit variance and the covariance function satisfying equation (4).

For hypothesis testing to be valid, the identifiability of the mixture models should

be studied. By the theorem (II.9) proved by Huang et al. (2014), we can conclude that

model (1) is identifiable.

Radon-Nikodym Derivative in Gaussian
Mixture Models

Assume X1 and X2 are Gaussian random fields in X = L2(T,B, λ), so P1 and P2

are Gaussian measures on X = L2 induced by X1 and X2. From Chapter II , we know

that if P is a probability measure on (X ,F1), then there exist a set A0 = {x| x ∈ X} in

F1 with P0 (A0) = 0, and a non-negative P0 - measurable function f such that

f(x) = dP
dP0

(x) be Radon-Nikodym derivative of P with respect to P0.

Also, we know if P � P0, we can consider f as the density of P w.r.t P0. By this,

if P1 � P0 and P2 � P0, we know that there exist f1(x) = dP1

dP0
(x) and f2(x) = dP2

dP0
(x)

which f1 is the density of P1 w.r.t P0, and f2 is the density of P2 w.r.t P0. Now, consider
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the mixture model (1). Because X is also a random field in X ≡ L2, we assume P ∗ be the

measure induced by X on X . Based on the definition of mixtures, model (1) can be

written in the following form

f(x) = πf1 (x1) + (1− π)f2 (x2)

or more precisely,

dP ∗

dP0

(x) = π
dP1

dP0

(x1) + (1− π)
dP2

dP0

(x2) (6)

Here, we want to find f1(x), f2(x) to find f(x). By definition of Gaussian

probability measure in Hilbert space, we have P1 = HN (µ1, S), and P2 = HN (µ2, S).

We also assume P0 = HN(0, S), and use the result from Chapter II in (26). So we have

the Radon-Nikodym derivative of Pj w.r.t P0 which is the likelihood function as

following,

fj(x;θj) =
dPj
dP0

(x) = exp
{
ξjxj (t0, σ0)− ξ2

j /2
}

for j = 1, 2 (7)

For this study, we should have more than one realization of the field. Assuming to

have n sample paths from mixture of two Gaussian random fields, we can obtain R-N

derivative. Assume x1, ..., xn are observed from model (1), so from (7), the likelihood

function for xi, i = 1, ..., n can be written as

f(xi | π,θ1,θ2) = πf1

(
xi | θ1

)
+ (1− π)f2

(
xi | θ2

)
(8)
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or

f(xi, zi | π,θ1,θ2) = [πf1

(
xi | θ1

)
]
zi [(1− π)f2

(
xi | θ2

)
]
(1−zi) (9)

From (9),

f(x, z | π,θ1,θ2) =
n∏
i=1

[πf1

(
xi | θ1

)
]
zi [(1− π)f2

(
xi | θ2

)
]
(1−zi)

=
n∏
i=1

[π exp{ξ1xi(t0, σ01)− ξ2
1/2}]zi

× [(1− π) exp{ξ2xi(s0, σ02)− ξ2
2/2}](1−zi)

In section 5, the following likelihood function can be used to estimate π and other

parameters.

f(x, z | π,θ1,θ2) =
n∏
i=1

exp
{
zi
[
ξ1xi(t0, σ01)− ξ2

1/2
]}

(10)

× exp
{

(1− zi)
[
ξ2xi(s0, σ02)− ξ2

2/2
]}
πzi(1− π)(1−zi)

Likelihood Approach for Gaussian
Mixture Models

In Chapter II , we learned that for testing the simple H0 : θ = θ0 against

Ha = θ 6= θ0, the generalized likelihood ratio test statistic is

f(x) = sup
θ∗∈Θ

fθ∗(x) = sup
θ∗∈Θ

dPθ∗

dPθ
(x)
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Also, regarding Theorem II.7 proved by Parzen (1961), when X(t, σ) is a

Gaussian random field in the form of

X(t, σ) = µ (t, σ; ξ, t0, σ0) +W (t, σ),

and k = f , the generalized likelihood ratio test statistic for testing H0 : ξ = 0 vs.

Ha : ξ > 0 is

Xmax = sup
t,σ

X(t, σ)

Rohani (2003) showed that for the Gaussian scale space random field X(t, σ),

Xmax = sup
t0,ξ,σ0

[
ξx(t0, σ0)− ξ2/2

]

Moreover, P (Xmax > x0) ≈ E
[
χ (Ax0)

]
, where χ (Ax0) is the Euler

characteristic of the excursion set of

X(t, σ), Ax0 = {(t, σ) ∈ (T × [σ1
∗, σ2

∗]), X(t, σ) > x0}. For the mixture model (1), the

generalized likelihood ratio test statistic is

Xmax = zX1 max + (1− z)X2 max (11)

with

P (Xmax > x0) = π · P (X1 max > x0) + (1− π) · P (X2 max > x0),
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therefore, we have

P (Xmax > x0) ≈ πE
[
χ (A1)

]
+ (1− π)E

[
χ (A2)

]
(12)

where Aj =
{

(t, σ) ∈ (T × [σ1
∗, σ2

∗]), Xj(t, σ) > x0

}
for j = 1, 2.

For a future study, this result can be applied to two dimensional case where

T ⊂ R2. In that case, to approximate P (Xmax > x0), the expected Euler characteristic

that Siegmund & Worsley (1995) obtained for a Gaussian random field can be used.

Bayes Factor for Mixture of Gaussian
Random Fields

In Chapter II , we learned that for testing H0 : ξ = 0, against Ha = ξ > 0, the

Bayes factor is as follows,

B(x) =


∞ x ∈ A0[´

dPθ

dPθ0
(x)dG(θ)

]−1

x /∈ A0

We can use the above definition of Bayes factor for testing H0 : ξ = 0, against

Ha = ξ > 0, where θ = (π,θ1,θ2) is the vector of parameters in the model (1), and

ξ = (ξ1, ξ2). Note that θ1 = (ξ1, t0, σ01) , and θ2 = (ξ2, s0, σ02) are corresponding

parameter vectors of Gaussian random fields, X1(t, σ1) and X2(t, σ2), respectively, and

G(θ) is a prior distribution of θ over its parameter space Θ, and Pθ is a probability

measure on (X ,F1). Moreover, for any A ∈ F1, A = {x | x ∈ X ≡ L2} ,

PG(A) =
´

Θ
Pθ(A) dG(θ) is the marginal probability measure of X on (X ,F1) , and

PG (A0) = 0.
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Finding the above Bayes factor, analytically is not tractable, and we need to

compute it through numerical methods. By writing the Bayes factor as

B(x) =

[ˆ
dPθ
dPθ0

(x) dG(θ)

]−1

=

[ˆ
dPθ
dPθ0

(x) g(θ)d(θ)

]−1

,

it can be interpreted as the inverse of expected value of likelihood ratio, dPθ

dPθ0
(x) w.r.t the

prior density, g(θ). Regarding this perspective, we are going to find the Bayes factor for

model (1).

To apply the above definition of the Bayes factor, we need to assume priors on the

model parameters. We assume π and θ1, and θ2 are independent in prior and their prior

distribution is (Gπ ·Gθ1 ·Gθ2), therefore, dG(θ) = dGπ · dGθ1 · dGθ2 . Based on (6) and

(8), B(x) is formulated as,

1

B(x)
=

ˆ
[0,1]×Θ1×Θ2

n∏
i=1

[
πf1

(
xi | θ1

)
+ (1− π)f2

(
xi | θ2

)]
dGπdGθ1dGθ2 (13)

where, f1

(
xi | θ1

)
= exp{ξ1xi(t0, σ01)− ξ2

1/2}, and

f2

(
xi | θ2

)
= exp{ξ2xi(s0, σ02)− ξ2/2}.

