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Abstract 
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AN EMPIRICAL STUDY ON SAMPLING APPROACHES FOR 3D IMAGE 

CLASSIFICATION USING DEEP LEARNING 

2021-2022 

Shen-Shyang Ho, Ph.D. 
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A 3D classification method requires more training data than a 2D image 

classification method to achieve good performance. These training data usually come in 

the form of multiple 2D images (e.g., slices in a CT scan) or point clouds (e.g., 3D CAD 

modeling) for volumetric object representation. The amount of data required to complete 

this higher dimension problem comes with the cost of requiring more processing time and 

space. This problem can be mitigated with data size reduction (i.e., sampling).  

In this thesis, we empirically study and compare the classification performance 

and deep learning training time of PointNet utilizing uniform random sampling and 

farthest point sampling, and SampleNet which utilizes a reduction approach based on 

weighted average of nearest neighbor points, and Multi-view Convolution Neural 

Network (MVCNN). Contrary to recent research which claimed that SampleNet performs 

outright better than simple form of sampling approaches used by PointNet, our 

experimental results show that SampleNet may not significantly reduce processing time 

and yet it achieves a poorer classification performance. Additionally, resolution reduction 

for the views in MVCNN achieves poor accuracy when compared to view reduction. 

Moreover, our experimental result shows that simple sampling approaches used by 

PointNet as well as using simple view reduction when using a multi-view classifier can 

maintain accuracy while decreasing processing time for the 3D classification task. 
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Chapter 1 

Introduction 

  Object classification is one of many computer vision problems, whether it is done 

through single 2D images or using more three-dimensional (3D) data. A 2D image 

classification model usually takes a long time to train but a 3D model requires even more 

data in general to be processed and therefore takes longer to complete training, even if 

there is less instances or objects to process. 3D data generally comes in the form of 

meshes, point clouds, or multiple images [2]. Some point clouds contain thousands of 

points and multiple images contain many more pixels than 2D images. For some 

classification methods, the point cloud is converted to a grid of binary voxels. With more 

data, the training of neural networks becomes more computationally expensive.  

 3D image classification can be used in a variety of different situations. Robotics 

require classification of objects before doing their task [26] and medical imaging can use 

3D classification to identify diseases like the coronavirus [28]. Some specific applications 

include self-driving cars [25], industrial production, domestic assistance, and healthcare 

services [26]. Industrial production includes welding, assembly, and shipping of products 

[26] as well as industrial part classification [23] and industrial bin picking [24]. Domestic 

assistance applications include household chores, entertainment, personal assistance like 

a chef assistant, and home defense [26]. Healthcare service applications include surgery, 

caring for patients, being a receptionist, and being a nurse assistant, 

 One method of reducing the training time as well as inference time is called 

sampling, which reduces the amount of input data to a subset of the original input data or 
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a representation of the original input data. This can be done in many different ways [2, 3, 

4, 6, 16, 30, 31, 32, 34, 35] for each classification method, but the objective of sampling 

is to maintain the accuracy of the classifier while reducing the amount of data the 

classifier needs for training. A simple example of sampling is randomly choosing points 

from a point cloud to use as input into the classifier instead of using the whole point 

cloud. 

 There are many different ways to sample. For point clouds, the most common 

methods of sampling include random point sampling as well as furthest point sampling 

[6], both of which are simple functions. There are more complex sampling methods, like 

those found in S-Net [6] and SampleNet [4], which attempt to learn which points are the 

best points to sample and are overall more complex than furthest point sampling or 

random sampling.  

 Sampling generally is not done with multi-view classifiers, but the images are 

taken at a certain resolution or resized to that resolution [3].  However, there are a few 

simple sampling methods possible like reducing the resolution further or selecting a 

subset of images from the multiple images taken for an object. Any sampling method that 

could apply to multi-view classifiers could also apply to the voxel based classifiers, like 

reducing the resolution of the voxel grid [1]. 

1.1 Problem Statement and Investigation 

 The main problem with 3D classification is that there is a lot of data needed to 

train a classifier and training the model is computationally expensive. Some possible 

solutions include sampling as well as view reduction. This thesis investigates the effect of 
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sampling or multi-view reduction approaches on existing 3D deep learning approaches, in 

particular PointNet [2], SampleNet [4], and Multiview Convolution Neural Network 

(MVCNN) [3] for 3D image classification. 

1.2 Thesis Outline  

In Chapter 2, we will describe recent work on using deep learning for classifying 

objects using 2D images to 3D representations and provide an overview of sampling 

methods used in object classification. In Chapter 3, we will describe how each baseline 

3D classification approach accomplishes the task of 3D classification. In Chapter 4, we 

will describe the experimental setup and design for testing the selected sampling methods 

for PointNet, SampleNet, and MVCNN. This chapter includes which dataset was used 

and how each method was tested. In Chapter 5, we will present the results from the 

experiment along with an analysis of those results. In Chapter 6, we present the 

conclusion along with some potential future work. 
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Chapter 2 

Literature Review 

 To start, most image classifiers or object classifiers use some form of machine 

learning, and most classifiers use a neural network. There are image processing 

techniques that do not involve machine learning that helps with image classification with 

one of the first being found in “Machine Perception of Three-Dimensional Solids” [10]. 

The first 2D image classifier, used to classify Japanese characters, was called 

Neocognitron and created by Kunihiko Fukushima [11]. This was effectively the first 

convolutional neural network and was one of the first instances of deep learning. After 

Neocognitron came LeNet, created by Yaan LeCun [12] in the 1990s and based off of 

Neocognitron. This project took the convolutional neural network from Neocognitron and 

applied gradient backpropagation to it, effectively allowing the convolutional neural 

network to learn more efficiently. This project was used to classify characters as well, 

giving rise to the popular MNIST dataset [13].  

After LeNet, some more datasets were compiled and challenges to classify the 

datasets were made, notably the Pascal Visual Object Classes [14] and ImageNet [15] 

datasets, the latter of which contains over 1 million images with 1000 classes. In the 2012 

ImageNet competition, AlexNet [16] achieved an error rate much lower than any 

previous classification projects for ImageNet. AlexNet used a convolutional neural 

network similar to the neural network found in LeNet, but with many more layers and 

parameters. Some reasons for the success of AlexNet include using the ReLU activation 

function, dropout regularization, and the much deeper neural network that could finally 
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be used because technology finally had the processing power to do so along with the 

ability to use a GPU for processing. 2D image classifiers continue to evolve with one 

example being DenseNet [17].  

The next big step for learning on 3D objects is ShapeNet [18], which used 3D 

CAD models to create a volumetric occupancy grid to use as input into a three-

dimensional convolutional neural network (3D CNN). Along with the paper, Wu et al. 

released the largest 3D CAD model dataset at the time called ModelNet [19]. This 

allowed for many other methods to be developed. One of the methods improved upon 

what ShapeNet had already done and improved the accuracy of using a voxel grid along 

with a 3D CNN. Since VoxNet [1] was an improvement over ShapeNet, most projects 

attempting to improve on voxel grid classifiers use VoxNet as a baseline. One example of 

this being OctNet [20]. 

Another foundational method of classifying the models from ModelNet uses point 

cloud data directly and is called PointNet [2]. This method takes a fixed number of input 

points and uses their coordinates as input into a neural network, which then classifies the 

object. One attempted improvement that targeted the accuracy of point cloud classifiers is 

DensePoint [21], which applies the concept of DenseNet [17] to the point cloud instead 

of an image. Some implementations attempt to reduce the training and interpretation time 

of PointNet, like S-Net [6] or SampleNet [4]. They attempt to do this by sampling the 

original point cloud using another neural network.  

The last foundational method of classifying the models from ModelNet goes back 

to using images instead of converting or using the point cloud directly. Multi-view 
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convolutional neural networks (MVCNN) [3] use multiple images of a single object to 

help classify it. The MVCNN still uses the ModelNet dataset, opting to render pictures at 

regular intervals around each object to use as input. Each object in the dataset has a 

specified number of images associated with it, referred to as views. The MVCNN 

essentially uses the image classifier found in AlexNet [16] on each view and does further 

processing using the output of the previous step. According to the ModelNet website, an 

implementation of MVCNN called RotationNet [22] currently holds the record for the 

highest accuracy classifier on the ModelNet dataset. RotationNet attempts to align a 

subset of views correctly on the object and take the classification of each view after the 

correct alignment is achieved. In a way, it is not using all of the views of a single object 

to classify it.  

