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1. Introduction
Tropical cyclones (TCs) are the most damaging natural hazards to impact the Atlantic and Gulf coasts of 
the United States (U.S.; Emanuel, 2005; Pielke, 2007; Rappaport, 2014). From 2010 to 2020, U.S. coastlines 
were impacted by 19 TCs that qualified as billion-dollar disasters, causing a cumulative estimated cost of 
more than $480 billion (2020 inflation-adjusted), and more than 3,500 deaths (NOAA National Centers for 
Environmental Information (NCEI),  2020). These storms included damaging events, such as Hurricane 
Sandy (2012), Hurricanes Harvey, Irma, and Maria (2017), and Hurricane Dorian (2019).

In a warming climate, future economic and human costs of TCs in the U.S. will be determined not only by 
social and economic behaviors, but also by evolving TC characteristics (Emanuel, 2011; Grinsted et al., 2019; 
Mendelsohn et al., 2012). TCs act to naturally cool the oceans and atmosphere in tropical latitudes by trans-
porting heat to higher latitudes (Emanuel, 1987). Thus, we can expect that TC behavior, including intensity, 
may vary in a warmer climate (Hall et al., 2021; Knutson et al., 2015, 2019; Kossin, 2017; Lin et al., 2010; 
Seneviratne et al., 2021; Villarini & Vecchi, 2013). However, uncertainty remains about how other char-
acteristics of TCs, including their genesis, tracks, and termination, may change (Chu et al., 2020; Colbert 
et al., 2013; Daloz et al., 2015; Garner et al., 2017; Hall et al., 2021; Kossin et al., 2010).

Here, we use >35,000 synthetic TCs downscaled from three Coupled Model Intercomparison Project version 
5 (CMIP5) global climate models (GCMs) to investigate changes to the characteristics of North Atlantic TC 
tracks that impact two major cities (New York City (NYC) and Boston, MA, USA) and the largest naval com-
plex in the world (Norfolk, VA, USA; U.S. Navy, 2020) in three distinct climatological eras (pre-industrial, 

Abstract Tropical cyclone (TC) track characteristics in a changing climate remain uncertain. Here, 
we investigate the genesis, tracks, and termination of >35,000 synthetic TCs traveling within 250 km of 
New York City (NYC) from the pre-industrial era (850–1800 CE) to the modern era (1970–2005 CE) to the 
future (2080–2100 CE). Under a very high-emissions scenario (RCP8.5), TCs are more likely to form closer 
to the United States (U.S.) southeast coast (>15% increase), terminate in the northeastern Atlantic (>6% 
increase), and move most slowly along the U.S. Atlantic coast (>15% increase) from the pre-industrial 
to future. Under our modeled scenarios, TCs are more likely to travel within 100 km of Boston, MA, 
USA (p = 0.01) and Norfolk, VA, USA (p = 0.05) than within 100 km of NYC in the future. We identify 
reductions in the time between genesis and the time when TCs come within 100 km of NYC, Boston, or 
Norfolk, as well as increased duration of TC impacts from individual storms at all three cities in the future.

Plain Language Summary Future economic and human costs of tropical cyclones (TCs; i.e., 
hurricanes) will depend upon changing storm tracks. To better understand the potential hazard facing 
coastal communities along the United States (U.S.) Atlantic coast, >35,000 TCs are simulated under 
pre-industrial, modern, and very high-emissions future climates. Over time, TCs tend to travel closer to 
the cities of Boston and Norfolk than New York City (NYC). As the climate warms, TCs also form closer 
to the United States southeast coast, reach their slowest forward speed along the U.S. Atlantic coast, and 
persist farther north and east in the Atlantic basin. The time required for TCs to reach cities, such as 
Boston, Norfolk, and NYC is reduced, and the typical duration of TC conditions increases at each of these 
locations.
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modern, and future). To gain a long-term perspective of how TC tracks and key characteristics along those 
tracks vary in a warming climate, we consider changes to (a) TC genesis, tracks, and termination in the 
North Atlantic and (b) location and magnitude of TC minimum translation speeds from the past millenni-
um through the end of the 21st century for a strongly forced climate scenario (RCP8.5). In what we believe 
is the first long-term study of its kind, we evaluate the implications of these changes to TC tracks for several 
specific locations—NYC, Boston, and Norfolk—all of which are key points of interest that are susceptible 
to TC hazards.

2. Results
We investigate changes to key characteristics of TC trajectories from the pre-industrial (850–1800 CE) to 
modern (1970–2005 CE) to future (2080–2100 CE) eras for three different GCMs (MPI, CCSM4, and IPSL; 
see Section 4). Characteristics considered include: (a) locations of TC genesis, tracks, and termination in 
the North Atlantic; and (b) locations and magnitudes of TC minimum translation speed. In some cases, 
we find persistent, monotonic trends in changing TC track characteristics (e.g., location of TC genesis and 
minimum translation speed), while in other cases we find nonmonotonic trends across time (e.g., location 
of TC termination, and proximity of storms to NYC; Figures 1 and 2 and Table 1). We note that in most cases 
where trends of our model ensemble for TC characteristics are nonmonotonic across time, there is overlap 
in error bars of changes between the pre-industrial and modern eras (Figures 2a–2c and Table 1), and that 
such nonmonotonic trends tend to occur primarily in instances where there is significant variability across 
individual models in terms of changing track characteristics from the pre-industrial to modern eras.

