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During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, alcohol con-
sumption increased markedly. Nearly one in four adults reported drinking more alcohol to cope with
stress. Chronic alcohol abuse is now recognized as a factor complicating the course of acute respiratory
distress syndrome Q7. and increasing mortality. To investigate the mechanisms behind this interaction, we
developed a combined acute respiratory distress syndrome and chronic alcohol abuse mouse model by
intratracheally instilling the S1 Q8subunit of SARS-CoV-2 spike protein (S1SP) in K18ehuman angiotensin-
converting enzyme 2 (ACE2 Q9) transgenic mice that express the human ACE2 receptor for SARS-CoV-2 and
are kept on an ethanol diet. Seventy-two hours after S1SP instillation, mice on an ethanol diet showed a
strong decrease in body weight, a dramatic increase in white blood cell content of bronchoalveolar
lavage fluid, and an augmented cytokine storm Q10, compared with S1SP-treated mice on a control diet.
Histologic examination of lung tissue showed abnormal recruitment of immune cells in the alveolar
space, abnormal parenchymal architecture, and worsening Ashcroft score in S1SP- and alcohol-treated
animals. Along with the activation of proinflammatory biomarkers (NF-kB, STAT3, NLRP3 Q11inflamma-
some), lung tissue homogenates from mice on an alcohol diet showed overexpression of ACE2 compared
with mice on a control diet. This model could be useful for the development of therapeutic approaches
against alcohol-exacerbated coronavirus disease 2019. (Am J Pathol 2022, -: 1e11; https://doi.org/
10.1016/j.ajpath.2022.03.012)

TheQ12 severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) outbreak that began in December 2019 and
spread rapidly across the globe causes acute lung injury,
severe hypoxemia, and multiorgan failure. SARS-CoV-2
infects host cells by targeting the endothelial angiotensin-
converting enzyme 2 (ACE2) in the lung, heart, kidney,
and gastrointestinal tissues. The pathophysiology of acute
respiratory distress syndrome (ARDS) in SARS-CoV-2
infection includes lung perfusion dysregulation and a cyto-
kine storm that causes increased vascular permeability and
disease severity.1 COVID-19 also can cause psychosocial
problems, including increased alcohol consumption and

consequent harms.2 Alcoholic beverage sales in the United
States increased greatly immediately after the stay-at-home
orders and relaxing of alcohol restrictions associated with
the COVID-19 pandemic.3 An increase in the black mar-
keting of alcohol also has been reported.4 Alcohol abuse
increased so much that some countries even prohibited
alcohol sales during the pandemic lockdown.5 Alcohol
consumption is considered an independent factor that in-
creases the incidence of ARDS, a severe form of acute lung
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injury with a mortality rate of up to 50%. This translates to
tens of thousands of excess deaths in the United States each
year from alcohol-associated lung injury, which is compa-
rable with scarring of the liver (ie, cirrhosis) in terms of
alcohol-related mortality.6,7 Furthermore, people who drink
heavily are more likely to get pneumonia.8 Although acute
alcohol exposure (<24 hours) favors anti-inflammatory re-
sponses, chronic alcohol consumption favors proin-
flammatory cytokine release.9 Notwithstanding that alcohol
consumption alone does not cause ARDS, it makes the
lungs susceptible to dysfunction induced by pathologies,
such as the inflammatory stresses of sepsis, trauma, and so
forth.10 Studies on human monocytes have shown that
several pathogens, when combined with chronic ethanol
consumption, promote the production of inflammatory cy-
tokines. In the lung, cytokine production is augmented by
ethanol, exacerbating respiratory distress syndrome and
greatly increasing the expression of transforming growth
factor b (TGF-b).11

We recently developed an animal model to study acute
lung injury caused by subunit 1 (S1) of the SARS-CoV-2
spike protein (S1SP) using K18ehuman ACE2 (hACE2)
transgenic mice.12 Intratracheal instillation of S1SP induced
coronavirus disease 2019 (COVID-19)elike lung and sys-
temic inflammatory responses, including a cytokine storm in
bronchoalveolar lavage fluid (BALF) and serum. In this
study, we used this model to interrogateQ13 how chronic
alcohol consumption may worsen the development of
COVID-19elike ARDS.