Sampling with point clouds starts with the simplest method: choosing random 

points from the point cloud [2]. More complex sampling methods exist like Furthest Point 

Sampling [2, 30], clustering [31, 32], iterative simplification [31], and particle simulation 

[31]. Some sampling methods are more specific to image classification, like the sampling 

found in S-Net [6], SampleNet [4], and “Task-Aware Sampling Layer for Point-Wise 

Analysis” [32]. PointNet uses either random sampling or furthest point sampling. 

Sampling with 2D images is typically not done with classifiers other than 

rescaling images and pooling functions within the classification model [16], which stays 

true for multi-view classifiers [3]. There are many image sampling methods to choose 

from which include uniform, random, nonuniform, and measurement-adaptive sampling 

algorithms [34]. Furthest point sampling can also be used with images [30]. Additionally, 

some data compression algorithms can be used to reduce the size of images [35]. With 
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multi-view classifiers, it is important to select the necessary number of views needed to 

classify datasets [3].  
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Chapter 3 

Compared Methodologies 

 In this chapter, we describe in detail how each basic 3D classifier functions. In 

Section 3.1, we describe how voxel-based classifiers classify objects based on their 

volumetric occupancy grid representations. In Section 3.2, we describe how point cloud 

based classifiers classify an object using their point cloud representations. In section 3.3, 

we describe how multi-view or multi-image based classifiers classify an object based on 

their multi-view representations. 

3.1 VoxNet 

 VoxNet [1] is one of the first successful 3D classification programs. There are 

three different types of datasets that VoxNet uses: CAD models, LiDAR point clouds, 

and RGBD point clouds. The points sampled from the CAD models, or the raw LiDAR 

point cloud data is then converted into a volumetric occupancy grid by mapping the point 

coordinates (x, y, z) to voxel coordinates (i, j, k), depending on the origin, orientation, 

and resolution of the voxel grid. Some constraints in this process are that the origin is 

assumed to be given as input, the z-axis is aligned with gravity, and the resolution is 

consistent for all objects. In VoxNet, the occupancy grid is 32 x 32 x 32 voxels, with the 

object fitting within a 24 x 24 x 24 voxel sub volume. Each voxel with LiDAR data has a 

fixed size, which is usually (0.1m)3. 

 Working with a volumetric occupancy grid allows for easy and simple 

manipulation of the data to be used in training. There are a number of reasons to not use 

the points directly in PointNet [2] and VoxNet found that the volumetric occupancy grid 
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was more consistent than previous methods. CAD models can be voxelized easily, but 

there are also a number of different types of occupancy grids that are used with LiDAR 

data: the binary occupancy grid, the density grid, and the hit grid. The binary occupancy 

grid is where each voxel is given a probability that it is occupied depending on if there 

are points in that part of the grid and the state of the voxel before it. The density grid is 

where the object is expected to have a uniform density, so the density of points within 

each voxel with respect to the point density of voxels is given as input into the neural 

network. Lastly, the hit grid is where each voxel has a number of points within it, which 

is used as input for the neural network. The differences in performance between these 

three is minimal, but it is a difference nonetheless and some of the grid types are faster to 

process than others. 

 To classify the volumetric occupancy grid, VoxNet uses a 3D convolutional 

neural network, or 3D CNN. 3D CNNs can make use of spatial features and learn local 

spatial features, which are important for classification. Also, increasing the number of 

layers may allow the network to recognize more complex features. Additionally, once 

trained, inference is feed-forward and fast, especially on modern hardware. The neural 

network consists of the input, 3D convolutional layers, 3D pooling layers, and fully 

connected layers.  

 The structure of the VoxNet CNN starts with the input of the occupancy grid of 

size I x J x K, followed by two convolutional layers, a pooling layer, and two fully 

connected layers. The specific number for the CNN they found optimal are a 32 x 32 x 32 

grid, one convolutional layer with 32 filters, kernel size of 5 x 5 x 5, and stride of 2, 

another convolutional layer with 32 filters, kernel size of 3 x 3 x 3, and stride of 2, 
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followed by a pooling layer of size 2 x 2 x 2, with a fully connected layer going to 128 

nodes, which then fully connect to another set of K nodes, where K is the number of 

classes. This structure has 921,736 parameters. 

 There is also another major problem with this approach: it is not rotation-

independent. Since the object is only aligned to gravity, the object could not be facing 

“forward.” To combat this, during preprocessing, there must be n copies of the object 

generated, each rotated 360o/n intervals around the z axis, with n being 12 or 18 in most 

cases. This means that the object is rotated by 30o or 20o from the previous rotation. The 

CNN is then trained on all rotations of every object, while at evaluation time, every copy 

of each rotation of an object is pooled together to classify the object. This works 

relatively well, but still occasionally fails. 

 Training of the CNN uses stochastic gradient descent with momentum, dropout 

regularization, and adds randomly perturbed copies of each instance of objects, which 

consists of mirroring and shifting between -2 and 2 voxels. 

 The methods of sampling on MVCNN [3] described later could also apply to 

VoxNet, as both use different “views” of the object to help classify it more accurately as 

well as have a defined resolution. 

3.2 PointNet 

PointNet [2], instead of transforming the data into voxels or an occupancy grid, 

uses point cloud data directly and each point in the cloud can be represented by the 

coordinates (x, y, z). There are three properties of point sets that are important: they are 

unordered, the points interact with each other, and invariance under transformation. 
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Interaction among points means that neighboring points form meaningful subsets, so a 

classifier model must capture local structures and interactions between local structures. 

Invariance under transformation just means that if all points undergo a transformation of 

some sort, whether it be translation or rotation, no data should be lost, and the 

classification should not change. Most importantly, point sets are unordered, which gives 

up to the factorial of the number of points, or N!, possible permutations on how to choose 

points, which can get very large as the number of points is usually in the thousands and 

the factorial operation results in extremely large numbers. This was the most important 

problem to solve when creating the classifier for PointNet.  

Most deep learning focuses on regular inputs and not unordered sets of 

information like a point cloud. VoxNet [1] gets around this by mapping the points to an 

occupancy grid, which is an ordered input. However, using voxel-based methods have 

their limitations and some important data might be lost, so PointNet tries to use just the 

raw points as input. Some options include sorting the points or using an RNN, but 

PointNet found that symmetric functions give the best results. Operations like addition 

and multiplication are symmetric because the order of the numbers do not matter in the 

operation. PointNet accomplishes this with a combination of multi-layer perceptrons and 

a max pooling function.  

The PointNet paper summarizes the overall function of the network well by 

stating “effectively the network learns a set of optimization functions/criteria that select 

interesting or informative points of the point cloud and encode the reason for their 

selection. The final fully connected layers of the network aggregate these learnt optimal 

values into the global descriptor for the entire shape” [2]. One effect of this network is 
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that it finds a sparse set of points that can effectively be used to construct a skeleton of 

the object. 

A simple explanation of the PointNet neural network structure is that each point 

gets its own multi-layer perceptron or MLP. Each MLP has the input of each coordinate 

in the point, so the x value, y value, and z value of the current point. After a few fully 

connected layers, a max pool function is used to extract features out of the multiple 

MLPs. The result from the max pool function is then used in another MLP to finally 

classify the object. The symmetric function used is the single max pool function. Within 

the basic structure of PointNet, there are also input and feature transformations to help 

the network a bit. They found that these transformations improve the performance by 

about 1.9%. PointNet without these transformations has about 800,000 parameters with 

148 million floating point operations (FLOPs) per sample and 3.5 million parameters 

with 440 million FLOPS per sample while using the transformations. According to 

Theorem 1 in [2], in the worst case scenario, the network can voxelize a point cloud, but 

ultimately finds a better way to probe the 3D space. 