2.1. Tropical Cyclone Genesis, Tracks, and Termination in the North Atlantic

2.1.1. Tropical Cyclone Genesis

From the pre-industrial to the end of the 21st century, there is a decreasing density of TC genesis in the 
North Atlantic main development region (MDR; defined here as the region from 6°–18°N to 20°–60°W; 
Figure 1), and an increasing density of TC genesis in regions that include the Caribbean and waters just 
offshore of the U.S. southeast coast (Figures 1a and 1b). These trends are evident not only for the full en-
semble, but also in all individual models (Figures 1a, 1b, 2a and 3; Figure S1 in Supporting Information S1).

Across the model ensemble, there is a consistent increase (p = 0.01) in the likelihood of storms forming 
along the U.S. southeast coast (defined as the region from 25°–37°N and 45°–85°W; Figures 1a and 1b), and 
a consistent decrease (p = 0.01) in the probability of storms forming in the MDR from the pre-industrial era 
to the end of the 21st century (Figure 2a and Table 1). These results hold for individual models, with the sole 
exception that the increase in genesis along the U.S. southeast coast is not significant from the pre-industrial 
to the modern era in the MPI model (Figure 2a).

The analysis of environmental variables from the GCMs used to generate TC tracks suggests that changes to 
TC genesis locations may be influenced by variations of both relative humidity and vertical shear. From the 
pre-industrial to the modern era, shear increases in the MDR, causing less favorable genesis conditions (e.g., 
Camargo et al., 2007) in the region over this time (Figure S2 in Supporting Information S1). Though shear 
appears less likely to be a factor in genesis changes from the modern era to the future, decreased relative 
humidity in the MDR over this time may cause the region to become less conducive to TC genesis by 2100 
CE (Figure S2 in Supporting Information S1).

2.1.2. Tropical Cyclone Tracks

By the end of the 21st century, the density of TC tracks traveling close to NYC decreases compared to the 
modern era, with TCs tending instead to remain offshore at their nearest approach to NYC (Figures 1d 
and 3; Figures S3 and S4 in Supporting Information S1). Across our model ensemble, the proportion of 
TCs remaining 150 km or farther away from NYC increases by the end of the century (p = 0.01; Figures 1d 
and  2b and Table  1); this trend is present within both CCSM4 and IPSL models but is only significant 
(p = 0.01) for the IPSL model (Figure 2b). In the MPI model, by contrast, there is a slight increase in the 
number of TCs traveling within 75 km of NYC and a decrease in the number of storms remaining at least 
150 km away from NYC. This is likely due to a split in the location where TC tracks make their nearest 
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approach to the city in the MPI model, with increases both in the number of tracks remaining offshore and 
in the number of tracks traveling west of the city, where they often remain within 150 km of NYC (Figure 
S4 in Supporting Information S1).

Despite some variation in the probability of storms remaining 150 km or farther away from NYC, all models 
suggest increases from the modern to the future in the density of TC tracks remaining offshore in a region 
southeast of NYC at their nearest approach to the city (Figure 1d and Figure S4 in Supporting Information S1). 

Figure 1. Density difference maps of TC characteristics. Maps of the density differences of (a) TC genesis points 
(modern vs. pre-industrial). (b) TC genesis points (future vs. modern). (c) TC nearest point to the Battery (modern vs. 
preindustrial). (d) TC nearest point to the Battery (future vs. modern). (e) TC termination points (modern vs. pre-
industrial). (f) TC termination points (future vs. modern). (g) Location of TC minimum translation speed (modern vs. 
pre-industrial). (h) Location of TC minimum translation speed (future vs. modern). Also shown are: (a and b) Location 
of MDR (solid rectangle) and U.S. Southeast Coastal region (dashed rectangle); (c and d) Location of The Battery, NYC 
(purple triangle); circles showing the 75 km (dashed) and 150 km (solid) distance from the Battery; (e and f) Location 
of West Quoddy Head Maine, most eastern point in United States (purple triangle); (g and h) Location of MDR (solid 
rectangle) and U.S. East Coast Region (dashed rectangle).
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Similar increases in this region can be seen in the CCSM4 and IPSL model from the pre-industrial to the 
modern era (Figure S4 in Supporting Information S1).

There is some indication that the changing proximity of TC tracks to NYC may be influenced by variations 
in vertical shear. For example, there is a greater decrease in vertical shear for TCs that remain at least 
150 km away from NYC than for TCs that travel within 75 km of NYC over the modern to future eras (Fig-
ure S5 in Supporting Information S1). This result is consistent with a Principal Component Analysis (PCA) 
performed for environmental variables (Table S1 in Supporting Information S1).

