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Table S1. Definition of acronyms used throughout the manuscript 

Acronym Definition 

BGC Belowground organic carbon 

CDOM Chromophoric dissolved organic matter 

Chl a Chlorophyll a 

DCNN Deep convolutional neural network 

DEM Digital elevation model 

DOS Dark object subtraction 

ENSO El Niño-Southern Oscillation 

FL FWC Florida Fish and Wildlife Conservation Commission 

Kd Spectral diffuse attenuation coefficient 

KLu Upwelling diffuse attenuation coefficient 

L1TP Landsat collection-1 Level-1 Terrain and Precision data 

L5 Landsat 5 Thematic Mapper (TM) 

L7 Landsat 7 Enhanced Thematic Mapper (ETM+) 

L8 Landsat 8 Operational Land Imager (OLI) 

LAI Leaf area index 

NAO North Atlantic Oscillation 

Rb Bottom reflectance in the green band 

Rrs Remote sensing reflectance 

ROI Region of interest 

VBS University of South Florida Virtual Buoy System 

WV2 WorldView-2 



Table S2. Image Information for Landsat 5 (L5) thematic mapper (TM), Landsat 7 (L7) enhanced thematic mapper (ETM+) and 

Landsat 8 (L8) operational land imager (OLI). St. Joseph Bay, Florida is located in Landsat path 19 and row 39. All images were 

obtained from USGS Earth Explorer. 

Sensor Filename Acquisition 

Date 

Overpass 

time 

(UTC) 

Cloud 

Cover 

(%) 

Sun 

Elevation 

(o) 

Sun 

Azimuth 

(o)  

L5 TM 

 

