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ABSTRACT 
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Director: Dr. Michel Audette 

 

 

 Long QT Syndrome (LQTS) is an increasingly studied condition that leads to potentially 

fatal heart rhythm disorders, called arrhythmias, and sudden cardiac death. The alterations in the 

electrocardiograms (ECGs) seen in LQTS patients is caused by mutations to genes related to ion 

channels in cardiac cells. Computational modeling allows the mechanistic study of these ion 

channel mutations in LQTS by providing quantitative predictors of cardiac behavior in human 

and rabbit heart models. This work hypothesizes that the repolarization reserve in cardiac 

Purkinje cells (PC), that form the cardiac conduction system, is lower than that of ventricular 

myocytes (VM), resulting in a higher propensity of electrophysiological abnormalities in the 

form of spontaneous activity, particularly early and delayed afterdepolarizations (EADs and 

DADs, respectively). To investigate this hypothesis, detailed computational methods were 

created by incorporating experimental data. The computer models were then utilized to 

reproduce the experimentally observed behavior in single cells as well as 3-dimensional 

ventricular models. The computational results show more profound effects of the LQTS 

mutations on action potential duration (APD) prolongation in PCs when compared to VMs. 

Ectopic beats exist in isoproterenol conditions for human PCs. Future research includes 

determining the effect of these APD differences on the entirety of the heart using an anatomical 

3D model of a rabbit heart.
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NOMENCLATURE 

AP  Action Potential 

APD  Action Potential Duration 

APD50  Action Potential Duration at 50% Repolarization 

APD90  Action Potential Duration at 90% Repolarization 

AV  Atrioventricular 

ARPF  Aslanidi Rabbit Purkinje Fiber Model 

BCL  Basic Cycle Length 

Ca2+  Calcium 

DAD  Delayed Afterdepolarizations 

EAD  Early Afterdepolarizations 

ECG  Electrocardiogram 

hERG  Human Ether-a-go-go-related Gene 

ICa(L)  Long-Lasting Calcium Current 

ICa(T)  Transient Calcium Current 

IK1  Inward Rectifier Potassium Current 

IKr  Rapid Activating Delayed Rectifier Potassium Current 

IKs   Slowly Activating Delayed Rectifier Potassium Current 



 
 

ITo  Transient Outward Potassium Current 

K+  Potassium 

LQT2  Long QT Syndrome Type II 

LQTS  Long QT Syndrome 

Na+  Sodium 

PC  Purkinje Cell 

PMJ  Purkinje Myocardial Junction 

PS  His-Purkinje System 

SA  Sinoatrial 

SCR  Spontaneous Calcium Release 

SR  Sarcoplasmic Reticulum 

TdP  Torsade de Pointes 

VM  Ventricular Myocyte 

VT  Ventricular Tachycardia 
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INTRODUCTION 

 

MOTIVATION 

Long QT Syndrome (LQTS), characterized by an abnormally prolonged QT interval on 

an electrocardiogram (ECG), is listed among life-threatening diseases due to its association with 

sudden cardiac death [1]. This condition has been increasingly studied in recent years. Prior 

experimental studies utilizing rabbits and mice have indicated involvement of the His-Purkinje 

system (PS) on spontaneous polymorphic ventricular tachycardia (VT) and sudden cardiac death 

in LQTS patients [2], however its exact role remains poorly understood. Computer-based 

numerical simulations have the potential to provide mechanistic insights into the arrhythmogenic 

propensity of cardiac PCs. 

PROBLEM STATEMENT 

Though the connections between the PS and LQTS have been increasingly studied in 

recent years, the exact influence of potassium channel mutations in electrophysiology of cardiac 

Purkinje cells (PCs) has not been studied in depth. This research focuses on these potassium 

channel mutations, particularly in the case of Long QT Syndrome Type II (LQT2), utilizing 

experimental and computational research. Because LQT2 manifests as VTs, this project focuses 

on the two primary cell types in ventricles: PCs and ventricular myocytes (VMs) to determine 

which has more arrhythmia potential. This work hypothesizes that the repolarization reserve in 

PCs is lower than that in VMs, which lead to more severe LQT2 phenotype in PCs with higher 

propensity of early (EADs) and delayed afterdepolarizations (DADs). 
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LITERATURE REVIEW 

 Four chambers compose the human heart: two atria (top chambers) and two ventricles 

(bottom chambers). The rhythmic beating of these chambers ensures human survival by 

providing synchronous blood flow throughout the body. This cardiac rhythm is determined by 

conduction of electrical action potentials through the heart muscles. The pacemaker, or sinoatrial 

(SA) node, initiates cardiac impulses, or action potentials (AP). It is located in the right atrium. 

The electrical signal propagates through atrial tissue, causing contraction of atria, and reaches the 

atrioventricular (AV) node, which functions to transmit the impulse to the bundle of His and 

eventually to the ventricles. The AV node also creates a delay in the contraction of the chambers 

in the heart, allowing a filtering of any atrial tachyarrhythmias. The bundle of His is the only 

fiber-bundle actually capable of carrying the impulse from the atria to the ventricles via the right 

and left His bundle branches. The Purkinje fibers are the terminal fibers in this system [3]. They 

form Purkinje myocardial junctions (PMJ) with VMs. These junctions conduct the cardiac 

impulse into the myocardium, resulting in proper contraction of the heart under healthy 

conditions. The basic anatomy of the human heart is shown in Fig. 1. 
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Fig. 1. Basic anatomy of the human heart, including compartments and electrical conduction 

system.  