By (13) and through samples from the prior density, obtaining B(x) is

numerically possible. For this study, we borrowed our choice of priors on

θ1 = (ξ1, t0, σ01) and θ2 = (ξ2, s0, σ02) from Rohani (2003), and Rohani et al. (2006).

Assuming π, ξ1, ξ2, t0, s0, σ01, σ02 are independent in prior, the priors are as

follows:

• π | α ∼ Beta (α1, α2) , α1 = 2, α2 = 2
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• σ01, σ02
iid∼ Inv-Gamma (β1, β2) , β1 = 4, β2 = 0.5

• t0, s0
iid∼ TN(µ,Σ, a,b), where µ = (0.5, 0.5)T and covariance matrix,

Σ = ( 1 .5
.5 1 ), and the lower and upper truncation points a = (0, 0)T ,b = (1, 1)T .

• ξ1, ξ2
iid∼ Unif(0, 5)

In Chapter IV , to compute the Bayes factor, we will apply “prior.sampler”

function in the two-dimensional case where T ⊂ R2. The “prior.sampler” function written

in R by the author of this work is provided in Appendix.

We should note that in the case we only have one realization of the field, the

following formula can be used to obtain the Bayes factor.

1

B(y)
= E(π)

1

B1 (x1)
+ [1− E(π)]

1

B2 (x2)
(14)

In section 6, we provide the simulation scheme for the numerical study on the

two-dimensional case.

Although to obtain the Bayes factor by employing (13), we do not need to

estimate π or other model parameters, as side work and initiation for the future study, we

run Gibbs sampling to estimate π, ξ1, ξ2, t0, s0, σ01, σ02. The details are displayed in

the next section.

Estimating π through Gibbs Sampling

To estimate π and the other parameters in the model (1), we can use Gibbs

sampling for mixture models. Gibbs sampler is an MCMC method that originated by

Geman (1984), and is a useful approach to draw the sample from the joint posterior
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distribution when its form is complicated and difficult to handle. In Gibbs sampler,

instead of directly sampling from joint posterior distribution, we sample from conditional

posterior distributions. By the theorem of Markov Chain, for a sufficiently large sample,

the result can be viewed as a random sample from posterior p(· | data).

By obtained samples from the posterior P (θ | Data), where θ = (π,θ1,θ2) and

θ1 = (ξ1, t0, σ01) and θ2 = (ξ2, s0, σ02), we find marginal posterior distribution

P (π | θ1,θ2, data), and the mean of this distribution would be an estimate for π. To find

P (π | θ1,θ2, data), besides the likelihood function, we need to specify prior distributions.

Our choice of priors on θ1 = (ξ1, t0, σ01) and θ2 = (ξ2, s0, σ02) are the same as presented

priors in section 4. We have also used function (10) as the likelihood function.

The following are the steps in the Gibbs sampling algorithm.

Gibbs Sampling Algorithm

• Randomly generate
(
π(1), z(1), ξ

(1)
1 , ξ

(1)
2 , t0

(1), s0
(1), σ

(1)
01 , σ

(1)
02

)
• Where T is the number of iterations, for t = 1, . . . , T , do the following:

1. Draw π(t+1) ∼ p
(
π | z(t), ξ

(t)
1 , ξ

(t)
2 , t

(t)
0 , s

(t)
0 , σ

(t)
01 , σ

(t)
02 , data

)
2. Draw z(t+1) ∼ P

(
zn | z−n(t), ξ1

(t), ξ2
(t), t

(t)
0 , s

(t)
0 , σ

(t)
01 , σ

(t)
02 , π

(t+1), data
)

3. Draw (ξ1, ξ2)(t+1) ∼ P
(
ξ | t(t)0 , s

(t)
0 , σ

(t)
01 , σ

(t)
02 , π

(t+1), z(t+1), data
)

4. Draw t0(t+1) ∼ P
(
t0 | s0

(t), σ
(t)
01 , σ

(t)
02 , π

(t+1), z(t+1), ξ(t+1), data
)

5. Draw s0
(t+1) ∼ P

(
s0 | σ(t)

01 , σ
(t)
02 , π

(t+1), z(t+1), ξ(t+1), t0
(t+1), data

)
6. Draw (σ01, σ02)(t+1) ∼ P

(
σ0 | π(t+1), z(t+1), ξ(t+1), t0

(t+1), s0
(t+1), data

)
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• By the theorem of Markov Chain, for a sufficiently large t,(
π(t), z(t), ξ1

(t), ξ2
(t), t

(t)
0 , s

(t)
0 , σ

(t)
0

)
can be viewed as a random sample of posterior

p(· | data).

In this part, we want to obtain the forms of different conditional posterior

distributions.

1. P
(
π | z,θ1,θ2, data

)
∝

n∏
i=1

(π)zi(1− π)(1−zi) · (π)α1−1(1− π)α2−1

P (π | z,θ1,θ2, data) ≡ Beta

α1 +
n∑
i=1

zi , α2 + n−
n∑
i=1

zi



2. P
(
zi | z(−i), π,θ1,θ2, data

)
∝ exp

{
zi
[
ξ1xi(t0, σ01)− ξ2

1/2
]}

× exp
{

(1− zi)
[
ξ2xi(s0, σ02)− ξ2

2/2
]}

×(π)zi(1− π)zi−1

P
(
zi | z(−i), π,θ1,θ2, data

)
∝ (πf1)zi

[
(1− π)f2

](1−zi)
P
(
zi | z(−i), π,θ1,θ2, data

)
≡ Bern

(
πf1

πf1 + (1− π)f2

)

3. P
(
ξ1 | t0, σ01,θ2, π, z, data

)
∝

n∏
i=1

e

{
zi[ξ1xi(t0,σ01)−ξ12/2]

}
· P (ξ1) · I(ξ1>0)

P
(
ξ1 | t0, σ01,θ2, π, z, data

)
≡ TN


n∑
i=1

zixi (t0, σ01)

n∑
i=1

zi

,
1
n∑
i=1

zi


P
(
ξ2 | s0, σ02,θ1, π, z, data

)
∝

n∏
i=1

e

{
zi[ξ2xi(s0,σ02)−ξ22/2]

}
· P (ξ2) I(ξ2>0)

P
(
ξ2 | s0, σ02,θ1, π, z, data

)
≡ TN


n∑
i=1

(1− zi)xi (s0, σ02)

n∑
i=1

(1− zi)
,

1
n∑
i=1

(1− zi)
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The above truncated normal distributions are truncated at ξj ≥ 0 for j = 1, 2.

4. Because there is not any closed forms for the following conditional posterior, we

will use Metropolis-Hasting method to generate t0, s0, σ01, σ02, from following

distributions.

P
(
t0 | ξ1, σ01,θ2, π, z, data

)
,

P
(
s0 | ξ2, σ02,θ1, π, z, data

)
,

P
(
σ01 | ξ1, t0,θ2, π, z, data

)
,

P
(
σ02 | ξ2, s0,θ1, π, z, data

)
.