Materials and Methods

Animals and Treatment Groups

All animal studies were approved by the Old Dominion
University Institutional Animal Care and Use Committee
and adhered to the principles of animal experimentation as
published by the American Physiological Society. Healthy
male K18-hACE2 transgenic mice (Jackson LaboratoriesQ14 ), 8
to 10 weeks old, 20 to 25 g body weight, were placed on the
Lieber-DeCarli ’82Q15 control liquid diet for 5 days after arrival
at the animal facility and then divided randomly into four
groups (Figure 1½F1� ), as follows: i) vehicle (VEH) group: mice
continued on a Lieber-DeCarli ’82 control liquid diet for 14
days and then on day 19 were instilled intratracheally (i.t.)
with vehicle (sterile saline) at 2 mL/kg body weight; ii)
S1SP group: mice on a control diet for 14 days and then on
day 19 instilled i.t. with SARS-CoV-2 S1SP at 400 mg/kg at
2 mL/kg body weight; iii) ethanolQ16 VEH group: mice trans-
ferred to the Lieber-DeCarli ’82 ethanol liquid diet, con-
sisting of 5% to 6% ethanol, for 2 weeks and then on day 19
instilled i.t. with vehicle (sterile saline) at 2 mL/kg body
weight; and iv) ethanol S1SP group: mice transferred to the
Lieber-DeCarli ’82 ethanol liquid diet for 2 weeks, then on
day 19 instilled i.t. with SARS-CoV-2 S1SP at 400 mg/kg at
2 mL/kg body weight. The Lieber-DeCarli liquid diet

contains 36% of calories from either ethanol (ethanol diet)
or isocaloric maltose dextrin (control diet), 35% of calories
from fat, 11% of calories from carbohydrate, and 18% of
calories from protein.13 All animals consumed liquid food
ad libitum (approximately 20 to 30 mL/day). Treatment with
the ethanol diet produces blood alcohol concentrations of
approximately 180 mg/dL by day 10.14 Mice did not receive
water during days 5 to 19. Groups 3 and 4 were transferred
to the ethanol diet gradually to minimize stress, as follows:
days 5 to 7: mixture of one-third ethanol diet and two-thirds
control diet; days 8 to 10: mixture of two-thirds ethanol diet
and one-third control diet; and days 11 to 22: ethanol diet
only. After i.t. instillation on day 19, mice also were given
free access to water. All mice were euthanized on day 22
(72 hours after i.t. instillation).

Histology, Lung Injury Scoring, Fibrosis Scoring, and
Steatosis Scoring

Immediately after euthanasia, the chest was opened, the
mouse was placed in the upright position, and the lungs were
instilled and inflated through the trachea with 10% formal-
dehyde to a pressure of 15 cm H2O and then immersed in the
same solution. Seventy-two hours later, samples were
embedded in paraffin. Sections (5-mm thick) were stained
with hematoxylin and eosin (H&E) and Masson’s trichrome
stains. Twenty randomly selected fields from each slide were
examined under immersion (magnification, �100). Fields
from H&E-stained sections were scored according to the
Lung Injury Score15 method to estimate the severity of lung
inflammation; this method takes into account histologic ev-
idence of injury, including accumulation of neutrophils in
the alveolar or the interstitial space, formation of hyaline
membranes, presence of proteinaceous debris in the alveolar
space, thickening of the alveolar walls, hemorrhage, and
atelectasis. In addition, fields from Masson’s
trichromeestained sections were scored according to the
Ashcroft score to quantify lung architectural changes and
estimate overall collagen deposition.16

Livers also were collected and fixed with 10% formal-
dehyde in the same way and paraffin sections were stained
with H&E and Masson’s trichrome. Twenty randomly
selected fields from each slide were examined. The Hepatic
Steatosis Scoring was performed according to the General
Nonalcoholic Fatty Liver Disease Scoring System for Ro-
dent Models,17 which takes into account hepatocellular
steatosis, hypertrophy, and inflammation.