 

Movement of ions across the cell membrane through ion channels, pumps and exchangers 

facilitate the generation of electrical APs in each cardiac cell. Propagating APs through the heart 

tissue causes the synchronous beating of the heart. A typical cardiac ventricular AP is composed 

of five phases as shown in Fig. 2. Phase zero is the AP upstroke or rapid depolarization phase, 

which initiates when a cell reaches the voltage threshold of approximately -65 mV. The inward 

sodium (Na+) current (INa) is the principal ion current responsible for this phase. It is a rapidly 

activated voltage-dependent channel that is followed by a rapid inactivation, causing a brief rush 

of INa. Phase one of the cardiac AP is the early rapid repolarization phase, interrupted when the 

cell reaches the plateau phase. Ito, or the transient outward potassium (K+) current, provides most 

of the repolarizing charge in this phase [4]. 
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Fig. 2. Plot of cardiac action potential showing main phases (A) and relative influxes and 

effluxes of main ion currents (B), based off of the information collected in Jalife et al.’s work 

[4].  

 

During the plateau, or phase two, the cell membrane repolarizes at a much slower rate. 

The primary acting currents in phase two are the inward calcium (Ca2+) current and the delayed 

rectifier potassium outward current. There are two primary Ca2+ currents: long-lasting calcium 

current, ICa(L), and transient calcium current, called ICa(T). Healthy VMs do not exhibit, ICa(T), so 

they rely on ICa(L) during the plateau phase. PCs have both ICa(L) and ICa(T). The K+ currents 
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consist of the rapid and slow components, known as IKr and IKs, respectively. These channels are 

activated as the membrane potential becomes more positive than -40 mV, which is reached 

during the AP upstroke. Ca2+ channels open to allow inward movement of Ca2+, whereas the K+ 

ions move outward as indicated in panel B of Fig. 2. The Ca2+ current acts as a depolarizing 

force, but the outward movement of K+ ions negate the force of the of the Ca2+ ions. The balance 

between the Ca2+ and K+ currents determine the membrane potential in phase two. The plateau 

phase ends when Ca2+ channels are inactivated, but the potassium channels are still open, 

enabling rapid repolarization of the membrane towards its resting state [4]. 

This brings about phase three: final repolarization. This phase is driven by the inward 

potassium current, IK1, as IKr and IKs channels tend to close as the cell repolarizes, particularly 

when it reaches a membrane potential around -40 mV. IK1 also helps to set the resting potential 

of cardiac cells. Compared to nodal cells, PCs and VMs have different resting membrane 

potentials, which can be explained by the presence of IK1 in these cardiac cells but less so in 

nodal cells. Phase four is the resting membrane potential, which sits at about -90 mV [4]. 

 Though the morphological structure of the PS is well-studied and characterized, PMJs are 

less understood. In 2017, Garcia et al. analyzed several properties of PMJs, including PMJ 

density in various heart regions, in porcine hearts utilizing tissue samples. Their study indicates 

that PCs are less densely packed in the base versus the middle third and apex of the heart [5]. 

PMJs function through gap junctions with a connexin subunit, which plays a role in the 

conduction of the cardiac impulse from the PS to VMs, and vice-versa. Olejnickova et al.’s work 

furthers the understanding of ventricular activation via PMJs in healthy hearts through their 

investigation of connexin subunit of gap junctions and the role it plays in the activation pattern of 

the ventricles [6]. 
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 Patients suffering from acquired or congenital LQTS, have an abnormally lengthened 

ventricular repolarization as shown in Fig. 3. This lengthening causes VTs and even sudden 

cardiac death, particularly when under stress. To reiterate, VMs do not spontaneously elicit APs; 

they require excitation from the PS, or from neighboring activated myocytes. The lengthening of 

the ventricular repolarization, shown in the form of a prolonged QT interval on ECGs, may 

initiate arrhythmias due to temporary conduction blocks in partially-excitable ventricles during 

the propagation of sinus beats emitted by the PS. The ventricles have a refractory period that 

prevents conducting new beats immediately after previous activation, but these conduction 

blocks may precipitate the formation of re-entry, which can eventually lead to arrhythmias. 

LQT2, accounting for 35–40% of all LQTS patients, is characterized by a mutation of the human 

ether-a-go-go-related gene (hERG) gene. This gene is principally responsible for encoding the 

pore-forming unit of the rapid activating delayed rectifier potassium channels. These channels 

control the rapid activating delayed rectifier current, IKr, which is critical in regulating cardiac 

AP repolarization. The modification of this gene results in a reduction or complete inhibition of 

IKr, prolonging the QT interval and lengthening action potential duration (APD) [1]. 
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Fig. 3. APD prolongation (A) leading to Long QT morphology as seen in ECG (B).  

