
OUR Journal: ODU Undergraduate Research Journal OUR Journal: ODU Undergraduate Research Journal

Volume 9 Article 9

2022

ODU Undergraduate Students Addressing the Societal Problems ODU Undergraduate Students Addressing the Societal Problems

of Parking Control, Classroom Seating, and Flood Monitoring in of Parking Control, Classroom Seating, and Flood Monitoring in

Hampton Roads Hampton Roads

Stephanie K. Trusty
Old Dominion University

Gabriel Del Razo
Old Dominion University

Nathan Potter
Old Dominion University

Soad Ibrahim
Old Dominion University

Ayman Elmesalami
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/ourj

 Part of the Other Computer Sciences Commons

Recommended Citation Recommended Citation
Trusty, Stephanie K.; Del Razo, Gabriel; Potter, Nathan; Ibrahim, Soad; and Elmesalami, Ayman (2022) "ODU
Undergraduate Students Addressing the Societal Problems of Parking Control, Classroom Seating, and
Flood Monitoring in Hampton Roads," OUR Journal: ODU Undergraduate Research Journal: Vol. 9, Article
9.
DOI: 10.25778/4w68-6786
Available at: https://digitalcommons.odu.edu/ourj/vol9/iss1/9

This Article is brought to you for free and open access by ODU Digital Commons. It has been accepted for inclusion
in OUR Journal: ODU Undergraduate Research Journal by an authorized editor of ODU Digital Commons. For more
information, please contact digitalcommons@odu.edu.

https://digitalcommons.odu.edu/ourj
https://digitalcommons.odu.edu/ourj/vol9
https://digitalcommons.odu.edu/ourj/vol9/iss1/9
https://digitalcommons.odu.edu/ourj?utm_source=digitalcommons.odu.edu%2Fourj%2Fvol9%2Fiss1%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.odu.edu%2Fourj%2Fvol9%2Fiss1%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ourj/vol9/iss1/9?utm_source=digitalcommons.odu.edu%2Fourj%2Fvol9%2Fiss1%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

ODU UNDERGRADUATE STUDENTS ADDRESSING THE SOCIETAL

PROBLEMS OF PARKING CONTROL, CLASSROOM SEATING, AND

FLOOD MONITORING IN HAMPTON ROADS

By Stephanie Trusy, Gabriel Del Razo, Nathan Potter, and Soad Ibrahim

Faculty Advisor: Dr. Ayman Elmesalami, University Distinguished Teacher, ODU

ABSTRACT— During the summer of 2021, ODU undergraduate computer science students

undertook image processing research projects. These projects focused on utilizing the Raspberry

Pi computer and camera module to address three real-world problems concerning parking

control, classroom seating, and flood monitoring. The parking lot occupancy project aimed to

develop a system that monitors the occupancy of parking spaces in a lot and communicates the

status of the lot drivers and the lot attendants. The COVID-19 classroom occupancy project

sought to enforce social distancing protocols in a classroom environment by detecting seating

violations and notifying the instructor and the impacted students of the violation. Designed for

the Hampton Roads community, the flood detection project concerned the development of a

vision system, controlled by the Raspberry Pi, that detects the flood levels of a particular location

and determines if the flooding is low, moderate, or severe. This paper details the development of

these projects and proposes future considerations and recommendations for further

undergraduate study and improved real-world functionality.

Keywords: Raspberry Pi, image processing, classroom occupancy, parking lot occupancy, flood

detection

1

Trusty et al.: Societal Problems of Parking, Classroom Occupancy, and Flood Monitoring

Published by ODU Digital Commons, 2022

TABLE OF CONTENTS

1. Introduction: Parking Control, Classroom Occupancy, Flood Monitoring3

1.1 Parking Control ... 3

1.2 Classroom Occupancy ... 4

1.3 Flood Monitoring .. 4

2. Related Works..6

3. Background ..8

3.1 Raspberry Pi 3 Model B .. 8

3.2 Raspberry Pi Camera Module .. 9

3.3 GPIO Pins and LED Circuits .. 10

4. Methodology .. 11

4.1 Parking Lot Occupancy Controller Methodology ... 11
4.1.1 Hardware Configuration ... 12
4.1.2 Software Configuration ... 14

4.2 COVID-19 Classroom Occupancy Detection System Methodology ... 19
4.2.1 Depicting the Classroom Environment... 20
4.2.2 Raspberry Pi, Camera Module, and Breadboard Configuration .. 20
4.2.1 Algorithm Flow ... 25

4.3 Flood Detection System Methodology .. 27
4.3.1 Hardware Configuration and SSH Connection .. 27
4.3.2 Software Configuration and OpenCV ... 30
4.3.3 Selection of Edge Detection Filter ... 31

5. Results and Discussion ... 36

5.1 Parking Lot Occupancy Controller Results .. 36

5.2 COVID-19 Classroom Occupancy Detection System Results .. 37

5.3 Flood Detection System Results ... 38

6. Conclusion .. 38

7. Future Work .. 40

7.1 Parking Lot Occupancy Controller .. 40

7.2 COVID-19 Classroom Occupancy Detection System .. 41

7.3 Flood Detection System ... 42

References .. 43

2

OUR Journal: ODU Undergraduate Research Journal, Vol. 9 [2022], Art. 9

https://digitalcommons.odu.edu/ourj/vol9/iss1/9
DOI: 10.25778/4w68-6786

1. INTRODUCTION: PARKING CONTROL, CLASSROOM OCCUPANCY, FLOOD

MONITORING

Over the summer of 2021, undergraduate computer science students at Old Dominion

University undertook individual research projects. In addition to providing hands-on

programming experiences for undergraduate students, these projects sought to address three

relevant, real-world problems: determining the occupancy of a parking lot or garage during high-

occupancy events (1.1); enforcing social distancing protocols in a classroom setting (1.2); and

detecting flood levels on Hampton Roads roadways (1.3). Each of the resulting systems utilizes

the Raspberry Pi computer and its camera module to capture image inputs for processing and

communicates information about these images using light-emitting diodes (LEDs).

1.1 Parking Control

For the average driver, parking is often a tedious but unavoidable task. On average,

Americans spend 17 hours a year searching for available parking (INRIX, Inc., 2017). In

addition to its associated time consumption, parking also has notable economic and behavioral

implications. A 2017 study conducted by INRIX found that, while searching for parking, drivers

accumulate a cost of $345 in wasted time, fuel and emissions (INRIX, Inc., 2017). Additionally,

parking availability and access often informs the driver’s experience and actions, resulting in

them feeling stressed while parking, missing appointments, abandoning their trips, and even

avoiding airports and sports and leisure activities due to parking (INRIX, Inc., 2017).

 The purpose of the parking lot occupancy system is to simplify the parking experience for

both the driver and the lot attendant. This system captures top-down images of a parking lot and

uses image processing techniques to determine the lot’s occupancy. First, the system captures an

initial reference image of the parking lot when it is empty. It then captures real-time images of

3

Trusty et al.: Societal Problems of Parking, Classroom Occupancy, and Flood Monitoring

Published by ODU Digital Commons, 2022

the parking lot. The real-time images are compared to the reference image to determine the

occupancy of the lot. The system quantifies this determination by subtracting the pixel values of

the real-time image from the reference image. The subsequent value is compared to a heuristic

threshold to ultimately determine whether the parking lot is full or open. The current state of the

lot is communicated through light-emitting diodes: a green LED is turned on if the lot is open,

and a red LED is turned on if the parking lot is at full capacity.

