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ABSTRACT 

 

DEEP LEARNING OBJECT-BASED DETECTION OF MANUFACTURING DEFECTS IN  

X-RAY INSPECTION IMAGING 

 

Juan C. Parducci 

Old Dominion University, 2022 

Director: Dr. Shizhi Qian 

 

Current analysis of manufacturing defects in the production of rims and tires via x-ray 

inspection at an industry partner’s manufacturing plant requires that a quality control specialist 

visually inspect radiographic images for defects of varying sizes. For each sample, twelve 

radiographs are taken within 35 seconds. Some defects are very small in size and difficult to see 

(e.g., pinholes) whereas others are large and easily identifiable. Implementing this quality control 

practice across all products in its human-effort driven state is not feasible given the time 

constraint present for analysis. 

This study aims to identify and develop an object detector capable of conducting defect 

detection in real-time across all manufactured products to remove the human-in-the-loop from 

the quality control cycle and leverage subject matter expertise at scale. 

 A survey of existing literature on object detectors in a defect detection setting was 

conducted to aid in the selection process of the detector algorithm. Of focus were studies related 

to the inspection of radiographs in real-time. Additional consideration was given to studies where 

the performance of small object detection was characterized. Following the literature review, 

defect detection models were trained and assessed for performance. The object detector utilized 

in this study is YOLOv3 with a Darknet-53 network.  
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The first trained model, where all twelve defect classes were considered, had the lowest 

performance metrics across precision, recall, F1-score, and accuracy of 70.9%, 74.7%, 72.8%, 

and 70.7% respectively at an IoU threshold of greater than zero. The highest performing model 

combined defects belonging to defect sub-classes into a super class to reduce model ambiguity. 

The final model had a precision, recall, F1-score, and accuracy of 92.2%, 92.3%, 92.2%, and 

92.5% respectively. 

The final YOLOv3 model performed significantly better than the model trained with the 

data as originally provided through the application of data relabeling. In addition to selecting the 

appropriate object detector and network in the development of a machine learning model, it is 

important to have standardized defect annotation guidelines in place to produce consistent data 

labeling results. Lastly, the selection of sufficiently distinct defect classes for detection is vital 

for optimal results. 
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NOMENCLATURE 

 

 

ANN  Artificial Neural Network 

CNN  Convolutional Neural Network 

COCO  Common Objects in Context 

FCN  Fully Convolutional Network 

FN  False Negatives 

FP   False Positives 

IoU   Intersection Over Union  

mAP   Mean Average Precision 

R-CNN  Region-based Convolutional Neural Network 

RPN  Region Proposal Network 

SGD  Stochastic Gradient Descent 

SSD   Single Shot MultiBox Detector 

SUN  Scene Understanding 

TN  True Negatives 

TP  True Positives  

VGG  Visual Geometry Group 

YOLO  You Only Look Once 
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CHAPTER 1 

1. INTRODUCTION 

 

Object detection is a technique in computer vision capable of both automated 

classification and localization tasks through the use of deep learning, a machine learning 

technique within the field of artificial intelligence (Choi et al., 2020). Industrial applications of 

object detection range from autonomous vehicle navigation, medical imaging diagnostics, 

identity management, quality control defect detection, to image and video tracking (Vahab et al., 

2019).  The automation offered by these technologies enables businesses to improve 

performance in task completion time while improving quality and reducing error rates. These 

technologies ultimately achieve outcomes that extend beyond human capabilities (McKinsey & 

Company, 2017). 

In this study, the application of deep learning techniques is applied to defect detection in 

the manufacturing setting of tires and rims with the objective serving as an automated quality 

control measure. An object detector is trained, through supervised learning, to perform the task 

of defect detection by learning the visual criteria by which a human determines whether a 

product is defective or defect-free.  

This thesis is part of a collaborative effort between Old Dominion University and an 

industry partner. Old Dominion University was provided with the raw ground truth data utilized 

in this study. 

 

1.1 Conceptual Framework 

The conceptual framework adopted for the development, assessment, and iteration cycles 

of the deep learning models in this study is based off of the IBM
®
 (2017) machine-learning 
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model creation workflow. The portions of this workflow in Figure 1.1 related to data acquisition 

have been omitted as Old Dominion University was provided the raw ground truth data. 

 

 

 

Figure 1.1: Conceptual Framework 

 

1.2 Purpose 

The aim of this study is to develop an object detector capable of detecting manufacturing 

defects in tires and rims in real-time and remove defective products from production. In its 

current state, quality control is being conducted through human efforts where a quality control 

specialist manually reviews radiograph of selected samples for defects. If the specialists were to 

review samples in real-time, they would be afforded approximately 35 seconds to assess 12 

radiographs for defects, some of which are very small and difficult to identify at first glance. 

Given the time constraints in a constant production environment, human effort is not a viable 

solution for quality control at scale. 

The subject matter expertise from these quality control specialists is to be leveraged 

through the development of a machine learning model capable of making the same observations 

and following the decision-making process that a specialist would across all manufactured 
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products in real-time. In addition to serving as a quality control method, additional insight into 

the types of defects that are present in the final products will aid the quality assurance process. 

There are twelve defect classes of interest in the data provided to Old Dominion University. A 

description of each defect class and some of their possible manufacturing causes are described 

below. 

 

1. Burr – a common defect in shearing and cutting operations (Rai et al., 2013) where 

undesirable projections of the material are formed. A general definition of a burr extends 

beyond cutting and shearing and is defined as an imperfection created during the 

manufacturing process which results in a body of material which extends beyond the 

work piece (Aurich et al., 2009). Figure 1.2 shows a sample burr defect on a tire wall 

from the molding process.  

 

 

Figure 1.2: Burr 
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2. Cavity – appears as spherical/rounded voids which can be divided into pin holes, or 

larger blowholes. Causes include entrapment of air during liquid metal pouring, high 

moisture content, and inadequate vents (Juriani, 2015). Figure 1.3 shows a cavity in a 

wheel spoke and Figure 1.4 shows small cavities on a tire wall. 

 

 

Figure 1.3: Cavity in Wheel Spoke 

 

 

Figure 1.4: Cavity in Tire Wall 
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3. Crackle – a grouping of cracks. Some causes are resulting from rapid and non-uniform 

cooling of metals, shrinking of casting, and imperfections in the mold (Ingle, 2017). 

Figure 1.5 shows crackle formation on a wheel.  

 

 

Figure 1.5: Crackle 

 

4. Curl dregs – slags found on the material surface and are caused when molten metal 

containing slag is poured into a mold. This type of defect can be remedied by removing 

slag particles from the molten metal prior to pouring via filters or adding additives to the 

molten metal mixture to allow slags to float to the top for removal (Wong, 2018). Figure 

1.6 shows the deposition on curl dregs on a wheel hub. 
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Figure: 1.6: Curl Dregs 

 

5. Dregs – a shorter variant of the curl dregs defect. Figure 1.7 shows the deposition of 

dregs on a wheel hub. 