 

 

In LQTS patients, a morphological difference presents itself in the ventricular 

repolarization; the T-waves have a higher prevalence of being biphasic, meaning that the wave 

has two distinct components of opposite polarity, or notched, when a second positive deflection 

occurs [7]. These can both be related to formation of EADs. A comparison between a biphasic 

and normal, or monophasic, T-wave is shown in Fig. 4. EADs have been found to propagate 

under LQT2 conditions [8]. Due to the advances in understanding of the molecular basis of this 

disease, perhaps the most promising treatment method is that of gene-based therapeutic 

approaches [1]. If all molecular phenotypes of LQT2 are studied and properly understood, the 

chance of creating a gene therapy for the syndrome will greatly increase. Though it is known that 

a reduction in IKr causes the QT prolongation, the effects of these mutations specifically in PCs is 
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not well-understood and requires further investigation, especially including the role of the 

repolarization reserve of PCs versus VMs. Studies involving the repolarization reserve indicate 

that when one repolarizing current is blocked, the other repolarizing currents will try to 

compensate for the loss. In the case of cardiac cells under LQTS conditions, the loss of IKr is 

replaced by IKs in some capacity. In PCs, IKs does not play as much of a role as IKr, so the 

repolarization reserve is weaker than that of VMs. This leads to worsened APD prolongation, 

which may lead to spontaneous cardiac activity, like EADs and DADs [9]. EADs and DADs are 

different morphologically, as depicted by Fig. 5; EADs occur before the AP has fully 

repolarized, whereas DADs occur following the complete repolarization of the AP. 

 

 

  

Fig. 4. Examples of T wave patterns. Column 1 corresponds to a normal T wave, Column 2 

corresponds to a biphasic T wave, and Column 3 corresponds to a notched T wave where the 

notch is identified by an arrow [7]. 
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Fig. 5. Comparison between EADs (A) and DADs (B). 

 

 

In order to investigate the role that PCs play in LQTS or any cardiac condition, 

computational biophysical models of hearts can be used by replicating results seen in vivo and 

predicting how the heart may react under abnormal conditions. These models are particularly 

useful when in vivo studies are difficult to conduct. Hodgkin and Huxley provided the first 

computational model of an AP in the 1950s, establishing a still-used basis for many 

electrophysiological models. Their model shows that inward sodium (Na+) movement 

depolarizes the AP to a peak amplitude around 40 millivolts. An outward potassium (K+) 

movement repolarizes the membrane potential, temporarily hyperpolarizing the membrane 

before it returns to its resting potential around -70 millivolts. These preliminary findings led to 

the question of whether a mathematical model based on these findings could be used to 

reproduce the experimentally-determined AP morphology. Ultimately, Hodgkin and Huxley 

successfully reproduced the APs in their model. Eq. 1 outlines the reversal potential as defined 

by Hodgkin and Huxley, which takes into account the interactions of various ion currents in the 

cell [10]. 

𝐼 = 𝐶𝑚
𝑑𝑉𝑚

𝑑𝑡
+ 𝑔𝐾(𝑉𝑚 − 𝑉𝐾) + 𝑔𝑁𝑎(𝑉𝑚 − 𝑉𝑁𝑎) + 𝑔𝑡(𝑉𝑚 − 𝑉𝑖)              Eq.  1 
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 Though Hodgkin and Huxley were the first to computationally reproduce APs, cardiac 

APs were not modeled until the 1970s. Their work served as the basis for these models, 

particularly regarding the formulation of ionic currents, but these models needed to include Ca2+ 

intake through ICa(L) channel release. This channel is present in the cells of the myocardium, but 

not included in the Hodgkin-Huxley formulation. This current triggers calcium-induced calcium-

release mechanism, where small amount of Ca2+ influx through Ca2+ channels activate much 

larger release of Ca2+ stored in the sarcoplasmic reticulum (SR). Properly formulating this 

mechanism was necessary to reproducing cardiac APs, which was done by Beeler and Reuter in 

1977. The structure and kinetics of cardiac ion channels were then expanded upon and 

represented by mathematical formulas [10]. 

Studying and understanding these components led to computational cardiac models, that 

of humans and animals. Since ethical limitations prevent the study of human conditions in 

human participants, particularly in cases such as LQTS where inducing a phenotype could result 

in death, animal models are commonly used experimentally. To build on these studies, models of 

animal hearts are often used to indicate what may be happening in the human condition as well. 

Of course, the outputs of these animal models must be compared to that of humans to ensure that 

the results are similar enough to extrapolate their findings and support hypotheses in the human 

subject. In a quantitative comparison of human and nonhuman cardiac ventricular 

electrophysiology utilizing computational models, O’Hara and Rudy [11] suggest that species 

differences potentially cause differences in arrhythmic behavior and drug response. In particular, 

they find that IKr has a stronger effect on AP prolongation in humans than in dogs or guinea pigs. 
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These differences suggest that animal models may be used, but ultimately human models are the 

most accurate way to validate computational findings [11]. In order for these computational 

models to be used as quantitative predictors, researchers should often calibrate them to ensure 

that they are producing physiological results when under normal conditions [12]. 

Though creating a stable model produces a usable predictor for normal conditions, sometimes 

this stability entails limitations when studying abnormal hearts. In order to create the EADs and 

DADs seen in LQT2, the model cannot be entirely stable; the electrotonic loading effect 

produced at the junction between the PCs and the VMs suppresses the spontaneous activity. In 

order to combat this, the heart model must be calibrated or modified to fit the needs of the 

researchers. The work of Campos et al. suggests that increasing Ca2+ release from the 

sarcoplasmic reticulum (SR) and flooding the cell, replicating the effects of abnormal Ca2+ 

cycling, will trigger ICa(L) and cause spontaneous Ca2+ release (SCR). SCRs will stimulate inward 

currents sensitive to Ca2+, generating spontaneous activity in an anatomically accurate computer 

model of a rabbit heart [13]. Further research supports the notion that SCR leads to arrhythmia-

causing spontaneous activity [14]. This type of activity must be reproducible in a computational 

model in order to fully investigate the effects of LQT2 on the propagation of spontaneous 

activity across PMJs.  
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METHODOLOGY 