During training, noise is added to some of the points and the overall object is 

slightly rotated about the up-axis. Inference is also quick because of the use of simple 

fully connected layers and a max pool function. Inputs are also normalized to a unit 

sphere as some objects may have larger coordinates than others despite being a similar 

shape. PointNet is also more robust than earlier methods as deleting points or forcing the 

“important” points to be outliers do not affect the results much until extreme levels, like 

80% of the data missing, are achieved. 
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 As stated previously, the more accurate version of PointNet has around 3.5 

million parameters with 440 million FLOPS per sample. This was much more space and 

time efficient than the previous 3D classifiers that were slightly more accurate like 

MVCNN [3], which has 60 million parameters and 62 billion FLOPs according to the 

PointNet paper. Point-based classifiers also scale with points linearly or O(N), while 2D 

convolutional networks squarely or O(N2), with image resolution in image-based 

methods, and cubically or O(N3) in volumetric convolution. 

 Some more applications of PointNet include retrieving models based on the 

selected “important” points from another point cloud, selecting points that correlate in 

two separate point clouds, and extracting the general shape of objects that have no 

category [2].  

 Since point clouds could have a large number of points as well as having an 

inconsistent number of points between many objects, sampling in some form is required. 

The dataset used for performance evaluation in [2] already has 2048 points sampled from 

the surface of a 3D CAD mesh, but 2048 points is too large to be performant. Therefore, 

PointNet uses further sampling on these point clouds by uniform random sampling or 

Furthest Point sampling. 

 Furthest Point Sampling (FPS) [30] is a simple sampling algorithm that consists 

of only a few steps. There are two sets: one set for all of the sampled points and one set 

for all of the remaining points that are not yet in the sampled points set. To start, a single 

point is randomly selected and put into the sampled set. Then, for each point in 

remaining, find the nearest neighbor in sampled, and save the distance to the point it 



14 
 

corresponds to in the remaining set. Then, select the point in the remaining set where the 

nearest neighbor distance is the largest and move that point from the remaining set to the 

sampled set. Then, repeat these steps until the sampled set has the specified number of 

points in it. Figure 1 shows how FPS gives a better representation of an object [5]. 

 

Figure 1  

Furthest Point Sampling (FPS) vs Uniform Random Sampling [5] 

 

  

SampleNet [4] proposes that classical sampling approaches like FPS do not 

consider the processing of the sampled point cloud. According to the work of Dovrat et 

al. [6], a neural network can be used to produce a set of simplified points which is 

optimized for point cloud learning, which then uses a post-processing step to match the 

simplified points to their nearest neighbors in the original point cloud. SampleNet 

continues this work by introducing a differentiable version of nearest neighbor selection 
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during training, which they call soft projection. Soft projection replaces the simplified 

points with a weighted average of the points nearest neighbors. This effectively 

approximates the nearest neighbor selection portion of the algorithm proposed by Dovrat 

et al. It is important to note that normal nearest neighbor sampling is a non-differentiable 

function with regard to neural networks, and therefore, cannot be learned on, but the 

approximation of the nearest neighbor is differentiable, and therefore, learnable, while 

also being able to use the original point cloud directly. 

3.3 Multi-View Convolutional Neural Network (MVCNN) 

 Instead of classifying an object using a point cloud or volumetric occupancy grid 

as input, MVCNN [3] uses multiple 2D images as input. MVCNN uses multiple CNNs to 

classify objects. To use MVCNN, multiple images of the same object at different angles 

are required. The distance of each image origin to the object must be similar as well as 

the at regular intervals around the object for maximum performance. 

 To create the rendered images of the objects, shapes are scaled to fit into a 

viewing volume and cameras are set up to capture the images within the virtual scene. 

The cameras are placed in specific spots around the object depending on the assumed 

situation the object is in. For example, one of the cameras placing methods involves 

placing 12 cameras in a circle around the center of an object at 30 degrees intervals while 

being elevated 30 degrees from the ground plane. This is used assuming the objects are 

consistently aligned upright in the z-axis, which is the case for most 3D model datasets. 

Some datasets may not do this, so other methods for placing the camera may be needed. 
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 MVCNN uses image descriptors based on Fisher vectors and CNN activation 

features to start the classification process. The first CNN in the network is shared 

between all 12 different views and when classifying, is used on all 12 views where the 

results are aggregated together in a “view pool,” which is similar to a max pool function. 

A separate neural network is used after this view pooling to finally classify the object. 

The parameters across all 12 views in the first neural network are shared. 
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Chapter 4 

Experimental Setup and Design 

In this chapter, we describe in detail which dataset, evaluation metrics used, 

hardware, and code were used to conduct the set of experiments.  

4.1 Dataset Description 

 All experiments in this paper use the ModelNet [19] dataset in the form that they 

need it in. ModelNet is a dataset containing 12,311 CAD-generated meshes across 40 

different classes, 9,843 meshes set aside for training and 2,468 for testing [27].  

4.1.1 PointNet and SampleNet 

 PointNet and SampleNet use a point cloud representation of ModelNet. 

Additionally, the experiments in this thesis use the entire dataset. 

4.1.2 MVCNN 

 MVCNN uses multiple images to represent every mesh in the ModelNet dataset. 

Additionally, the experiments in this paper use a subset of the dataset found on the 

MVCNN web page, consisting of 10 classes with 100 objects per class, 80 of which are 

for training and 20 for testing. 

4.2 Evaluation Measures 

 Overall, the metrics for all tests in this paper are accuracy and training time. All 

tests in this paper use either validation accuracy after each epoch as a metric for 

comparison or evaluation accuracy. The MVCNN tests use average, maximum, 
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minimum, and median accuracies as evaluation accuracies as each method was tested 

multiple times. Additionally, the MVCNN tests use average training time for each trial.  

4.3 Hardware and Code Used  

All tests were done using a RTX 2080 super GPU, Ryzen 3700x CPU, and 32 

gigabytes of RAM. The tests were conducted on the Ubuntu operating system with the 

assistance of Docker [28]. 

4.3.1 PointNet and SampleNet Code 

For the experiments done in this paper, the code from the SampleNet GitHub page 

[7] were used along with the Docker image provided by that GitHub page. 

Implementations of PointNet and SampleNet were included in the code, so both PointNet 

and SampleNet were tested using the code found on this GitHub page. By default, 

PointNet uses random sampling, so Furthest Point sampling was implemented manually 

based on the Chainer [8] implementation of the code. This code uses python 3.6.9 along 

with Tensorflow 1.13.2. The sampling for PointNet random sampling happened at the 

beginning of each epoch while the Furthest Point sampling happened as a preprocessing 

step before training. 

4.3.2 MVCNN Code 

For the experiments done in this paper, the implementation of MVCNN from 

MVCNN with CRF-RNN [9] was used. The CRF-RNN portion was ignored. A subset of 

the image data found at the MVCNN website [3] was used. Some custom python scripts 

were made to organize the data in a way that worked with this MVCNN implementation. 
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By default, this implementation chooses the first views found, so if there are 12 total 

views and 6 views were to be selected, the first 6 would be selected each epoch. A 

modification was made so that this could be 6 random views selected per epoch or 6 

evenly spaced views instead of the first 6. The resolution reduction was done at the 

beginning of the neural network with a max pool function, which was also not included in 

the original code. 

4.4 Investigated Issues 

4.4.1 PointNet and SampleNet Classification Performance Comparison 

 We investigate the effect of varying the methods of sampling and the number of 

points sampled on evaluation accuracy and training time. 

The suite of experiments that are performed are as follows: 

1. Use PointNet random sampling and vary between using 32, 64, 128, 256, 512, and 

1024 points. 

2. Use PointNet Furthest Point sampling and vary between using 32, 64, 128, and 

256 points. 

3. Use SampleNet sampling and vary between using 32, 64, 128, 256, and 512 

points.  

4.4.2 MVCNN 

 We investigate the effect of varying the methods of sampling, the number of 

views sampled to, batch size, and number of epochs of training on average, maximum, 

minimum, and median accuracies as well as average training time. 
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The suite of experiments that are performed are as follows: 

1. Fix Batch size to 4 and number of epochs to 16 and vary sampling method 

between first views, random views, selected views, resolution reduction with first 

views, resolution reduction with random views, and resolution reduction with 

selected views, additionally vary number of views used between 3, 4, 6, 8, and 12 

views. 

2. Fix Batch size to 1 and number of epochs to 16 and vary sampling method 

between first views, random views, selected views, resolution reduction with first 

views, resolution reduction with random views, and resolution reduction with 

selected views, additionally vary number of views used between 3, 4, 6, 8, and 12 

views. 