1.2 Classroom Occupancy

COVID-19 is a disease caused by severe acute respiratory syndrome coronavirus 2,

which was discovered in Wuhan, China in 2019 (Centers for Disease Control and Prevention,

2021). In addition to vaccination and donning masks in public indoor spaces, organizations such

as the Centers for Disease Control and Prevention and the World Health Organization have

advised the public to engage in social distancing, or physical distancing, to limit the spread of

COVID-19. According to the Centers for Disease Control and Prevention, social distancing

entails maintaining a six-foot distance from individuals who are not members of the same

household in both indoor and outdoor settings (Centers for Disease Control and Prevention,

2021). The COVID-19 classroom occupancy detection system aims to support adherence to

social distancing protocols within classroom environments.

1.3 Flood Monitoring

 The Hampton Roads region is located in the middle of the Eastern seaboard in the

commonwealth of Virginia and comprises ten independent cities and six counties (Hampton

Roads Chamber, n.d.). Geographically, the region consists of multiple low-lying, coastal cities

that are prone to flooding. According to the First National Flood Risk Assessment, conducted in

2020, 20% of properties in the city of Virginia Beach were at risk of flooding, as were 27% of

4

OUR Journal: ODU Undergraduate Research Journal, Vol. 9 [2022], Art. 9

https://digitalcommons.odu.edu/ourj/vol9/iss1/9
DOI: 10.25778/4w68-6786

Norfolk properties, 24% of Portsmouth properties, and 33% of Hampton properties (First Street

Foundation, Inc, 2020). Furthermore, land sinkage and rising sea levels are steadily putting

Hampton Roads at increased flood risk. In a report on initiatives to combat the community’s

rising sea levels, the National Oceanic and Atmospheric Association states, “Virginia’s Hampton

Roads region is experiencing the highest rates of sea level rise along the entire Atlantic seaboard

and is second only to New Orleans as the largest U.S. population center at risk” (NOAA Office

for Coastal Management, n.d.). The region is expected to see a 1.7 foot rise in water levels by

2050 (Coutu, 2020).

Flooded roadways pose a significant risk for drivers and their vehicles. The CDC’s

National Center for Environmental Health notes that floods are the second deadliest weather

phenomena in the United States, resulting in an average 98 deaths per year (National Center for

Environmental Health, 2020). Most commonly, flood deaths occur when a vehicle is driven

through hazardous flood waters (National Center for Environmental Health, 2020). According to

the National Weather Service and the National Oceanic and Atmospheric Association, one foot

of rushing water is capable of carrying away most cars and two feet of water can carry away

most trucks and SUVs (National Weather Service & National Oceanic and Atmospheric

Association, n.d.). Additionally, driving through a flooded street can cause significant damage to

motor vehicles, including electrical damage such as short circuiting wires and computer

malfunctions or damage to safety features resulting in malfunctioning antilock braking systems

and airbag system failure (CARFAX, 2021). This has potential health and safety consequences

even after the initial flooding event. CARFAX estimates that 378,000 flooded cars are back in

use in the United States despite potential damage to mechanical, electrical, and safety features

(CARFAX, 2021).

5

Trusty et al.: Societal Problems of Parking, Classroom Occupancy, and Flood Monitoring

Published by ODU Digital Commons, 2022

The flood detection project seeks to address the safety issues associated with flooded

roadways in Hampton Roads. Its purpose is to develop a device and a compatible program that

can determine the safety of a roadway by measuring the height of the floodwater and alert drivers

of the current flood conditions with LED lights. The green LED is used to indicate low flooding.

The yellow LED denotes moderate flooding, and the red LED denotes severe flooding.

Each of these projects provides an opportunity for undergraduate students to gain

experience designing and implementing a solution to a timely, real-world problem. In addition to

allowing students to utilize and expand upon the programming and software development skills

they’ve garnered throughout their academic career, the project’s hardware requirements provide

hands-on experience with the Raspberry Pi computer, the Raspberry Pi Camera Module, and

breadboard circuits.

2. RELATED WORKS

Ioannis Sakiotis designed the Parking Lot Occupancy Detector in the spring of 2021.

This system was developed to determine if a parking lot is completely occupied or if it contains

open spaces. Sakiotis developed this system with the Raspberry Pi computer. The system’s

methodology compares a real-time image of the parking lot to a base image of the parking lot,

which depicts the lot when it is empty. The captured images are converted to grayscale to lower

the complexity when comparing the pixel values between the base and real-time images. This

comparison of the real-time image to the base parking lot image is then used to detect changes to

the lot’s occupancy. Sakiotis’ system converts the images into arrays, then slices this image array

into smaller two-dimensional arrays that contain the pixel values for each parking space. This

methodology relies upon the Sum of Absolute Differences (SAD), a digital image processing

technique that assesses the similarity between two regions of an image. Sakiotis utilizes the SAD

6

OUR Journal: ODU Undergraduate Research Journal, Vol. 9 [2022], Art. 9

https://digitalcommons.odu.edu/ourj/vol9/iss1/9
DOI: 10.25778/4w68-6786

technique in conjunction with a heuristic threshold when comparing the base parking space array

to the real-time parking space array. Based on the derived calculation, if the difference is above

this heuristic threshold, the space is determined to be occupied. If the difference is below the

threshold, the space is determined to be open. If every space in the lot is occupied, a red LED is

illuminated. Otherwise, a green LED is illuminated.

An implementation of the classroom occupancy detection system was completed by

Ioannis Sakiotis in April 2021. The project sought to confirm required social distancing in a

classroom environment by detecting the presence of vacant seats among students. The resulting

system utilized the Raspberry Pi computer, Pi Camera Module, a breadboard, and a single green

light-emitting diode.

 The system first captures a top-down image of the classroom when there are no students

seated in it, and then captures a real-time top-down photo of the classroom. In the segments of

the image where students are seated, the system compares the pixel values. Sakiotis’

implementation works under the assumption that a static camera position is maintained during

program execution. It also assumes that the environment’s lighting is consistent in both the initial

image of the empty classroom and the real-time classroom image.

 A heuristic threshold value is used to determine if the difference in pixel values at the

seat locations is “little” or “significant.” If the pixel difference is “little,” the seat is determined

to be vacant. A “significant” pixel difference indicates an occupied seat. If acceptable social

distancing conditions are detected in the classroom, Sakiotis’ system turns on a green LED.

However, if it detects adjacent occupied seats, the green LED is turned off.

7

Trusty et al.: Societal Problems of Parking, Classroom Occupancy, and Flood Monitoring

Published by ODU Digital Commons, 2022

In the spring of 2021, Mohammed Nauman Siddique developed a program and device

that measures the water levels in a tank of water, which simulates a flooded roadway

environment. Siddique utilizes a Raspberry Pi computer, camera, and breadboard to accomplish

this. The system captures a 256 × 256 resolution image of the simulated environment and

processes it to illuminate one of three LED lights. To determine the water levels in the tank,

Siddique captured images of the tank at low, moderate, and high flood levels and used these

images to train an image classification model. The system then compares incoming images

against the trained model to determine current flood levels.

3. BACKGROUND

Each project utilizes a Raspberry Pi 3 Model B computer, a Raspberry Pi Camera

Module, and multiple LED breadboard circuits. This section details the components and

functionality of this equipment.

3.1 Raspberry Pi 3 Model B

The first model in the third-generation Raspberry Pi, the Raspberry Pi 3 Model B, is a

single-board computer capable of both Bluetooth and wireless local area network connectivity.

The computer utilizes the BCM2837 Broadcom CPU, which incorporates a quad core ARM

Cortex A53 cluster. The ARM cores found in this model run at 1.2 GHz, resulting in a computer

that is approximately 50% faster than the Raspberry Pi 2.