2.1.3. Tropical Cyclone Termination

There are significant changes in where TCs terminate by the end of the 21st century compared to the mod-
ern era. By 2080–2100 CE, there is a decrease in the density of TCs terminating near New England, and an 

Figure 2. Probabilities of TC track characteristics. Probability of (a) TC genesis occurring in the MDR (MDR Genesis) or along the United States Southeast 
Coast (SE Genesis). (b) TC nearest point to The Battery being ≤75 km (Close NYC) or ≥150 km (Far NYC). (c) TC termination occurring southwest (SW 
Termination) or northeast (NE Termination) of West of West Quoddy Head, ME. (d) Probability of TC minimum translation speed occurring in the MDR (MDR 
Min. Trans. Spd.), or along the United States East Coast (US Min. Trans. Spd.). Error bars show the bootstrapped 99% credible intervals. Note that Figure 1 
shows key locations and regions including The Battery; West Quoddy Head, ME; the MDR; the United States Southeast Coast region; and U.S. East Coast 
region.
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Pre-industrial Modern Future

Proximity to NYC ≤75 km 22.7% (21.8%–23.6%) 22.7% (21.8%–23.6%) 21.0% (19.9%–22.1%)

≥150 km 45.2% (44.1%–46.2%) 43.8% (42.7%–44.8%) 48.2% (46.8%–49.7%)

Genesis point MDR 31.9% (30.9%–32.9%) 26.5% (25.6%–27.4%) 19.6% (18.4%–20.7%)

SE coast 35.5% (34.5%–36.5%) 40.4% (39.4%–41.5%) 51.3% (49.9%–52.8%)

Termination point SW West Quoddy Head, ME 17.4% (16.6%–18.3%) 19.4% (18.6%–20.3%) 15.4% (14.5%–16.4%)

NE West Quoddy Head, ME 41.2% (40.2%–42.3%) 39.7% (38.7%–40.8%) 47.4% (46.1%–48.7%)

Minimum translation speed MDR 20.0% (19.2%–20.9%) 16.0% (15.2%–16.8%) 9.0% (8.2%–9.8%)

US coast 37.7% (36.6%–38.7%) 40.9% (39.8%–41.9%) 53.0% (51.5%–54.3%) 

Note. Bootstrapped 99% credible intervals are shown in parentheses; categories are the same as those shown in Figure 2.

Table 1 
Percentages of Tropical Cyclone Tracks With Given Characteristics in Each Time Period

Figure 3. Tropical Cyclone Tracks. Random samples of 50 TC tracks from (a, d, and g) The MPI model (Column 1, blue); (b, e, and h) The CCSM4 model 
(Column 2, light green); (c, f, and i) The IPSL model (Column 3, dark green) for the pre-industrial era (Row 1), modern era (Row 2), and future (Row 3). Also 
shown are tracks of historical Atlantic tropical cyclones that traveled within 250 km of NYC (d–f; pink). Observed tracks are from the National Oceanic and 
Atmospheric Administration’s HURDAT2 Best Track database (Landsea & Franklin, 2013).
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increase in the density of TCs terminating north and east of the U.S. Atlantic coast (Figures 1f and 3; Figure 
S6 in Supporting Information S1).

From the modern to the future era, more TCs in our model ensemble terminate at locations northeast of 
West Quoddy Head, ME (44.8°N–67.0°W), which is the eastern-most point of the U.S (Figures 1e, 1f and 2c 
and Table 1). Likewise, fewer TCs terminate southwest of this location over the same period (p = 0.01; 
Figure 2c and Table 1). These results generally hold for individual models, with a few exceptions from the 
CCSM4 model, where increases in termination northeast of West Quoddy Head are not significant and 
there is an apparent (though not significant) increase in termination southwest of this location over this 
time (Figure 2c).

By the end of the 21st century, a greater proportion of TCs are sustained until they reach the latitude of 65°N 
(at which point TCs are automatically terminated; see Section 4) than in the modern or pre-industrial eras 
(Figures 1e and 1f). This result is consistent across all models (Figure S6 in Supporting Information S1).

2.2. Location and Magnitude of Tropical Cyclone Minimum Translation Speeds

From the pre-industrial era through the end of the 21st century, there is a persistent change in the locations 
at which TCs reach their minimum translation speed (i.e., their slowest forward motion)—a noteworthy 
track variation, given that slower-moving storms have a greater potential to inflict damages along their 
paths. Over this period, across all models, there are decreases in the density of TCs with minimum trans-
lation speeds in the MDR and western Gulf of Mexico and increases in the density of TCs with minimum 
translation speeds in the Caribbean and along the U.S. Atlantic coast (Figures 1g and 1h; Figure S7 in Sup-
porting Information S1). As time progresses, a greater proportion of TCs in the full ensemble move forward 
most slowly in a region along the U.S. Atlantic coast (25°–41°N and 64°–82°W; p = 0.01; Figures 1g and 1h), 
and a smaller proportion of TCs move most slowly in the MDR (p = 0.01; Figure 2d and Table 1). These 
results generally hold for individual models as well, though shifts from the pre-industrial to the modern era 
are not significant for the MPI and CCSM4 models (Figure 2d).

There are also decreases in minimum translation speed distributions from the pre-industrial era to the end 
of the century (Figure 4). Given that the slowest minimum translation speeds in all time periods approach a 
limit of 0 kts, decreases in TC forward motion over time are most notable for the central and upper portions 
of the minimum translation speed distributions. This decrease suggests that more TCs may not only reach 

Figure 4. Exceedance Probabilities of TC Minimum Translation Speeds. Survival functions showing exceedance 
probabilities of lifetime minimum translation speeds of TCs during the preindustrial era (dotted lines), the modern era 
(dashed lines), and the future era (solid lines). Models/ensemble are indicated by color, as in Figure 2.



Earth’s Future

GARNER ET AL.

10.1029/2021EF002326

7 of 16

their slowest speeds along the U.S. Atlantic coast in the future, but that some future minimum translation 
speeds may also be slower than they have been in the past.