3. Fix Batch size to 16 and number of epochs to 64 and vary sampling method 

between first views, random views, selected views, resolution reduction with first 

views, resolution reduction with random views, and resolution reduction with 

selected views, additionally vary number of views used between 3, 4, 6, 8, and 12 

views. 
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Chapter 5 

Experimental Results and Analysis 

 In this chapter, we present the results from the experiment outlined in chapter 4 

along with an analysis of the experimental results. 

5.1 Sampling with PointNet Versus SampleNet 

The set of graphs in Figure 2 show the validation accuracy after each epoch of 

PointNet (red) with 1024 points sampled using random sampling versus SampleNet 

(blue) with various amounts of points sampled along with the testing accuracy in the 

legend at the bottom right of each graph. PointNet 1024 was run twice, taking 70.7 

minutes and 73.2 minutes to complete 100 epochs respectively while having accuracies 

of 87.1% and 87.2% respectively. The graph at the bottom right is the only graph that 

uses the second run of PointNet. Each run of SampleNet ran for 200 epochs.  

SampleNet 256 (top left) took 66.1 minutes to complete with an 82.7% accuracy, 

SampleNet 128 (top right) took 43.8 minutes to complete with a 79.8% accuracy, 

SampleNet 64 (bottom left) took 34 minutes to complete with an 81.6% accuracy, and 

SampleNet 32 (bottom right) took 30.2 minutes to complete with an accuracy of 77.2%. 

 

 



22 
 

Figure 2 

PointNet With 1024 Randomly Sampled Points (PointNet 1024) vs SampleNet With 

Different Sampling Size 

 

  

Note. Compares Classification Performance for PointNet with 1024 randomly sampled 

points (PointNet 1024) vs SampleNet with different sampling size x = 32, 64, 128, 256 

(SampleNet x) 

 

SampleNet does not maintain accuracy while reducing the amount of work 

needed. In Figure 2, the default PointNet implementation with 1024 points is 

considerably more accurate than any SampleNet run. The closest accuracy that 

SampleNet has to the default PointNet implementation is 82.7% accuracy with 256 points 

sampled, which is a whole 4.42% less accurate than PointNet’s 87.12% accuracy using 
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1024 points. This significant decrease in accuracy comes saving roughly 4 minutes of 

training time, which is only 7% faster than PointNet with 1024 points. 

The set of graphs in Figure 3 show the validation accuracy after each epoch of 

PointNet with 1024 points sampled (red) versus PointNet with various amounts of points 

sampled (blue), both using random sampling, along with the testing accuracy in the 

legend at the bottom right of each graph. PointNet 1024 took 70.7 minutes to complete 

100 epochs while having an accuracy of 87.1%. Every run of PointNet 256, 128, 64, and 

32 with ran for 200 epochs.  

PointNet 256 (top left) took 40.87 minutes to complete with an 87.6% accuracy, 

PointNet 128 (top right) took 26.6 minutes to complete with an 86.7% accuracy, PointNet 

64 (bottom left) took 19.48 minutes to complete with an 86.4% accuracy, and PointNet 

32 (bottom right) took 17.4 minutes to complete with an accuracy of 82.8%. 
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Figure 3  

Comparing Classification Performance for PointNet 1024 vs PointNet With Smaller 

Sample Sizes  

 

 

The default PointNet sampling method, which is uniform random sampling, 

performs much better than SampleNet. In Figure 3, the difference between 1024 points 

and smaller sample sizes is noticeable, but not significant until the number of points 

sampled is in the double digits. The evaluation accuracy of using 256 points sampled is 

comparable to the accuracy of using 1024 points. There is a 0.44% accuracy difference 

between 1024 points and 256 points sampled in favor of 256 points sampled. Sampling to 

256 points improved speed by 72.9%, which is a considerable speed up for no accuracy 
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lost. This is reflected in the top left graph of Figure 3, where the validation accuracy of 

using 256 points sampled is slightly lower than using 1024 points but catches up once it 

is allowed to run for more epochs. The gap between using 1024 points and sampling to 

128 or 64 points is apparent, although still small. The speed up is larger, with sampling to 

128 points being 165.7% faster and sampling to 64 points being 262.8% faster than using 

1024 points. Sampling to 32 points is significantly less accurate than using 64 or more 

points while only being 12% faster than using 64 points. 
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Figure 4  

Comparing Classification Performance for PointNet vs SampleNet With Fixed Sample 

Size 
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The set of graphs in Figure 4 show the validation accuracy after each epoch of 

PointNet (red) with various amounts of points sampled using random sampling versus 

SampleNet (blue) with various amounts of points sampled along with the testing accuracy 

in the legend at the bottom right of each graph. The number of points sampled is the same 

for both methods in each graph. Each method was run for 200 epochs with the exception 

of PointNet 512, which ran for 75 epochs.  

Comparing PointNet random sampling with SampleNet with the same number of 

points sampled shows how random sampling is better. Throughout the entirety of Figure 

4, PointNet sampling consistently outperforms SampleNet. The gap between the 

validation accuracies after each epoch is significant between sampling methods as well as 

the evaluation accuracies and time spent training, all in favor of random sampling. 

SampleNet starts to catch up in accuracy towards the later epochs, but still takes around 

70% more time to complete than random sampling.  
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Figure 5  

Comparing Classification Performance for PointNet Random vs Furthest Point Sampling 

With Fixed Sample Size 

 

 

The set of graphs in Figure 5 show the validation accuracy after epoch of 

PointNet with random sampling (red) with various amounts of points sampled versus 

PointNet with furthest point sampling (blue) with various amounts of points sampled 

along with the testing accuracy in the legend at the bottom right of each graph. The 

number of points sampled is the same for both methods in each graph. Each method ran 

for 200 epochs.  
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Furthest Point 256 (top left) took 36.82 minutes to complete with an 87.7% 

accuracy, Furthest Point 128 (top right) took 21.5 minutes to complete with an 87.12% 

accuracy, Furthest Point 64 (bottom left) took 14.67 minutes to complete with an 86.5% 

accuracy, and Furthest Point 32 (bottom right) took 12.6 minutes to complete with an 

accuracy of 83.7%. 

PointNet using random sampling is not too different from PointNet using furthest 

point sampling. The accuracy of each, shown in Figure 5, is within 1% of each other for 

each respective sampling size. However, FPS is slightly more accurate in all cases, and 

this is most apparent when sampling to 32 points. The validation accuracies after each 

epoch are relatively close, with FPS being slightly more accurate and learning faster than 

random sampling, which is reflected in the evaluation accuracy of FPS also being higher. 

It is important to note that furthest point technically did take less time, but that is because 

the furthest point sampling algorithm took place before training, while random sampling 

happened before each epoch. The furthest point algorithm does start with a random point, 

so it could possibly benefit from sampling before each epoch, but also requiring an 

algorithm that can run on the GPU. The CPU implementation takes too long to complete 

before each epoch, especially for an algorithm that will result in a similar structure on 

across different runs on the same set of points. 

 

 

 

 



30 
 

Table 1  

Comparing Classification Performance and Training Time for PointNet Random vs 

PointNet FP vs SampleNet Sampling Accuracy 

Accuracy 

 1024 512 256 128 64 32 

Random 87.12 86.22 87.56 86.67 86.35 82.78 

Furthest 

Point 

- - 87.72 87.12 86.47 83.67 

SampleNet - 86.35 82.7 79.78 81.56 77.15 

Time 

 1024 512 256 128 64 32 

Random 70.67 28.92 40.87 26.6 19.48 17.35 

Furthest 

Point 

- - 26.82 21.49 14.67 12.58 

SampleNet - 103.95 66.08 43.77 34.04 30.2 

Note. The column names are the number of points sampled to and the row names are the 

sampling methods used. The accuracies are percentages, and the time is in minutes. 

 

 Table 1 shows the accuracy and time values for each method and number of 

points sampled to pair. 

With 512 points, PointNet random is 0.13% less accurate than SampleNet. 