BALF White Blood Cell Count

BALF was collected by instilling and withdrawing 1 mL
sterile 1� phosphate-buffered saline via the tracheal can-
nula. The BALF was centrifuged at 2400 � g for 10 minutes
at 4�C (5417R centrifuge; Thermo Q17Fisher) and the super-
natant was collected and stored immediately at -80�C.
The cell pellet was resuspended in 1 mL sterile
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phosphate-buffered saline and the total number ofwhite blood
cells was determined using a hemocytometer, differential
analysis was performed with the Wright-Giemsa stain kit.

All histopathologic and morphologic analyses were per-
formed by an investigator blindedQ18 to the study groups.

Total Protein and Cytokine Analysis in BALF

BALF supernatant was collected and prepared as described
aboveQ19 . Protein concentration was determined using the
microebicinchoninic acid assay according to the manufac-
turer’s protocol. BALF supernatant IL-6, KC, MCPQ20 -1, TGF-
b1, and tumor necrosis factor a (TNFa) were analyzed in
triplicate via mouse/human enzyme-linked immunosorbent
assay kits.

Lung Tissue Collection

Immediately after euthanasia, the thorax was opened, blood
was drained from the heart through the right ventricle, and
the pulmonary circulation was flushed with sterile
phosphate-buffered saline containing EDTA. The lungs
were dissected from the thorax, snap-frozen in liquid ni-
trogen, and kept at -80�C for subsequent analysis.

Western Blot Analysis

Proteins in lung tissue homogenates were extracted from
frozen lungs by ultrasonic homogenization (50% amplitude,
3 timesQ21 for 10 seconds) in ice-cold lysing RIPAQ22 buffer with
added protease inhibitor cocktail (100:1). The protein ly-
sates were gently mixed under rotation for 3 hours at 4�C,
and then centrifuged twice at 14,000 � g for 10 minutes at
4�C. The supernatants were collected, and the total protein
concentration was analyzed using the microebicinchoninic
acid assay. Equal amounts of proteins from all samples
(1000 mg/mL) were used for Western blot analysis. The
lysates were first mixed with tricine sample buffer 1:1,
boiled for 5 minutes, and then separated on a 10% poly-
acrylamide SDS gel by electrophoresis. Separated proteins

then were transferred to a nitrocellulose membrane, incu-
bated overnight at 4�C with the appropriate primary anti-
body, diluted in the blocking buffer, followed by a 1-hour
incubation with the secondary antibody at room tempera-
ture, and scanned by digital fluorescence imaging (Odyssey
CLx; LI-COR, Dallas, TX). b-actin was used as loading
control. ImageJ software version 1.8.0 (NIH, Bethesda, MD;
http://imagej.nih.gov/ij, last accessed July 18, 2021) was
used to perform densitometry of the bands from the
Western blot membranes. Some membranes were stripped
for 5 minutes and incubated with other primary and
secondary antibodies.

RNA Isolation and Quantitative Real-Time PCR

Lung tissue, stored in RNAlater Q23solution for at least 24
hours, was dried and homogenized in TRIzol, followed by a
cleaning step using the RNeasy Mini Kit. The purified RNA
was transcribed into cDNA using the SuperScript IV VILO
Reverse Transcription Kit and analyzed by real-time quan-
titative PCR with SYBR Green Master Mix on a StepOne
Real-Time PCR System (version 2.3; Applied Biosystems Q24).
Results were evaluated using the standard curve method and
expressed as fold of control values. b-actin mRNA
expression was used for the normalization of all samples.

Statistical Analysis

Statistical significance of differences among groups was
determined by one-way or two-way analysis of variance
followed by the Tukey post hoc test using GraphPad Prism
Software (GraphPad Software, San Diego, CA). Differences
among groups were considered significant at P < 0.05.