Changing locations of minimum translation speed are not well-explained by changes to temperature, rela-
tive humidity, or vertical shear within our data sets. Though there are some shifts in these environmental 
variables that coincide with minimum translation speed points over time (Figure S8 in Supporting Informa-
tion S1), no clear trend emerges to sufficiently explain the spatial changes in minimum translation speeds. 
However, an examination of 850 hPa environmental wind speeds at the time of minimum translation speed 
show a slight shift in average environmental wind direction over time, with frequency of WSW wind direc-
tions decreasing and WNW wind directions increasing from the pre-industrial to the future (Figure S9 in 
Supporting Information S1). The magnitude of environmental wind speeds also slow over this time period 
(Figure S9 in Supporting Information S1). Such variations in environmental winds could impact storm min-
imum translation speed, as both direction and magnitude signal potentially less effective steering currents 
for storms along their typical paths.

2.3. Implications of Changing Tropical Cyclone Tracks for Key Locations on the U.S. East Coast

2.3.1. Variations in Tropical Cyclone Track Proximity

In future simulations, there is an increased tendency for TCs to remain offshore at their nearest approach to 
NYC (Figures 1d and 3; Figures S3 and S4 in Supporting Information S1), rather than making landfall. By 
the end of the 21st century it also becomes more likely within our model ensemble (p = 0.01) that TCs will 
travel within 100 km of Boston, MA, USA and/or Norfolk, VA, USA than within 100 km of NYC (Figure 5). 
From the pre-industrial era to the end of the 21st century, the likelihood of TCs traveling within 100 km of 
Boston remains relatively constant, the likelihood of TCs traveling within 100 km of Norfolk increases, and 
the likelihood of TCs traveling within 100 km of NYC decreases. These changes combine to make it more 
likely that any given TC will travel within 100 km of Boston (p = 0.01) and/or Norfolk (p = 0.05) than that 
the TC will travel within this distance of NYC.

Within individual models, trends in TC proximity to NYC, Boston, and Norfolk are generally consistent 
across both the CCSM4 model and the IPSL models, with the most significant shifts occurring in the IPSL 
model (Figure 5). Consistent with our model ensemble results, the MPI model indicates an increase through 
time in the number of TCs traveling within 100 km of Norfolk; however, there are also slight increases in the 
numbers of TCs traveling near NYC, due to an increase in tracks traversing inland.

Figure 5. Probability of TCs passing within 100 km of various points of interest. (a) Probability (points), 95% (thick bars), and 99% (thin bars) credible 
intervals of TCs passing within 100 km of The Battery in NYC, NY, USA; Boston, MA, USA; and Norfolk, VA, USA during each time period. (b) Gridded density 
differences of TC tracks across all models from 2080 to 2100 compared to the modern era.
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2.3.2. Consequences of Tropical Cyclone Track Variations for Communities Along the U.S. 
Atlantic Coast

From the pre-industrial era through the end of the 21st century, the time from genesis until the TC comes 
within 100 km of NYC, Boston, or Norfolk decreases significantly, with the largest decreases occurring in 
Norfolk (Figure 6). For all three cities, distributions of the number of days from TC formation until the TCs 
travel within 100 km of the location are bimodal in the pre-industrial and modern eras, with substantial 
numbers of TCs forming in both the Caribbean and along the U.S. southeast coast (first peak, less than a 
week to reach each city) and the MDR (second peak, 1.5–2 weeks to reach each city). By the end of the 21st 
century, distributions are unimodal, with a single peak at approximately 5 days, representing an increased 

Figure 6. Time from genesis to points of interest. Probability density functions (a, c, and e) and QQ-plots (b, d, 
and f) of the time in days from when TCs form until when they within 100 km of (a and b) The Battery (NYC), (c and 
d) Boston, MA, USA and (e and f) Norfolk, VA, USA. Probability density functions are shown for the pre-industrial, 
modern, and future time periods. QQ plots show the difference in quantiles of distributions from the pre-industrial 
(pink) and future (purple) eras. Gray dashed lines on the QQ-plots show the one-to-one line; when points deviate from 
the line, the pre-industrial and future distributions are significantly different.
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number of TCs forming closer to the U.S. southeast coast, though each distribution retains a long upper tail 
(Figures 1a, 1b, 3, 6a, 6c and 6e). When considering storms that reach NYC, Boston, or Norfolk in under 
14 days, the time from genesis until the TC comes within 100 km of the city significantly decreases from the 
pre-industrial to the future (Figures 6b, 6d and 6f).

From the pre-industrial to the end of the 21st century, NYC, Boston, and Norfolk also all experience increas-
es in the duration of TC impacts due to a combination of slower TC translation speeds (Figure 4 and Figure 
S10 in Supporting Information S1) and variations in TC tracks (Figure 5). Here, we define TC impacts to be 
occurring for a city any time that the city is contained within the TC’s radius of maximum winds. Though 
there are no major shifts in the peaks of the distributions that describe the average number of hours TCs 
impact each location across time periods, all of the distributions exhibit long, risk-determining tails (Fig-
ures 7a, 7c and 7e). Our comparison of these longest-lasting events reveals significantly longer duration of 
impacts for all three cities by the end of the 21st century compared to the pre-industrial era (Figures 7b, 7d 
and 7f). Consistent with shifts in the location of TC minimum translation speed over this time, increases 
in the duration of TC impacts are greatest at Norfolk, where the longest lasting future storms often persist 
about twice as long as their pre-industrial counterparts (Figure 7f).