 

 

Figure 1.7: Dregs 
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6. Hole – a variant of the cavity defect. Figure 1.8 shows holes at lug nut holes. 

 

 

Figure 1.8: Hole 

 

7. Incomplete – a defect where the tire did not fully form in the mold. Shown in Figure 1.9. 

 

 

Figure 1.9: Incomplete in Tire 
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8. Long burr – a variant of the burr defect as shown in Figure 1.10. 

  

 

Figure 1.10: Long Burr 

 

9. Low dregs – a variant of the curl dregs defect. Dregs in the tire can be caused by the use 

of a dirty mold during vulcanization (Weyssenhoff et al., 2019). See Figure 1.11. 

 

 

Figure 1.11: Low Dregs 
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10. Shrinkage – a cavity caused as the cast wheel cools due to poor metal volume, uneven 

metal distribution, or contaminated metal. (Patil et al., 2015). See Figure 1.12. 

 

 

Figure 1.12: Shrinkage 

 

11. Side – a variation of the cavity defect related to the tire only. See Figure 1.13. 

 

 

Figure 1.13: Side 
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12. Stripe incomplete – a larger variant of the cavity defect. See Figure 1.14. 

 

 
 

Figure 1.14: Stripe Incomplete 

 

1.3 Problem 

There are challenges present from the data preparation stage of the project such as a lack 

of consistent data labeling practices and general considerations when selecting defects to be 

identified in terms of their uniqueness. The detection of small objects presents its own challenge.  

 

1.3.1 Data Annotations 

When it comes to machine learning projects, having standardized defect definitions and 

labeling practices establishes a reliable set of ground truth data which is one of the most 

important requirements of a successful project (Zhou, 2021). A review of the data supplied to 

Old Dominion University shows that there are discrepancies in the data labeling practices used 

by the manufacturer. For instance, in some cases where there are many defects clustered 

together, one data labeler may have labeled each occurrence individually while another labeler 
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might have drawn one single bounding box around all the defects present. Another related issue 

is the failure to identify defects by the data labelers. One example of this can be seen in Figure 

1.15, where there are three dreg defects that were not labeled by the subject matter experts. The 

missed defects have been highlighted in red.  

 

 

Figure 1.15: Missed Defect Annotation 

 

Given the defect labels present in the dataset along with their visual characteristics, 

available in section 1.2, another potential labeling problem is one where some of the defects are 

not sufficiently different from one another. For example, the defects labeled as cavity, crackle, 

hole, low dregs, and shrinkage all appear very similar in terms of geometry and brightness in the 

radiographs when compared to the sample background. This could cause poor detector 

performance between these classes.  

Additionally, the defects labeled as curl dregs, incomplete, long burr, low dregs, side, and 

stripe are relatively rare in occurrence when compared to the rest of the data. This causes poor 

model representation for these defects due to the greater probability of a predicted defect class 
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belonging to one of the more represented classes (Rocca, 2019). A summary of the defect 

distribution present in the data is available in Figure 1.16. Although there is data imbalance 

present in this study, it is representative of the defects encountered in the production 

environment. 

 

 

Figure 1.16: Defect Distribution 

 

1.3.2 Small Object Detection 

There is an inherent challenge in the detection of small objects. In general, object 

detectors have a hard time detecting small objects in comparison to large objects. The mean 

average precision for large object detection compared to small object detection may be anywhere 

between two to five times as high depending on the detector and network combination 

(Solawetz, 2020).  
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1.4 Method and Procedure 

The data provided to Old Dominion University is in the form of images and 

corresponding xml files. In order to train the object detector, the data will need to undergo a data 

ingestion process to build the necessary data structures and image repositories to make the data 

usable in the software environment. The data will then be divided into a training dataset and test 

dataset in a 70% and 30% split respectively. The division will be based on defect classes, not 

number of images, as some images contain more than one defect, and some defects are rarer than 

others.  

The selection of the object detector and the detector network to be utilized will be based 

primarily on the results of past works related to defect detection in radiographs. Additional 

consideration will be given to the object detectors capable of real-time performance and their 

ability to detect small objects.  

During model training, data augmentation techniques will be applied at random within a 

specified threshold to synthesize additional data to prevent model overfitting (Ying, 2019) and 

maintain good generalization. As stated in the problem section of chapter one, there are concerns 

regarding the defect labeling convention used by the manufacturer where a few of the defect 

classes appear to be subclasses of the cavity defect. Analysis of models will take this into 

consideration. 

The evaluation of the machine learning models and their iterations will follow the 

workflows depicted in section 1.1 and section 3.4.2. 
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CHAPTER 2 

2. BACKGROUND OF THE STUDY 

 

This chapter defines the concept of radiographic defect detection as a method for quality 

control in a manufacturing setting. A background in machine learning has been provided in order 

to further explore the application of machine learning methods in the area of object detection. 

The detector of interest in this review is the You Only Look Once (YOLO) family of detectors, 

as it is the detector utilized in this study. Related works are presented at the end of the chapter. 

 

2.1 Radiographic Defect Detection 

Part of the quality control process requires that manufactured products be inspected for 

deviations from a set standard prior to acceptance. In this study, one non-destructive method of 

inspection being utilized is radiographic imaging in the detection of defects. X-ray images are 

2D projections of 3D objects capable of revealing hidden features within the object (Ren et al., 

2019). Through the use of radiographs, defects such as crackles, holes, and cavities can be 

observed. The discovery of internal defects in industrial radiography is of importance, especially 

as the concept of industrial automation continues to evolve and replace human effort with 

efficient systems (Fadel et al., 2020). 

  

2.2 Machine Learning 

Machine learning is a technique within the field of artificial intelligence. Machine 

learning differs from traditional programming in the sense that a traditional program requires the 

creation of detailed instructions for a computer to follow. In some cases, creating a traditional 

program can be time exhausting or near-impossible, specifically when training a computer to 
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recognize images or features/objects within an image. While humans can accomplish this task 

with relative ease, it is difficult to write explicit instructions for a computer to perform this task. 

Machine learning takes the approach of supplying computers with a set of data, called training 

data (e.g., images, numerical data), and enables computers to learn to program themselves 

through experience by finding patterns. The result is a machine learning model which can make 

predictions when provided with a different set of data (Massachusetts Institute of Technology, 

2021). 

 

2.2.1 Types of Machine Learning 

Machine learning algorithms are generally divided into four categories, each with its own 

suitability in solving problems (Sarker, 2021). 

 Supervised learning – the type of learning conducted in this study, uses a collection of 

training data, with labeled data, to infer a function (i.e., task-driven approach). The most 

common supervised tasks are those of classification and regression. In this study, for 

example, supervised learning is being utilized to locate defects within an image and 

provide defect classification. 