 

EXPERIMENTAL METHODS  

 The experimental component of this research consisted of tissue-level, or whole heart, 

experiments. The experiments were completed in the Masonic Medical Research Institute, an 

American Association for Accreditation of Laboratory Animal Care, international accredited 

facility, which utilizes an Institutional Animal Care and Use Committee approved protocol to 

perform experiments on male or female New Zealand White Rabbits weighing between 2.8 and 

3.2 Kg. The rabbits were deeply anesthetized with ketamine/xylazine (35/5 mg/kg), and then a 

sternotomy was quickly performed using a scalpel to expose the heart [15]. The heart was 

excised using scissors by severing the ascending aorta, vena cava, pulmonary vessels, and 

attached interstitial connective tissue, esophagus, and trachea, effectively completing euthanasia. 

The heart was placed in a cardioplegic solution consisting of 4 degrees Celsius Tyrode’s 

solution, which was roughly isotonic with interstitial fluid, containing 12 mM of Potassium. The 

complete contents of the Tyrode’s solution were as follows: 129mM NaCl, 20mM NaHCO₃, 

5.5mM D-Glucose, 0.9mM NaH₂PO₄, 5mM MgSO₄, 4mM KCL, and 1.8mM CaCl₂. 

The rabbit hearts were trimmed, removing unwanted tissue like fat. A dissecting scope 

was used to locate the fat and other unwanted components. The ventricle was then split to allow 

visualization of the inner ventricular surface. After trimming the heart, a segment of the cardiac 

tissue was removed and placed into the apparatus shown in Fig. 6. Tyrode’s solution was used 

throughout the entire experiment to maintain tissue viability. This solution was 

bubbled/oxygenated with a mixture of 95% O₂ + 5% CO₂ to maintain a constant 7.4 pH for the 
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experiment. The Tyrode solution was super-fused to the preparation at a pump speed to maintain 

a constant temperature of 37 degrees Celsius. 

 

 

 

Fig. 6. Experimental setup pumping bubbled Tyrode’s solution (A) to chamber (B) containing 

rabbit heart tissue and stimulating the tissue through a stimulator (C). 

 

 

The free running Purkinje fibers and ventricular myocardium were initially paced with 

field stimulating silver-chloride wires across the chamber via a Frederick Haer Pulsar 6i 

stimulator in normal mode at approximately 20-30 volt at a basic cycle length of 600 ms, which 

corresponds to about 1.67 Hz, and allowed to recover post-surgery for a time to be determined by 
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tissue recovery. After recovering, all control and experimental APs were then recorded via bi-

polar electrode stimulation with direct contact on the preparation with 3-4 volt/5msec pulse 

duration stimulation using the basic cycle length (BCL) of 1,000 ms and 500 ms. These BCLs, 

which correspond to 1 and 2 Hz pacing, respectively, were used to follow the methods of prior 

studies [13]. Intracellular signals were recorded via glass microelectrode filled with a 2.7M KCl 

solution with a glass resistance of 20-25 MΩ. These outputs were monitored for APD 

prolongation as well as any spontaneous activity in the forms of EADs or DADs using a CED 

1401 Amplifier utilizing Spike Version 2 Version 7.12 and 2 WPI Model 705 Electrometers for 

microelectrode recordings. Unfortunately, due to experimental limitations and difficulties in 

maintaining a consistent distance between the electrodes, the distance between the electrodes 

was not standardized. 

The control data was recorded in the tissue submerged in Tyrode’s solution prior to any 

exposure to drugs. The experimental groups consist of the same tissue after exposure to the drug, 

E-4031. E-4031 is commonly used to block IKr in vitro [15]. This drug essentially induces LQT2 

conditions by blocking HERG channels. The E-4031 concentrations were varied from 0.1µM to 

0.5µM to study dose-dependent IKr -blockage effects. 

 

SINGLE CELL SIMULATIONS 

This work used previously published rabbit models developed by Mahajan et al., to 

simulate rabbit VM [16], and Aslanidi et al. model of a rabbit PC [17]. Prior ventricular models 

were developed to represent physiologic heart rates, but they did not accurately depict rapid heart 

rates, which occur during tachyarrhythmias. These models neglected intracellular Ca2+ transient 
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alternans during rapid pacing, which was seen experimentally and believed to play a role in 

arrhythmogenesis [16]. 

To address these limitations, Mahajan et al. modified a previously described rabbit VM 

model [18] by utilizing a Markovian formulation of ICa(L), which plays a key role in intracellular 

Ca2+ cycling and regulation of the slope of APD restitution, and by modifying the intracellular 

Ca2+ cycling component itself by incorporating a model that produces the required instability to 

generate alternans. The first modification was accomplished by using experiments to characterize 

ICaL in rabbit VMs using patch-clamping. This data was incorporated into a seven-state 

Markovian model of the current, using voltage-dependent inactivation and calcium-dependent 

inactivation. The second modification was done using an intracellular Ca2+ cycling model 

previously described and then modified to replicate the desired alternans [18]. 

Campos et al.’s model for the rabbit VM was also used as a comparison to the Mahajan et 

al. model in presence of spontaneous Ca2+ leaks from SR. Campos et al. sought to investigate the 

link between SCRs and premature ventricular complexes by seeing what conditions DADs can 

overcome electrotonic loading. To add this component of SCR, an experimentally based model 

of SCR was coupled to the Mahajan-Shiferaw model. They doubled the strength of the Na+/Ca2+ 

exchanger and decreased the inward rectifier potassium current to 30% of its control value based 

on experimental evidence showing this electrophysiological remodeling under pathologies such 

as heart failure where the propensity for DADs is increased [13]. 