3. Discussion
Changing TC characteristics near the U.S. Atlantic coast have important consequences for the hazards that 
this highly populated region faces in a warming climate (Emanuel,  2005; Garner et  al.,  2017; Grinsted 
et al., 2019; Lin et al., 2016; Pielke, 2007). To fully appreciate how TC hazards may evolve, it is necessary 
understand how both TC tracks and characteristics may vary. Previous studies have focused on how varying 
environmental conditions may impact TC intensity, size, or flood potential for the U.S. Atlantic coast (Lin 
et al., 2012; Marsooli et al., 2019; Ting et al., 2019). Other studies specifically investigated changing TC 
tracks for the modern or future eras (Colbert et al., 2013; Hall et al., 2021). Our work adds to these previous 
studies by providing a long-term perspective of TC track variations from the pre-industrial era to the end 
of the 21st century, including an assessment of how such variations may impact the TC hazard facing key 
locations along the U.S. Atlantic coast.

Environmental requirements for TC genesis include adequately warm ocean temperatures, low wind shear, 
sufficient humidity levels, ample Coriolis force from Earth’s rotation, and a pre-existing low-level distur-
bance from which the TC may begin to develop (Camargo et al.,  2014; Gray, 1975). The North Atlantic 
MDR, located along the northern edge of the Intertropical Convergence Zone (ITCZ), is an area in which 
it is common for these conditions to be met and in which it is thus common for TCs to form. Our results, 
however, suggest that from the pre-industrial era to the end of the 21st century under RCP8.5, it becomes 
more likely that TCs impacting the northeastern U.S. will form closer to U.S. coastlines, in an area just 
offshore of the U.S. southeast coast. It becomes correspondingly less likely that such TCs will form in the 
MDR. An increase in TC formation near U.S. coastlines could limit lead time before storm impacts are felt 
along U.S. coastlines, escalating forecasting challenges (Halperin et al., 2017) and amplifying hazards in 
coastal communities.

Long-term variations in TC genesis locations support previous paleotempestology work pertaining to the in-
fluence of ITCZ meridional shifts on TC activity in the North Atlantic (Broccoli et al., 2006; Van Hengstum 
et al., 2016). Geologic records suggest an elevated level of TC activity along the western North Atlantic mar-
gin from 2500 to 1000 yr ago, when the ITCZ was located at higher latitudes (Van Hengstum et al., 2016). 
It is reasonable to anticipate that this region could see increased TC activity in the future with another 
migration of the ITCZ (Burnett et al., 2021; Van Hengstum et al., 2016). Given that variation in the ITCZ 
position is driven partially by differential heating and cooling of the hemispheres (Broccoli et al., 2006), and 
given the amplified warming of the northern hemisphere relative to the southern hemisphere in a warming 
climate (Stocker et al., 2013), it is plausible that a northward shift in the ITCZ could help drive increased 
density of TC genesis along the U.S. southeast coast in the future.

As TC genesis locations evolve, there are also variations in the proximity of TC tracks to U.S. coastal com-
munities. Previous studies postulated an easterly TC track shift near NYC from the modern to the future as 
the cause of minimal changes to overall storm surge heights despite potentially stronger storms by the end 
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of the century (Garner et al., 2017). Here, we find that compared to the modern era, TC tracks become far-
ther removed from NYC in the future under a high-emissions scenario—a finding that is consistent with the 
suggested track shift in Garner et al. (2017), which was suggested not only for the MPI, CCSM4, and IPSL 
models, but also for the HadGEM, GDL, MRI, and MIROC submissions to CMIP5 (see Garner et al., 2017; 
Figure S7 in Supporting Information S1). Although such a track shift may benefit NYC, other communities 
do not see the same advantage. For example, there is no change in TC proximity to Boston during the 21st 
century, resulting in a greater likelihood that storms will pass within 100 km of Boston than NYC by the 
year 2100, which causes a varying TC hazard for these two major coastal cities that are only about 300 km 
apart. By the end of the century, it also becomes more likely that TCs will travel within 100 km of Norfolk 

Figure 7. Duration of TC impacts at points of interest. Probability density functions (a, c, and e) and QQ-plots 
(b, d, and f) of the duration (hrs) of TC impacts at (a and b) The Battery (NYC), (c and d) Boston, MA, USA and (e and 
f) Norfolk, VA, USA. Probability density functions are shown for the pre-industrial, modern, and future time periods. 
QQ plots show the difference in quantiles of distributions from the pre-industrial (pink) and future (purple) eras. Gray 
dashed lines on the QQ-plots show the one-to-one line; when points deviate from the line, the pre-industrial and future 
distributions are significantly different.
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than NYC. This suggests an increasing TC hazard for Norfolk relative to NYC, which could translate to 
national security risks for the U.S. (National Research Council, 2013: Committee on Assessing the Impact 
of Climate Change on Social and Political Stresses), given the significant military infrastructure housed in 
Norfolk. Such modifications of TC track proximity to coastal communities are consistent with recent obser-
vational studies (Wang & Toumi, 2021). Furthermore, we find that the evolution of genesis points combined 
with track variations causes all three cities (NYC, Boston, and Norfolk) to experience decreases in the time 
between when TCs form and when they approach the city, reducing the time available for these coastal 
communities to prepare for TC events. These results emphasize the necessity and urgency of adaptation and 
mitigation measures to help protect coastal communities both now and in the future.