 Unsupervised learning – utilizes analyzed unlabeled data without the need for human 

interference (i.e., data-driven process). This type of learning is generally used for 

identifying meaningful trends, clustering in results, and exploratory purposes. 

 Semi-supervised learning – can be defined as a hybrid (i.e,. hybridization) between 

supervised and unsupervised learning methods as it utilizes both labeled and unlabeled 

data (Sarker, 2021, as cited in Han et al., 2011, and Sarker et al., 2020). Some 
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applications of semi-supervised learning include machine translation, fraud detection, 

labeling data, and text classification. 

 Reinforcement learning – enables software and machines to automatically evaluate 

optimal behavior in order to improve its efficiency (i.e., environment-driven approach) 

(Sarker, 2021, as cited in Kaelbling et al., 1996).  It is a useful method for training 

models where optimization is desired (e.g., operational efficiency and autonomous tasks).  

 

2.2.2 Deep Learning 

Deep learning is a machine learning technique that mimics the way the human brain 

processes data. Deep learning models are trained by using large datasets and neural networks 

with multiple processing layers that learn representations of data with many levels of abstraction. 

When it comes to performing object detection via deep supervised learning, a large set of labeled 

data (i.e., ground truth dataset) is processed through artificial neural networks (ANNs) whose 

output is a vector of scores representing the probability distribution of each potential outcome 

(Alzubaidi et al., 2021).  

In machine learning, backpropagation is an algorithm used to determine how a machine 

should change its variables (i.e., weights) which are used in the representation of each of these 

processing layers. The machine will iteratively update the weights of the algorithm as it makes 

multiple passes through the dataset by calculating a gradient vector indicating an increase or 

decrease in detection error given a small change in the weights. The weight vector is then 

adjusted inversely to the gradient vector in a procedure called stochastic gradient descent (SGD), 

where the error is brought closer to a minimum. When it comes to the application of supervised 

learning, this is the procedure most utilized by practitioners (LeCun et al., 2015). 
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2.2.3 Artificial Neural Networks 

Artificial neural networks (ANN) share the concept of neurons in their architecture where 

each neuron can be interpreted as a human neuron in biology. Each artificial neuron is composed 

of activation functions that control the propagation of an artificial neuronal signal to the next 

layer where a positive weight provides excitatory stimulus and negative weights provide 

inhibitory ones (Suzuki, 2013). In machine learning, a synapse is the connection between inputs 

to neurons, neurons to neurons and neurons to outputs. Each connection has a unique synapse 

with unique weights. When discussing the adjustment of weights, it is the weight of these 

synapses that is being referenced (Deep AI, 2019). Figure 2.1 depicts an artificial neuron and 

synapses. 

 

 
 

Figure: 2.1: Artificial Neural Network 

Note. Adapted from “Artificial Neural Network” by K. Suzuki, 2013, London, United Kingdom: 

IntechOpen. CC License. 
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2.2.4 Convolutional Neural Networks 

Convolutional neural networks (CNN) are a class of artificial neural networks that are 

prevalent in computer vision tasks. CNNs are designed to automatically and adaptively learn 

features through backpropagation by using multiple layers including convolution layers, pooling 

layers, and fully connected layers (Yamashita et al., 2018). 

 Convolution layer – performs feature extraction through mathematical operations 

resulting in a feature map representing different characteristics. Convolution involves 

taking a small array of numbers called a kernel, or filter, and calculates an element-wise 

product between the kernel and the input tensor to generate a feature map. This process is 

depicted in Figure 2.2. 

 Pooling layer – provides downsampling of the feature map generated from the 

convolutional layer. 

 Fully connected layer – provides mapping of the downsampled feature maps to the final 

network outputs (e.g., probabilities in classification tasks) 

 

Although there are many CNNs, the focus will be on the YOLO family of detectors as it 

is the CNN utilized in this study.  
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Figure 2.2: Convolutional Operation 

Note. Adapted from “Convolutional neural networks: an overview and application in radiology” 

by R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, 2018, Insights into Imaging, 9, p. 

614. (https://doi.org/10.1007/s13244-018-0639-9) CC License. 

 

2.3 Object Recognition and Detection 

Object recognition is a computer vision technique within the field of machine learning 

and artificial intelligence which aims to identify objects of interest within an image or video. 

Some industrial applications include target tracking, autonomous vehicle navigation, 

surveillance, medical image analysis, and industrial inspection (Deng et al., 2020). Object 

recognition has two parts: 

 Image classification – an algorithm takes an image as an input and assigns a classification 

label (e.g., car, person). 
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 Object localization – an algorithm will find an object within a given image and map a 

bounding box around the object of interest.  

 

Object detection is a hybrid of both image classification and object localization. Object 

detection takes an input image and is capable of localizing one or many objects of the same or 

distinct classes and assigns each of them a classification label, a bounding box, and a confidence 

score representing the likelihood that the bounding box contains an object (Ralasic, 2021). These 

differences are depicted in Figure 2.3. 

 

 

Figure 2.3: Object Detection 

  

Object detection algorithms based on deep learning models are generally divided into two 

categories and have the following characteristics according to Soviany and Ionescu (2018):  

 Single-stage detectors – such as Single Shot MultiBox Detector (SSD) and YOLO take 

an input image or video and learn the class probabilities and bounding box coordinates 

via regression. These models are not as accurate as two-stage detectors but perform 

detection tasks much faster. 
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 Two-stage detectors – such as Region-based Convolutional Neural Network (Faster R-

CNN) use a Region Proposal Network (RPN) to generate regions of interest in the first 

stage, and in the second stage perform object classification and bounding box regression. 

These models achieve the highest accuracy but are typically slower.    

 

2.4 You Only Look Once (YOLO) 

YOLO, first published in 2015, uses a single CNN to predict multiple bounding boxes 

and object class probabilities from images in one pass by treating object detection as a regression 

problem. Figure 2.4 shows a depiction of this process. During training, and when making 

predictions, YOLO sees the entire image and encodes contextual information about classes and 

their features. It is because of the ability to see the entire image that YOLO makes less 

background errors compared to a region proposal-based detector like Fast R-CNN. Fast R-CNN 

mistakes background features during object detection due to its inability to see the “big picture” 

(Redmon et al., 2016). 

 



   22 

 

Figure 2.4: Class Probability and Bounding Box Predictions 

Note. From “You Only Look Once: Unified, Real-Time Object Detection” by J. Redmon, S. 

Divvala, R. Girshik, and A. Farhadi, 2016, 2016 IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR), p. 780. (https://doi.org/10.1109/CVPR.2016.91). 

Copyright 2015 by IEEE. 

 

Despite its benefits, YOLO’s accuracy is less than that of other state-of-the-art detectors. 

Each grid square can only predict two bounding boxes and can have an object hindering the 

number of nearby objects YOLO can predict. It also struggles with small object detection 

(Redmon et al., 2016). These shortcomings have been addressed in subsequent iterations of 

YOLO which will be further discussed. 