The Model B includes 40 extended general-purpose input/output pins; a Camera Serial

Interface port for Raspberry Pi Camera Modules; a Display Serial Interface port to connect a

compatible touchscreen display; and a Micro SD port that loads the Raspberry Pi operating

system and provides data storage. The computer’s four USB ports can be used to connect a

keyboard and mouse, and the full-size HDMI port can be used to connect a monitor or television.

8

OUR Journal: ODU Undergraduate Research Journal, Vol. 9 [2022], Art. 9

https://digitalcommons.odu.edu/ourj/vol9/iss1/9
DOI: 10.25778/4w68-6786

Figure 3.1

Raspberry Pi 3 Model B

3.2 Raspberry Pi Camera Module

 Each project utilizes a Raspberry Pi Camera Module to capture the photos necessary for

image processing. These projects specifically make use of the Camera Module v2, the standard

version of the Raspberry Pi Camera Module. Unlike the NoIR version, which can be paired with

an infrared light source to capture images in the dark, the standard version of the Camera Module

is solely designed to take pictures in natural light.

 The v2 Camera Module supports both still capture and a variety of video modes. It

attaches to the Pi’s CSI port through a 15-centimeter ribbon cable. The Camera Module v2

utilizes a variety of sensors, including a Sony 8-megapixel image sensor and Sony’s Exmor R

sensors. The Exmor R sensor has a backlit architecture, allowing for smaller sensors and higher

resolution without decreasing light sensitivity. The Raspberry Pi Camera Module v2, pictured

below, is compatible with all Raspberry Pi 1, 2, 3, and 4 models.

Figure 3.2

Raspberry Pi Camera Module v2

9

Trusty et al.: Societal Problems of Parking, Classroom Occupancy, and Flood Monitoring

Published by ODU Digital Commons, 2022

3.3 GPIO Pins and LED Circuits

 Breadboard circuits are an integral aspect of all three projects. These circuits function as

an output for each system, communicating whether or not acceptable conditions are met using

light-emitting diodes (LEDs). This section details how the breadboard LED circuits interface

with the Raspberry Pi computer. Male-female jumper wires are used to connect the computer and

the breadboard circuits.

 LEDs are polarized components that allow current to flow in a single direction. They

feature two terminals: an anode, which is the positive terminal, and a cathode, which is the

negative terminal. In order to avoid damaging the diode, the flow of current through the

component is limited by placing a resistor in series with the voltage channel and the diode’s

anode pin. The cathode is connected to the breadboard’s ground channel.

 As discussed in Section 3.1, the Raspberry Pi 3 Model B features 40 general-purpose

input/output (GPIO) pins, which allow the computer to interface with and control electronic

circuits. To connect the circuits to ground, the male end of the jumper wire is inserted into the

breadboard’s ground rail, while the female end is connected to one of the Pi’s five GND pins. A

second jumper wire is used to connect the circuit’s positive supply with the male end connecting

10

OUR Journal: ODU Undergraduate Research Journal, Vol. 9 [2022], Art. 9

https://digitalcommons.odu.edu/ourj/vol9/iss1/9
DOI: 10.25778/4w68-6786

to the breadboard’s voltage rail and the female end connecting to a GPIO pin on the Raspberry

Pi. The following image depicts the layout of GPIO pins for the Raspberry Pi 3 Model B.

Figure 3.4

Raspberry Pi 3 Model B GPIO Layout

4. METHODOLOGY

 Despite the similarities between the individual image processing projects, unique

solutions were developed for each project. This section discusses the chosen methodology for

each system, including hardware and software components, external packages and libraries.

4.1 Parking Lot Occupancy Controller Methodology

The parking lot occupancy controller is implemented using the Raspberry Pi 3 Model B

computer and a compatible Camera Module. The system’s output consists of two breadboard

circuits, each of which illuminates a light-emitting diode. These breadboard circuits are wired to

the Raspberry Pi, allowing the LEDs to be controlled with Python code.

11

Trusty et al.: Societal Problems of Parking, Classroom Occupancy, and Flood Monitoring

Published by ODU Digital Commons, 2022

4.1.1 Hardware Configuration

 The system’s methodology begins with designing the hardware setup to achieve the basic

requirements of the system, which were to capture an overhead view of the parking lot and

implement two functional LED circuits. This hardware design begins with the wiring of the

LED circuits.

Figure 4.1

Raspberry Pi Component Diagram

[Diagram of Raspberry Pi GPIO Pinouts and Components]. (n.d.). https://www.jameco.com/Jameco/workshop/circuitnotes/raspberry_pi_circuit_note_fig2a.jpg

The output circuits interface with the Raspberry Pi through the computer’s general-

purpose input/output (GPIO) pins, featured in Figure 4.1. The LED connections are then tested

with a simple Python program, utilizing the GPIOZero library. GPIO Zero is a Python library

that provides a simple interface to access the Raspberry Pi’s GPIO pins (Nuttall, 2021). This

library is installed by default on the Rasbian operating system, the Raspberry Pi OS.

12

OUR Journal: ODU Undergraduate Research Journal, Vol. 9 [2022], Art. 9

https://digitalcommons.odu.edu/ourj/vol9/iss1/9
DOI: 10.25778/4w68-6786

 The camera installation is the final component of the system’s physical setup. The camera

was installed by lifting the fastening bar on the Camera Module port of the Raspberry Pi,

inserting the camera’s ribbon cable into the port, and then lowering the bar to secure the

connection. To ensure the proper connection of the Camera Module, a simple Python program

was used for testing. This program utilized the PiCamera Python library to test the functionality

of the camera.

 For this system to be effective, it needs to compare the pixel values between two images

to detect changes in the parking lot’s occupancy. In order to successfully accomplish this, the

pixel coordinates must match between the image of the empty parking lot and the image of the

parking lot in its current state. As such, a fixed camera position was needed to achieve consistent

pixel coordinates. As portrayed in Figure 4.2, a housing unit with a stabilizing brace is used to

mount and support the system’s hardware. The housing unit is designed out of a cardboard box.

Sections in the front and side of the cardboard box are extracted to accommodate the connection

wires and the Camera Module. The camera is positioned to capture overhead images of the

parking lot and is supported by a piece of cardboard secured with a plastic clip.

Figure 4.2

Physical Setup - Raspberry Pi, Camera Module, and Breadboard

13

Trusty et al.: Societal Problems of Parking, Classroom Occupancy, and Flood Monitoring

Published by ODU Digital Commons, 2022

4.1.2 Software Configuration

The system’s program consists of two components: the controller configuration and the

main program. The controller configuration begins system execution and is responsible for

capturing and analyzing the reference image of the parking lot. The configuration process is

completed by the end-user. Within the main program, the system runs autonomously. This

section of the system captures a live image of the parking lot, compares it to the reference image,

and displays the quantitative results, as well as lights the LED representing the parking lot's

current occupancy.

The controller configuration component configures the system to the parking lot that the

user wishes to monitor. This process begins by capturing a reference image of the parking lot

when it is completely empty. When the controller is later executed, this simplifies the process of

determining whether an individual parking space is occupied or not. The second configuration

task requires the user to analyze the reference image and record sets of pixel coordinates that

14

OUR Journal: ODU Undergraduate Research Journal, Vol. 9 [2022], Art. 9

https://digitalcommons.odu.edu/ourj/vol9/iss1/9
DOI: 10.25778/4w68-6786

correlate to each parking space in the lot. The program utilizes two Python libraries to achieve

this. NumPy, a library that provides multidimensional array and matrix data structures, is used to

convert the reference image into an array. The array consists of each pixel value that comprises

the image. Each pixel consists of three color channels: red, green, and blue. Each of these

channels has a value ranging from 0 to 255, with a value of 0 denoting zero light and a value of

255 denoting maximum light. The program then uses Matplotlib to plot the NumPy array.