Results

To make sure that 14 days of ethanol diet is enough for the
development of chronic alcohol abuse symptoms, we first
investigated morphologic changes in liver samples stained

Figure1 Q39Diagramofexperimental design.K18ehuman
angiotensin-converting enzyme 2 transgenic mice received
a control or ethanol (EtOH) Lieber-DeCarli ’82 diet for
14 days before the intratracheal (i.t.) instillation of severe
acute respiratory syndrome coronavirus 2 or vehicle
(saline). Seventy-twohours later,micewereeuthanizedand
lungs, liver, andbronchoalveolar lavagefluidwere collected
for analysis. nZ 5/group. VEH, vehicle.
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with H&E and Masson’s trichrome. K18-hACE2 transgenic
mice on 14 days of an alcohol diet showed prominent signs
of severe fatty liver disease (steatosis) (Figure 2½F2� A), that
were reflected in the profoundly increased hepatic steatosis
score (Figure 2B). Mice on a control diet showed healthy
liver architecture.

Alcohol consumption had no effect on the body weight of
transgenic mice instilled with saline. A decrease in appetite
after anesthesia was reflected in a slight weight loss during
the first 24 hours. Both groups of transgenic mice instilled
with S1SP showed a rapid decrease in body weight, unlike
control groups. However, mice on a control diet started to
recover 48 hours after instillation, while alcohol-consuming
animals continued to lose weight (Figure 3½F3� ).

Mice on a regular diet instilled with S1SP showed a
significant increase in leukocyte content of BALF compared
with the VEH group. Mice on an alcohol diet and treated
with S1SP showed a dramatic increase in the white blood
cell content of BALF compared with S1SP-instilled mice on
a normal diet (Figure 4AQ25 ½F4� ). There was no difference between
control and ethanol diets in the two VEH groups. A similar
profile also was observed in the total protein levels in
BALF, suggesting exacerbated capillary permeability and
further confirming the presence of strong acute inflamma-
tion (Figure 4B). A BALF white blood cell differential
analysis showed an upward shift of mononuclear cell con-
tent in ethanol-fed, S1SP-instilled mice, while neutrophils
primarily increased in S1SP-instilled mice on a control diet
(Figure 4C).

H&E-stained lung sections from mice on a control diet
instilled with S1SP showed recruitment of neutrophils and a
higher lung injury score than vehicle-instilled mice on a
control diet. Mice on an ethanol diet and instilled with saline

showed a higher number of interstitial mononuclear cells
compared with mice on a control diet, altered parenchymal
architecture, and a higher lung injury score (Figure 5 ½F5�).
S1SP-instilled mice on an ethanol diet showed mononuclear
cell infiltration with minimal interstitial neutrophils,
abnormal alveolar structure, and a lung injury score
(calculated as per the Official American Thoracic Society
Workshop Report15) that was threefold higher than mice on
a control diet.
IL-6 and TNFa concentrations in BALF increased in the

VEH-instilled group on an alcohol diet compared with the
normal diet VEH group (Figure 6 ½F6�). Both S1SP-instilled
groups showed increased levels of IL-6 and TNFa
compared with their respective controls, however, S1SP-
instilled mice on an ethanol diet showed even higher
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Figure 2 A: Histologic analysis [hematoxylin and eosin (H&E) and Masson’s trichrome] of the liver on day 19, after 14 days on a control or ethanol (EtOH)
Lieber-DeCarli ’82 liquid diet. Mice Q40on an alcohol diet show extensive fields of fatty liver: macrovesicular steatosis (dashed Q41arrow); large lipid droplets are
present in hepatocytes: microvesicular steatosis (bold arrow); small lipid droplets are present in hepatocytes: inflammatory cells (open arrow). B Q42: Hepatic
steatosis score. n Z 4 to 5 mice per group. ****P < 0.0001 with analysis of variance and the Tukey test Q43. Scale bars Z 50 mm. Original magnification: �20.
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Figure 3 Body weight changes in mice on alcohol (EtOH) or control
diets after intratracheal instillation of the severe acute respiratory syn-
drome coronavirus 2 S1 subunit spike protein (S1SP). n Z 5 mice per
group. *P < 0.05, ***P < 0.001, and ****P < 0.0001, with analysis of
variance and the Tukey test. VEH, vehicle.
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values of both cytokines. Similar results were observed with
TGF-b1 (Figure 6EQ26 ). Similar to other cytokines, MCP-1
exacerbatedQ27 increase in the ethanol S1SP group, however,
significant up-regulation of KC was observed in S1SP-

treated mice on a control diet only, in agreement with his-
tologic and BALF neutrophil concentration data that
depicted much lower lung and BALF neutrophil presence in
ethanol-S1SPetreated mice (Figure 6C).