In 2010, Aslanidi et al developed the Aslanidi Rabbit Purkinje Fiber, (ARPF) model to 

describe the rabbit PC. Prior to their work, the different ionic mechanisms in PCs versus VMs 

were not characterized systematically. Similar to Mahajan et al., this model is also based on the 

Shannon et al. formulations, modified to incorporate experimentally recorded differences in ionic 
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channel properties between PCs and VMs. The specific changes that were made were the 

conductance of the fast sodium current was 2.5x greater than the original model, the late sodium 

current was 10x larger, the conductance of ICa(L) was increased by 10%, ICa(T) was added, the 

conductance of Ito modified to fit steady-state inactivation curves, the conductance of IKs was 

down modulated, and IK1 parameters were modified. The conductance of INa was multiplied by 

2.5 because it matched the AP upstroke velocity of experimental measurements. The late Na 

current was multiplied by 10 because experimental findings showed that it is significantly larger 

in PCs than VMs. The conductance of ICa(L) was increased by 10% to account for differences in 

current density observed among different cell types. ICa(T) was added as it is not present in VMs. 

The conductance of IKs was decreased because IKs is smaller in PCs than VMs. Finally, the 

conductance of IK1 was modified based on different resting membrane potentials of cell types 

[17]. 

To simulate human cardiac cells, Tusscher et al. model of a VM [19] was used as well as 

Stewart et al.’s model of the human PC [20]. Tusscher et al. model utilizes experimental data the 

fast sodium, L-type calcium, transient outward, rapid and slow delayed rectifier, and inward 

rectifier currents recorded in healthy human VMs. Their model also incorporated basic Ca2+ 

dynamics. As with the other models, the cell membrane was modeled as a capacitor connected in 

parallel with variable resistances and batteries representing the different ionic currents and 

pumps. The electrophysiological behavior of a single cell can hence be described with the 

following differential equation shown below, 

 

 

𝑑𝑉

𝑑𝑡
=

𝐼𝑖𝑜𝑛+𝐼𝑠𝑡𝑖𝑚

𝐶𝑚
            Eq. 2 
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where V is voltage, t represents time, Iion stands the sum of all transmembrane ionic currents as 

described by the below equation, Istim is the externally applied stimulus current, and Cm is cell 

capacitance per unit surface area [19]. 

 

 

𝐼𝑖𝑜𝑛 =  𝐼𝑁𝑎 + 𝐼𝐾1 + 𝐼𝑡𝑜 + 𝐼𝐾𝑟 + 𝐼𝐾𝑠 + 𝐼𝐶𝑎𝐿 + 𝐼𝑁𝑎𝐶𝑎 + 𝐼𝑁𝑎𝐾 + 𝐼𝑝𝐶𝑎 + 𝐼𝑝𝐾 + 𝐼𝑏𝐶𝑎 + 𝐼𝑏𝑁𝑎 Eq. 3 

 

 

In 2009, Stewart et al. modified the Tusscher et al. VM model based off experimental 

data collected in 2002 of Purkinje fibers. They added two currents to the TT2 model: a 

hyperpolarization-activated or funny current, If and a sustained potassium current, Isus. The 

resultant Iion is shown below. 

 

 

𝐼𝑖𝑜𝑛 =  𝐼𝐾𝑟 + 𝐼𝐾𝑠 + 𝐼𝐾1 + 𝐼𝑡𝑜 + 𝐼𝑠𝑢𝑠 + 𝐼𝑁𝑎 + 𝐼𝑏,𝑁𝑎 + 𝐼𝐶𝑎,𝐿 + 𝐼𝑏,𝐶𝑎 + 𝐼𝑁𝑎𝐾 + 𝐼𝑁𝑎𝐶𝑎 + 𝐼𝑝,𝐶𝑎 +

𝐼𝑝,𝐾 + 𝐼𝑓           Eq. 4 

 

 

The researchers also reformulated IK1 and Ito as well as altering the maximum 

conductance of the rapid and slow delayed rectifier potassium currents and the fast sodium 

current due to differences in the channel kinetics and current densities between PCs and VMs. 

More specifically, Ito is smaller in PCs, but Isus is significantly larger in PCs. The funny current is 

believed to influence spontaneous diastolic depolarizations, causing automaticity in PCs. This 



18 
 

current was added to the model using equations and parameters that were validated by simulated 

funny currents during patch clamp experiments. IK1 has a much smaller density in PCs than VMs 

in rabbit hearts, so that is why IK1 was reformulated in this model [20]. 

The single-cell simulations were performed using OpenCARP, which is an open-source 

cardiac electrophysiology simulator for in-silico experiments [21]. Being open-source, it allows 

students and researchers to access pre-coded biophysical models that have been added to the 

repository. The simulations were run on Old Dominion University’s (ODU) high performance 

computing (HPC) clusters. All parameters were modified using Python scripts. Single cell 

simulations were able to be run directly in the terminal, and all files were transferred to the local 

drive for analysis utilizing WinSCP. The output files were analyzed and visualized using 

MATLAB. 