The choice of proposal distribution used in Metropolis-Hasting sampler is based

on the choice of priors for t0, s0, σ01, σ02. Thus, the chosen proposal distribution is:

Q(t∗, σ∗0) =
ββ12

Γ(β1)
σ
−(β1+1)
0 e−β2/σ0

exp
{
−1

2
(x− µ)TΣ−1(x− µ)

}
´ b
a

exp
{
−1

2
(x− µ)TΣ−1(x− µ)

}
dx

where, β1 = 4, β2 = 0.5, a = (0, 0)T , b = (1, 1)T , µ = (0.5, 0.5)T , and Σ = ( 1 0.5
0.5 1 ).

Results of the above Gibbs and Metropolis-Hastings samplers are given in Chapter

IV .

Simulation Study

In this section, we apply the theoretical results of the previous sections on a data

set obtained by simulation for fMRI images of the human brain. We use the results to
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provide the simulation scheme for the numerical study on the model (1) in a

two-dimensional case. Our simulation is based on the Monte Carlo method, and we will

employ R packages to run the simulations. The image resolution we plan to have is

64× 64, which is commonly used in practice. We need to generate n images assuming

each is for one subject. We will consider two values of 10 and 20 for n to generate various

series of images for each analysis under different parameter schemes. As before, the null

hypothesis is ξ = 0, or equivalently there is no signal, and the alternative hypothesis is

ξ > 0 for at least one of the two random fields. To do the hypothesis testing, we apply the

Bayes factor approach for the scale-space model. For spatial smoothing of images, a

Gaussian-shaped kernel is used before any analysis. The Gaussian-shaped kernel is

centered to ensure that the entire image is evenly smooth.

Here, we assume that our images are realizations of a mixture of two

homogeneous Gaussian random fields. We suppose that each component of the mixture

has a signal with the form of a known function, here a Gaussian form, centered at an

unknown location t0, and multiplied by an unknown amplitude ξ. We also assume that the

parameter of scale or width of signal, σ0 is not known.

Under the alternative hypothesis, the simulated images contain not just the noise

but also the signals. Therefore, images with signals under various schemes are generated

from model (1). The signals are manipulated through the following parameters:

(a) weight in the mixture (π), with two levels: π = 0.3, 0.5. By this, we consider two

different scenarios for model (1).
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(b) amplitude (ξ), where there are three levels: ξ = 0, 1, 2.5. With two random fields

in the model, the amplitudes of two signals, ξ1 and ξ2, could be different resulting

in six combinations of ξ1 and ξ2 as displayed in Table 2

(c) distance, where there are two levels: first, the signals close to each other (Near),

and second, the signals far from each other (Far). The operational definition of

these two levels is illustrated in the following subsection.

(d) scale (σ0) , where there are two levels: 0.2, 0.4. With two random fields in the

model, we would have 3 combinations for σ01 and σ02. However, to avoid having

too many scenarios, we have chosen one combination of (σ01 = 0.2, σ02 = 0.4).

Choices of the Levels of the Parameters

Because there is not any previous simulation study on this model, as the first

investigation of this topic, the levels of the above model parameters (weight, amplitude,

distance, and scale) are generally chosen based on the previous studies with signals from

one Gaussian random field. Coordinates of two signals, (t01, t02) and (s01, s02) , with two

levels are:

Near: (0.5,0.5) and (0.7,0.7)

Far: (0.1,0.6) and (0.6,0.1)

In previous research by (Shafie et al., 2003; Siegmund & Worsley, 1995), for the

values of amplitude and scale in the simulation, ξ = 6 and σ0 = 1 are used. However,

these values are not applicable here because with all the simulated images being unit
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squares in the current study, a signal with ξ = 6 and σ0 = 1 is too big to be contained

nicely within a unit square. Thus, more reasonable values for amplitude and scale are

chosen instead.

Simulation Scheme

In summary, regarding two values for n and all combinations of parameters, a total

of 48 schemes are considered for the simulation study. The simulation scheme is

displayed in Table 2. Through the simulation, first, we estimate π in the model (1)

through Gibbs and Metropolis-Hasting samplers. Furthermore, we obtain the Bayes factor

using Monte Carlo simulation. After computing the Bayes factors under different

schemes, we will use the common grading of the Bayes factor given in Table 1 to reject or

accept the existence of the signal. Moreover, the power of the test will be calculated for

each scheme.
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Table 2

Schemes of the Parameters where σ01 = 0.2, σ02 = 0.4,

No. π ξ1 ξ2 Distance
1 0.3 0 0 Near
2 0 1
3 0 2.5
4 1 1
5 1 2.5
6 2.5 2.5
7 0.3 0 0 Far
8 0 1
9 0 2.5

10 1 1
11 1 2.5
12 2.5 2.5
13 0.5 0 0 Near
14 0 1
15 0 2.5
16 1 1
17 1 2.5
18 2.5 2.5
19 0.5 0 0 Far
20 0 1
21 0 2.5
22 1 1
23 1 2.5
24 2.5 2.5
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CHAPTER IV

RESULTS

In this chapter, we give the results of the simulation study for all parameter

schemes. Bayes factors are obtained through Monte Carlo simulation from the prior

distribution for a mixture of two scale-space Gaussian random fields, and results are

displayed in Tables 3 and 4. The number of iterations considered for each simulation was

1000. Moreover, the number of simulations for each scheme was chosen to be 1000 to

obtain the power of the test. Even though, estimating parameters in the model was not

required for testing, we have estimated all parameters π, ξ1, ξ2, t0, s0, σ01, σ02 in the

model (1). Estimation results obtained through Gibbs and Metropolis-Hasting samplers

are given in Table 8 for several schemes. The Appendix includes the R code used for the

simulation study.

Result for the Bayes Factor

Tables 3 and 4 show the Bayes factors corresponding to different parameter

schemes under the selected prior distributions of (π,θ1,θ2) in Chapter III . These

results are obtained through the Monte Carlo method and by applying the formula in (13).

We should recall that in the hypothesis testing in which the Bayes factor is being

used as a criterion, a large value of the Bayes factor is evidence in support of H0.

In this simulation study, values of all obtained Bayes factors are between

1.2× 10−87, and 0.995. And, the maximum observed Bayes factors in all simulated
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images including images with no signals are 0.995. Also, to uncover the behavior of the

Bayes factor in our model, empirical distributions of Bayes factor under different

parameter schemes are displayed in Figures 5− 10. With regard to the findings, the

grading system in Table 1 cannot be employed to make a decision about testing

H0 : ξ = 0. Essentially, Jeffreys’ grading system implicitly assumes values for the Bayes

factor in the finite dimensions, so this grading system is invalid to be applied in

infinite-dimensional cases. Our justification for observing small values of the Bayes factor

in the model (1) is the nature of the likelihood function in (8). Consequently, we need to

choose a proper grading system for the Bayes factor in such a study.

In Figure (4), different box-plots show that the larger values of Bayes factor are

mostly related to schemes in which ξ1, and ξ2 are 0. For more details about the range of

Bayes factors, tables 5, 6, and 7 are provided in Appendix for several parameter schemes.

Regarding the provided information about the values of the Bayes factor, we chose

a threshold for decision-making. The choice of threshold was based on the empirical

distributions of the Bayes factor for the schemes in which images are realizations of a

mixture model with components being Gaussian random fields with no signals. For

observed Bayes factors in schemes 1, 7, 13, and 19, different percentiles are presented in

the following table. We have chosen the 75th percentile as a threshold to distinguish the

large values of the Bayes factor in support of the H0. Although we made a justification,

this choice is whatsoever arbitrary.