p
ri
n
t
&
w
e
b
4
C
=
F
P
O

Figure 4 AeD: White blood cells (WBCs) (A), total protein concentration (B), and leukocyte differentials (C and D) in bronchoalveolar lavage fluid (BALF)
72 hours after intratracheal instillation of severe acute respiratory syndrome coronavirus 2 S1 subunit spike protein (S1SP). Means � SEM. n Z 4 to 5 per
group. *P< 0.05, **P< 0.01, ***P< 0.001, and ****P< 0.0001with analysis of variance and the Tukey test. Scale barsZ 10mm. Originalmagnification,�100.
EtOH, alcohol; VEH, vehicle.
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Figure 5 A and B: H&E staining of lung sections (A) and the Lung Injury Score (B) from K18ehuman angiotensin-converting enzyme 2 transgenic mice on
normal and alcohol (EtOH) diets 72 hours after intratracheal instillation of either saline or severe acute respiratory syndrome coronavirus 2 S1 subunit spike
protein (S1SP). Green arrows indicate the recruitment of neutrophils in the alveolar spaces. Means � SEM. n Z 4 to 5 per group. ***P < 0.001 with analysis
of variance and the Tukey test. Scale bars Z 10 mm. Original magnification, �100. VEH, vehicle.
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To explore the potential effect of increased TGF-b levels
on fibroblast activation, fixed lung sections were additionally
stained with Masson’s trichrome to visualize collagen
deposition. Significant changes in parenchymal architecture,

including thickening of the alveolar walls as well as multiple
segments with significant collagen deposition, were
observed in S1SP-instilled mice that received alcohol
(Figure 7 ½F7�).
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Figure 6 AeE: Expression levels of inflammatory cytokines IL-6 (A), MCP Q44-1 (B), KC (C), TNFa (D), and TGF-b1 (E) in bronchoalveolar lavage fluid (BALF) 72
hours after intratracheal instillation of severe acute respiratory syndrome coronavirus 2 S1 subunit spike protein (S1SP). Means � SEM. n Z 4 to 5 per group.
*P < 0.05, **P < 0.01, and ***P < 0.001 with analysis of variance and the Tukey test. EtOH, alcohol; VEH, vehicle.
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Figure 7 A and B: Masson’s trichrome staining of lung sections (A) and the Ashcroft score (B) from K18ehuman angiotensin-converting enzyme 2
transgenic mice on normal and alcohol (EtOH) diets 72 hours after intratracheal instillation of either saline or severe acute respiratory syndrome coronavirus 2
S1 subunit spike protein (S1SP). Red arrows indicate the deposition of collagen in the alveolar spaces. Means � SEM. nZ 4 to 5 per group. ***P < 0.001 with
analysis of variance and the Tukey test. Scale bars Z 50 mm. Original magnification, �20. VEH, vehicle.
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Lung tissue homogenates from mice on an alcohol diet
showed overexpression of ACE2 compared with mice on a
control diet. S1SP did not affect ACE2 expression further
(Figure 8½F8� ).