The computer simulations were run systematically, completing the same simulations in 

all four of the above models. The first set of simulations were run at a standard pace of a BCL of 

400 ms in the rabbit models as determined by prior literature [13]. A BCL of 1000 ms was used 

in the human models to allow for complete repolarization of the AP after each stimulus. The first 

set of simulations was conducted with no alterations in the model parameters, except that the 

human PC model’s Na+ funny current was reduced by 50% to remove automaticity. Then, an 

analysis of varied IKr blockage was conducted to try and establish a standard as to what dosage of 

E-4031 relates to what percent IKr blockage. IKr was blocked at 50%, 75%, and 100% by 

adjusting the conductance of IKr in each model. The next set of simulations involved 0, 50, 70, 

and 100% IKr blockage with isoproterenol conditions which mimic adrenergic stimulation. These 

were compared to the runs without isoproterenol conditions to provide a comparison of LQT2 

with and without stress. In order to simulate isoproterenol conditions, the conductance of ICa was 
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increased by 200%, the conductance of IK1 is decreased by 20%, and the activity of the Na+/K+ 

pump is increased by 135% [22] with a pacing of 400 BCL to match the control conditions of 

prior research [13]. 

Pacing was then varied in both the 0 and 100% IKr blockage situations, as pacing can 

sometimes have an effect in the APD restitution or repolarization. The outputs of the VM and PC 

models in both the rabbit and human scenario were then compared against their own cell type in 

the opposing species as well as the opposite cell type in the same species. In the human PC 

model, the sodium funny current was reduced by 50% to prevent spontaneous APs under control 

conditions.  
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RESULTS 

 

RABBIT PURKINJE CELLS VERSUS VENTRICULAR MYOCYTES 

 In the experimental study of the rabbit myocardium, the voltage versus time plot reveals 

that Purkinje fibers have a 18.7% increase in APD50 under the 0.1 uM E-4031 condition and 

93.0% increase under the 0.5 uM E-4031 condition, whereas the ventricular myocardium have a 

15.8% and 30.1% increase in APD50 under the 0.1 uM E-4031 and 0.5 uM E-4031 conditions, 

respectively. PCs have a 0.881% increase in APD90 under the 0.1 uM E-4031 condition and 

48.8% increase under the 0.5 uM E-4031 condition, whereas the VMs have a 10.5% and 43.2% 

increase in APD90 under the 0.1 uM E-4031 and 0.5 uM E-4031 conditions, respectively. This is 

shown in Fig. 7 (A). Fig. 7 (B) and (C) show plots of the drug concentration versus APD in both 

APD50 and APD90 scenarios. A two-way ANOVA test was run to determine if there is an 

interaction between the drug concentration and the APD50 and APD90 values in the PC versus 

VM. For the APD50, the p-value was below 0.5, so the null hypothesis that the concentration of 

E-4031 has no effect on APD50 prolongation could not be rejected in either drug concentration. 

For APD90 and 0.5 uM E-4031 conditions, however, the null hypothesis could be rejected as the 

p-value was 0.02112. Essentially, the significance here is that APD90 shows a significant 

difference in the PCs versus the VMs in the presence of the IKr blocker, E-4031 at a 

concentration of 0.5 uM. 
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A.  

B. 

 

C. 

 

Fig. 7. Voltage versus time plots in PCs and Papillary Muscle (to be compared to VMs) under 

control, 0.1 uM E-4031, and 0.5 uM E-4031 conditions (A). Plot of APD50 (B) and APD90* (C) 

values in rabbit PCs and VMs. 

* Indicates statistical significance 

 

 

In the computational rabbit models, systematic analysis of the results firstly show that the 

control models accurately depict the differences between AP morphologies of VMs and PCs 

shown in experiments, with their respective plateau phases occurring near 0 mV and -30 mV as 
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shown in Fig. 8. IKr blockage results in a more pronounced APD prolongation in PCs than VMs. 

In addition, DADs occur in presence of IKr blockage in PCs, but not in VMs, as shown in Fig. 8 

(B and C). As per Graph 1, the blockage of IKr results in a greater magnitude of IKs transients, 

indicating the influence of a greater repolarization reserve in PCs than VMs as will be 

investigated in greater detail in the discussion. 
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A.  

B.  

C.  

Fig. 8. Comparison of varied levels of IKr blockage in rabbit VM (A) and PC (B) models. 

Comparison of 0 versus 100% IKr blockage in rabbit VM and PC models (C). DADs are present 

in the presence of IKr blockage. 
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Graph 1. Plot of IKs transients over time for the rabbit PC and VM models. This indicates that 

under IKr block conditions, IKs must compensate for the missing repolarizing current. VMs 

appear to have a greater increase in IKs transients with IKr blockage. 

 

 

Under isoproterenol conditions, the rabbit VM and PC models did not produce any 

DADs, but a more pronounced APD prolongation is present. The AP morphology is altered as 

well under isoproterenol conditions, particularly in the PC model, as shown in Fig. 9. With 

varied pacing, increasing the basic cycle length (BCL) produces very little effect in the control 

simulations, but it produces a slight APD prolongation in both VMs and PCs under IKr block 

conditions. These results are reflected in Fig. 10. 
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Fig. 9. Comparison of APD prolongation in rabbit models with isoproterenol conditions. 

 

 

A.  
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B.  

C.  

D.  
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Fig. 10. Comparison of varied pacing in rabbit VM (A and B) and PC (C and D) model. PCs 

have a more pronounced APD prolongation. 