However, SampleNet also ran for many more epochs. Also, in the top left graph of Figure 

4, SampleNet’s validation accuracy is much lower than the test accuracy. With 256 

points, PointNet random is 4.86% more accurate than SampleNet and PointNet took 25.2 

less minutes than SampleNet to complete. With 128 points, PointNet random is 6.89% 

more accurate than SampleNet and PointNet took 17.2 less minutes than SampleNet to 
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complete. With 64 points, PointNet random is 4.79% more accurate than SampleNet and 

PointNet took 14.6 less minutes than SampleNet to complete. With 32 points, PointNet is 

5.63% more accurate than SampleNet and PointNet took 12.9 less minutes than 

SampleNet to complete. 

With 256 points, Furthest Point is 0.12% more accurate than random and Furthest 

Point took 4 less minutes than random to complete. With 128 points, Furthest Point is 

0.45% more accurate than random and Furthest Point took 5.1 less minutes than random 

to complete. With 64 points, Furthest Point is 0.12% more accurate than random and 

Furthest Point took 4.8 less minutes than random to complete. With 32 points, Furthest 

Point is 0.89% more accurate than random and Furthest Point took 4.77 less minutes than 

random to complete. 

 

Figure 6  

Comparing Classification Performance for PointNet Random vs PointNet FP vs 

SampleNet Sampling Accuracy  
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The graph in Figure 6 shows the accuracy of using different numbers of points 

when sampling. Num points is the number of points used when sampling, ranging from 

32 to 1024 points sampled. The specific accuracies of each are found in Table 1. 

 

Figure 7  

Comparing Training Time for PointNet and SampleNet Sampling 

 

 

The set of graphs in Figure 7 show the amount of time training took with different 

numbers of points when sampling with PointNet Random (red), PointNet Furthest 

Point(blue), and SampleNet (green). Num points is the number of points used when 

sampling, ranging from 32 to 1024 points sampled. The left graph shows the total amount 

of time taken for that method to run and the right graph shows the amount of time per 

epoch per method. 

Looking at the training time per epoch graph in Figure 7, it is confirmed that 

PointNet takes a linear amount more time with more points used, which also stands true 

for SampleNet. The slopes of each method are linear and almost identical to each other, 
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with SampleNet starting with a higher time per epoch. PointNet took less time per epoch 

with 128 points than SampleNet with 32 points. Additionally, PointNet with 256 points 

took less time per epoch than SampleNet with 128 points.  

 

Figure 8  

Comparing Classification Performance for PointNet and SampleNet 1024, 256, 128, 64, 

32 

 

 

The set of graphs in Figure 8 show the validation accuracy after each epoch of 

each sampling method, comparing various amounts of points sampled.  
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The top left graph shows the accuracy of PointNet using Random sampling and 

different amounts of points sampled to. Red is 1024 points, blue is 256 points, green is 

128 points, cyan is 64 points, and purple is 32 points. The final evaluation accuracies and 

how long training took are on the graph legend.  

The top right graph shows the accuracy of SampleNet using different amounts of 

points sampled to. Red is 512 points, blue is 256 points, green is 128 points, cyan is 64 

points, and purple is 32 points. The final evaluation accuracies and how long training 

took are on the graph legend. 

The bottom left graph shows the accuracy of PointNet using Furthest Point 

sampling and different amounts of points sampled to. Red is 256 points, blue is 128 

points, green is 64 points, and cyan is 32 points. The final evaluation accuracies and how 

long training took are on the graph legend.  

Comparing the methods with themselves at different number of points sampled 

also shows some interesting results. In Figure 8, the two PointNet sampling methods 

show steep increases in accuracy at the beginning of training followed by a plateau of 

validation accuracy, improving at a slow rate. This stays true for any number of points 

sampled. The validation accuracy after each epoch between the number of points sampled 

for random sampling seems to be more spread than with furthest point sampling. 

SampleNet also improves the validation accuracy after epoch quickly, but this sharp 

increase stops sooner than in PointNet, leading into a somewhat linear increase in 

accuracy after that. This is technically an improvement over PointNet as SampleNet 

seems like it will plateau at a later epoch than PointNet. However, SampleNet is still 
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much less accurate than PointNet and would take significantly longer to train to have a 

similar accuracy to PointNet. These observations stay true for any number of points 

sampled with SampleNet. 

 

Figure 9  

SampleNet With Different Number of Points in Initial Point Cloud and PointNet Using 

2048 Points   

 

 

 

The set of graphs in Figure 9 are some auxiliary graphs that showcase some other 

situations. Ordinarily, SampleNet first uses Furthest Point Sampling (FPS), the type of 
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sampling PointNet uses, before doing further sampling. These graphs show the effect of 

changing the number of points sampled from FPS compared to the PointNet counterpart. 

In PointNet 2048 vs SampleNet 2048-32 (top left), PointNet (red) is sampled to 

2048 points while SampleNet first samples to 2048 points using random sampling, then 

to 32 points using the SampleNet in the second part of sampling. PointNet took 70.8 

minutes to complete 50 epochs with an accuracy of 82.2% while SampleNet took 20.83 

minutes to complete 100 epochs with an accuracy of 49.47% accuracy. 

In PointNet 512 vs SampleNet 512-32 (top right) and PointNet 512 vs SampleNet 

512-256 (bottom left), PointNet (red) took 28.92 minutes to complete 75 epochs with an 

accuracy of 86.2%. SampleNet 512-32 took 17.2 minutes to complete 150 epochs with an 

accuracy of 79.6%. SampleNet 512-256 took 40 minutes to complete 150 epochs with an 

accuracy of 84%.  

Overall, the best type of sampling to use with PointNet is furthest point sampling. 

It maintains accuracy until there are about 64 points sampled. Random sampling also 

maintains accuracy in the same way but is less accurate to start. Sampling to 256 points 

seems to be a sweet spot where accuracy is above sampling using 1024 points and 

training time is significantly reduced. Sampling to 64 points will still keep the accuracy 

within 1% of using 1024 points, along with any number of points above 64. SampleNet 

does not maintain accuracy while taking significantly longer to train than either PointNet 

method. 
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5.2 Different Types of Sampling With MVCNN 

 

Table 2  

MVCNN Test Results – Batch Size 4 

AVERAGES 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

| # of Views | firstx-rot | random-rot | selected-rot | reduction-firstx | reduction-random | reduction-selected | 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

|     12     |    90.1    |     -      |      -       |       89.8       |        -         |         -          | 

|     8      |    90.3    |    91.3    |     89.9     |       90.1       |       89.2       |        87.4        | 

|     6      |    93.0    |    91.9    |     91.1     |       86.6       |       91.5       |        88.2        | 

|     4      |    91.1    |    92.9    |     90.8     |       92.6       |       89.6       |        88.0        | 

|     3      |    91.5    |    90.2    |     89.4     |       89.0       |       89.1       |        87.3        | 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

MAX 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

| # of Views | firstx-rot | random-rot | selected-rot | reduction-firstx | reduction-random | reduction-selected | 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

|     12     |    94.0    |     -      |      -       |       94.0       |        -         |         -          | 

|     8      |    93.0    |    95.0    |     92.0     |       93.0       |       92.0       |        91.0        | 

|     6      |    95.0    |    94.0    |     94.0     |       91.0       |       95.0       |        90.0        | 

|     4      |    95.0    |    95.0    |     93.0     |       95.0       |       92.0       |        90.0        | 

|     3      |    93.0    |    96.0    |     92.0     |       92.0       |       94.0       |        92.0        | 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

MIN 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

| # of Views | firstx-rot | random-rot | selected-rot | reduction-firstx | reduction-random | reduction-selected | 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

|     12     |    86.0    |     -      |      -       |       87.0       |        -         |         -          | 

|     8      |    88.0    |    87.0    |     87.0     |       88.0       |       87.0       |        84.0        | 

|     6      |    92.0    |    88.0    |     88.0     |       84.0       |       88.0       |        81.0        | 

|     4      |    86.0    |    88.0    |     87.0     |       89.0       |       87.0       |        84.0        | 

|     3      |    89.0    |    75.0    |     86.0     |       87.0       |       83.0       |        82.0        | 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