Changes to translation speeds combined with shifts in TC tracks further complicate the evolving hazard 
to North Atlantic coastlines. From the pre-industrial to the end of the 21st century, we find that more TCs 
reach their slowest speeds along the U.S. Atlantic coast than in the MDR. Furthermore, consistent with pre-
vious studies (Kossin, 2018; Zhang et al., 2020), overall magnitudes of storm minimum translation speeds 
decrease (Figure 4). These variations in translation speed combined with changing storm tracks result in 
significant increases from the pre-industrial era to the end of the 21st century in the average amount of 
time that TCs impact NYC, Boston, and Norfolk. These results for U.S. Atlantic coastal communities are 
particularly concerning, given that slow-moving TCs have an increased potential to inflict damages in the 
regions through which they travel. For instance, such TCs may produce long-lived storm surges, increasing 
the probability of storm surge occurring simultaneously with astronomical high tide, and leading to en-
hanced overall flood heights (Kemp & Horton, 2013; Reed, Mann, Emanuel, Lin, et al., 2015). For example, 
slow-moving Hurricane Dorian (2019) produced inundation levels of up to 6 m above ground level due to 
combined tide and storm surge in portions of the Bahamas (Avila et al., 2020). Moreover, there is medi-
um-to-high confidence that TC precipitation rates will increase in a warmer climate (Knutson et al., 2019), 
and slow-traveling TCs magnify the potential for catastrophic rainfall events (Kossin, 2018; Lai et al., 2020). 
For example, Hurricane Harvey stalled over Texas in 2017, producing >60″ of rain in some areas, and be-
coming the most significant TC rainfall event in U.S. history (Blake & Zelinsky, 2017). Such rainfall events 
have the potential not only to create extreme inland flooding, but also to generate compound flood events at 
coastlines as rainfall totals amplify flooding associated with storm surge (Wahl et al., 2015).

Though we investigated changes to vertical wind shear and humidity that may contribute to evolving TC 
tracks in the North Atlantic, recent studies also suggest other possible drivers for varying TC track char-
acteristics (Chu et al., 2020; Daloz et al., 2015; Knutson et al., 2019; Kossin et al., 2014, 2016; Nakamura 
et al., 2017; Wang & Toumi, 2021). For example, northerly shifts in TC genesis and termination that we 
identify are consistent with a poleward expansion of the tropics, which has been linked to anthropogenic 
warming (Kossin et al., 2016; Lucas et al., 2014; Nakamura et al., 2017). Other studies have suggested that 
zonal changes in environmental steering flow may play a role in a westward shift in TC tracks globally 
(Wang & Toumi, 2021), which may include changes that we find in genesis and the proximity of storms to 
locations such as Norfolk. Finally, some studies have emphasized a connection between increasing sea-sur-
face temperatures (SSTs) and heightened spatial density of TCs, especially in regions where SSTs increase 
relatively more than other areas (Murakami et al., 2012). Shifting densities of TC tracks identified here align 
with the projected increases of SSTs within CMIP5 models under RCP8.5 for the North Atlantic as a whole, 
and the U.S. shelf in particular (Alexander et al., 2018), indicating that rising SSTs may also be an important 
driving factor.

In a warming climate, we expect changes to a variety of TC characteristics, including their intensity, size, 
and flood hazard (Knutson et al., 2019). Our results illustrate the importance of considering not only such 
metrics that characterize a TC, but also the necessity of understanding how changing TC trajectories may 
impact the regions where TCs start, travel, end, and move most slowly. Such characteristics play a vital 
role in determining the overall hazard coastlines face from TCs both now and in the future. Finally, it is 
imperative that we understand the mechanisms that drive changes to TC tracks in a warming climate. We 
identify several factors that support the track shifts found here and elsewhere in the literature. However, 
additional studies, including analyses of larger model ensembles, are warranted to (a) reduce uncertainty; 
(b) better understand the changes between “modern” and “future” periods, including the magnitude of fu-
ture changes under different emission scenarios; and (c) clarify the precise environmental processes driving 
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modifications to TC tracks, given the potential of such variations to drastically impact the hazards facing 
our coastal communities in a changing climate.

4. Methods
4.1. Synthetic Tropical Cyclones

Although past investigations have considered changes to TC tracks in the North Atlantic in a warming cli-
mate (e.g., Colbert et al., 2013; Hall et al., 2021; Kossin et al., 2010), such studies are sometimes limited in 
scope, focusing either on the relatively short and potentially biased observational record of TCs in the North 
Atlantic (e.g., Kozar et al., 2013; Reed, Mann, Emanuel, & Titley, 2015), future TCs, or some combination 
of these. To overcome this limitation, we use synthetic TCs downscaled from GCMs for our study. Using 
the statistical/deterministic model described in Emanuel et al. (2006, 2008), we generate large numbers of 
synthetic TCs under various climate scenarios which are ideal for assessing long-term TC activity under 
plausible past climate scenarios, as well as under future warming. Downscaled TCs are generated using 
a combination of thermodynamic and kinematic state variables from CMIP5 GCMs (Taylor et al., 2012).