A comparison of the original rabbit VM model and the SCR modified model reveals that 

the SCR model has a heightened propensity for ectopic beats with complete IKr blockage under 

isoproterenol conditions as shown in Fig. 11. The figure shows increased propensity for 

arrhythmogenic activity in the SCR rabbit model compared to the original UCLA_RAB model. 

Under the same conditions, which is complete IKr blockage and isoproterenol conditions, the 

SCR model exhibits spontaneous activity and creates ectopic beats. 
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A.  

B.  

Fig. 11. Comparison of APD prolongation and spontaneous activity produced in the VM and 

SCR rabbit models, indicating that the SCR model has a higher propensity for ectopic beats with 

complete IKr blockage under isoproterenol conditions. 

 

 

HUMAN PURKINJE CELLS VERSUS VENTRICULAR MYOCYTES 

 In the human computational models, the control outputs from the VM and PC models, as 

shown in Fig. 12, confirm the experimentally reported AP morphologies in the two cell types. A 

comparison of the varied IKr blockage in VMs versus PCs reveals a more pronounced APD 
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prolongation in PCs. This enhanced prolongation in human cardiac cells is shown in Fig. 12 (B) 

and (C). Though no spontaneous activity is yet present, this APD prolongation can still be 

dangerous for the patient and may result in propagation of arrhythmia. Graph 2 represents an 

explanation for the more severe APD prolongation in PCs, as IKs has a greater amplitude in VM 

than in PCs. This potential mechanistic link will be investigated further in the discussion. 

 

 

A.  

B.   
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C.  

Fig. 12. Comparison of varied levels of IKr blockage in human VM (A) and PC (B) models. 

Comparison of 0 versus 100% IKr blockage in human VM and PC models (C). PCs have a more 

pronounced APD prolongation. 
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Graph 2. Plot of IKs transients over time for the human PC and VM models. This indicates that 

under IKs block conditions, IKs must compensate for the missing repolarizing current. VMs 

appear to have a greater increase in IKs transients with IKr blockage. 

 

 

Under isoproterenol conditions, both the control and IKr block simulations did not 

produce any unwanted spontaneous activity. In the human PC model, however, both the control 

and IKr blockage produce spontaneous APs, or ectopic beats, as shown in Fig. 13. This will again 

be investigated further in the discussion. 
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Fig. 13. Comparison of APD prolongation in human models with isoproterenol conditions and 

100% IKr blockage showing ectopic beats in both control and IKr block conditions in the presence 

of isoproterenol. 
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DISCUSSION 

 

LQT2 SEVERITY IN VM VERSUS PC 

 This study utilized single cell simulations involving rabbit and human cardiac cell models 

to explore arrhythmogenic mechanisms in LQT2 conditions. The principal findings of this study 

indicate that 1) a loss of IKr function in PCs produces a more severe phenotype than in VMs, 2) 

VMs have a greater magnitude of IKs in the absence of IKr, than that in PCs, 3) the SCR rabbit 

model has a heightened propensity for spontaneous activity, and 4) the computational models of 

human PCs have a heightened propensity for ectopic beats than human VMs as well as their 

counterparts in rabbit cells. 

The results of this research are consistent with experimental findings reported in PCs and 

VMs. Specifically, both the rabbit and human biophysical models accurately depicted the spike 

and dome morphology of the cardiac AP. Both models were consistent with experimental 

findings regarding the voltage at which the plateau phase occurs and the resting membrane 

potential of the cells [23].  

In both the rabbit and human simulations, PCs clearly have a more severe LQT2 

phenotype than VMs as indicated by the higher percent increase in APD using both experimental 

and computational research methods. A likely explanation for this difference is a reduced 

repolarization reserve in PCs compared to VMs as indicated by the transient IKs currents shown 

in Graphs 1 and 2. This supports the hypothesis that the repolarization reserve in PCs is lower 

than that of VMs which leads to more severe phenotype in PCs. VMs exhibit higher amplitude of 

IKs which helps in part to compensate for the loss of IKr function. Therefore the effect of IKr 

blockade in VMs is relatively smaller when compared to PCs. Experimentally, it has been shown 
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that IKs plays a larger role in the APs of VMs than PCs [24]. IKs compensates for the loss of IKr in 

both cell types. In PCs, however, there is not as much IKs present, so the repolarization reserve is 

not as strong as it is in VMs, so it cannot compensate as much. This leads to more severe APD 

prolongation. 

Analysis of the varied pacing in both VM and PCs suggests that even in the case of IKr 

blockage, higher frequency pacing results in shorter APDs. This is consistent with prior studies 

that establish lower APDs in higher frequency pacing of cardiac cells under control conditions 

[25]. It should also be noted that the SCR rabbit model showed a heightened propensity for 

spontaneous activity under both the control and IKr block conditions as shown in Campos et al.’s 

work [13]. This confirms that this model, when coupled with the rabbit PC, should allow for 

propagation of an arrhythmogenic beat through the PMJ, more accurately representing an LQT2 

patient than current models are able to produce due to electrotonic loading [26]. 

The final discussion point is that isoproterenol conditions evoked spontaneous activity in 

both the control and the IKr blockage conditions in the human PC model. This can be explained 

by the fact that isoproterenol results in increased Ca2+ currents, based on experimental findings. 