65% 75% 85% 95%
2.27× 10−5 3.68× 10−4 7.58× 10−3 1.33× 10−1
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Figure 4

Boxplots of Bayes Factor with respect to Parameter Scheme

Therefore, 
if B > 3.68× 10−4 accept the H0

if B ≤ 3.68× 10−4 reject the H0

Values of observed Bayes factors, for different parameter schemes and their

corresponding power of test are displayed in Tables 3 and 4. The result of the

decision-making is based on the chosen threshold, 3.68× 10−4. The threshold was used

to calculate the power. As illustrated in Chapter III , there are 24 parameter schemes

manipulating different factors of n simulated images, including π, amplitude, and

distance. The discussion about these results are provided in Chapter V .
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Table 3

The Bayes Factor and its power where σ01 = 0.2, σ02 = 0.4, n = 10

scheme π ξ1 ξ2 Distance Bayes Factor Decision Power%
1 0.3 0 0 Near 2.66× 10−2 Accept H0 29
2 0 1 2.29× 10−6 Reject H0 88
3 0 2.5 4.48× 10−15 Reject H0 96
4 1 1 5.54× 10−7 Reject H0 90
5 1 2.5 7.99× 10−15 Reject H0 97
6 2.5 2.5 5.2× 10−15 Reject H0 97
7 0.3 0 0 Far 2.86× 10−2 Accept H0 30
8 0 1 4.61× 10−6 Reject H0 90
9 0 2.5 1.56× 10−13 Reject H0 97

10 1 1 3.66× 10−6 Reject H0 91
11 1 2.5 1.94× 10−13 Reject H0 97
12 2.5 2.5 5.84× 10−15 Reject H0 98
13 0.5 0 0 Near 2.79× 10−2 Accept H0 30
14 0 1 6.44× 10−6 Reject H0 86
15 0 2.5 1.94× 10−12 Reject H0 95
16 1 1 1.43× 10−6 Reject H0 90
17 1 2.5 1.81× 10−13 Reject H0 96
18 2.5 2.5 2.17× 10−14 Reject H0 97
19 0.5 0 0 Far 2.73× 10−9 Reject H0 12
20 0 1 2.47× 10−5 Reject H0 88
21 0 2.5 1.63× 10−11 Reject H0 96
22 1 1 3.52× 10−5 Reject H0 90
23 1 2.5 3.43× 10−12 Reject H0 97
24 2.5 2.5 1.44× 10−11 Reject H0 97
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Table 4

The Bayes Factor and its power where σ01 = 0.2, σ02 = 0.4, n = 20

scheme π ξ1 ξ2 Distance Bayes Factor Decision Power %
1 0.3 0 0 Near 1.6× 10−4 Reject H0 15
2 0 1 5.8× 10−12 Reject H0 96
3 0 2.5 2.9× 10−28 Reject H0 99
4 1 1 3.8× 10−13 Reject H0 97
5 1 2.5 2× 10−28 Reject H0 99
6 2.5 2.5 9.4× 10−29 Reject H0 99
7 0.3 0 0 Far 1.3× 10−3 Accept H0 15
8 0 1 2.8× 10−11 Reject H0 96
9 0 2.5 6.0× 10−25 Reject H0 99
10 1 1 4.2× 10−12 Reject H0 97
11 1 2.5 6.3× 10−25 Reject H0 99
12 2.5 2.5 1.6× 10−23 Reject H0 99
13 0.5 0 0 Near 1.4× 10−11 Reject H0 3
14 0 1 2.6× 10−10 Reject H0 94
15 0 2.5 2.7× 10−22 Reject H0 98
16 1 1 8.7× 10−13 Reject H0 97
17 1 2.5 3.7× 10−25 Reject H0 99
18 2.5 2.5 8.8× 10−28 Reject H0 99
19 0.5 0 0 Far 1.2× 10−3 Accept H0 16
20 0 1 1.3× 10−28 Reject H0 99
21 0 2.5 6.5× 10−22 Reject H0 99
22 1 1 9.3× 10−10 Reject H0 97
23 1 2.5 1.5× 10−21 Reject H0 99
24 2.5 2.5 6.5× 10−22 Reject H0 99
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More Figures and Tables

Following figures and tables include more details about distributions of Bayes

factors under different parameter schemes. These information are used to choose the

threshold for decision making.

Figure 5

Empirical Bayes Factor Distribution for Scheme 1-4
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Table 5

Five-Number Summary of Bayes Factor For Schemes 1-4

Scheme 1 Scheme 2 Scheme 3 Scheme 4
Min. :0.0000000 Min. :0.0000000 Min. :0.000000 Min. :0.0000000
1st Qu.:0.0000000 1st Qu.:0.0000000 1st Qu.:0.000000 1st Qu.:0.0000000
Median :0.0000034 Median :0.0000000 Median :0.000000 Median :0.0000000
Mean :0.0318689 Mean :0.0055949 Mean :0.001194 Mean :0.0038750
3rd Qu.:0.0011446 3rd Qu.:0.0000015 3rd Qu.:0.000000 3rd Qu.:0.0000002
Max. :0.9948877 Max. :0.7464239 Max. :0.487341 Max. :0.7284476

Table 6

Five-Number Summary of Bayes Factors For Schemes 5-8

Scheme 5 Scheme 6 Scheme 7 Scheme 8
Min. :0.000000 Min. :0.0000000 Min. :0.0000000 Min. :0.0000000
1st Qu.:0.000000 1st Qu.:0.0000000 1st Qu.:0.0000000 1st Qu.:0.0000000
Median :0.000000 Median :0.0000000 Median :0.0000033 Median :0.0000000
Mean :0.001039 Mean :0.0008439 Mean :0.0320692 Mean :0.0046506
3rd Qu.:0.000000 3rd Qu.:0.0000000 3rd Qu.:0.0013094 3rd Qu.:0.0000003
Max. :0.473745 Max. :0.4638732 Max. :0.9860340 Max. :0.7489678
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Figure 6

Empirical Bayes Factor Distribution for Scheme 5-8

Result for Parameters Estimation

Table 8 shows the estimated parameters corresponding several different parameter

schemes. To estimate parameters, we obtained samples from the posterior

P (π, ξ1, ξ2, t0, s0, σ01, σ02 | Data) through Gibbs and Metropolis-Hasting samplers.

We have employed the likelihood function (10), and prior distributions in Chapter III .

The discussion on results in this table is provided in Chapter V .
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Figure 7

Empirical Bayes Factor Distribution for Scheme 9-12

Table 7

Five-Number Summary of Bayes Factors For Schemes 9-12

Scheme 9 Scheme 10 Scheme 11 Scheme 12
Min. :0.0000000 Min. :0.0000000 Min. :0.0000000 Min. :0.0000000
1st Qu.:0.0000000 1st Qu.:0.0000000 1st Qu.:0.0000000 1st Qu.:0.0000000
Median :0.0000000 Median :0.0000000 Median :0.0000000 Median :0.0000000
Mean :0.0009265 Mean :0.0033190 Mean :0.0007734 Mean :0.0006803
3rd Qu.:0.0000000 3rd Qu.:0.0000001 3rd Qu.:0.0000000 3rd Qu.:0.0000000
Max. :0.4952471 Max. :0.7272340 Max. :0.4811155 Max. :0.4609896
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Figure 8

Empirical Bayes Factor Distribution for Scheme 13-16

Figure 9

Empirical Bayes Factor Distribution for Scheme17-20
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Figure 10