 

 2.4.1 YOLOv2 

Also known as YOLO9000, YOLOv2 includes several improvements to the original 

version which have increased its mean average precision (mAP) on the Pascal VOC2007 dataset 
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from a mAP of 63.4% to 78.6%. The network utilized for feature extraction is a model called 

Darknet-19 which has 19 convolutional layers and 5 maxpooling layers. A few of these 

improvements according to Redmon and Farhadi (2017) include: 

 Anchor boxes – in this version, the fully connected layers from YOLOv1 have been 

removed and the prediction of bounding boxes is achieved through the use of anchor 

boxes. Anchor boxes are a set of user-defined bounding boxes, through a practice called 

k-means clustering, which captures the aspect ratio of object classes most likely to 

produce quality detections. The aspect ratio of these boxes is determined from the 

training dataset. 

 Multi-scale training – YOLOv2 consists of convolutional and pooling layers that enable it 

to resize the input image size on demand. 

 High resolution classifier – The original YOLO trained networks at a resolution of 

224x224 pixels. It has been increased to 448x448 pixels. 

 Other improvements include batch normalization to help remove model dropout without 

overfitting and the addition of a pass-through layer for localizing smaller objects. 

 

2.4.2 YOLOv3 

YOLOv3 includes minimal but important updates to YOLOv2 which makes it more 

capable of detecting small objects. The major improvements according to Redmon and Farhadi 

(2018) include:  

 Feature extractor – this new version utilizes a new feature extraction network called 

Darknet-53 which is composed of 53 convolutional layers for enhanced feature 

extraction. It is much more robust than Darknet-19 and larger. Yet it is much more 
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efficient than two other object detector backbones that contain significantly more layers: 

ResNet-101 and ResNet152. 

 Multi-scale prediction – YOLOv3 predicts bounding boxes across three different scales. 

Three bounding boxes are predicted at each of the three scales and continue to use k-

means clustering to determine bounding boxes. 

 

2.5 Related Work 

This study focuses on the detection of small objects in radiographs, specifically 

manufacturing defects. There are few studies available that directly compare various object 

detectors (e.g., SSD, YOLO, Faster R-CNN) against each other when tasked with defect 

detection in x-ray images. In addition to highlighting works related to tire defect detection, 

additional studies involving object detection within radiographs, and small object detection 

studies will be reviewed.  

Liu et al. (2015) have proposed a weld defect detection method via x-ray imaging based 

on YOLOv3 called LF-YOLO. They have compared the performance of various object detectors 

including SSD, YOLOv3, Faster R-CNN, and RetinaNet against their proposed LF-YOLO 

method – where LF stands for Lighter and Faster. Of the single-stage detectors tested, the highest 

performing model was LF-YOLO (mAP 92.9%) while the second highest mAP was achieved by 

YOLOv3 (mAP 91.0%) utilizing a Darknet-53 backbone. Of the two-stage detectors, Faster R-

CNN performed the best (mAP 92.2%) with a ResNet101 backbone.   

Nguyen et al. (2020) conducted an extensive assessment of small object detection by 

testing various permutations of object detectors with different backbones at varying image 

resolutions. This was largely motivated by the fact that most state-of-the-art object detectors 
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struggle with the detection of small objects. The dataset used in the evaluation was a 

combination between the Microsoft Common Objects in Context (COCO) dataset and the Scene 

Understanding (SUN) dataset that consist of common small objects (e.g., computer mouse, 

switch, outlet, jar). The single-stage object detectors of interest in their study included YOLOv3, 

SSD, and RetinaNet. Two-stage object detectors of interest were R-CNN, Fast R-CNN, and 

Faster R-CNN. Of the single-stage object detectors, YOLOv3 (mAP 33.1%) with a Darknet-53 

backbone at a resolution of 608x608 pixels performed the best followed by RetinaNet (mAP 

30%) and SSD (mAP 11.32%). The YOLOv3 model had the best prediction time at 0.027 

seconds. The authors also found that as they increased the resolution above 608x608 pixels, the 

mAP would decrease. Of the two-stage detectors, Faster R-CNN (mAP of 41.2) with a 

ResNeXT-101-64 -4d-FPN backbone had the best performance with a prediction time of 0.286 

seconds. 

Wang et al. (2019) have proposed a tire defect detection method based on a fully 

convolutional network (FCN) for defect detection in x-ray imaging through the use of fusion 

layers to up-sample feature maps and reduce detail loss. Their network architecture, with fusion 

layers, was evaluated for accuracy against their corresponding non-modified object detectors. 

The original VGG16 detector achieved an average accuracy of 74.87% while the modified 

VGG16 detector with three fusion layers achieved an average accuracy of 78.91%. The tire 

defects of interest in their study include bubbles in tread, bubbles in sidewall, impurity in 

sidewall, impurity in tread, overlaps in treads, overlaps in sidewalls, and an “others” catch-all 

group. 

Wu et al. (2020) have proposed a tire defect detection method using Faster R-CNN 

capable of detecting the following defects: sidewall bubbles, foreign matter in the tread, and 
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foreign matter in the sidewall. The performance of their proposed method was evaluated against 

a Faster-RCNN detector as well. The total accuracy and mAP of their model was 95.4% and 

95.37% respectively. The accuracy and mAP achieved by the original Faster-RCNN model with 

data augmentation was 88.9% and 93.82% respectively. 

Yao et al. (2020) developed a CNN named Pneumonia Yolo (PYolo), an improved 

version of YOLOv3 for the analysis of radiographs of the lungs. The work focused on 

developing an efficient end-to-end CNN capable of replacing binary classification algorithms 

used to diagnose pneumonia. In this study, the performance of PYolo (mAP 46.84%) was 

measured against the performance of the following detectors: Faster R-CNN (mAP 43.01%), 

SSD (mAP 40.40%), and YOLOv3 (mAP 43.40%). 

To summarize, in the studies that do not involve radiographs where comparisons across 

object detectors were available, Faster R-CNN achieved the best performance. In the study by 

Nguyen et al. (2020) concerning small objects not in radiographs, Faster R-CNN (mAP 41.2%) 

outperformed YOLOv3 (mAP 33.1%) at the expense of a greater than ten-fold increase in 

prediction time. In studies involving x-ray imaging where comparisons were made across object 

detection models, YOLOv3 and Faster R-CNN performed comparably to each other and 

maintained less than a 1.5% difference in mAP. In one of the two studies where YOLOv3 and 

Faster R-CNN were compared, YOLOv3 performed better than Faster R-CNN and vice versa for 

the other. Given the available information, this study will focus on utilizing YOLOv3 with a 

Darknet-53 backbone for the real-time detection of manufacturing defects in radiographs.  