As we recently published, intratracheal instillation of a
single element of SARS-CoV-2, S1SP, into K18-hACE2
transgenic mice increased the expression of proinflammatory
biomarkers in the lung.12 This was confirmed here, in which
Western blot analysis of lung homogenates showed

significant increases in the phosphorylation of both STAT3
and IkBa Q28in transgenic mice on a control diet instilled with
S1SP. Alcohol significantly amplified the inflammatory ef-
fect of S1SP. Moreover, S1SP significantly increased the
expression of inflammasome NLRP3, and even more so in
mice on an ethanol diet (Figure 9 ½F9�). Profound activation of
both extracellular signal-regulated kinase and AKT Q29signaling
was observed in mice on an alcohol diet. This occurred in
both VEH- and S1SP-instilled groups (Figure 10 ½F10�).
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Figure 8 K18ehuman angiotensin-converting enzyme 2 (ACE2) transgenic mice on an alcohol (EtOH) diet instilled with the S1 subunit spike protein
(S1SP) show overexpression of ACE2 in lung tissue homogenates. Means � SEM. nZ 3 to 4. **P < 0.01, ***P < 0.001 with analysis of variance and the Tukey
test. VEH, vehicle.
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Figure 9 A and B: K18ehuman angiotensin-converting enzyme 2 transgenic mice on an alcohol (EtOH) diet instilled with S1 subunit spike protein (S1SP)
show activation of STAT3 (A) and IkBa Q45(B) in lung tissue homogenates. C: S1SP also increased inflammasome NLRP3 expression, especially in mice on an
ethanol diet. D: Western blot analysis; protein band density was normalized to that of b-actin. For IkBa and STAT3, the ratio of phosphorylated to total then
was calculated and all three are presented as fold of control (VEH). Means � SEM. n Z 3 to 4. *P < 0.05, **P < 0.01, and ***P < 0.001 with analysis of
variance and the Tukey test. pIkBa, phospho-IkBa; pSTAT3, phospho-STAT3; VEH, vehicle.

Alcohol and ACE2 Expression

The American Journal of Pathology - ajp.amjpathol.org 7

745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806

807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868

FLA 5.6.0 DTD � AJPA3728_proof � 2 May 2022 � 7:42 pm � EO: AJPA-D-22-00017

A 
5 

M- 4 
~g 
... r:: 3 1/) 0 
- u 
~ 0 2 
... 'C 

"'o Q.~ 

0 

D 

2.0 

e 
~ 1.5 

0 
-c 1.0 
$! 
oi 
~ 0.5 
<( 

0.0 

ACE2 

- VEH S1SP 
C] EtOH VEH - EtOH S1SP 

pSTAT3/STAT3 B 
20 . 

.------, 
cl' ~ 15 
ai-
~ C 
- 0 
- 0 10 d .._ 
Ill 0 
~ 'O 
0.:§ 5 

0 

VEH 

pSTAT3 

STAT3 ---
plKBa 

IKBa 

NLRP3 

ARTICLE IN PRESS 

VEH S1SP EtOH VEH EtOH S1SP 

ACE2!:::I ====================~ 

13-actin 1--~-----~---~-----1 

plKBa /lKBa 

S1SP 

C 
20 

A ~ 15 
., r:: 
ll. 0 
o:: 0 10 
...J~ z 0 

'C 

:e 5 

EtOH VEH 

NLRP3 

EtOH S1SP 

------- -

.-------, 

- VEH 
- S1SP 

EtOH VEH 

- EtOH S1SP 

~-actin 1----------------

http://ajp.amjpathol.org


Discussion

WeQ30 used a novel mouse model of SARS-CoV-2 in combi-
nation with an established model of chronic and binge
ethanol feeding (the NIAAAQ31 model18) to study the exacer-
bations of ARDS induced by SARS-CoV-2 S1SP in vivo,
thereby simulating the pathogenesis of COVID-19 disease
in alcoholics.

The NIAAA model is widely recognized and useful for
the study of alcoholic liver disease and systemic damage by
alcohol consumption. This model is similar to the drinking
pattern in patients with alcoholic hepatitis, who have a
background of chronic alcoholism and a record of recent
excessive alcohol consumption in anamnesis.18 The model
suggests using 8- to 10-week-old male C57BL/6 mice
because they are an alcohol-preferring strain and have
shown the best survival rate. Other strains either refuse the
alcohol diet or are affected too adversely by the 5% ethanol
and, as a consequence, they lose weight and have high
mortality rates.19 We did not use oral ethanol gavage (binge)
to avoid the possibility of compounded distress from ethanol
and acute lung injury. Still, there was no doubt that mice in
the present study showed damaged livers, as reflected in

profound steatosis. As Q32we described previously in more
detail, we used the SARS-CoV-2 S1SP at 400 mg/kg body
weight i.t. to induce a COVID-19elike acute lung injury.12