Empirical Bayes Factor Distribution for Scheme 21-24

Table 8

Parameter estimates where σ01 = 0.2, σ02 = 0.4, n = 10

π π̂ ξ1, ξ2 ξ̂1, ξ̂2 Distance t̂01, t̂02 ŝ01, ŝ02 σ̂01, σ̂02

0.3 0.75 (0, 1) (1.9, 0.6) Near (0.56, 0.64) (0.62, 0.69) (0.42, 0.38)
0.3 0.74 (2.5, 2.5) (2.8, 1.8) Near (0.52, 0.49) (0.49, 0.48) (0.44, 0.44)
0.3 0.75 (2.5, 2.5) (2.9, 1.9) Far (0.12, 0.59) (0.12, 0.59) (0.46, 0.45)
0.5 0.75 (0, 2.5) (2.9, 1.9) Near (0.66, 0.64) (0.67, 0.66) (0.43, 0.42)
0.5 0.78 (2.5, 2.5) (2.9, 1.8) Far (0.74, 0.17) (0.59, 0.16) (0.45, 0.43)
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CHAPTER V

CONCLUSIONS

The purpose of the current study was to propose a Bayesian approach to the

Gaussian mixture model (1) to detect a signal in fMRI data. The problem of detecting

signals is statistically equivalent to hypothesis testing. To test the existence of signal, we

developed the Bayesian testing approach which Shafie et al. (2003) proposed for signal

detection using the notion of Bayes factor, B(x). For infinite-dimensional parameter

space, they defined the Bayes factor based on the concept of the Radon-Nikodym

derivative. We developed their Bayes factor definition to obtain a Bayesian criteria for

testing the proposed model (1). Finding the Bayes factor in an infinite-dimensional case is

not analytically tractable, and we needed to compute it through numerical methods. In

this study, under 48 schemes of the model parameters, two-dimensional images were

simulated. To obtain B(x) for each set of images, the formula in (13) was applied.

Assuming parameters π, ξ1, ξ2, t0, s0, σ01, σ02 are independent in prior, our

choice of priors were as follows:

• π | α ∼ Beta (α1, α2) , α1 = 2, α2 = 2

• σ01, σ02
iid∼ Inv-Gamma (β1, β2) , β1 = 4, β2 = 0.5

• t0, s0
iid∼ TN(µ,Σ, a,b)

• ξ1, ξ2
iid∼ Unif(0, 5)
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We used the bivariate truncated Normal as prior on t0, s0 with µ = (0.5, 0.5)T

and covariance matrix Σ = ( 1 0.5
0.5 1 ), where the lower and upper truncation points were

a = (0, 0)T ,b = (1, 1)T .

To approximate the integrals in (13), after taking 1000 samples of

θ = (π, ξ1, ξ2, t0, s0, σ01, σ02) from prior distributions, Monte Carlo method was

employed. In addition, via 1000 simulations for each parameter scheme, the power of

testing H0 : ξ = 0, against Ha = ξ > 0 was obtained. The result of computing Bayes

factors and test-powers were displayed in Chapter IV for all 48 parameter schemes

(Tables 3 and 4).

Findings and Discussion

For this work, we had to answer two main questions. The first was how to develop

a Bayesian procedure for testing the signal in the model (1) for two-dimensional images.

The second was how the performance of the Bayes factor can change with respect to

different parameter schemes. In Chapter III, we developed a Bayesian approach to

model (1), and in Chapter IV , we illustrated our approach by analysis of the simulated

data. To answer the first question, we found Bayes factors for all schemes and by them,

we decided to reject or accept H0. To answer the second question, we carried out a

simulation study to obtain the powers of the test corresponding to each scheme.

Here, we should notice that our choice of threshold for decision-making about

testing H0, where the Bayes factor used as a criterion is somehow arbitrary. Regarding

information in Tables 3 and 4, it is obvious that this choice of threshold resulted in very

low power of the test for schemes with no signals, and large powers for ones with signals.



74

Here we can discuss that the choice of power of the test can be considered as an important

factor for choosing a threshold to make a decision on accepting/rejecting the H0.

Furthermore, Tables 3 and 4 show that the proposed Bayesian approach for testing

the signal is successful for all the schemes in which at least one of the components in the

model (1) is a Gaussian random field with a non-zero mean function.

We illustrated in Chapter III that there are 24 parameter schemes for each

scenario of n manipulating different factors of simulated images, including π, amplitude,

and distance. Information in Tables 3 and 4 show the effect of π, amplitude, and distance

on the power of the Bayes factor. It is seen that the higher powers are mostly for the

schemes in which π = 0.3, and the centers of signals in two random fields are far from

each other. Given that, the effect of amplitudes on the power is of course clear for all

schemes.

Limitations and Suggestions for
Future Research

We found that the Bayesian approach of signal detection within noisy images

when the image is modeled as a mixture of two Gaussian scale-space random fields is a

suitable procedure. However, we had some limitations of the above analysis that must be

noticed.

To evaluate our Bayesian approach to the proposed model (1), we carried out a

simulation study by generating simulated data. But, the results of this study should be

developed for the application on real fMRI data. For instance, in the cases that the shape

of signals are not known, smoothing with the kernel of σ−N/2k
[
σ−1(h− t)

]
is not
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justifiable, and so we must apply the non-smooth random fields such as the one satisfying

(19).

As it illustrated in Chapter IV , the grading system in Table 1 cannot be employed

to make a decision about testing H0 : ξ = 0. Therefore, we need to construct a proper

grading system for the Bayes factor in this type of study. Even though we somehow used

the information from empirical distributions of the Bayes factor to find the threshold for

testing, our choice was arbitrary. As it was seen in Tables 3 and 4, the study of the power

of the Bayes factor can help researchers to construct a proper grading system for these

types of study.

The Bayes factor proposed in (13) was only applied to a mixture model with two

Gaussian scale-space random fields. However, due to its abstract generality, the proposed

Bayes factor can be applied to the mixture models with more components.

Although the estimation of parameters in the model (1) was not the purpose of this

study, the Gibbs and Metropolis samplers were employed to obtain the empirical posterior

distribution P (π, ξ1, ξ2, t0, s0, σ01, σ02 | Data). By sampling from the posterior

distribution, we estimated π, ξ1, ξ2, t0, s0, σ01, σ02 for some of schemes and results are

displayed in Table(8). As it is seen, the estimation for parameters π, ξ1, ξ2 was not

successful. However, results of estimation for parameters t0, s0, σ01, σ02 seem pretty

decent. This part of our work can be a field for the future studies. Of course applying

machine learning methods might increase the level of success in estimating parameters of

model (1).
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APPENDIX A

R CODE FOR MONTE CARLO SIMULATION
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#####################################################################

#### Through this code, we want to find the Bayes factor in mixture

#### of 2 Gaussian random fields by applying Monte carlo sampler.

#### The dimension is d=2.

par.scheme<-as.matrix(read.table(file="par.scheme"))

SampleTheta<-as.matrix(read.table(file="sampletheta"))

######### Required packages ###########

if (!requireNamespace("BiocManager", quietly = TRUE))

install.packages("BiocManager")

BiocManager::install()

library(ExtDist)

library(invgamma)

library(truncnorm)

library(truncdist)

library(mvtnorm)

library(tmvtnorm)

library(coda)

library(reshape)

library(iterpc)

library(doParallel)
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library(parallel)

library(foreach)

library(EBImage)

######### Introducing Parameters #########

# xi_1 & xi_2 are amplitudes of two GRFs

# sigma0_1 & sigma0_2 are scales for two GRFs

# t0 & s0 are vectors of locations for centers of two GRFs

# Pi is the weight parameter in the mixture

################################################################

###### This function generates a realization of a non-smooth ###

### Gaussian RF for a specific vector of ’theta’

signal.generate <- function(N,xi,t0,sigma0){

noise <- matrix(rnorm(N*N),N,N) #white noise

pix_x <- (row(noise)-1)/(N-1) #Range [0,1]

pix_y <- (col(noise)-1)/(N-1)

mu <- (xi/(sigma0*sqrt(pi)))