Downscaled TCs are generated using a random seeding process (Emanuel et al., 2008). In this approach, 
warm-core vortices with peak wind speeds of only 12 m/s and almost no midlevel humidity anomaly in 
their cores are distributed throughout the Atlantic basin everywhere north of 2° latitude and at all times 
of the year. Most of these vortices fail to develop into TCs, due to unfavorable environmental conditions, 
such as low potential intensity or large wind shear. However, if the vortices develop winds of at least 21 m/s 
(40 kts), they are considered to have formed a TC (Emanuel et al., 2008), and are included in our down-
scaled tracks. The first point at which a vortex becomes a TC is considered the genesis point for the storm.

A beta-and-advection model is used to approximate TC tracks, which incorporates the 850 and 250 hPa 
wind fields from the GCMs to articulate storm motion (Emanuel et  al.,  2008). As detailed in Emanuel 
et al. (2008), the beta-and-advection model represents the 850 and 250-hPa wind fields as Fourier series of 
random phase constrained to have monthly means, variances, and covariances calculated from daily data, 
and to have a geostrophic turbulence power-law distribution of kinetic energy. A comparison of simulated 
tracks during the modern era and observed tracks from the National Oceanic and Atmospheric Admin-
istration’s HURDAT2 Best Track database (Landsea & Franklin, 2013) occurring since 1970 reveals that 
simulated TC track patterns are consistent with observed patterns (Figure 3).

Environmental variables associated with each storm are taken directly from GCM fields that describe the 
600 hPa relative humidity, 600 hPa atmospheric temperature, and 850–250 hPa vertical wind shear of the 
environment in which each storm is located. These values thus provide a snapshot of the state of the at-
mosphere that aligns in time and space with the location of each storm at each 2-hr point along every track.

We focus on TCs generated from three CMIP5 (Taylor et al., 2012) models (Max Planck Institute for Mete-
orology [MPI], Community Climate System Model version 4 [CCSM4], and Institut Pierre Simon Laplace 
[IPSL]), with TCs filtered to travel within 250 km of NYC, as in Garner et al. (2017). The use of the MPI, 
CCSM4, and IPSL models allows us to more thoroughly investigate the long-term implications of shifting 
TC tracks near NYC originally suggested in Garner et  al.  (2017), though we note that future studies to 
consider and compare similar track variations that may exist in CMIP6 models would also be useful. The 
MPI, CCSM4, and IPSL models are the only models used in Garner et al. (2017) that contain the variables 
necessary to downscale TCs for the pre-industrial, modern, and future time periods—all three of which 
are necessary to establish historical context for present and future changes to TC tracks in the Atlantic. We 
define these time periods as follows:

1.  The pre-industrial era (850–1800 CE): Climatological conditions prior to major anthropogenic 
influence.

2.  The modern era (1970–2005 CE): Recent climatological conditions.
3.  The future era (2080–2100 CE): Climatological conditions under additional warming due to anthropo-

genic greenhouse gas emissions. TCs are generated for a very high-emissions scenario (Representative 
Concentration Pathway 8.5; RCP8.5), which we expect to provide an upper bound on potential changes 
to future TC tracks (Riahi et al., 2011). We focus on a strongly forced future in order to maximize the 
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potential signal; under more realistic emissions scenarios (Hausfather & Peters, 2020), we may expect to 
see changes smaller than those simulated here.

Pre-industrial and modern simulations each contain ∼5,000 TCs per model, while future simulations for 
the RCP8.5 scenario include >12,000 TCs per century, or nearly 3,000 TCs per model during the 2080–2100 
time period that we focus on at the end of the 21st century. These large numbers of TCs allow us to perform 
meaningful statistical analyses of changing TC characteristics over long time periods. Overall TC frequency 
is determined by calculating the ratio of total simulated TCs to the total number of TCs seeded (Emanuel 
et al., 2008).

Since TCs are filtered to travel within 250 km of The Battery in NYC, it should be noted that the results 
presented here are not necessarily representative of basin-wide storm behavior in the North Atlantic, but 
are highly relevant for the subset of TCs that impact the densely populated northeastern coastline of the 
U.S. Furthermore, many of the downscaled TCs follow paths that bring them near to other points of interest 
along the U.S. Atlantic coast, including Boston, MA, USA and Norfolk, VA, USA. During the three time 
periods considered, we find that 34% of TCs travel within 100 km of Boston and 31% travel within 100 km 
of Norfolk—percentages that are similar to the number of TCs that come within this distance of NYC (31%).

TC tracks are considered to end when one of three conditions is met: storm maximum winds fall below 
13 m/s, the storm has existed more than 30 days, or the storm travels outside of a pre-defined latitude/longi-
tude box (4°–65°N and 0°–110°W). Because of the third constraint, there can be challenges to fully assessing 
changes to the region in which TCs terminate, as TCs will be prevented from traveling farther north than 
65°N, or farther east than 0° (Figures 1e and 1f); however, it is nonetheless useful to assess the locations of 
TC track termination over time, to see if there are broad changes to where TCs dissipate, including potential 
increases in the number of tracks that reach the latitude/longitude boundary.