Similar to the previous study, transgenic mice on a normal
diet instilled with S1SP showed a decrease in body weight
that began recovering 48 hours later. However, in alcohol-
exposed mice, S1SP produced a continuously decreasing
body weight, in agreement with a recent study in which loss
of body weight was significantly higher in alcohol-treated
mice infected with Aspergillus fumigatus compared with
similarly infected mice that did not receive alcohol.20 This
also agrees with the observation that heavy alcohol drinkers
are at risk for abnormal long-term weight loss.21

Severe alveolar inflammation is one of the basic charac-
teristics of ARDS associated with COVID-19. After endo-
thelial barrier dysfunction,22 a large number of leukocytes
and plasma proteins are released into the alveolar space.
S1SP could be a key factor Q33to increasing lung vascular
permeability during COVID-19.12 The activation of the
proinflammatory transcription factors IKBa, STAT3, and
NLRP3 inflammasome in the lung likely are important
mediators. All of these inflammatory mechanisms are
enhanced by alcohol consumption. Ethanol has been
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Figure 10 A and B: K18ehuman angiotensin-converting enzyme 2 transgenic mice on an alcohol (EtOH) diet instilled with either vehicle or S1SP show
increased phosphorylation of extracellular signal-regulated kinase (ERK) (A) and AKT Q46(B) in lung tissue homogenates. Western blot analysis; protein band
density was normalized to that of b-actin. C: The ratio of phosphorylated to total then was calculated and presented as fold of control (VEH). Means � SEM.
nZ 3 to 4. *P < 0.05, **P < 0.01 with analysis of variance and the Tukey test. pAKT, phospho-AKT; pERK, phospho-ERK; S1SP, S1 subunit spike protein; VEH,
vehicle.
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reported to independently cause hyperactivation of STAT3,
IKBa, and NLRP3 inflammasome both in vitro and
in vivo.23e25

We observed monocyte, macrophage, and especially
neutrophil recruitment in the BALF, and alveolar space of
mice instilled with S1SP. In intensive care units, COVID-19
patients present excessive alveolar infiltration of neutro-
phils.26 Neutrophil recruitment to the focus of infection is
fundamental for the fight against the invading pathogens.27

Chronic alcohol ingestion disturbs both immunologic and
nonimmunologic host defense mechanisms within the
airway.28 Neutrophil recruitment into the airways is reduced
in alcohol-exposed mice infected with A. fumigatus.20

Importantly, no pathohistologic differences between alco-
holic and nonalcoholic groups were observed in the first 2
days after infection. In agreement, we observed predomi-
nantly mononuclear cell recruitment in alveoli of alcohol-
treated mice receiving S1SP, in contrast to S1SP-instilled
mice on a normal diet who showed primarily neutrophil
infiltration. At the same time, spike proteinealtered lung

parenchymal structure was not significantly different be-
tween mice on control and ethanol diets. Monocytes and
macrophages play an important role in the pathogenesis of
both alcoholic liver disease29 and acute lung injury.30 These
cells, infected via ACE2-independent and ACE2-dependent
pathways, lose their ability to fight the virus and induce
adaptive immune responses.31,32 Their impaired functions
can lead to multiple organ damage, mainly owing to exac-
erbation of ALI Q34, provocation of a cytokine storm, and
development of fibrosis.33 Patient BALF analysis has shown
previously that alcohol causes alveolar macrophage
dysfunction and an alcohol-induced increase in oxidative
stress.34,35 Here, we observed hyperexpression of ACE2 in
lung homogenates of K18-hACE2 transgenic mice on an
alcohol diet, suggesting Q35an additional mechanism of exac-
erbation of COVID-19 by ethanol.