*exp((-0.5*((pix_x-t0[1])ˆ2+(pix_y-t0[2])ˆ2)/sigma0ˆ2))

#mean function of Z(t)

RF <- mu + noise #RF is Z(t) that is a non-smooth GRF

return(RF)

}
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#############################

### generating an image from mixture of RF1 & RF2

datagen<-function(theta, N){

RF1 <- signal.generate(N,theta[2],c(theta[4], theta[5]), theta[8])

#first non-smooth RF in the mixture model

RF2 <- signal.generate(N,theta[3],c(theta[6], theta[6]), theta[9])

#second non-smooth RF in the mixture model

z <- rbinom(1,1,theta[1])

Image=z*RF1+(1-z)*RF2

return(Image)

}

#################################

loglik<-function(sampletheta,data){

N<-dim(data)[1]

l1 <-log(sampletheta[1])+ sampletheta[2]*gblur(data,sampletheta[8])

[round(sampletheta[4]*(N-1))+1,round(sampletheta[5]*(N-1))+1]-

sampletheta[2]ˆ2/2

l2 <-log((1-sampletheta[1]))+ sampletheta[3]*gblur(data,

sampletheta[9])[round(sampletheta[6]*(N-1))+1,

round(sampletheta[7]*(N-1))+1]-

sampletheta[3]ˆ2/2

return(log(exp(l1)+exp(l2)))

}
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##################################

loglik.sim<-function(theta,sampletheta,N){

loglik( sampletheta,datagen(theta, N))

}

#########################

cl <- makeCluster(8)

registerDoParallel(cl)

nsample<-1000

sampletheta<-SampleTheta[1:nsample,]

nsim<-1000

n<-10

N<-64

theta<-par.scheme[i,2:10] #i in 1:48

f<-function(nsim){

foreach(isample=1:nsample, .combine=rbind) %do%

replicate(n,loglik.sim(theta,sampletheta[isample,],N))

}

LL<-lapply(1:nsim,f)
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################ Simulation data analysis

Bayes.Factor<-function(k){

out<-exp(readRDS(filenames[k]))

1/apply(apply(out, c(1,2), prod), 1, mean)

}

filenames<-paste0(rep("out",48),as.character(1:48),rep(".RDS",48))

BFL<-lapply(1:48,Bayes.Factor)

BF<-matrix(as.numeric(unlist(BFL)), ncol=48)

filenames<-paste0(rep("out",48),as.character(1:48),rep(".RDS",48))

BFL<-lapply(1:48,Bayes.Factor)

BF<-matrix(as.numeric(unlist(BFL)), ncol=48)

#####################################################################

#####################################################################

#### Through this code, we want to estimate parameters in mixture of

#### two Gaussian random fields by applying Gibbs sampler and M-H.

#### The dimension is d=2, for N=64

####

######### Required packages ###########

library(ExtDist)

library(invgamma)



85

library(truncnorm)

library(truncdist)

library(mvtnorm)

library(tmvtnorm)

library(coda)

library(reshape)

library(iterpc)

library(doParallel)

library(foreach)

cl <- makeCluster(8)

registerDoParallel(cl)

################## BEGINNING of FUNCTIONS-BLOCK ##############

### This function generates a realization of a non-smooth ###

### Gaussian RF for a specific vector of ’theta’

signal.generate <- function(N,xi,t0,sigma0){

noise <- matrix(rnorm(N*N),N,N) #white noise

pix_x <- (row(noise)-1)/(N-1) #Range [0,1]

pix_y <- (col(noise)-1)/(N-1)

mu <- (xi/(sigma0*sqrt(pi)))

*exp((-0.5*((pix_x-t0[1])ˆ2+(pix_y-t0[2])ˆ2)/sigma0ˆ2))

#mean function of Z(t)
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RF <- mu + noise #RF is Z(t) that is a non-smooth GRF

return(RF)

}

### This function smooths the non-smooth GRF by ###

### a Gaussian kernel with scale of sigma

smooth2 <- function(N,Image,ftxyfilter,t0,l) {

(Re(fft(fft(Image[,,l]) * ftxyfilter, inverse = T)))

[round(t0[1]*(N-1))+1,round(t0[2]*(N-1))+1] /Nˆ2

}

### This function after smoothing data, gives the value of ###

### GRF in the center of signal, x(t0_1,t0_2,sigma0)

signalCenter.value <- function(Image,t0,sig){

#"Image" is an observed field(non-smooth)

N<-dim(Image)[1]

n<- dim(Image)[3]

x <- 1:N

xfilter <- (pi)ˆ(-0.5) * exp(-0.5 *

((1/sig)*(x - mean(x)))ˆ2) #smoothing kernel

xfilter <- sqrt(xfilter/sum(xfilter))

xyfilter <- outer(xfilter, xfilter)

ftxyfilter <- Mod(fft(xyfilter)) #fft:Fast Discrete Fourier Transform

x_value<-rep(0,n)

foreach(l = 1:n,.combine=c) %do% smooth2(N=N,Image=Image,

ftxyfilter=ftxyfilter,t0,l=1)

}
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### This function calculates the probability for posterior ###

### of z[j] which is z of each image

prob_Bern <- function(p,x_1,xi_1,x_2,xi_2){

xi_min<- min(xi_1,xi_2)

f_1 <- (xi_1*x_1)-((1/2) *(xi_minˆ2 - xi_1ˆ2))

f_2 <- (xi_2*x_2)-((1/2) *(xi_minˆ2 - xi_2ˆ2))

p_z <- 1/(1 + p/(1-p)*exp(f_2-f_1))

z <- rbinom(1,1,p_z) #generating Z from conditional posterior

Ber <- c(z,p_z) #results of this function

return(Ber)

}

### This function returns the un-normalized log-likelihood ###

### function of etha1=(t0,sigma0_1) ll is log-likelihood function ###

###[Dissertation,(8)]

loglik1<-function(t0,sigma0,p,xi_1,data,z){

ll <-sum(z*(log(p)

+ xi_1*signalCenter.value(data,t0,sigma0)- xi_1ˆ2/2))

return(ll)

}
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### This function returns the un-normalized log-likelihood ###

### function of etha2=(s0,sigma0_2) ll is log-likelihood function

###[Dissertation,(8)]

loglik2<-function(s0,sigma0,p,xi_2,data,z){

ll <- sum((1-z)*(log(1-p)

+ xi_2*signalCenter.value(data,s0,sigma0)- xi_2ˆ2/2) )

return(ll)

}

### This function returns the log-prior function of ###

### etha=(t0,sigma0) lprior is log-prior on etha

### beta_1 is Shape parameter of Inv-Gamma as a prior on sigma0

### beta_2 is Scale parameter of Inv-Gamma as a prior on sigma0

### mu is MEAN VECTORs of PRIOR on t0 or s0

### Rho is CORRELATION MARTIX of PRIOR on t0 or s0

log.prior <- function(t0,sigma0,beta_1, beta_2,mu, Rho){

lprior <- dtrunc(sigma0, beta_1, beta_2,spec="invgamma"

,a=0.1,b=0.5,log = TRUE)+

dtmvnorm(t0, mean=mu, Rho,lower=c(0,0),

upper=c(1,1),log=TRUE)

return(lprior)