 



   27 

CHAPTER 3 

3. METHODOLOGY 

 

The general methodology used in the data preparation, data preprocessing, model 

configuration and performance evaluation of the YOLOv3 object detectors has been adopted 

from MathWorks (2022). A summary of this methodology is provided in Figure 3.1. The metrics 

utilized to assess model performance are further discussed in this chapter along with metrics 

improvement workflows and techniques.  

 

 

 

Figure 3.1: Model Training Methodology 
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3.1 Data Preparation 

For supervised learning, a subject matter expert will take a set of data and using a 

labeling application, draw bounding boxes around objects of interest and assign them a class 

label. This set of data is known as a ground truth dataset. The raw ground truth dataset utilized in 

this study was provided to Old Dominion University by an industry partner in the form of images 

with corresponding xml files containing the bounding box and class label annotations.  

 

3.1.1 Data Ingestion and Division 

The xml files were ingested into the MATLAB
®
 workspace and stored in a structure 

containing the name of the corresponding image files, the bounding box annotations, and defect 

class labels. A count of all object labels contained within the xml files was performed to 

determine the unique defect class labels used within the data along with their corresponding 

defect class count. The total available data was divided using a 70% and 30% split for 

training/testing purposes respectively by defect class count. The division process was not based 

on image file count as some images contain more defects than others and some defect classes are 

rare within the dataset. A summary of the available data and its division into training and test 

datasets is provided in Table 3.1. Although the data split was performed based on defect class 

count, the file division percentage was very close to 70% and 30% as captured in Table 3.2.  
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Defect Class 
Training 

Data (70%) 

Test 

Data (30%) 

Total 

Data 

Burr 714 306 1020 

Cavity 463 199 662 

Crackle 428 184 612 

Curl Dregs 18 8 26 

Dregs 1827 784 2611 

Hole 626 269 895 

Incomplete 147 64 211 

Long Burr 28 12 40 

Low Dregs 52 23 75 

Shrinkage 884 380 1264 

Side 4 2 6 

Stripe Incomplete 7 3 10 

Total 5,198 2,234 7,432 

 

Table 3.1: Training and Test Data Summary 

 

Data Files Percent 

Training data 4019 69.74 

Test data 1744 30.26 

Total 5763 100 

      

Table 3.2: Training and Test File Summary 

 

3.1.2 Ground Truth Tables 

To make the ingested data usable, a ground truth object is built for both the training and 

testing datasets. A ground truth object is a way of representing the ingested data in a usable 

format for model training and testing purposes. A sample of the ground truth bounding box 
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annotations is provided in Figure 3.2. The row numbers correspond to a unique image file 

available in a separate reference table within the ground truth object, and the columns correspond 

to any defect classes annotated within the image. The data contained within populated cells are 

coordinates of existing bounding boxes in the format of x, y, width, and height, where x and y 

are the coordinates of the top left corner of the bounding box. Each cell may have multiple 

entries if multiple defects of the same class are present. A blank cell represents a lack of a defect 

of the given class (column) for its respective image file (row).  

 

 

Figure 3.2: Sample Ground Truth Data 

 

The images associated with each dataset are moved into separate directories for later use 

during training and testing. From the ground truth objects, a bounding box datastore and an 

image datastore are built for both the training and testing datasets. 
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3.2 Data Preprocessing – Augmentation and Resize 

Prior to training the YOLOv3 model, a data augmentation transformation is applied to the 

training dataset. This is especially helpful when training small datasets as it generates 

synthesized images for the model to train on, thus expanding the pool of training images without 

additional data collection (Shorten and Khoshgoftar, 2019). This practice also prevents the model 

from overfitting and improves precision. Table 3.3 contains a list of the image properties and 

their ranges that the data augmentation transformation applies randomly to each iteration. 

Properties without units are scalars. A sample output of this transformation is provided in Figure 

3.3. 

 

Property Lower Limit Upper Limit 

Contrast 0.8 1.2 

Saturation 0.9 1.1 

Brightness 0.8 1.2 

 

x-axis reflection   

(binary) 

 

0 1 

Rotation  

(degrees) 

-15 15 

75 105 

165 195 

255 285 

 

Table 3.3: Data Augmentation Properties 

 

Any data augmentations, specifically rotations, resulting in a bounding box 

transformation with an area overlap of less than 0.6 were discarded. Post-augmentation, the data 

is then resized to the target preprocessing resolution of 256x256 pixels prior to training. 
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Figure 3.3: Sample Augmented Data 

 

3.2.1 Determine Anchor Boxes 

The number of anchor boxes to be used in the object detection model, and their aspect 

ratios, is determined by creating a training dataset for anchor box estimation. This dataset 

consists of a resize transformation without any augmentation to the desired training resolution. 

K-means clustering is used to capture the aspect ratios within the training dataset most likely to 

produce quality detections (Redmon and Farhadi, 2017). The mean intersection over union (IoU) 

achieved by the determined anchor box aspect ratios and the number of anchor boxes utilized can 

be estimated. A sample output of this function measured against the training dataset resized to a 

resolution of 256x256 pixels is shown in Figure 3.4. 
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Figure 3.4: Number of Anchors vs. Mean IoU 

 

The number of anchors used across all training efforts was set to a fixed value of six. 

Selecting a higher number of anchor boxes has diminishing returns as it increases computational 

costs and leads to overfitting. Figure 3.5 depicts the definition of intersection over union where 

one box represents the detected bounding box and the other represents the bounding box data 

from the ground truth dataset.  

 

 

Figure 3.5: Intersection over Union 
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3.3 Model Configuration 

Prior to model training, a feature extraction network is selected, and several training 

options are configured. This study focuses on evaluating the performance of Darknet-53 as the 

feature extraction network. 

 

3.3.1 Training Options 

There are many options available for configuration during training. The following five 

options were changed from their default values: 

 Mini batch size – 30. The training dataset consists of 4,019 training images. A mini batch 

size of 30 allows the last partial mini batch to consist of 29 images.  

 Learning rate – 0.001. This was experimentally determined to be optimal. A learning rate 

higher than 0.001 would result in the model loss diverging from 0. Conversely, a learning 

rate lower than 0.001 produced models that asymptotically approached a higher model 

loss value than the loss produced by the models with a learning rate of 0.001. 

 Penalty threshold – 0.5. Detections that overlap less than 50% with the ground truth 

bounding box training data are penalized. 

 Warmup period – 1000 iterations. A warmup period is applied to prevent the model from 

overfitting early in the training cycle. This period helps with stabilizing gradients when 

using higher learning rates. 

 Epochs – variable. An epoch is defined as the number of passes of the entire training 

dataset. With a mini batch size of 30, an epoch requires 134 iterations to cycle through 

the training dataset once. The model is allowed to continue training as long as the average 
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loss continues to decrease. The highest performing model completed training in 55 

epochs. 

 

3.4 Model Evaluation 

To streamline the discussion of metrics in this section and to help avoid repetition, the 

more common components across formulas and their definitions will be presented upfront. When 

speaking of failed or successful predictions by the trained model, these are all within the context 

of the data contained within the ground truth test dataset.  