Matplotlib is a plotting library that allows for interactive visualization of arrays (Hunter et al.,

2021). In this case, the array is plotted to display the reference image. The plot has x-axis and y-

axis values that describe the resolution of the image. The user can then use the tools provided by

the Matplotlib library to zoom in on each parking space individually to find the coordinate set

that describes the location of a space. The user will need to record each coordinate set into a text

file and store that file in the same directory as the system’s program. This text file is opened and

read during the controller execution and is used to locate the parking spaces in the real-time

image. This emphasizes the importance of the camera position being consistent between each

image.

Figure 4.3

Configuration Controller - Plotted Reference Image and Coordinate Text File

15

Trusty et al.: Societal Problems of Parking, Classroom Occupancy, and Flood Monitoring

Published by ODU Digital Commons, 2022

After completing the configuration of the controller, the system then executes the main

program. The main program starts by initializing the GPIO pins that are connected to the LED

circuits. It then imports the reference image previously captured during the controller

configuration phase.

Figure 4.4

Real-Time Image of the Parking Lot with Two Cars

16

OUR Journal: ODU Undergraduate Research Journal, Vol. 9 [2022], Art. 9

https://digitalcommons.odu.edu/ourj/vol9/iss1/9
DOI: 10.25778/4w68-6786

 Next, the program captures a real-time image of the parking lot. The real-time image is

converted to a NumPy array, similar to the reference image. As previously noted, each image

captured is in RGB format with three color channels that comprise each pixel. To simplify the

complexity of comparison between the reference image and the real-time image, the program

removes both the red and blue channels from each image, keeping only the green channel. It

should be noted that there is no significant difference in system efficiency or execution by

17

Trusty et al.: Societal Problems of Parking, Classroom Occupancy, and Flood Monitoring

Published by ODU Digital Commons, 2022

keeping or removing a different set of channels. The goal of removing channels is to lower the

total pixel value so that the difference between the comparisons is lower.

With the green color channel extracted from both the reference and the real-time images,

the program then reads the text file containing the coordinates sets for the parking spaces. The

program uses the coordinate set to slice the array at the parking space’s coordinate location and

store the two-dimensional array slice into a list. This process is performed for both the reference

image and the real-time image. As such, there are two lists of arrays: one for the reference

parking spaces and another for the real-time spaces. The two lists are compared using the Sum of

Absolute Differences (SAD) formula. This statistical technique is used to determine the degree

of change between the two images. It compares the pixel value in the reference image and

subtracts it from the pixel value at the same location in the real-time image. It then takes the

absolute value of that difference and repeats the process for all pixels in the images. This will

derive a final quantitative value that describes the difference between the two images. The

program finds the SAD for each parking space and stores it in a new list. It then iterates through

the list of SAD values, comparing each value to a heuristic threshold. This threshold was

developed through trial testing of the system. If the SAD is below the threshold, the correlating

parking space is noted as “open.” If it is above the threshold, the space is noted as “occupied.”

After the iteration of the SAD list is complete, the program outputs the results to the screen,

describing each parking space as shown below in Figure 4.5.

Figure 4.5

Sample Console Output

• Parking Space 1: The SAD between the images: 1028757

• Parking Space 2: The SAD between the images: 98644 (OPEN)

18

OUR Journal: ODU Undergraduate Research Journal, Vol. 9 [2022], Art. 9

https://digitalcommons.odu.edu/ourj/vol9/iss1/9
DOI: 10.25778/4w68-6786

• Parking Space 3: The SAD between the images: 143499 (OPEN)

• Parking Space 4: The SAD between the images: 137998 (OPEN)

• Parking Space 5: The SAD between the images: 157849 (OPEN)

• Parking Space 6: The SAD between the images: 807202

• Parking Space 7: The SAD between the images: 69269 (OPEN)

• Parking Space 8: The SAD between the images: 80465 (OPEN)

• Parking Space 9: The SAD between the images: 127150 (OPEN)

• Parking Space 10: The SAD between the images: 100623 (OPEN)

• Parking Space 11: The SAD between the images: 95051 (OPEN)

• Parking Space 12: The SAD between the images: 157508 (OPEN)

• Number of open parking spaces: 10

 The program concludes by illuminating the appropriate LED. If the number of open

spaces is not zero, the program lights the green LED, indicating that the parking lot has open

spaces. Otherwise, the red LED is illuminated, indicating that there are no open spaces and the

parking lot is full.

4.2 COVID-19 Classroom Occupancy Detection System Methodology

The classroom occupancy detection system uses the Raspberry Pi computer and its

Camera Module to capture overhead images of a simulated classroom environment. If the system

detects acceptable physical distancing conditions, a green light-emitting diode is turned on to

reflect this. In order to meet acceptable distancing requirements, there must be at least one vacant

seat between students. Any instance of adjacent occupied seats constitutes a violation of social

distancing protocols. In the event that the system detects a violation, a red light-emitting diode is

19

Trusty et al.: Societal Problems of Parking, Classroom Occupancy, and Flood Monitoring

Published by ODU Digital Commons, 2022

turned on to indicate this. Additionally, the system also displays a message to the console,

indicating the number of students affected by the violation.

4.2.1 Depicting the Classroom Environment

 For the implementation and testing of the classroom occupancy detection system, a

classroom environment was simulated using a two-dimensional drawing on a piece of 27.94 x

35.56 centimeter poster board with squares denoting the location of a seat. A simple 3 row, 3

column layout was chosen, resulting in a total of nine seats in the classroom. The figure below

shows the classroom environment used for development and testing.

Figure 4.6

Two-Dimensional Depiction of the Classroom Layout

 To represent a classroom occupied by seated students, small toy figures were placed on

top of the drawing at seat locations.

4.2.2 Raspberry Pi, Camera Module, and Breadboard Configuration

To effectively capture overhead images of the simulated classroom, the Camera Module’s

ribbon cable is clamped to a 6.3 x 101 x 304 millimeter piece of plywood using a binder clip.

The ribbon cable and clip are positioned such that the Raspberry Pi camera faces the ground. The

20

OUR Journal: ODU Undergraduate Research Journal, Vol. 9 [2022], Art. 9

https://digitalcommons.odu.edu/ourj/vol9/iss1/9
DOI: 10.25778/4w68-6786

plywood rests on a table, allowing the camera to hang over it and capture overhead images. The

simulated classroom is positioned on the ground beneath the camera at a distance of

approximately 74.93 centimeters. Figure 4.7 depicts the method used to mount the camera.

Figure 4.7

Setup of Raspberry Pi and Camera Module

To light the appropriate LEDs, the system includes two simple breadboard circuits. Each

LED has a single resistor connected in series with the voltage channel and the diode’s anode pin.

This is done to limit the current passing through the LED. The LED’s cathode pin is connected to

ground using a male-female jumper wire.

The Raspberry Pi’s GPIO pins allow the computer to connect to and control electronic

circuits. For both LED circuits, the male end of the jumper wire is connected to a hole on the

breadboard’s ground rail, while the female end is connected to one of the five GND pins found

on the Raspberry Pi. To complete the circuit, the circuit’s positive supply is connected to a GPIO

pin. The green LED circuit and the red LED circuit use GPIO pins 17 and 18, respectively.

Figure 4.8 depicts the layout of the system’s LED circuits.