}
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## Introducing proposal dist. for Metropolis-Hasting Sampler ##

# We consider Inv-Gamma dist. as the proposal dist. for sigma0.

# beta_1 & beta_2 are Shape and Scale parameters of Inv-Gamma.

# We consider truncated bi-variate normal dist. as the proposal

# for t01, t02, so by this we assume a dependency for t01 and t02.

# mean=c(0.5, 0.5) is INITIAL MEAN VECTOR for t=(t01,t02)

# Rho=matrix(c(1,0.5,0.5,1),2,2) is INITIAL CORRELATION MATRIX

# for t=(t01,t02)

# c(0,0) gives lower boundaries for truncated bivariate normal

# c(1,1) gives upper boundaries for truncated bivariate normal

## This function returns the log-proposal function of ##

## etha=(t0,sigma0)

log.proposal <- function(t0,sigma0,beta_1, beta_2,mu, Rho){

lproposal <- dtrunc(sigma0, beta_1, beta_2,spec="invgamma",a=0.1

,b=0.5,log = TRUE)+

dtmvnorm(t0, mean=mu,Rho,lower=c(0,0), upper=c(1,1),log=TRUE)

return(lproposal)

}
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### This function calculates log(r) in M-H step ###

### x is a vector of x(t0_1,t0_2,sigma0) in n images

### xStar is a vector of x(t0_star1,t0_star2,sigma0_star) in n images

### ll is [loglik1(t0_star,sig0_Star,Pi,xi_1=xi,Image,z)-

### loglik1(t0,sig0,Pi,xi_1=xi,Image,z)]

### or [loglik2(s0_star,sig0_Star,Pi,xi_2=xi,Image,z)-

### loglik2(s0,sig0,Pi,xi_2=xi,Image,z)]

calculate.r <- function(xi,t0,t0_star,sigma0,sig0_Star,beta_1

,beta_2,mu,Rho,ll){

# beta_1 & beta_2 #Hyper-parameters of INV-Gamma dist.

# mu #INITIAL MEAN VECTOR for t0=(t01,t02)

# Rho #INITIAL COVARIANCE MATRIX for t0=(t01,t02)

mean1=c(round(t0_star[1], digits = 2),round(t0_star[2], digits=2))

mean2=c(round(t0[1], digits = 2),round(t0[2], digits=2))

lr <- ll + log.prior(t0_star,sig0_Star,beta_1,beta_2,mu,Rho)-

log.prior(t0,sigma0,beta_1,beta_2,mu,Rho)+

log.proposal(t0,sigma0,beta_1,beta_2=sig0_Star,mu=mean1,Rho)-

log.proposal(t0_star,sig0_Star,beta_1,beta_2=sigma0,mu=mean2,Rho)

r <- exp(lr)

return(r)

}
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M.H.func <- function(I_MH,S,T0_1,T0_2,P,xi_1,xi_2,data,z,

beta_1,beta_2){

# beta_1 & beta_2 #Hyper-parameters of INV-Gamma dist.

# mu #INITIAL MEAN VECTOR for t0=(t01,t02)

# Rho #INITIAL COVARIANCE MATRIX for t0=(t01,t02)

# beta_1= 4; beta_2=0.5; mu=c(0.5,0.5);

# Rho=matrix(c(1,0.5,0.5,1),2,2);

#each row is for sigma0_1 & sigma0_2 in each iteration

Sig0 = matrix(0,I_MH,2)

Sig0[1,] <- S

T_0 = array(c(0),dim=c(I_MH,2,2))

T_0[1,,1] <- T0_1

T_0[1,,2] <- T0_2

sig0_star <- c()

for(h in 1:(I_MH-1)){

lambda <- Sig0[h,] #Scale parameter of Inv-Gamma

#sig0_star[1] <- rtrunc(n = 1, beta_1,lambda[1],

spec="invgamma", a=.1, b=0.5)

#INV-Gamma, PROPOSAL for sigma0
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sig0_star<-foreach(k=1:2,.combine=c) %do%

rtrunc(n = 1, beta_1,lambda[k], spec="invgamma", a=.1, b=0.5)

T0_star <- rtmvnorm(2, mean=c(0.5, 0.5),

# PROPOSAL for t=(t01,t02) and s=(s01,s02)

sigma=matrix(c(1, 0.5, 0.5, 1), 2, 2),

lower=c(0, 0), upper=c(1, 1),

algorithm="rejection")

xi_T=c(xi_1,xi_2)

ll_T<-foreach(k=1:2,.combine=c) %do%

(loglik1(T0_star[k,],sig0_star[k],P,xi_T[k],data,z)-

loglik1(T_0[h,,k],Sig0[h,k],P,xi_T[k],data,z))

r <- foreach(k=1:2,.combine=c) %do%

(calculate.r(xi_T[k],T_0[h,,k],T0_star[k,],Sig0[h,k],

sig0_star[k],beta_1,beta_2,mu=c(0.5,0.5),Rho=matrix(c(1,0.5,0.5,1),

2,2),ll_T[k]))

for(k in 1:2){

if(1 <= r[k] || r[k]=="NaN" ){

Sig0[h+1,k] <- sig0_star[k]

T_0[h+1,,k] <- T0_star[k,]

}else{

b_v <- rbinom(1,1,r[k])
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if(b_v == 1){

Sig0[h+1,k] <- sig0_star[k]

T_0[h+1,,k] <- T0_star[k,]

}else{

Sig0[h+1,k] <- Sig0[h,k]

T_0[h+1,,k] <- T_0[h,,k]

}

}

}

}

output <- cbind(Sig0,T_0[,,1],T_0[,,2])

return(output)

}

### Gibbs Sampling ###

### This function Generates the vector of "Theta" ###

### Introducing priors on parameters ###

# Beta dist. for Pi

# Improper prior for xi_1 & xi_2 in [0,10]; 10 is an arbitrary

# extreme-large amplitude

# Inverse-Gamma for sigma0_1 & sigma0_2

# truncated bi-variate normal dist. for t0 & s0

# Bernoulli for latent variable z

Gibbs.func <- function(I,data){
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######### First step in Gibbs: Generating initial values #########

# "I" is number of iterations, given at the beginning of simulation

alpha_1=2; alpha_2=2; #Hyper-parameters of Beta dist.

beta_1= 4; beta_2=0.5; #Hyper-parameters of INV-Gamma dist.

#each row is for sigma0_1 & sigma0_2 in each iteration

Sigma0 = matrix(0,I,2);

Sigma0[1,] <- rtrunc( 2,shape=beta_1,rate=beta_2,

spec="invgamma", a=.1, b=0.5 )

T0 = array(c(0),dim=c(I,2,2))

#array of origins of signals from 2 GRFs

T0[1,,]=rtmvnorm(2, mean=c(0.5, 0.5),

sigma=matrix(c(1, 0.5, 0.5, 1), 2, 2),

lower=c(0, 0), upper=c(1, 1),algorithm="rejection")

#each row is for xi_1 & xi_2 in each iteration

xi = matrix(0,I,2);

xi[1,] <- runif(2,0,3) #instead of improper, I used Uniform

Pi = c() #each component is pi in an iteration

Pi[1] <- rbeta(1,alpha_1,alpha_2)

#each element in a row is a prob. of z=1 for one of images

P_z = matrix(0,I,n)
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Z = matrix(0,I,n);

##each row is a vector of latent variables for n

# images in each iteration

Z[1,] <- rbinom(n,1,Pi[1])

f <- array(c(0),c(I,2,n))

m = c();

##each component is sum of latent variables for n

# images in each iteration

m[1] <- sum(Z[1,])

X <- array(c(0),c(I,n,2))

X[1,,]<-foreach(k=1:2,.combine=cbind) %do%

signalCenter.value(data,T0[1,,k],Sigma0[1,k])

Lik = c() #vector of Likelihood functions of I iterations

Lik[1] <- exp(loglik1(T0[1,,1],Sigma0[1,1],Pi[1],xi_1=xi[1,1],

data,Z[1,])+loglik2(T0[1,,2],Sigma0[1,2],Pi[1],xi_2=xi[1,2],data,

Z[1,]) )

######### 2nd Step in Gibbs: Conditional posteriors #########

one_v = c(rep(1,n)) #related to generating Xi_1 & xi_2

X_star = matrix(0,2,n) #related to calculating x_star in M-H step

### Beginning of the loop

for(i in 2:I){
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print(i)

Pi[i] <- rbeta(1, alpha_1+m[i-1], alpha_2+n-m[i-1])

#generating Pi from conditional posterior in each iter.