RANGE 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

| # of Views | firstx-rot | random-rot | selected-rot | reduction-firstx | reduction-random | reduction-selected | 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

|     12     |    8.0     |     -      |      -       |       7.0        |        -         |         -          | 

|     8      |    5.0     |    8.0     |     5.0      |       5.0        |       5.0        |        7.0         | 

|     6      |    3.0     |    6.0     |     6.0      |       7.0        |       7.0        |        9.0         | 

|     4      |    9.0     |    7.0     |     6.0      |       6.0        |       5.0        |        6.0         | 

|     3      |    4.0     |    21.0    |     6.0      |       5.0        |       11.0       |        10.0        | 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

MEDIAN 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

| # of Views | firstx-rot | random-rot | selected-rot | reduction-firstx | reduction-random | reduction-selected | 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

|     12     |    90.0    |     -      |      -       |       89.0       |        -         |         -          | 

|     8      |    90.0    |    91.0    |     90.5     |       90.0       |       89.5       |        87.0        | 

|     6      |    93.0    |    92.0    |     91.5     |       86.5       |       91.5       |        89.0        | 

|     4      |    91.5    |    94.0    |     91.0     |       93.0       |       90.0       |        89.0        | 

|     3      |    92.0    |    91.0    |     89.5     |       89.0       |       89.5       |        87.5        | 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

TIME 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

| # of Views | firstx-rot | random-rot | selected-rot | reduction-firstx | reduction-random | reduction-selected | 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

|     12     |   264.6    |     -      |      -       |      141.73      |        -         |         -          | 

|     8      |   203.65   |   203.74   |    204.07    |      105.55      |      105.77      |       105.62       | 

|     6      |   175.47   |   175.63   |    175.65    |      91.52       |       90.3       |       90.37        | 

|     4      |   148.23   |   148.38   |    148.2     |       74.7       |      74.71       |       74.68        | 

|     3      |   134.74   |   134.75   |    134.75    |       66.8       |       66.7       |        66.9        | 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

 

Table 2 consists of 6 separate sub-tables, due to each method being tested 10 

separate times, training for 16 epochs per trial. There are 6 sampling methods listed at the 

top – firstx-rot, random-rot, selected-rot, reduction-firstx, reduction-random, and 
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reduction-selected. Firstx-rot selects the first few views, random-rot selects a few random 

views, and selected-rot selects evenly spaced views (for example, 6 “selected” views 

would be every other view if there were 12 views total for an object). Reduction-firstx 

selects the first few views along with reducing the resolution of the images to half the 

original value for each axis, reduction-random selects a few random views along with 

reducing the resolution of the images, and reduction-selected selects evenly spaced views 

along with reducing the resolution of the images.  

There are also 5 different number of views used on the left. Since there were 10 

trials for each view-method combination, the average, maximum, minimum, and median 

accuracies get their own tables. The range table is just the maximum minus the minimum 

accuracies. The time table displays the average time in seconds that one training run takes 

for that view-method combination.  

Each MVCNN sampling method found in Table 2 were tested 10 times each, 

which is why the sub-tables have maximum, minimum, and average accuracies. The top 

left entry in each table (firstx-rot 12) does not use any sampling method. Most of the 

view sampling methods maintain an accuracy around or higher than using no sampling at 

all. In particular, using the first 6 views yields the best overall results, having the second 

highest maximum accuracy of 95%, the highest minimum accuracy of 92%, and the 

highest average accuracy. The highest accuracy of 96% was achieved using 3 random 

views, but the lowest accuracy of 75% was also achieved using 3 random views. This 

makes using 3 random views one of the more volatile than other methods of sampling, 

but it still maintains the average accuracy from using no sampling. In all non-reduction 

methods, using 6 views seems to be the most accurate, while selecting every few views 
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tends to have the worst accuracy out of the non-reduction methods. The reduction 

methods all perform worse than the non-reduction counterparts with the exception of a 

couple methods. 

The amount of time saved from reducing the amount of data used is not equal to 

the amount of data sampled. For example, looking at the Time section of Table 2, 

reducing the number of views to 6 or ½ the original amount reduces the training time to 

2/3. This becomes more apparent when getting closer to ¼ of the original number of 

views, where the time spent on training is more than half of the original training time. 

This also applies to the resolution reduction as well, where using 2x2 resolution reduction 

results in the training time still taking over half of the no sampling training time. The 

combination of resolution reduction and view reduction results in much lower training 

times, but still do not maintain accuracy from using no sampling. 

Since the resolution reduction implemented uses a 2x2 max pooling function, the amount 

of input information reduces to roughly a quarter of the original size, going from 224 

pixels high and 224 pixels wide pixels to 112 pixels high and 112 pixels wide, reducing 

the number of pixels from 50176 to 12544. If the number of views is kept the same, then 

this method reduces the amount of information by the same amount as reducing the 

number of views to ¼ of the total number of views. In this case, resolution reduction has 

the equivalent amount of information as reducing the number of views to 3. Resolution 

reduction overall performs worse than view reduction with 3 views with the average and 

median accuracies of resolution reduction being lower than of using 3 views. The average 

time of one trial for view reduction is also lower than that of resolution reduction, making 

view reduction to 3 views strictly superior to resolution reduction.  
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Table 3  

MVCNN Test Results – Batch Size 1 

AVERAGES 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

| # of Views | firstx-rot | random-rot | selected-rot | reduction-firstx | reduction-random | reduction-selected | 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

|     12     |    91.1    |     -      |      -       |       87.7       |        -         |         -          | 

|     8      |   90.56    |    90.9    |     90.3     |       89.5       |       90.6       |       88.78        | 

|     6      |    91.3    |   92.11    |     89.0     |       88.8       |       92.0       |        87.6        | 

|     4      |    90.9    |    89.6    |     89.4     |       92.1       |       89.0       |        87.4        | 

|     3      |   90.88    |   90.33    |    88.44     |       89.3       |       87.3       |        84.9        | 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

MAX 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

| # of Views | firstx-rot | random-rot | selected-rot | reduction-firstx | reduction-random | reduction-selected | 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

|     12     |    94.0    |     -      |      -       |       94.0       |        -         |         -          | 

|     8      |    93.0    |    94.0    |     93.0     |       92.0       |       94.0       |        91.0        | 

|     6      |    95.0    |    95.0    |     94.0     |       92.0       |       96.0       |        93.0        | 

|     4      |    94.0    |    91.0    |     93.0     |       95.0       |       92.0       |        90.0        | 

|     3      |    94.0    |    93.0    |     92.0     |       93.0       |       91.0       |        89.0        | 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

MIN 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

| # of Views | firstx-rot | random-rot | selected-rot | reduction-firstx | reduction-random | reduction-selected | 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

|     12     |    86.0    |     -      |      -       |       75.0       |        -         |         -          | 

|     8      |    87.0    |    88.0    |     86.0     |       81.0       |       86.0       |        86.0        | 

|     6      |    88.0    |    89.0    |     85.0     |       86.0       |       89.0       |        84.0        | 

|     4      |    86.0    |    87.0    |     87.0     |       89.0       |       84.0       |        85.0        | 

|     3      |    85.0    |    86.0    |     84.0     |       85.0       |       84.0       |        82.0        | 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

RANGE 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

| # of Views | firstx-rot | random-rot | selected-rot | reduction-firstx | reduction-random | reduction-selected | 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

|     12     |    8.0     |     -      |      -       |       19.0       |        -         |         -          | 

|     8      |    6.0     |    6.0     |     7.0      |       11.0       |       8.0        |        5.0         | 

|     6      |    7.0     |    6.0     |     9.0      |       6.0        |       7.0        |        9.0         | 

|     4      |    8.0     |    4.0     |     6.0      |       6.0        |       8.0        |        5.0         | 

|     3      |    9.0     |    7.0     |     8.0      |       8.0        |       7.0        |        7.0         | 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

MEDIAN 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

| # of Views | firstx-rot | random-rot | selected-rot | reduction-firstx | reduction-random | reduction-selected | 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

|     12     |    91.0    |     -      |      -       |       89.5       |        -         |         -          | 

|     8      |    91.0    |    90.5    |     90.0     |       90.5       |       91.0       |        89.0        | 

|     6      |    91.5    |    92.0    |     88.0     |       89.0       |       92.0       |        87.5        | 

|     4      |    91.5    |    90.0    |     89.0     |       92.0       |       89.0       |        87.5        | 

|     3      |    91.5    |    91.0    |     88.0     |       89.5       |       87.5       |        84.5        | 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

TIME 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

| # of Views | firstx-rot | random-rot | selected-rot | reduction-firstx | reduction-random | reduction-selected | 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

|     12     |   721.74   |     -      |      -       |      420.18      |        -         |         -          | 

|     8      |   594.39   |   594.37   |    594.7     |      329.12      |      329.22      |       329.2        | 

|     6      |   537.1    |   537.12   |    537.1     |      289.83      |      290.17      |       290.3        | 

|     4      |   479.79   |   479.73   |    479.86    |      247.96      |      247.88      |       247.99       | 

|     3      |   455.69   |   457.89   |    456.31    |      230.52      |      230.97      |       230.37       | 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

  

Table 3 is similar to Table 2 and uses the same set of tables as but uses a batch 

size of 1 instead of a batch size of 4. Some full testing runs never actually learned and got 

stuck at 10% accuracy, so those entries were omitted. This only happened with a batch 

size of 1. 
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Table 3 also demonstrates many of the conclusions found from analyzing Table 2. 