21

Trusty et al.: Societal Problems of Parking, Classroom Occupancy, and Flood Monitoring

Published by ODU Digital Commons, 2022

Figure 4.8

Breadboard and LED Circuits

4.2.4 Python Libraries and Packages

Written in Python, the classroom occupancy detection system utilizes various Python

libraries and packages. This section will briefly detail the functionality of each library, as well as

their use within the classroom occupancy detection system.

4.2.4.1 PiCamera

Available for Python 2.7 or above and Python 3.2 or above, the PiCamera library

provides an interface for controlling the Raspberry Pi Camera Module with Python code (Jones,

2018). The system uses this package to start a camera preview prior to taking a picture of the

classroom. Additionally, the PiCamera package is also used to stop the camera preview and to

capture the classroom image to a file.

4.2.4.2 Python Imaging Library

The Python Imaging Library provides image processing functionality to the Python

interpreter (Clark, 2021). The classroom occupancy detection system utilizes three specific PIL

modules: Image, ImageOps, and ImageChops.

22

OUR Journal: ODU Undergraduate Research Journal, Vol. 9 [2022], Art. 9

https://digitalcommons.odu.edu/ourj/vol9/iss1/9
DOI: 10.25778/4w68-6786

The Image module is used to represent an PIL image and provides functions to create

new images, open an image from a file, and display an image. Once an overhead image has been

taken of the classroom in its current state, the system uses PIL’s Image module to load the

current classroom image.

The ImageOps module provides image processing capabilities, such as functions to

colorize grayscale images, maximize image contrast, and resize images. In order to reduce the

complexity associated with comparing color images, the classroom occupancy detection system

uses a function from this module to convert the classroom images to grayscale prior to

performing the ImageChops subtraction function.

ImageChops provides channel operations, or arithmetical image operations, such as

addition, subtraction, multiplication, and division. In particular, the occupancy detection system

uses the subtraction function from this module. This function subtracts two PIL images from one

another and then divides the result by a scale value and adds an offset value (provided that values

are given for the scale and offset). If these values are not explicitly provided, a default value of

1.0 is used for the scale, and a default value of 0.0 is used for the offset. The subtraction function

returns a PIL image that represents the differences between the two parameter images. This

resulting image only depicts the pixels that are not common to both parameter images. All pixels

that are common to both images are depicted as black or zero-value pixels.

For example, consider the following figures, which were captured with the Raspberry Pi

Camera Module and converted to grayscale using an ImageOps function:

Figure 4.9

Sample Parameter PIL Images for the Subtraction Function

23

Trusty et al.: Societal Problems of Parking, Classroom Occupancy, and Flood Monitoring

Published by ODU Digital Commons, 2022

 Subtracting these two images from each other using the Python Imaging Library function

results in a simplified image that only depicts the toy figures with non-zero pixels. This can be

seen in Figure 4.10, which only displays the pixels that are not common to both of the parameter

images.

Figure 4.10

Sample Image Returned by the PIL Subtraction Function

4.2.4.3 Numerical Python

Numerical Python, also known as NumPy, is an open-source Python library that provides

multidimensional array and matrix data structures (The NumPy Community, 2021). The library

includes methods to create arrays, perform mathematical operations on arrays, and otherwise

24

OUR Journal: ODU Undergraduate Research Journal, Vol. 9 [2022], Art. 9

https://digitalcommons.odu.edu/ourj/vol9/iss1/9
DOI: 10.25778/4w68-6786

manipulate the numerical data within an array. The classroom occupancy detection system uses a

NumPy array to represent the seating configuration of a classroom as well as the occupancy of

each seat. If a seat is currently occupied, the system inserts a value of 1 into the array at the

indices that represent that seat’s location in the room. Consider an example in which a student is

seated in the leftmost seat in the front row. To reflect this seat’s occupancy, a numerical value of

1 will be inserted into the array at index (0.0).

Additionally, the classroom occupancy detection system makes use of a NumPy function

to convert an image to an array of pixel values. Slicing this array at the indices for a certain seat

yields a smaller array of pixels for that particular seat. The system uses a NumPy function to

compute the sum of a sliced array. The result of this calculation is used to make a determination

of the seat’s occupancy.

4.2.1 Algorithm Flow

 The COVID-19 classroom occupancy detection system is designed to execute repeatedly

until the end-user elects to terminate the process. First, the system captures an overhead image of

the classroom in its current state using the Raspberry Pi Camera Module. A preview of the

classroom is displayed for five seconds. After that, the photo is captured and saved to the

Raspberry Pi’s home folder. To reduce complexity, this image of the classroom in its current

state is converted to grayscale. Likewise, the image of the empty classroom, which was captured

prior to program execution and provided as an input file, is also converted to grayscale. These

two classroom images are then subtracted from another, resulting in an image that only depicts

the pixels that are different between the two images.

 Next, the system reads the text file of seat coordinates, which was also provided as an

input file prior to execution. This file is used to create a two-dimensional array that reflects the

25

Trusty et al.: Societal Problems of Parking, Classroom Occupancy, and Flood Monitoring

Published by ODU Digital Commons, 2022

classroom’s layout. The subtracted image is converted to an array and sliced at each seat

location. This creates a smaller array of pixel values representative of that single seat. For each

seat location array, the pixel values are summed, and this sum is compared against a threshold

value that was provided as an input. If the sum is larger than the threshold value, a value of 1 is

populated into the classroom array at that seat’s location denoting that the seat is occupied.

Otherwise, a value of 0 is placed into the array to represent an empty seat.

 Once the entire classroom array has been populated, the classroom occupancy detection

system checks for adjacent occupied seats or adjacent values of 1 in the array. Based on the

results of this, the appropriate LED is turned on and a message is displayed to the console. If the

user has not chosen to terminate the process, the system captures a new photo of the classroom

and this process repeats. The figure below details the algorithm process for the classroom

occupancy detection system.

Figure 4.11

COVID-19 Classroom Occupancy Detection Algorithm Flow

26

OUR Journal: ODU Undergraduate Research Journal, Vol. 9 [2022], Art. 9

https://digitalcommons.odu.edu/ourj/vol9/iss1/9
DOI: 10.25778/4w68-6786

4.3 Flood Detection System Methodology

The Raspberry Pi 3 Model B with a compatible Camera Module is used to implement the

flood detection project. The flood environment is achieved using a fish tank with a block of

concrete inside to simulate a roadway. Water is then poured into the tank to simulate the flood

water entering the environment. The Raspberry Pi Camera Module is placed approximately two

feet away and is positioned to capture images of the front of the tank. System output is achieved

with breadboard circuits to control the three LEDs used to communicate flood levels.

4.3.1 Hardware Configuration and SSH Connection

27

Trusty et al.: Societal Problems of Parking, Classroom Occupancy, and Flood Monitoring

Published by ODU Digital Commons, 2022

The Raspberry Pi’s GPIO pins are used to control components on the breadboard. For

this project, three different GPIO pins and a ground pin are used to design a circuit that can

control three LEDs. Figure 4.12 shows the layout of the Raspberry Pi’s GPIO pins.

Figure 4.12

Raspberry Pi GPIO Pin Layout

[Raspberry Pi GPIO Pinout Diagram]. (n.d.). https://learn.sparkfun.com/tutorials/introduction-to-the-raspberry-pi-gpio-and-physical-computing/gpio-pins-overview

Starting with one LED, a circuit is constructed by connecting a male-to-female jumper

lead from the GPIO pin to the negative line. On the negative line, a resistor is connected in series

on the breadboard. The negative end of a LED light is connected on the same row as the resistor,

and the positive end is connected to its own row. On the same row as the positive end of the

LED, a male-female jumper is connected to another GPIO pin. With this setup, the LED circuit

is tested using a Python script that can control the diode. This step is repeated for the other two

28

OUR Journal: ODU Undergraduate Research Journal, Vol. 9 [2022], Art. 9

https://digitalcommons.odu.edu/ourj/vol9/iss1/9
DOI: 10.25778/4w68-6786

LEDs. It should be noted that the positive side of each LED is connected to its own GPIO pin.