 TP – True Positives – correct detections of existing defects 

 FP – False Positives – incorrect detections of non-existent defects 

 TN – True Negatives – correct failures to detect non-existent defects 

 FN – False Negatives – incorrect failures to detect existing defects 

 

3.4.1 Metrics 

The following metrics were used to evaluate the performance of the defect detection 

models. The definitions for precision, recall, F1-score, and accuracy were adopted from the 

National Institute of Standards and Technology (2014). 

 

Precision – fraction of true positives predictions relative to the sum of true positives and false 

positives. Precision is the fraction of positive predictions that are correct. 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1) 
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Recall – fraction of true positives relative to the sum of true positives and false negatives. Recall 

is the fraction of detected defects relative to the number of defects that should have been 

detected.  

 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

 

F1-score – a measure of the of the model’s accuracy. The values of the F1-score are limited 

between 0 and 1. The score will be 0 if precision and or recall are 0, and the score will be 1 when 

precision and recall are both 1. It is defined as the harmonic mean of the model’s precision and 

recall (Padilla et al., 2021). 

 

 𝐹1 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (3) 

 

Accuracy – the sum of true positives and true negatives relative to the total number of detections. 

Accuracy measures the fraction of correct detections relative to the total number of detections. 

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4) 

 

3.4.2 Metrics Improvement 

The improvement of model performance metrics is performed iteratively by following the 

workflow based on the IBM
®
 (2017) model analysis of precision and recall in Figure 3.6. 
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Figure 3.6: Precision and Recall Improvement Workflow 

 

In the workflow, annotations refer to ground truth class labels provided by the tire and 

rim manufacturer. Old Dominion University was not involved in process of defining labeling 

guidelines; however, in any classes with low scores and/or confused classes it can be inferred 

that the annotation guidelines were suboptimal. Making these changes with the manufacturer was 

not within the scope of this study. These issues will be remedied through class relabeling and 

class combination for optimal detector performance. The specific practices implemented as 

related to class relabeling and combination are discussed in detail in chapter 4.   
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3.4.3 Confused Defect Classes 

To improve performance metrics using the workflow in Figure 3.6, confused classes need 

to be identified. To achieve this, a confusion matrix is generated for each detection model. A 

confusion matrix characterizes the performance of the classification portion of the object 

detection algorithm at a given IoU. To gain insight across all possible classifications made by the 

detection model, the IoU threshold will be set to a value of greater than zero.     

 

3.5 Hardware and Software Environment 

Table 3.4 provides a summary of the hardware environment. The software used was 

MATLAB
® 

R2021b. 

 

System Configuration 

GPU NVIDIA RTX
TM

 3090 (24GB VRAM) 

CPU Intel
®
 Core

TM
 i7-87000K 

RAM 32 GB 

Operating System Windows 10 64-bit 

 

Table 3.4: Hardware Environment  
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CHAPTER 4 

4. RESULTS 

 

Following the training completion of the defect detection model, the defect detector was 

evaluated against the test dataset that was set aside during the data preparation phase. 

Performance analysis of the original defect detector is provided in this chapter along with the 

analysis of subsequently trained models based on the performance improvement workflow 

discussed in section 3.4.2.   

 

4.1 Original Defect Detector Performance 

To assess model performance, the precision, recall, and F1-score for each defect class 

was calculated along with the overall model accuracy at different IoU thresholds ranging from 

0.5 to 0 in increments of 0.1. The results for precision, recall, F1-score, and accuracy are 

available in Table 4.1, Table 4.2, Table 4.3 and Table 4.4 respectively. As the IoU threshold is 

lowered, the performance metrics increase as the detector is interpreting detections with less area 

overlap requirements as positive detections. 

It is worth noting that for the application in this study, maximizing the detection of 

defects is of higher priority than knowing precisely where a defect is located. The emphasis on 

the performance of the defect detector is placed on its ability to correctly identify as many 

defective products as possible and thus remove them from production. Assessment of the 

detector can be focused around an IoU threshold of greater than zero. The performance of the 

detector at an IoU greater than zero is captured in the form of a confusion matrix in Figure 4.1 

and is also tabulated in previously mentioned tables. The confusion matrix allows for the 

identification of confused classes during classification. 
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To aid with interpretation of the confusion matrix, the far-right column corresponds to the 

precision per defect class, the bottom row corresponds to recall per class, and the bottom right 

cell represents the model’s accuracy. 



   

 

4
1
 

IoU 

Precision (%) 

Burr Cavity Crackle 
Curl 

Dregs 
Dregs Hole Incomplete 

Long 

Burr 

Low 

Dregs 
Shrinkage Side Stripe 

Model 

Precision 

0.5 33.2 27.1 39.3 60.0 71.1 24.2 59.7 100 15.4 32.5 50.0 0 46.3 

0.4 39.2 30.8 49.0 80.0 81.0 33.6 69.4 100 35.7 40.5 50.0 0 54.7 

0.3 45.3 36.7 56.3 90.0 85.0 47.8 79.0 100 42.9 46.8 50.0 0 61.3 

0.2 52.1 39.4 64.3 90.0 88.0 55.7 84.1 100 57.1 52.1 50.0 0 66.3 

0.1 58.1 43.0 69.1 100 89.5 61.3 87.5 100 66.7 54.1 50.0 0 69.6 

> 0 62.1 44.2 71.3 100 89.7 63.1 89.1 100 75.0 54.3 50.0 0 70.9 

 

Table 4.1: Original Model – Precision 

 

IoU 

Recall (%) 

Burr Cavity Crackle 
Curl 

Dregs 
Dregs Hole Incomplete 

Long 

Burr 

Low 

Dregs 
Shrinkage Side Stripe 

Model 

Recall 

0.5 28.1 42.0 43.4 54.5 73.1 25.9 60.7 57.1 8.3 42.0 100 0 49.5 

0.4 33.0 47.3 54.5 72.7 81.8 36.0 68.3 57.1 18.5 51.3 100 0 57.8 

0.3 37.7 55.3 62.0 81.8 85.4 51.3 76.6 57.1 22.2 58.7 100 0 64.4 

0.2 42.2 58.9 69.2 81.8 89.8 59.8 81.5 57.1 29.6 64.6 100 0 69.8 

0.1 45.8 63.9 75.2 90.9 91.7 64.1 86.2 57.1 44.4 66.7 100 0 73.1 

> 0 47.0 66.0 80.5 90.9 92.6 66.2 87.7 57.1 62.1 67.2 100 0 74.7 

 

Table 4.2: Original Model – Recall 
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IoU 

F1-score (%) 