Selecting the first few views maintains evaluation accuracy down to 3 views, while 

random view selection also maintains evaluation accuracy down to 6 views. Most other 

methods do not maintain accuracy. Selecting the first 6 views also performs the best 

overall. Interestingly, resolution reduction with no view reduction (reduction-firstx 12) 

takes less time per trial than reducing the number of views to 3 views, which was the 

opposite in Table 2. However, using view reduction down to 3 views maintains accuracy 

better than simple resolution reduction. 

 

Table 4  

MVCNN Test Results – Batch Size 16 with 64 Epochs 

AVERAGES 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

| # of Views | firstx-rot | random-rot | selected-rot | reduction-firstx | reduction-random | reduction-selected | 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

|     12     |    92.8    |     -      |      -       |       90.0       |        -         |         -          | 

|     8      |    93.6    |    91.8    |     93.4     |       89.2       |       88.8       |        91.2        | 

|     6      |   91.25    |    93.4    |     93.4     |       92.0       |       92.6       |        89.4        | 

|     4      |    95.2    |    94.0    |     93.4     |       94.2       |       87.8       |        90.8        | 

|     3      |    94.4    |    91.0    |     90.4     |       91.6       |       90.6       |        90.8        | 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

MAX 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

| # of Views | firstx-rot | random-rot | selected-rot | reduction-firstx | reduction-random | reduction-selected | 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

|     12     |    94.0    |     -      |      -       |       91.0       |        -         |         -          | 

|     8      |    95.0    |    94.0    |     96.0     |       91.0       |       91.0       |        93.0        | 

|     6      |    95.0    |    95.0    |     96.0     |       94.0       |       95.0       |        92.0        | 

|     4      |    97.0    |    96.0    |     94.0     |       95.0       |       89.0       |        92.0        | 

|     3      |    97.0    |    95.0    |     92.0     |       93.0       |       93.0       |        93.0        | 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

MIN 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

| # of Views | firstx-rot | random-rot | selected-rot | reduction-firstx | reduction-random | reduction-selected | 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

|     12     |    91.0    |     -      |      -       |       89.0       |        -         |         -          | 

|     8      |    92.0    |    87.0    |     89.0     |       88.0       |       86.0       |        89.0        | 

|     6      |    83.0    |    92.0    |     89.0     |       88.0       |       91.0       |        86.0        | 

|     4      |    93.0    |    92.0    |     93.0     |       93.0       |       85.0       |        88.0        | 

|     3      |    90.0    |    88.0    |     88.0     |       89.0       |       87.0       |        90.0        | 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

RANGE 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

| # of Views | firstx-rot | random-rot | selected-rot | reduction-firstx | reduction-random | reduction-selected | 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

|     12     |    3.0     |     -      |      -       |       2.0        |        -         |         -          | 

|     8      |    3.0     |    7.0     |     7.0      |       3.0        |       5.0        |        4.0         | 

|     6      |    12.0    |    3.0     |     7.0      |       6.0        |       4.0        |        6.0         | 

|     4      |    4.0     |    4.0     |     1.0      |       2.0        |       4.0        |        4.0         | 

|     3      |    7.0     |    7.0     |     4.0      |       4.0        |       6.0        |        3.0         | 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 
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MEDIAN 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

| # of Views | firstx-rot | random-rot | selected-rot | reduction-firstx | reduction-random | reduction-selected | 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

|     12     |    94.0    |     -      |      -       |       90.0       |        -         |         -          | 

|     8      |    94.0    |    93.0    |     94.0     |       89.0       |       89.0       |        91.0        | 

|     6      |    93.5    |    93.0    |     95.0     |       93.0       |       92.0       |        89.0        | 

|     4      |    95.0    |    93.0    |     93.0     |       94.0       |       88.0       |        91.0        | 

|     3      |    95.0    |    91.0    |     91.0     |       92.0       |       92.0       |        90.0        | 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

TIME 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

| # of Views | firstx-rot | random-rot | selected-rot | reduction-firstx | reduction-random | reduction-selected | 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

|     12     |   557.58   |     -      |      -       |      366.15      |        -         |         -          | 

|     8      |   386.87   |   390.5    |    392.68    |      257.39      |      256.72      |       258.44       | 

|     6      |   314.92   |   313.88   |    316.33    |      205.44      |      204.62      |       207.91       | 

|     4      |   236.81   |   236.69   |    239.51    |      151.29      |      151.61      |       154.21       | 

|     3      |   198.42   |   198.89   |    201.33    |      124.28      |      123.72      |       126.5        | 

+------------+------------+------------+--------------+------------------+------------------+--------------------+ 

 

Table 4 is similar to Table 2 and uses the same set of tables but uses a batch size 

of 16 instead of 4 along with training for 64 epochs instead of 16 epochs. There were also 

only 5 training trials per method instead of 10 training trials per method. 

Running each method for more epochs with a larger batch size gave some 

interesting results. First, the maximum evaluation accuracy was 97% instead of 96%. 

Also, the average accuracy of each sampling method increased. Additionally, using the 

first 6 rotations was not the most accurate and had one trial that had 83% evaluation 

accuracy, which was the lowest in this test run. This indicates that the trial using 3 

random views in Table 2 that got an accuracy of 75% was due to luck to some extent. 

Most of the view reduction methods maintained accuracy at or above the method using 

no sampling, with the exception of a few methods, namely being 8 random views, 3 

random views, and 3 selected views. Surprisingly, selected views mostly maintained 

accuracy in this test run. Additionally, almost all of the resolution reduction methods did 

not maintain accuracy. Comparing the average time per trial between choosing the 3 

views against resolution reduction shows that resolution reduction takes almost double 

the amount of time as choosing the 3 views. This indicates that batch size potentially has 
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an effect on the time that each method takes to complete, as using a batch size of 1 

showed that resolution reduction was faster while using a batch size of 4 and 16. A 

simple solution to this problem would be to simply select the views (if not using random 

view selection) or do the resolution reduction before training, as resolution reduction on 

the same image will always produce the same result. Likewise, view reduction that is not 

random will always select the same views to train on, so they do not need to be selected 

at the beginning of epoch. Instead, these can be done as a preprocessing step before 

training. Nonetheless, every method of reducing the views to 3 without resolution 

reduction are more accurate than resolution reduction. 

 

Figure 10  

MVCNN Validation Accuracy Over Time 

 

 

The set of graphs in Figure 10 show the validation accuracy after each epoch of a 

few different methods of sampling. The left graph shows the accuracy after each epoch 

for the run with the maximum evaluation accuracy out of that sampling method’s training 
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trials. The right graph is the same but for the minimum evaluation accuracy of the 

sampling method’s training runs. All final performance results can be found in Table 2.  

In both graphs, the baseline of all 12 views used (red) is firstx-rot with 12 in 

Table 2, which does not use any sampling method. The first 6 views sampling method 

(blue) is firstx-rot with 6 views on the table, 3 random views (green) is random-rot with 3 

views, and all 12 views with resolution reduction (cyan) is reduction-firstx with 12 views. 

In the left graph showing the maximum evaluation accuracies, the final evaluation 

accuracy of using all 12 views is 94%, using the first 6 views is gives an accuracy of 

95%, using 3 random views give an accuracy of 96%, and using resolution reduction with 

no view reduction gave an accuracy of 94%.  