Figure 4.13 shows the completed circuit used for the system.

Figure 4.13

Breadboard with Three LED Circuits Connected

To provide image capturing functionality to the system, the Camera Module’s ribbon

cable is inserted into the camera port on the Raspberry Pi. Once connected, the camera is then

enabled. This is accomplished by accessing the Preferences category on the Raspberry Pi, and

then selecting the Raspberry Pi configuration menu. On the Interfaces tab, the Camera option

should be enabled. To complete the hardware setup, the breadboard and camera are mounted to a

block of wood. The purpose of mounting the device on a block of wood is to keep the

components from shifting between photos and to ensure that the camera is stable while capturing

photos. Figure 4.14 shows the completed device. The device is then placed at a two-foot distance

from the tank.

Figure 4.14

Flood Detection Device

29

Trusty et al.: Societal Problems of Parking, Classroom Occupancy, and Flood Monitoring

Published by ODU Digital Commons, 2022

It is imperative that the Camera Module and its connected components maintain a

stationary position during system execution. To send code and commands to the Pi, a Secure

Shell (SSH) connection is used. Enabling SSH is achieved in a similar manner to enabling the

camera. With the SSH connection active, an SSH client program like PuTTY can be used to

access the Raspberry Pi’s command line interface. Establishing this SSH connection allowed

software development to be completed at a traditional workstation running a more sophisticated

IDE than the one provided on the Rasbian OS.

4.3.2 Software Configuration and OpenCV

The first part of the program to be implemented was the code that controls the LEDs on

the device. Figure 4.15 shows the tank as seen by the Pi Camera Module. It shows the water at

the medium level and the light shining on the tank to represent the sun. The car is in the tank to

simulate a car on a road that might be in danger depending on the flood level. The block of

concrete is a simulated road.

Figure 4.15

The Tank at a Medium Water Level

30

OUR Journal: ODU Undergraduate Research Journal, Vol. 9 [2022], Art. 9

https://digitalcommons.odu.edu/ourj/vol9/iss1/9
DOI: 10.25778/4w68-6786

The OpenCV Python library is heavily utilized in the implementation of the flood

detection system. OpenCV is an open-source computer vision library with a focus on real-time

applications (OpenCV Team, 2021). After taking a picture of the tank, the image is saved and

then opened for processing. It is converted to a black-and-white image before being further

processed. During the processing step, an OpenCV filter is applied to the image to ensure that

only the outlines of objects are depicted. This ensures that the water level within the tank is

clearly visible. In all pictures, the lighting is enhanced to make the outlines clearer.

4.3.3 Selection of Edge Detection Filter

During development, various filters were tested, and their results were compared. The

first method used was the Laplacian filter. This filter is an edge detector algorithm that computes

the second derivative of an image and measures the change from the first derivative of the image

(Bradski & Kaehler, 2008). Figure 4.16 depicts an image of the tank in low flood levels with the

Laplacian filter applied.

Figure 4.16

31

Trusty et al.: Societal Problems of Parking, Classroom Occupancy, and Flood Monitoring

Published by ODU Digital Commons, 2022

Laplacian Filter with Low Water Level

The Laplacian filter removed a significant portion of the image’s background.

Additionally, the remaining outlines were not clear, and a substantial amount of noise remained.

As such, this filter was not ideal for the system’s goals.

The next method used was the Sobel filters. The Sobel filter calculates the approximate

derivatives of the image: one for horizontal changes and one for vertical changes (Bradski &

Kaehler, 2008). Using the rate of change from high to low image intensity at each pixel, the filter

draws a new image based on the rate of change (Bradski & Kaehler, 2008). Within the OpenCV

library, the Sobel filter can be applied to the x-axis or the y-axis. For testing purposes, both were

combined in attempt to provide a clean outline of the tank. Figures 4.17, 4.18, and 4.19 depict

Sobel filtered images of the tank in low water levels. In these images, the filter is applied to the

x-axis, the y-axis, and both axes, respectively.

Figure 4.17

Sobel X-axis Filter with Low Water Level

32

OUR Journal: ODU Undergraduate Research Journal, Vol. 9 [2022], Art. 9

https://digitalcommons.odu.edu/ourj/vol9/iss1/9
DOI: 10.25778/4w68-6786

Figure 4.18

Sobel Y-axis Filter with Low Water Level

Figure 4.19

Sobel Combined X-axis and Y-axis Filter with Low Water Level

33

Trusty et al.: Societal Problems of Parking, Classroom Occupancy, and Flood Monitoring

Published by ODU Digital Commons, 2022

Of the three Sobel filters, the x-axis filter provides the clearest and most suitable images.

With this filter, the water level was depicted as a clean horizontal line. However, it also produced

a significant amount of noise around the water level line. Similarly, this filter removes much of

the tank and the objects within it, making it difficult to understand the image’s contents.

The last method tested was the Canny outline. The Canny outline is a multi-stage, edge

detection algorithm. This algorithm removes the noise in the image, finds the intensity gradient

of the image, removes unwanted pixels, and finally performs hysteresis thresholding to

distinguish between edges and non-edges (The OpenCV Team, 2021). The Canny outline was

tested on images of the tank at various water levels. This filter yielded images with bold lines

and clearly defined water levels. Figures 4.20, 4.21, and 4.22 show the Canny outline filter

applied to low, medium, and high water levels.

Figure 4.20

Canny Outline with Low Water Level

34

OUR Journal: ODU Undergraduate Research Journal, Vol. 9 [2022], Art. 9

https://digitalcommons.odu.edu/ourj/vol9/iss1/9
DOI: 10.25778/4w68-6786

Figure 4.20

Canny Outline with Medium Water Level

Figure 4.21

Canny Outline with High Water Level

35

Trusty et al.: Societal Problems of Parking, Classroom Occupancy, and Flood Monitoring

Published by ODU Digital Commons, 2022

The Canny outline clearly shows clean lines of objects in the picture, especially as

compared to the Laplacian and Sobel filters. During the testing of these OpenCV filters, it was

noted that all three filters were extremely sensitive to any drops of water on the tank and would

outline these droplets as well. Given the solid, defined lines that it produced, the Canny outline

was chosen for the flood detection system.

The system detects the water level by first cropping the image. The bottom of the cropped

image corresponds to the bottom of the tank and has the value of 0. The top of the cropped image

is where the road starts. With this cropped outline the system scans each vertical line looking for

the first white pixel of the image and computing an average of these pixels as the scan continues.

With this accomplished, the system returns that average value. If the average falls within the

bottom third of the cropped image, the green LED will be illuminated, denoting that the water

level in the image is significantly below street level. If the value is in the middle of the image,

the yellow LED is turned on, as water levels are encroaching into the roads and are at risk of

creating hazardous conditions. Finally, if the average falls within the top third, the red LED is

illuminated, communicating that the current flood levels pose notable risk to drivers and their

vehicles.

5. RESULTS AND DISCUSSION

 This section details the accuracy and performance of each system as observed during

development and testing. Any constraints and limitations currently impacting a system’s

functionality are also detailed here.