As with any modeling study, there are caveats associated with our approach. General caveats related to the 
downscaling approach or CMIP5 models and experiment design can be found elsewhere in the literature 
(Emanuel et al., 2006, 2008; Taylor et al., 2012). Furthermore, for this particular study, our choice of mod-
els is based on models used in previous work suggesting potential TC track changes near NYC (Garner 
et  al.,  2017; Reed, Mann, Emanuel, Lin, et  al.,  2015). The choice of these models is determined by the 
availability of necessary thermodynamic and kinematic state variables during the past millennium (Garner 
et al., 2017), and the limited number of models that meet this criteria may increase the uncertainty associ-
ated with our results. During the pre-industrial time period, only the MPI model provides daily wind fields 
that are necessary for downscaling TC tracks; however, in order to include results from additional models, it 
is possible to use the monthly values of wind fields included in the IPSL and CCSM4 models. In these cases, 
variances and covariances of winds are fixed at arbitrarily chosen 1980 CE values, while still allowing winds 
to vary over the seasonal cycle (Reed, Mann, Emanuel, & Titley, 2015). Such a choice is justified given that 
simple analyses suggest that long-term variations are well-represented by the fixed co-variance simulation 
(e.g., see Figure 1 in Reed, Mann, Emanuel, & Titley, 2015). During the modern and future time periods, 
daily wind fields are provided and used for downscaling TC tracks in all models.

4.2. Statistics and Analyses

Density difference maps showing spatial shifts in TC track characteristics (associated with single TC track 
points) over time are developed using a kernel density estimate in each time period, and then subtracting 
the two time periods of interest to find the spatial difference over time pertaining to those particular points 
along TC tracks (Figure 1 and Figures S1, S4, S6 and S7 in Supporting Information S1). Units of the densities 
shown on these maps are track points per grid cell, where each map has 100 grid cells in both the latitudinal 
and longitudinal directions. This results in a varying resolution for each map, depending on the latitude and 
longitude bounds, but no resolution is coarser than 1° longitude by 0.4° latitude.

We use a gridded density calculation to generate maps depicting overall shifts to full TC tracks (Figure S3 in 
Supporting Information S1 and Figure 5). In this method, a grid is pre-established, and tracks are counted 
only once in each grid point, ensuring that slow-moving TCs with multiple track points close together are 
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not given undue weight in the regions where they move most slowly, as could happen if using a kernel den-
sity estimate to depict full TC tracks rather than individual points from tracks.

Probabilities of TCs associated with Figures 2 and 5 are calculated by determining the total number of TCs 
in each time period that fall into a particular category (e.g., MDR genesis during the pre-industrial era) and 
comparing that value to the total number of TCs generated in that time period (e.g., total TCs that form 
during the pre-industrial era). We do not consider variations in TC frequency in this work, but instead focus 
on variations in the likelihood of different TC and track characteristics.

Credible intervals (CIs) discussed in the results and shown in Figures 2 and 5 are calculated by generating 
bootstraps of the original TC data. The bootstrapping technique involves resampling the data sets n times 
(where n is the number of bootstrap samples) with replacement to produce new samples that are equal in 
length to the number of samples contained in the original data set (Efron, 1979; Efron & Tibshirani, 1993). 
For Figure 2, we generate 5,000 bootstrap samples of the TC track characteristics (proximity to NYC, genesis 
location, termination point, and minimum translation speed) under consideration to determine the 99% CIs 
(p = 0.01). When evaluating the proximity of TCs to various points of interest along the U.S. Atlantic coast, 
we generate 10,000 bootstrap samples of the probability of TCs traveling within 100 km of each city (NYC, 
Boston, and Norfolk), which are used to establish both 95% (p = 0.05) and 99% CIs (p = 0.01).

QQ plots (or Quantile-Quantile plots) are used in several places for analysis, including to assess the time 
from when a storm forms until it comes within 100 km of a point of interest (Figure 6) and the duration of 
TC impacts (Figure 7). Such figures plot the quantiles of two distributions against one another (e.g., the dis-
tribution of duration of storm impacts at a location during the pre-industrial compared to the distribution 
of duration of storm impacts at the same location in future). We include a dashed one-to-one line on each 
figure; points that deviate from this line indicate that the two distributions being compared differ from one 
another. In Figure 7, the duration of storm impacts at each point of interest is determined by interpolating 
the 2-hr TC data sets (which include latitude and longitude values, as well as the TC radius of maximum 
winds) to 15-min time intervals, and then finding the total length of time that the storm’s radius of maxi-
mum winds exceeds the storm’s distance to the point of interest.

To evaluate potential changes to environmental variables associated with changing TC tracks, we use QQ 
plots to compare distributions of environmental variables for various time periods. In addition, a PCA is 
used to assess potential relationships between TC track characteristics and environmental conditions.

Data Availability Statement
Best Track data are available from the Atlantic hurricane database (HURDAT2) at https://www.nhc.
noaa.gov/data/hurdat/hurdat2-1851-2020-052921.txt. This work uses simulated TCs downscaled from a 
model developed by Kerry Emanuel (Massachusetts Institute of Technology), and described in Emanuel 
et al. (2006, 2008). All inputs to the TC model come from CMIP5 data sets that are publicly available from 
the Earth System Grid Federation website (https://esgf-node.llnl.gov/projects/cmip5/). Downscaled fields 
from the TC model, including storm tracks as defined by TC latitude and longitude at 2-hr intervals, are 
available for research purposes from K. Emanuel (emanuel@mit.edu) on request. Researchers will be asked 
to sign a non-redistribution agreement and to assert that the data will be used for nonprofit research only.
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