Burr Cavity Crackle 
Curl 

Dregs 
Dregs Hole Incomplete 

Long 

Burr 

Low 

Dregs 
Shrinkage Side Stripe 

Model  

F1-score 

0.5 30.4 32.9 41.3 57.1 72.1 25.0 60.2 72.7 10.8 36.6 66.7 0 47.8 

0.4 35.8 37.3 51.6 76.2 81.4 34.8 68.9 72.7 24.4 45.3 66.7 0 56.2 

0.3 41.2 44.1 59.0 85.7 85.2 49.5 77.8 72.7 29.3 52.1 66.7 0 62.8 

0.2 46.6 47.2 66.7 85.7 88.9 57.7 82.8 72.7 39.0 57.7 66.7 0 68.0 

0.1 51.2 51.4 72.0 95.2 90.6 62.7 86.9 72.7 53.3 59.7 66.7 0 71.3 

> 0 53.5 52.9 75.6 95.2 91.1 64.6 88.4 72.7 67.9 60.1 66.7 0 72.8 

 

Table 4.3: Original Model – F1-score 

 

IoU 
Overall Performance (%) 

Precision Recall F1 Accuracy 

0.5 46.3 49.5 47.8 43.3 

0.4 54.7 57.8 56.2 51.6 

0.3 61.3 64.4 62.8 58.7 

0.2 66.3 69.8 68.0 64.8 

0.1 69.6 73.1 71.3 68.9 

> 0 70.9 74.7 72.8 70.7 

   

Table 4.4: Original Model – Overall Performance
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Figure 4.1: Confusion Matrix – Original Model 

 

Analysis of the confusion matrix shows that the detection results for the defect classes 

burr, cavity, crackle, hole, low dregs, and shrinkage contain a large amount of incorrect predicted 

classes versus the actual classes contained in the ground truth test dataset. A summary of this 

data is provided in Table 4.5. 
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The goal of the work in this thesis is to produce a model capable of detecting as many 

defective products as possible and removing them from production, not necessarily identifying 

the exact defect class present. With that in mind, training images pertaining to the defect classes 

in Table 4.5 were examined for commonalities and potential for class combination. Cavity, 

crackle, hole, low dregs, and shrinkage are all visually similar. They generally appear as solitary, 

or clusters of, small circular geometries that are lighter than the background object in the 

radiograph. Burr, on the other hand, shares the same physical characteristics but is visually 

darker than the background object. 

 

Predicted 
Actual 

burr cavity crackle hole low dregs shrinkage 

burr 357 22 23 51 10 37 

cavity 58 103 - 27 - 44 

crackle 46 - 124 - - - 

hole 73 - - 157 - - 

low dregs 6 - - - 23 - 

shrinkage 129 20 - - - 182 

  

Table 4.5: Confused Defect Classes 

 

4.2 Cavity and Burr Detector Performance 

Given the high number of confused classes, the precision and recall improvement 

workflow discussed in section 3.4.2 was followed to improve model performance. To fix the 

defect label annotations, a new set of training and test datasets based off the original ground truth 

tables was constructed where any defects labeled as crackle, hole, low dregs, and shrinkage were 

relabeled as cavity. The combination of similar classes is a practice known as data relabeling 

where classes appearing to belong to a hierarchical super class can be combined into one class 
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(Lee et al., 2018). A new model was subsequently trained with the newly combined data while 

maintaining the original training configurations discussed in section 3.3. This model, referred to 

as the cavity and burr model, continued to show that burr and the new cavity super class 

remained confused. The confusion matrix for the cavity and burr model is available in Figure 

4.2.  

Even though new cavity super class and the burr defect class continued to be confused, 

the performance of the cavity and burr model exceeded the performance of the original model 

across all metrics. Similar to how the performance of the original model was characterized across 

several IoU levels, the same has been done for the cavity and burr model. The results for 

precision, recall, F1-score, and accuracy are available in Table 4.6, Table 4.7, Table 4.8 and 

Table 4.9 respectively. 
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Figure 4.2: Confusion Matrix – Cavity and Burr Model
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IoU 

Precision (%) 

Burr Cavity 
Curl 

Dregs 
Dregs Incomplete 

Long 

Burr 
Side Stripe 

Model 

Precision 

0.5 32.5 38.7 40.0 68.1 38.2 42.9 0 0 48.1 

0.4 38.8 50.1 60.0 80.1 57.4 75.0 0 0 59.4 

0.3 45.2 61.2 70.0 86.3 61.1 75.0 0 0 67.8 

0.2 50.7 68.5 80.0 87.9 65.5 75.0 0 0 72.7 

0.1 55.5 72.3 80.0 89.2 67.9 75.0 0 0 75.7 

> 0 60.6 74.6 80.0 89.3 69.6 75.0 0 0 77.6 

 

Table 4.6: Cavity and Burr Model – Precision 

 

IoU 

Recall (%) 

Burr Cavity 
Curl 

Dregs 
Dregs Incomplete 

Long 

Burr 
Side Stripe 

Model 

Recall 

0.5 29.9 43.4 44.4 67.4 43.8 27.3 0 0 49.8 

0.4 35.6 55.7 60.0 78.8 66.0 50.0 0 0 61.2 

0.3 41.5 67.2 70.0 84.2 70.2 50.0 0 0 69.5 

0.2 46.1 74.5 80.0 87.0 73.5 50.0 0 0 74.7 

0.1 48.8 78.7 80.0 90.2 77.6 50.0 0 0 78.3 

> 0 50.6 83.2 80.0 90.7 79.6 50.0 0 0 80.9 

 

Table 4.7: Cavity and Burr Model – Recall 
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IoU 

F1-score (%) 

Burr Cavity 
Curl 

Dregs 
Dregs Incomplete 

Long 

Burr 
Side Stripe 

Model 

F1-score 

0.5 31.2 40.9 42.1 67.8 40.8 33.4 0 0 48.9 

0.4 37.1 52.8 60.0 79.4 61.4 60.0 0 0 60.3 

0.3 43.3 64.1 70.0 85.2 65.3 60.0 0 0 68.6 

0.2 48.3 71.4 80.0 87.5 69.3 60.0 0 0 73.7 

0.1 51.9 75.4 80.0 89.7 72.4 60.0 0 0 77.0 

> 0 55.2 78.7 80.0 90.0 74.3 60.0 0 0 79.2 

 

Table 4.8: Cavity and Burr Model – F1-score 

 

IoU 
Overall Performance (%) 

Precision Recall F1 Accuracy 

0.5 48.1 49.8 48.9 43.8 

0.4 59.4 61.2 60.3 54.8 

0.3 67.8 69.5 68.6 63.7 

0.2 72.7 74.7 73.7 69.5 

0.1 75.7 78.3 77.0 73.4 

> 0 77.6 80.9 79.2 76.0 

 

Table 4.9: Cavity and Burr Model – Overall Performance
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4.3 Cavity Detector Performance 

Although defects belonging to the burr class have visual distinctions from the new cavity 

super class, they share enough characteristics that the model has difficulty distinguishing them. 