5.1 Parking Lot Occupancy Controller Results

36

OUR Journal: ODU Undergraduate Research Journal, Vol. 9 [2022], Art. 9

https://digitalcommons.odu.edu/ourj/vol9/iss1/9
DOI: 10.25778/4w68-6786

The parking lot occupancy controller system is capable of successfully determining if a

parking space is open or occupied and subsequently determining the overall occupancy of the

parking lot. Currently, the system’s performance is impacted by the elapsed time between the

initial capturing of the reference image and the capturing of the real-time image. The amount of

natural light captured in both the reference image and the real-time image can cause

discrepancies in the SAD values, thus affecting the system’s detection capabilities. However, this

issue can be mitigated by maintaining a static camera position between image captures. Since the

system is centered around the coordinates of the parking spaces in the reference image, these

coordinate positions must be consistent between the reference image and any images captured

during system execution.

5.2 COVID-19 Classroom Occupancy Detection System Results

Utilizing the three-row, three-column simulated classroom environment described in

Section 4.2.1, the classroom occupancy detection system was tested using various seating

configurations. These test case configurations assess system performance in a classroom setting

with no physical distancing violations; a setting with a single violation; and a setting with

multiple violations. Furthermore, the test cases ran concurrently during a single instance of

system execution to ensure that the system can adapt between acceptable and unacceptable

conditions. For testing purposes, the NumPy array that represents the classroom’s current seating

layout is output to the console. This is to confirm that the system has produced an array that is

reflective of the classroom image that was captured. Additionally, all images captured during

system execution are provided to confirm accurate functionality. It should be noted that during

real-world execution the captured images and the NumPy array would not be presented to the

end-user.

37

Trusty et al.: Societal Problems of Parking, Classroom Occupancy, and Flood Monitoring

Published by ODU Digital Commons, 2022

The three test cases produced accurate LED outputs and the desired console messages.

Additionally, the NumPy arrays associated with each test case accurately reflected the chosen

seating configurations. Since each test case ran concurrently, the positioning of both the Camera

Module and the simulated classroom seats were consistent. As such, each test case utilized the

same set of seating coordinates. Much like the parking lot occupancy project, the performance of

the classroom occupancy detection system is dependent upon fixed camera and seat positions.

Changing either would impact detection accuracy and require an updated seat coordinate file.

Though the system passed each test case, additional development and subsequent testing is

needed to produce a flexible system capable of adjusting to changes in camera and seat

positioning.

5.3 Flood Detection System Results

Overall, the flood detection system accurately detects water levels in the tank and turns

on the correct LED. However, it should be noted the accuracy of this detection is dependent upon

lighting and water clarity within the tank. During development, the system performed optimally

when the camera was mounted on a flat surface, approximately three feet away from the tank.

Furthermore, the tank itself needs to be placed in a well-lit environment to ensure that optimal

images are captured during system performance. Given these constraints, decreases in detection

performance and accuracy were observed as variables, such as lighting and camera distance,

changed.

6. CONCLUSION

The parking lot controller system, COVID-19 classroom occupancy detection system,

and flood detection system provide valuable research and problem-solving experience that can be

applied in further undergraduate and graduate education as well as the professional workforce.

38

OUR Journal: ODU Undergraduate Research Journal, Vol. 9 [2022], Art. 9

https://digitalcommons.odu.edu/ourj/vol9/iss1/9
DOI: 10.25778/4w68-6786

These projects present students with a topical task and ask them to design and implement a

system. Their respective development processes provide exposure to image processing concepts

and techniques, such as the Sum of Absolute Differences and edge detection filters, by

encouraging students to research these topics and then apply them within their own system. In

the course of implementing the solutions discussed in this paper, students gained practical

experience interfacing with the Raspberry Pi and its components, constructing breadboard

circuits, and establishing and using an SSH connection.

Students undertaking these research projects encounter various issues during system

development. Consider the solutions previously discussed for the parking lot controller and

classroom occupancy problems. One of the most significant challenges in implementing the

classroom occupancy detection system involved the detection of seat locations. The initial

method, which involved using edge detection to determine the seat coordinates without

additional user input, proved to be ineffective, and, ultimately, an input file of seat coordinates

was incorporated into the system. A notable issue that arose during development of the parking

lot controller concerned quantifying parking space occupancy. Early stages of this system

attempted to address this by computing an average of the parking space’s pixels and then

subtracting the real-time image’s average from the reference image’s average. However, the

averaging of pixels proved not to be a scalable technique and resulted in inaccurate system

performance. Ultimately, space occupancy was quantified using the Sum of Absolute

Differences technique discussed in this project’s methodology section. In the case of both

projects, reaching the final implementation from their initial methodology entailed several

iterations of research, faculty and graduate student feedback, and testing. Given the iterative

39

Trusty et al.: Societal Problems of Parking, Classroom Occupancy, and Flood Monitoring

Published by ODU Digital Commons, 2022

nature of software development practices like Agile, undergraduate students can utilize this

practical experience in future software engineering roles and courses.

In addition to the broad technical skills that are developed and refined throughout the

research project, students can also gain a foundational understanding of specific domain topics.

The flood detection project, for example, provided a basic understanding of Hampton Roads’

geographic features and associated flood risks. Likewise, the parking lot occupancy and

classroom detection projects gave undergraduate students a domain-specific knowledge. These

skills and background knowledge can prepare undergraduate students for a wide range of future

work and may be especially useful for students wishing to use programming in public

infrastructure applications.

7. FUTURE WORK

 Though each project was successfully completed and implemented, limitations are

present in each resulting system. These limitations present opportunities for future work by

undergraduate students. This section details recommendations to improve these respective

systems and to expand the projects for future undergraduate study.

7.1 Parking Lot Occupancy Controller

Rather than simply capturing and processing static, top-down images of a lot, the parking

lot occupancy project can be expanded to analyze a livestream of the parking lot. In addition to

changing how the system receives the input information, such a change could expand on the

methods used to analyze and process the input data. Using object detection methods,

40

OUR Journal: ODU Undergraduate Research Journal, Vol. 9 [2022], Art. 9

https://digitalcommons.odu.edu/ourj/vol9/iss1/9
DOI: 10.25778/4w68-6786

undergraduate students could develop a system capable of detecting vehicles entering the lot,

occupying a space, and exiting the lot. Instead of manually inputting coordinates to isolate an

individual parking space, a method for recognizing the spaces without user interaction could be

explored which would make the system autonomous aside from physical system maintenance.

7.2 COVID-19 Classroom Occupancy Detection System

In its current state, the COVID-19 classroom occupancy detection system is designed to

operate in a completely stationary environment. This implementation is dependent upon a text

file of seat coordinates that informs the system where it should check for an occupied seat. As

such, if the layout of the classroom were to change, the system would be unable to respond to

these changes in real time. Both an updated image of the empty classroom and an updated text

file of seat coordinates would need to be provided for the system to function accurately.

 Additionally, the current system implementation has not been tested on a real-world

classroom environment. The system’s current design does not account for student behaviors or

personal belongings and other inanimate objects that would realistically impact functionality. For

example, the system would not be able to distinguish between a student sitting in a seat and a bag

or other inanimate object that has been placed in a seat. Both of these events would result in the

detection of an occupied seat by the system.

 Addressing these limitations would not only result in a more robust system appropriate

for real-world classroom environments, it would also provide additional challenges for

undergraduate students that wish to gain more experience. Machine learning image recognition

tools, such as an object detection model or an image labeling model, could be used to identify

41

Trusty et al.: Societal Problems of Parking, Classroom Occupancy, and Flood Monitoring

Published by ODU Digital Commons, 2022

and differentiate between humans and inanimate objects in the classroom image. By using a

trained object detection model that can identify desks and chairs and determine the location of

these objects, the system would be able to check a seat’s location for a student without the use of

an input text file. Image labeling or image classification functionality would allow the classroom

occupancy detection system to label non-human objects that have entered a seat’s location and

ignore them, ensuring that the seat isn’t incorrectly marked as occupied. These proposed

solutions would give undergraduate students the opportunity to work with machine learning tools

or even train their own machine learning model. This would provide valuable experience that the

student could utilize in later coursework, other research projects, or in the workplace.