This increase in Ca2+ results in the spontaneous APs shown in the previous slide. With IKr 

blockage, however, the cells are not even fully repolarizing. We’re seeing a continuous chain of 

EADs. These EADs are dangerous because these oscillations can lead to triggering of premature 

ventricular beats, known as Torsade de Pointes (TdP). It has been well-established in prior 

literature of experiments that TdPs are closely related to PC activity [27]. 
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RABBITS VERSUS HUMANS 

The AP morphologies of PCs versus VMs have a more distinct difference in the human 

models compared to the rabbit models, as the human PC model more closely represents the 

characteristic spike and dome morphology of the cardiac AP. In isoproterenol conditions, the 

human PC models show a heightened sensitivity to the blockage of IKr as indicated by the 

presence of spontaneous APs compared to the rabbit PC model. The difference in this 

spontaneous activity likely relates to the relative influence of IKr in rabbits versus humans. IKr 

blockage results in a more extreme APD prolongation in humans than in dogs [28] and more in 

dogs than in rabbits [29], so it can be inferred that IKr blockage results in greater APD 

prolongation in humans. This abnormal repolarization can result in cardiac arrhythmias, which 

are indicated in simulations by ectopic beats as seen in the human PC model. 

 

CONCLUSION 

 Experimental and computational findings were coupled to investigate and compare the 

arrhythmogenic potential under LQTS conditions in PCs and VMs in rabbits and humans. These 

models accurately reproduced experimental APD prolongation under IKr blockage and provided 

insight into the mechanisms behind the more severe LQTS phenotype in PCs. APD prolongation 

appeared to be more severe in PCs than VMs in both the experimental and computational 

components of this research. Spontaneous activity was not seen in VMs, but it was present in 

PCs in both the rabbit and human models, either as DADs, EADs, or full ectopic beats. The SCR 

model did successfully have spontaneous activity, so it may be useful in future applications. 

Under isoproterenol conditions, the human PC model showed spontaneous activity as well. 
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When working in computer simulations, dissociation from the subject matter is not 

difficult. These findings do have major clinical implications that need to be considered. In 

clinical or experimental studies, it is difficult to isolate individual factors causing fatal 

arrhythmias due to the coupling of parameters. With these findings, we have furthered our 

understanding of the specific mechanisms underlying LQTS and what’s affecting these young 

patients. 

 

RESEARCH LIMITATIONS 

 For the experimental component of the research, there were several limitations involving 

the preparation of the samples. Rabbit hearts are very small, typically measuring 2-3 inches long. 

When attempting to isolate the PC or VM with the electrode, it proved immensely difficult to get 

the tips of the electrodes on cells that were within close proximity of one another due to the size 

of the electrodes themselves. For example, this research initially sought to measure junctional 

characteristics and measure the time delay between PCs and the VMs that they were connected 

to, but that was not possible in this phase of experiments. Another difficulty that was 

experienced was the difficulty to determine which parts of the branching structure of the heart 

were Purkinje fibers versus just structural components of the heart that need to be clipped away. 

Additionally, each tissue-level experiment took an entire day, usually up to 12 hours, to 

complete. Because the lab was being utilized for other projects as well, it became difficult to 

repeat the same procedure with multiple rabbits. The final experimental limitation was that 

isoproterenol was not able to be used due to time restrictions. 
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The main limitation with the computational component of this research is that these 

simulations were all run in single cells. The effects were not measured in multicell simulations to 

determine the transfer of arrhythmogenic potential from one cell to another or to investigate the 

propagation of arrythmias from PC to VMs through PMJs. Another limitation in the simulations 

is the electrotonic loading effect in 3-dimensional models. Again, this project originally sought 

to investigate the propagation of arrythmias from PCs to VMs through the PMJs, but the 

electrotonic loading created from one PC connecting to many VMs tends to suppress the 

spontaneous activity in the simulations. The final computational limitation was the inability to 

maintain a constant pacing throughout all simulations due to the extreme APD prolongation 

under certain conditions, such as complete IKr blockage and isoproterenol in the human PC. In 

this case, the AP took so long to repolarize that a BCL of 2,000 ms was required to allow for 

complete repolarization. All rabbit simulations were completed at a BCL of 400 ms to replicate 

the findings of prior studies [13]. 

 

SUGGESTIONS FOR FUTURE RESEARCH 

To reiterate, the experimental results were very limited in terms of the number of 

experiments completed, the experimental groups, and the consistency of distance between 

electrodes. Future experiments should include a standard distance between the electrodes, one 

that allows the junctional characteristics and mechanisms for arrhythmia propagation to be 

measured if at all feasible. Isoproterenol effects should be included in experiments to compare 

the APD prolongation under stress conditions in the tissue. 
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Additionally, LQT2 effects were drug-induced by E-4031, the IKr blocker, not by the 

actual hERG gene mutation. Transfection of the patients’ gene mutation into the cells should be 

done in future work to investigate the mutation itself and to help determine what level of E-4031 

properly relates to the gene mutation. A clear avenue for future research is to implement the 

changes made in the SCR rabbit model to the human VM model to create a myocardium more 

susceptible to propagation of arrhythmia. Coupled with the human PC model, the SCR model 

may overcome the electronic loading effect, which will allow further investigation in the 

propagation of arrhythmogenic activity through PMJs. Further investigation of PMJs can be done 

on the time delay from PCs to VMs. Once the control output matches physiological standards, 

these models can be modified to determine the exact mechanisms underlying the propagation of 

spontaneous activity like DADs and EADs propagate through the myocardium, potentially 

resulting in reentry circuits. By investigating these findings in 3D, we will be even closer to 

understanding the exact mechanism of LQTS that causes arrythmia, which can help in treatment 

of the condition. 
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