Like the process where four of the defect classes were absorbed into the cavity super class, the 

same procedure was applied to all burr defects. All defects labeled as burr were relabeled as 

cavity, new training and test datasets were constructed, and a new model was trained. The new 

model, referred to as the cavity model, performed significantly better than the two previous 

models. The high class confusion has also been resolved. This can be seen in the confusion 

matrix of the cavity model in Figure 4.3. 

The cavity model’s precision, recall, F1-score, and accuracy are captured in Table 4.10, 

Table 4.11, Table 4.12, and Table 4.13 respectively. 
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Figure 4.3: Confusion Matrix – Cavity Model
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IoU 
Precision (%) 

Cavity Curl Dregs Dregs Incomplete Long Burr Side Stripe Model Precision 

0.5 86.5 90.0 68.1 40.4 60.0 0 0 78.4 

0.4 89.6 90.0 78.4 57.1 83.3 0 0 84.5 

0.3 90.7 90.0 83.8 69.9 83.3 0 0 87.4 

0.2 92.8 100 87.0 71.9 83.3 0 0 89.9 

0.1 94.7 100 88.9 74.1 83.3 0 0 91.8 

> 0 95.1 100 89.1 74.6 83.3 0 0 92.2 

 

Table 4.10: Cavity Model – Precision 

 

IoU 
Recall (%) 

Cavity Curl Dregs Dregs Incomplete Long Burr Side Stripe Model Recall 

0.5 86.4 81.8 68.5 45.1 27.3 0 0 78.4 

0.4 89.7 81.8 78.6 60.4 41.7 0 0 84.5 

0.3 91.6 81.8 82.6 70.9 41.7 0 0 87.3 

0.2 92.8 90.9 87.8 73.2 41.7 0 0 90.0 

0.1 93.2 90.9 92.4 76.8 41.7 0 0 92.0 

> 0 93.2 90.9 93.3 78.6 41.7 0 0 92.3 

 

Table 4.11: Cavity Model – Recall 
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IoU 

F1-score (%) 

Cavity Curl Dregs Dregs Incomplete Long Burr Side Stripe 
Model  

F1-score 

0.5 86.5 85.7 68.3 42.6 37.5 0 0 78.4 

0.4 89.7 85.7 78.5 58.7 55.6 0 0 84.5 

0.3 91.2 85.7 83.2 70.4 55.6 0 0 87.4 

0.2 92.8 95.2 87.4 72.5 55.6 0 0 90.0 

0.1 93.9 95.2 90.6 75.4 55.6 0 0 91.9 

> 0 94.1 95.2 91.2 76.6 55.6 0 0 92.2 

 

Table 4.12: Cavity Model – F1-score 

 

IoU 
Overall Performance (%) 

Precision Recall F1 Accuracy 

0.5 78.4 78.4 78.4 80.7 

0.4 84.5 84.5 84.5 85.7 

0.3 87.4 87.3 87.4 88.1 

0.2 89.9 90.0 90.0 90.5 

0.1 91.8 92.0 91.9 92.3 

> 0 92.2 92.3 92.2 92.5 

 

Table 4.13: Cavity Model – Overall Performance
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4.4 Overall Detector Performance 

To make comparisons across models easier, the overall model performance values for 

precision, recall, F1-score, and accuracy have been plotted against their respective IoU values in 

Figure 4.4, Figure 4.5, Figure 4.6, and Figure 4.7 respectively.  

All detectors were capable of processing a test image resized to a resolution of 256x256 

pixels in less than 90 milliseconds. 

 

 

Figure 4.4: Overall Detector Performance – Precision 

70.9 
69.6 

66.3 

61.3 

54.7 

46.3 

77.6 
75.7 

72.7 

67.8 

59.4 

48.1 

92.2 91.8 89.9 
87.4 

84.5 

78.4 

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6

P
re

ci
si

o
n

 (
%

) 

Intersection over Union 

Precision vs. IoU 

Original model Cavity and burr model Cavity model



   

 

54 [Type a quote from the document 

or the summary of an interesting 

point. You can position the text 

box anywhere in the document. 

Use the Drawing Tools tab to 

change the formatting of the pull 

quote text box.] 

Figure 4.5: Overall Detector Performance – Recall 

 

 
 

Figure 4.6: Overall Detector Performance – F1-score 
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Figure 4.7: Overall Detector Performance – Accuracy

70.7 
68.9 

64.8 

58.7 

51.6 
43.3 

76.0 
73.4 

69.5 

63.7 

54.8 

43.8 

92.5 92.3 90.5 
88.1 

85.7 

80.7 

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6

A
cc

u
ra

cy
 (

%
) 

Intersection Over Union 

Accuracy vs. IoU 

Original model Cavity and burr model Cavity model



   

 

56 [Type a quote from the document 

or the summary of an interesting 

point. You can position the text 

box anywhere in the document. 

Use the Drawing Tools tab to 

change the formatting of the pull 

quote text box.] 

CHAPTER 5 

5. CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

After applying data relabeling techniques to the original data, the performance of the 

object detector model improved significantly. In addition to selecting the appropriate object 

detector and detector network, it is important to establish and carefully follow data labeling 

guidelines as inconsistencies within the data annotations reduce model performance. Some of 

these inconsistencies and their detections by the model are included in the Appendix. The 

identification of defect classes to be tracked from a business perspective should be performed in 

a manner that is consistent with practices that are machine learning friendly. Defining defect 

classes that are similar to others (e.g., cavity, hole) can negatively impact model performance 

and lead to class confusion, as was the case in this study. 

 

5.2 Recommendations 

The following recommendations are being made with the goal of removing errors and 

challenges inherent within the ground truth dataset:  

1. To help improve model performance metrics, establishing defect definition and 

annotation guidelines prior to labeling data with bounding boxes and defect class labels 

would help remove inconsistencies within the data. 

2. Working with the manufacturer to approach the problem through the lens of a machine 

learning exercise where sufficiently distinct defect classes are categorized would help 

increase defect detection rate with a higher degree of confidence. For example, instead of 
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having multiple defect classes that are a sub-class of a much larger defect type (e.g., 

cavity, hole) a single comprehensive class should be assigned to similar defects.   

 

Recommendations for future work after the previous recommendations have been 

completed include the following: 

1. The models trained in this study utilized augmented images resized to a resolution of 

256x256 pixels. Resolution of future models could be increased. 

2. Training an object detector based on a two-stage detection method and comparing its 

performance against the YOLOv3 models generated in this study. 
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APPENDIX 

Missed Defect Annotations and Detections 

 

 

Figure A.1: Detection Results – Test Image 18 
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Figure A.2: Detection Results – Test Image 97 

 

 

 

 

 



 

 

6
6
 

 

Figure A.3: Detection Results – Test Image 152 
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Figure A.4: Detection Results – Test Image 227 
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Figure A.5: Detection Results – Test Image 348 
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Figure A.6: Detection Results – Test Image 414 
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