X[i,,]<-foreach(k=1:2,.combine=cbind) %do%

signalCenter.value(data,T0[i-1,,k],Sigma0[i-1,k])

for(j in 1:n){

Ber <- prob_Bern(Pi[i],X[i,j,1],xi[i-1,1],X[i,j,2],xi[i-1,2])

Z[i,j] <- Ber[1]

#each row of Z is a vector of estimated latent vars of

#images in dataset for an iter.

P_z[i,j] <- Ber[2]

f[i,,j] <- Ber[3:4]

}

m[i] <- sum(Z[i,])

### generating Xi_1 & xi_2 from conditional posteriors

if(m[i] == 0){

xi[i,1] <- runif(1,0,3)

mu2 <- (1/n)*sum(X[i,,2])

sd2 <- sqrt(1/n)

xi[i,2] <- rtruncnorm(1, a=0, b=3, mean = mu2, sd = sd2)

}else if(m[i] == n){

xi[i,2] <- runif(1,0,3)

mu1 <- (1/n)*sum(X[i,,1])
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sd1 <- sqrt(1/n)

xi[i,1] <- rtruncnorm(1, a=0, b=3, mean = mu1, sd = sd1)

}else{

mu1 <- (t(Z[i,])%*%X[i,,1])/m[i]

sd1 <- sqrt(1/m[i])

mu2 <- (t(one_v-Z[i,])%*%(X[i,,2]))/(n-m[i])

sd2 <- sqrt(1/(n-m[i]))

xi[i,1] <- rtruncnorm(1, a=0, b=3, mean = mu1, sd = sd1)

xi[i,2] <- rtruncnorm(1, a=0, b=3, mean = mu2, sd = sd2)

}

################## Metropolis-Hasting Sampler ###############

#### Generating sigma0 & t0 from conditional posteriors

##### using Metropolis-Hasting

### Introducing proposal dist. for Metropolis-Hasting Sampler ###

# We consider exponential dist. as the candidate for sigma0

# We consider truncated bivariate normal dist. as the candidate for

# t01, t02, so by this we assume a dependency for t01 and t02.

# mean=c(0.5, 0.5) is INITIAL MEAN VECTOR for t=(t01,t02)

# sigma=matrix(c(1,0.5,0.5,1),2,2) is initial COV. for t=(t01,t02)

I_MH = 500 #Number of iterations in M-H step

#for each iteration of Gibbs

beta_1 = 4; beta_2 = 0.5 #Hyper-parameters of INV-Gamma dist.
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output_MH <- M.H.func(I_MH,S=Sigma0[i-1,],

T0_1=T0[i-1,,1],T0_2=T0[i-1,,2],P=Pi[i],xi_1=xi[i,1],

xi_2=xi[i,2],data,z=Z[i,],beta_1,beta_2)

Sigma0[i,] <- output_MH[I_MH,1:2]

T0[i,,1] <- output_MH[I_MH,3:4]

T0[i,,2] <- output_MH[I_MH,5:6]

Lik[i] <- exp(loglik1(T0[i,,1],Sigma0[i,1],Pi[i],

xi_1=xi[i,1],data,Z[i,])+loglik2(T0[i,,2],Sigma0[i,2],

Pi[i],xi_2=xi[i,2],data,Z[i,]))

output.Gb <- cbind(Pi,xi,T0[,,1],T0[,,2],Sigma0,Lik)

return(output.Gb)

}

################### END of FUNCTIONS-BLOCK ####################

######### Introducing Parameters #########

# xi_1 & xi_2 are amplitudes of two GRFs

# sigma0_1 & sigma0_2 are scales for two GRFs

# t0 & s0 are vectors of locations for centers of two GRFs

# Pi is the weight parameter in the mixture
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######### Parameter Setting (scheme: 1 to 24) #######

spl_n <- rep(c(10,20),each=24) #sample size

xi <- c(0,1,2.5) # Levels of amplitudes

amp <- matrix(c(0,0,0,1,0,2.5,1,1,1,2.5,2.5,2.5),6,2,byrow=T)

#Combinations of xi’s

loc <- matrix(c(.5,.5,.7,.7,.1,.6,.6,.1),2,4, byrow=T)

#locations:t0 and s0

sigma01 <-rep(0.2,each=48)

sigma02 <-rep(0.4,each=48)

expand.grid.df(data.frame(xi=amp),data.frame(t=loc),

data.frame(sigma01),data.frame(sigma02))

Pi_true <- rep(c(0.3,0.5),each=12) #weight parameter

par.scheme <- as.matrix(cbind(spl_n,Pi_true,rbind(comb,comb)))

#parameter scheme

colnames(par.scheme) <- c("n","Pi_true","xi_1","xi_2","t0_1",

"t0_2","s0_1","s0_2","sigma0_1","sigma0_2")
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####################### BEGINNING of SIMULATION ###################

I=1000; #Number of iterations

d <- 10 #Number of columns of "output_Gibbs"

out <- matrix(NA,nrow=I,ncol=d)

ii= 6

theta = par.scheme[ii,]

print(theta)

######### Generating n Data from the mixture ###########

n=theta[1]; #Number of images; can be for n subjects or 1 subject

Pi_true=theta[2] #true weight parameter

xi_1=theta[3]; xi_2=theta[4]; #true amplitudes

t0_true=theta[5:6]; s0_true=theta[7:8] #true locations

sigma0_1=theta[9]; sigma0_2=theta[10]; #true scales

N=64

z <- c() #true vector of z for n images

data <- array(0,c(N,N,n)) #includes n images

### generating n images from mixture of RF1 & RF2

for(l in 1:n){

RF1 <- signal.generate(N,xi_1,t0_true,sigma0_1)

#first non-smooth RF in the mixture model



RF2 <- signal.generate(N,xi_2,s0_true,sigma0_2)

#second non-smooth RF in the mixture model

z[l] <- rbinom(1,1,Pi_true)

Image=z[l]*RF1+(1-z[l])*RF2

data[,,l] <- Image

}

######### Gibbs Sampling #########

### Introducing priors on parameters ###

# Beta dist. for p

# Improper prior for xi_1 & xi_2 in [0,10];

# 10 is an arbitrary extreme-large amplitude

# Inverse-Gamma for sigma0_1 & sigma0_2

# truncated bi-variate normal dist. for t0 & s0

# Bernoulli for latent variable z

start_time <- Sys.time()

output_Gibbs <- Gibbs.func(I,data)

end_time <- Sys.time()

end_time - start_time
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