7.3 Flood Detection System

 The flood detection project can be expanded to include live detection of water levels.

Students could slowly fill the tank and watch the LED circuit output change in real time

according to the water levels. The project requirements could also be adapted to place more

emphasis on the SSH connection. This would teach students about computer networking

concepts and give them experience establishing remote connections between machines. Enabling

remote connectivity would also make the system more viable in real-life cases. In real-world

applications, the flood detection device would be placed in areas with increased flood risks,

thereby limiting physical access to the system, especially during inclement weather. The SSH

connection would allow the system’s operators and engineers to remotely implement system

updates. As such, the project would be more realistic and more robust if students were required

to connect to the Raspberry Pi via SSH connection rather than the computer’s HDMI port.

42

OUR Journal: ODU Undergraduate Research Journal, Vol. 9 [2022], Art. 9

https://digitalcommons.odu.edu/ourj/vol9/iss1/9
DOI: 10.25778/4w68-6786

REFERENCES

Barrett, D. J., Byrnes, R. G., & Silverman, R. E. (2005). SSH, the Secure Shell the

Definitive Guide. O'Reilly Media, Inc. Web.

Bradski, G., & Kaehler, A. (2008). Learning OpenCV. O'Reilly Media, Inc. Web

CARFAX. (2021, September 16). Free Flood Check® & How to Avoid Flooded Cars.

Carfax. Retrieved January 9, 2022, from

https://www.carfax.com/press/resources/flooded-cars

Centers for Disease Control and Prevention. (2021, June 11). How to Protect Yourself

and Others. Centers for Disease Control and Prevention.

https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/prevention.html

Centers for Disease Control and Prevention. (2021, July 9). About COVID-19 Frequently

Asked Questions. Centers for Disease Control and Prevention.

https://www.cdc.gov/coronavirus/2019-ncov/faq.html#Basics

Clark, A. (2021, September 2). Pillow (PIL Fork) Documentation Release 8.3.2. Pillow

(PIL Fork). https://pillow.readthedocs.io/en/stable/

Coutu, P. (2020, February 9). Sea level rise continues to accelerate; Hampton Roads

should prepare for 1.7 feet by 2050, report says. The Virginian-Pilot. Retrieved January

9, 2022, from https://www.pilotonline.com/news/environment/vp-nw-sea-level-rise-

hampton-roads-20200209-gskdls6j7rafbdvopxqzdnexxu-story.html

First Street Foundation, Inc. (2020). The First National Flood Risk Assessment: Defining

America's Growing Risk. First Street Foundation.

https://assets.firststreet.org/uploads/2020/06/first_street_foundation__first_national_flood

_risk_assessment.pdf

Hampton Roads Chamber. (n.d.). Hampton Roads. Hampton Roads Chamber. Retrieved

January 9, 2022, from https://www.hrchamber.com/page/hampton-roads/

Helber, S. (2021, April 17). Virginia Beach ranks top for cities at serious risk of flooding

in Virginia. WTKR. Retrieved January 9, 2022, from

https://www.wtkr.com/news/virginia-beach-ranks-top-for-cities-at-serious-risk-of-

flooding-in-virginia

Hunter, J., Dale, D., Firing, E., Droettboom, M., & The Matplotlib Development Team.

(2021, August 13). Matplotlib Release 3.4.3. Matplotlib.

https://matplotlib.org/stable/contents.html

43

Trusty et al.: Societal Problems of Parking, Classroom Occupancy, and Flood Monitoring

Published by ODU Digital Commons, 2022

INRIX, Inc. (2017). New INRIX Study Finds Parking is the Largest Cost of Driving.

INRIX. Retrieved January 4, 2022, from https://inrix.com/press-releases/cod-us/

INRIX, Inc. (2017, July 12). Searching for Parking Costs Americans $73 Billion a Year.

INRIX. Retrieved January 4, 2022, from https://inrix.com/press-releases/parking-pain-us/

Jones, D. (2018, November 3). Picamera 1.13 Documentation. Picamera.

https://picamera.readthedocs.io/en/release-1.13/

National Center for Environmental Health. (2020, March 27). Dangers of flooding and

tips for how you can protect yourself | Environmental Health Toolkits | NCEH. CDC.

Retrieved January 9, 2022, from https://www.cdc.gov/nceh/toolkits/floods/default.html

National Center for Environmental Health. (2020, December 21). Precipitation Extremes:

Heavy Rainfall, Flooding, and Droughts. CDC. Retrieved January 9, 2022, from

https://www.cdc.gov/climateandhealth/effects/precipitation_extremes.htm

National Weather Service & National Oceanic and Atmospheric Association. (n.d.).

+Turn Around Don't Drown® Warning Signs. National Weather Service. Retrieved

January 9, 2022, from https://www.weather.gov/safety/flood-turn-around-dont-drown

NOAA Office for Coastal Management. (n.d.). Hampton Roads' Sea Level Rise

Adaptation Advances on Multiple Fronts. NOAA Office for Coastal Management.

Retrieved January 9, 2022, from https://coast.noaa.gov/states/stories/sea-level-rise-

adaptation-advances-on-multiple-fronts.html

The NumPy Community. (2021, June 22). NumPy v1.21 Manual. NumPy.

https://numpy.org/doc/stable/user/whatisnumpy.html

Nuttall, B. (2021, March 18). GPIO Zero Documentation. GPIO Zero.

https://gpiozero.readthedocs.io/en/stable/

OpenCV Team. (2021, July 19). OpenCV Modules 4.5.3. OpenCV.

https://docs.opencv.org/4.5.3/index.html

OpenCV Team. (2021, September 9). OpenCV: Canny Edge Detection. OpenCV.

https://docs.opencv.org/3.4/da/d22/tutorial_py_canny.html

Raspberry Pi Foundation. (n.d.). Camera Module V2. Raspberry Pi.

https://www.raspberrypi.org/products/camera-module-v2/

Raspberry Pi Foundation. (n.d.). Raspberry Pi 3 Model B. Raspberry Pi.

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

Sakiotis, I. (2021, April). Parking Lot/Classroom Occupancy Detection Using Raspberry

Pi [PowerPoint slides].

Siddique, M. N. (2021, April). Flood Detection using Raspberry Pi [PowerPoint slides].

Sony. (2021, March 30). What is the difference between Exmor and Exmor R sensors?

Sony Support. https://www.sony.com/electronics/support/articles/00070962

44

OUR Journal: ODU Undergraduate Research Journal, Vol. 9 [2022], Art. 9

https://digitalcommons.odu.edu/ourj/vol9/iss1/9
DOI: 10.25778/4w68-6786

SparkFun Electronics & Blom, J. (n.d.). Polarity. SparkFun.

https://learn.sparkfun.com/tutorials/polarity/all

TensorFlow. (2021, May 15). Image Classification. TensorFlow.

https://www.tensorflow.org/lite/examples/image_classification/overview#model_descript

ion

TensorFlow. (2021, May 18). Object Detection. TensorFlow.

https://www.tensorflow.org/lite/examples/object_detection/overview

45

Trusty et al.: Societal Problems of Parking, Classroom Occupancy, and Flood Monitoring

Published by ODU Digital Commons, 2022

	ODU Undergraduate Students Addressing the Societal Problems of Parking Control, Classroom Seating, and Flood Monitoring in Hampton Roads
	Recommended Citation

	tmp.1653492247.pdf.81PfK