In the right graph showing the minimum evaluation accuracies, the final 

evaluation accuracy of using all 12 views is 86%, using the first 6 views is gives an 

accuracy of 93%, using 3 random views give an accuracy of 75%, and using resolution 

reduction with no view reduction gave an accuracy of 87%.  

Looking at Figure 10, the first 6 views method has the most stable validation 

accuracy throughout each epoch in both the maximum and minimum evaluation accuracy 

trials. The resolution reduction method starts off at a much worse accuracy as well as 

taking longer to learn toward the beginning of the trials, but it catches up by around 8 

epochs into the trials. The two notable decreases in validation accuracy occur between 

epoch 9 and 10 of the maximum evaluation accuracy for using all 12 views, which it then 

recovers from to attain a high evaluation accuracy. The second decrease happens for the 

minimum evaluation accuracy trial for using 3 random views, which occurs at the end of 
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the trial, producing the model with the lowest accuracy of all the trials. Additionally, 

using 3 random views gives the highest validation accuracy of any of the selected trials in 

Figure 10.  

 

Figure 11  

MVCNN Validation Accuracy - Maximum vs Minimum Evaluation Accuracy  

 

  

The set of graphs in Figure 11 take the max evaluation accuracy training runs 

(red) of each sampling method and compares it with the minimum evaluation training 

runs (blue) of each respective sampling method, using the validation accuracy after each 
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epoch. The top left graph is the baseline of all 12 views being used, or no sampling. The 

top right graph is the resolution reduction with all 12 views sampling method, The 

bottom left graph is the first 6 views sampling method, and the bottom right is the 

random 3 views sampling method.  

 In the top left graph (all 12 views/no sampling), the maximum evaluation 

accuracy is 94% while the minimum evaluation accuracy is 86%. In the top right graph 

(resolution reduction using no view reduction), the maximum evaluation accuracy is 94% 

while the minimum evaluation accuracy is 87%. In the bottom left graph (first 6 views), 

the maximum evaluation accuracy is 95% while the minimum evaluation accuracy is 

93%. In the bottom right graph (random 3 views), the maximum evaluation accuracy is 

96% while the minimum evaluation accuracy is 75%. 

 Comparing each method’s maximum and minimum evaluation accuracy trials 

with each other in Figure 11 shows the impact of random chance. Overall, the minimum 

accuracy trials had more major decreases in accuracy between 2 epochs than the 

maximum accuracy trials. This also applies to the beginning of the trials as well, where 

learning is the quickest. Additionally, the minimum accuracy trial of using 3 random 

views has a large decrease in accuracy at 4 epochs into the trial, which caused the rest of 

the epochs to be less stable than other trials. Apart from the one massive decrease in 

accuracy using all 12 views, using 3 random views have the most frequent large 

decreases in validation accuracy throughout any trial. 
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Figure 12  

MVCNN Sampling Method Loss 

 

 

The set of graphs in Figure 12 show the training loss versus the validation loss of 

a few different training runs across a few sampling methods. The top two graphs use the 

maximum evaluation accuracy runs, while the bottom two graphs use the minimum 

evaluation accuracy runs for each respective sampling method. The top left graph is the 

baseline of all 12 views being used, or no sampling. The top right graph is the first 6 

views sampling method, the bottom left graph is the resolution reduction with all 12 

views sampling method, and the bottom right is the random 3 views sampling method. 
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The loss of each trial decreases at almost every epoch. Looking at Figure 12 

shows that the validation loss after each epoch decreases almost every step. Some of the 

larger decreases in accuracy, like the final epoch of the minimum evaluation accuracy 

trial for 3 random views, are reflected in the respective loss graph, but the loss generally 

decreases after each epoch, regardless of the change in accuracy. For example, epoch 10 

of the minimum evaluation accuracy trial for 3 random views sees a decrease in accuracy, 

but no rise in loss. Additionally, the loss graphs indicate that overfitting is not happening 

in these trials. Figure 13 indicates that reducing the number of views reduces the amount 

of time per trial linearly, which is to be expected. 

 

Figure 13  

MVCNN Average Time per Trial vs Number of Views 

 

 

The graph in Figure 13 shows the average time per trial of using no resolution 

reduction (red) and using resolution reduction (blue) with various numbers of views. 
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Figure 14  

MVCNN Validation Accuracy Using Various Sampling Methods (From Table 4) 

 

  

The set of graphs in Figure 14 show the validation accuracy after each epoch 

using various sampling methods from Table 4.  

The top left graph compares the validation accuracy after each epoch of the 

maximum evaluation accuracy trial (red, 95% accuracy) and minimum accuracy trial 

(blue, 83% accuracy) using the first 6 views method.  
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The top right graph compares the validation accuracy after each epoch of the 

maximum evaluation accuracy trial (red, 97% accuracy) and minimum accuracy trial 

(blue, 90% accuracy) using the first 3 views method.  

The bottom left graph shows the validation accuracy after each epoch using 

different sampling methods: no sampling (red, 94% accuracy), resolution reduction (blue, 

91% accuracy), and first 3 views (green, 97% accuracy). This graph uses the maximum 

evaluation accuracy trial for each method. 

The bottom right graph shows the validation accuracy after each epoch using view 

reduction down to 3 views using each method of doing so: first 3 views (red, 90% 

accuracy), random 3 views (blue, 88% accuracy), and selected 3 views (green, 88% 

accuracy). This graph uses the minimum evaluation accuracy trial for each method. 

Training for more epochs and having a larger batch size seems to lead to more 

stable results, as shown in Figure 14. Both the minimum evaluation accuracy trial of 

using the first 6 views as well as using resolution reduction have a final epoch validation 

accuracy that is significantly higher than the final evaluation accuracy of the respective 

trial. For the first 3 views method, the validation accuracy decreased after the final epoch 

and was close to the evaluation accuracy of that trial. Looking at the top right and both 

bottom graphs of Figure 14, reducing the number of views to 3 views makes the 

validation between each epoch more unstable, having the validation accuracy decrease 

significantly then increase significantly repeatedly, than using more views.  

Overall, sampling using view reduction will maintain accuracy while also 

reducing training time. Resolution reduction without view reduction using a max pooling 
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function does not maintain accuracy. Combining both resolution reduction and view 

reduction also does not maintain accuracy. However, combining resolution reduction and 

view reduction does significantly reduce training time, even when compared to the fastest 

view reduction only method.  
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Chapter 6 

Conclusions and Future Work 

We have presented empirical evidence that sampling can be used to reduce 

training time while maintaining evaluation accuracy. On a point cloud, sampling using 

random sampling or furthest point sampling will reduce training time significantly while 

still maintaining classification accuracy, with furthest point sampling performing slightly 

better than random sampling. The sampling found in SampleNet drastically decreases 

accuracy while increasing training time. On multiple images, sampling by view reduction 

maintains accuracy on a multi-view classifier while reducing processing time as well, 

while resolution reduction does not accomplish this task.  

In the future, the most obvious test to conduct is applying the sampling methods 

used on MVCNN to VoxNet to see if VoxNet can also maintain accuracy while 

undergoing “view” reduction or resolution reduction. In theory, VoxNet is similar to 

MVCNN where VoxNet has “rotations” instead of “views” as well as having a specified 

resolution, so the observations from MVCNN should apply to VoxNet. However, 

sampling on VoxNet may not give the same results as sampling on MVCNN in practice.  

Testing RotationNet [22] in the future would be good as it is claims to be the most 

accurate multi-view classifier and does not use every view. The RotationNet paper does 

not include training and inference time, so that would also need to be tested. The 

RotationNet method of correctly aligning a subset of views could also be applied to 

VoxNet to hopefully improve accuracy.  
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As for point cloud classifiers like PointNet, the idea of sampling using a 

differentiable function seems enticing as then it could be learned. However, SampleNet 

simply did not perform well. Perhaps the SampleNet learning method was too complex 

and a simpler but still differentiable sampling method is needed. Furthest point sampling 

maintains accuracy until around 64 points are sampled, so the neural network sampling 

the point cloud needs to be quicker than SampleNet or maintain accuracy past 64 points 

sampled while still taking less time than furthest point sampling with a higher number of 

points sampled. There could also be an undiscovered sampling method that performs 

better than furthest point sampling without learning.  
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