Additional evidence of worsening of COVID-19erelated
ARDS by alcohol consumption is provided by the dramatic
increase of cytokine concentration in BALF. Compared with
controls, mice instilled with S1SP show overexpression of
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Figure 11 Signaling pathways in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S1 subunit spike protein (S1SP)e (right) and alcohol-
exacerbated SARS-CoV-2 S1SPeinduced acute lung injury (left). ACE2, angiotensin-converting enzyme 2; PMN Q47, ______; VEGF, vascular endothelial growth
factor.
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cytokines, in agreement with our previous data.12 Here,
even saline-instilled mice on an ethanol diet showed sig-
nificant increases in IL-6 and TNFa compared with control
mice. A few clinical studies have indicated anti-
inflammatory properties of alcohol, including a reduction
in IL-6, while animal studies have suggested a linear rela-
tionship between alcohol drinking and IL-6.36 Ethanol
consumption alters both IL-6 and TNFa expression in
lipopolysaccharide-challenged Kupffer cells.37 Similarly,
modest alcohol consumption suppresses TNFa levels in
monocytes, probably by suppressing post-transcriptional
TNFa production. However, mice who received daily 2.5
g/kg ethanol by gavage for 4 days (acute model) showed
increased TNFa and decreased NF-kB activity in plasma,
thus unleashing the apoptotic effects of TNFa.38 Here, we
showed that the cytokine storm, associated with COVID-
19elike ARDS, is more pronounced in alcohol-consuming
animals. A recent meta-analysis of gene expression pro-
files in COVID-19 patients predicted that ethanol may
augment systemic inflammation by enhancing the activity of
IL-1b, IL-6, and TNF.39 The lack of KC activation in BALF
taken from S1SP mice on an alcohol diet compared with
S1SP mice on a control diet is consistent with the observed
monocyte/neutrophil shift in BALF. This finding suggests
that chronic alcohol consumption may change the immune
response in ARDS. The activation of TGF-b is critical to the
development of pulmonary edema in ALI and also plays an
important role in the development of pulmonary
fibrosis.30,40e42 The expression of TGF-b1, CD44v6Q36 , MMP-
9, caveolin-1, and other tissue biomarkers of the TGF-b
signaling pathway, along with the deposition of extracellular
matrix components, collagen I, collagen III, and a-smooth
muscle actin, have been detected in lung sections from
COVID-19 patients.43 In the present model, alcohol did not
increase the expression of TGF-b1 in mice instilled with
saline, but amplified it in S1SP-instilled animals.

It was reported previously that the SARS-CoV-2 spike
protein leads to the induction of transcriptional regulatory
molecules, such as NF-kB and mitogenQ37 -activated protein
kinase/extracellular signal-regulated kinase 42/44.44 Acti-
vation of mitogen-activated protein kinase by COVID-19
plays an important role in the survival of the virus.45

Modulation of the mitogen-activated protein kinase
pathway by alcohol is variable and depends on the organ,
cell type, and acute or chronic exposure, but its mechanism
has been poorly studied in lungs.46 SARS-CoV-2 endocy-
tosis occurs through a clathrin-mediated pathway, regulated
by phosphatidylinositol 3-kinaseQ38 /AKT signaling. The AKT
signaling pathway was activated by the N protein of SARS-
CoV in Vero E6 cells.47 Activation of the AKT also has
been linked to the induction of lung fibrosis in patients with
COVID-19. Here, we observed a dramatic activation of
extracellular signal-regulated kinase 42/44 and AKT, which
may in part explain the associated pathologies.

In summary, our data show that K18-hACE2 transgenic
mice on an alcohol diet exhibit a more severe S1SP-induced

ARDS than corresponding mice on a control diet, and that
overexpression of ACE2 may play a critical role in this
process (Figure 11 ½F11�). It is not clear how alcohol consumption
will affect the lungs in the late stages of COVID-19, espe-
cially considering that the proinflammatory pathways stud-
ied here also are involved in the development of pulmonary
fibrosis. Thus, this model could be useful for the develop-
ment of therapeutic interventions against alcohol-
exacerbated COVID-19.
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