LT05_L1TP_019039_19901027_20160930_01_T1 

LT05_L1TP_019039_19910912_20160929_01_T1 

LT05_L1TP_019039_19920914_20160928_01_T1 

LT05_L1TP_019039_19931003_20160927_01_T1 

LT05_L1TP_019039_19941123_20160926_01_T1 

LT05_L1TP_019039_19951110_20160926_01_T1 

LT05_L1TP_019039_19961027_20160924_01_T1 

LT05_L1TP_019039_19971115_20160923_01_T1 

LT05_L1TP_019039_19980627_20160922_01_T1 

LT05_L1TP_019039_19991105_20160919_01_T1 

LT05_L1TP_019039_20001022_20160918_01_T1 

LT05_L1TP_019039_20011110_20160917_01_T1 

LT05_L1TP_019039_20021129_20160916_01_T1 

LT05_L1TP_019039_20031015_20160914_01_T1 

LT05_L1TP_019039_20041001_20160913_01_T1 

LT05_L1TP_019039_20050902_20160912_01_T1 

27 Oct 1990 

12 Sep 1991 

14 Sep 1992 

3 Oct 1993 

23 Nov 1994 

10 Nov 1995 

27 Oct 1996 

15 Nov 1997 

27 Jun 1998 

5 Nov 1999 

22 Oct 2000 

10 Nov 2001 

29 Nov 2002 

15 Oct 2003 

1 Oct 2004 

2 Sep 2005 

15:33  

15:37  

15:35 

15:35 

15:27 

15:13 

15:33 

15:47 

15:51 

15:49 

15:52 

15:53 

15:45 

15:51 

15:57 

16:01 

0.00 

1.00 

6.00 

0.00 

0.00 

6.00 

2.00 

8.00 

0.00 

4.00 

2.00 

0.00 

0.00 

0.00 

5.00 

2.00 

39.0 

51.3 

50.4 

45.9 

31.6 

32.8 

39.0 

35.6 

63.8 

38.5 

42.6 

37.4 

32.3 

44.8 

49.5 

57.4 

143.5 

126.4 

127.4 

136.3 

146.4 

141.5 

143.9 

150.8 

98.6 

149.9 

147.8 

151.7 

150.7 

145.3 

142.4 

128.8 



LT05_L1TP_019039_20061124_20160908_01_T1 

LT05_L1TP_019039_20070807_20160907_01_T1 

LT05_L1TP_019039_20080926_20160905_01_T1 

LT05_L1TP_019039_20090609_20160905_01_T1 

LT05_L1TP_019039_20101119_20160831_01_T1 

LT05_L1TP_019039_20111005_20160830_01_T1 

24 Nov 2006 

7 Aug 2007 

26 Sep 2008 

9 Jun 2009 

19 Nov 2010 

5 Oct 2011 

16:08 

16:07 

15:58 

16:01 

16:03 

16:01 

0.00 

6.00 

0.00 

2.00 

8.00 

0.00 

35.5 

63.1 

50.9 

66.7 

36.2 

49.0 

156.6 

115.4 

140.3 

102.3 

155.2 

145.0 

L7 ETM+ LE07_LITP_019039_20121031_20160910_01_T1 31 Oct 2012 16:09 1.00 41.7 155.0 

L8 OLI LC08_L1TP_019039_20131026_20170308_01_T1 

LC08_L1TP_019039_20141114_20170303_01_T1 

LC08_L1TP_019039_20151016_20170225_01_T1 

LC08_L1TP_019039_20161002_20170220_01_T1 

LC08_L1TP_019039_20171106_20171121_01_T1 

LC08_L1TP_019039_20180314_20170320_01_T1 

LC08_L1TP_019039_20191128_20191128_01_RT 

LC08_L1TP_019039_20200319_20170326_01_T1 

26 Oct 2013 

14 Nov 2014 

16 Oct 2015 

2 Oct 2016 

6 Nov 2017 

14 Mar 2018 

28 Nov 2019 

19 Mar 2020 

16:15 

16:13 

16:13 

16:13 

16:13 

16:13 

16:13 

16:13 

0.01 

0.01 

0.77 

8.07 

4.97 

0.01 

0.7 

3.12 

43.8 

38.3 

46.9 

51.1 

40.4 

49.8 

35.2 

51.9 

155.8 

157.8 

152.7 

148.3 

157.1 

140.1 

158.2 

138.7 



Table S3. A contingency table of the McNemar test results to determine the statistical difference 

between agreement assessments of the 2010 L5 classification and the 2010 Florida Fish and 

Wildlife Conservation Commission (FL FWC) survey (L5-FWC) as well as the 2010 L5 

classification and a DCNN classification of a coincident WorldView-2 (WV2) image (L5-WV2).  

 L5-WV2 

Agree Disagree 

L5-FWC Agree 158892 7209 

Disagree 8512 10851 

 



S1. Detailed description of satellite image processing  

Following Coffer et al. (2020), the median of the lowest 5% of the NIR distribution was 

used to characterize atmospheric contamination while preserving true water-leaving 

reflectances. Iterations of the Rayleigh exponent (4.0, 4.5 and 4.75) were tested to achieve 

sufficient spectral separation within the image while maintaining expected spectral 

responses and avoiding overcorrecting the image to the point where pixel values become 

negative. A Rayleigh exponent of 4.75 for both L5 and L7 and a Rayleigh exponent of 4.0 

for L8 imagery created enough spectral separation while maintaining the expected Rrs 

amplitudes and spectral shapes necessary to distinguish between the five classes in St. 

Joseph Bay (Fig. S1).  

S2. Evaluation of the efficacy of the DOS method on Landsat imagery  

Implementation of the DOS approach through our standardized process required 

optimization of the Rayleigh exponent. A Rayleigh exponent of 4.75 provided the 

necessary atmospheric correction in shorter wavelengths for both L5 and L7 while a 

Rayleigh exponent value of 4.0 was found to optimize the DOS approach for the 

atmospheric correction of L8 imagery. These Rayleigh exponents created enough spectral 

separation while maintaining the expected Rrs amplitudes and spectral shapes necessary to 

distinguish between the five classes in St. Joseph Bay (Fig. S1). In comparing the spectral 

and spatial ability of L8 and WV2 to distinguish seagrass, their remote sensing reflectance 

values were within 13% ± 27% across all bands (Fig. S2). Despite an offset in the 

wavelength values for each band used from L8 and WV2, all classes displayed similar 

spectral shapes for both sensors, increasing confidence in similar performance of the DOS 

correction method for Landsat and WorldView.  



Previous studies have shown that relatively high Rayleigh exponents were more 

appropriate to correct for the selective scattering that occurs in shorter wavelengths during 

clear conditions and low Rayleigh exponents were more appropriate in hazy conditions 

where scattering is more uniform across all wavelengths (Curcio, 1961; Chavez, 1988). 

Despite similarly clear conditions in most of our L5, L7 and L8 scenes, a higher Rayleigh 

exponent was used for L5 and L7 compared to L8. This suggests that the optimal Rayleigh 

exponent for the images used in this study is more dependent on variability between 

sensors than the variability in atmospheric scattering between scenes. Such variability may 

be attributable to L8’s narrower spectral bands compared to L5 and L7, which reduces the 

atmospheric absorption and also the sensitivity to atmospheric changes in terms of water 

vapor content, providing more equal scattering across wavelengths (Irons et al. 2012). 



 

Figure S1. Comparison of the spectral signatures of each class for a subset of images for L5 (A-

C) and L8 (D-F) using the DOS approach. For each band, the average and standard deviation of 

remote sensing reflectance were derived from a ROI drawn for each class. ROIs preserved the 

same location across all images in both sensors. ROIs were also generated for land but are not 

shown here. 
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Further inspection of the reflectance spectra for the different classes between the coincident L8-

WV2 scene revealed similar spectra between both sensors and comparison of their classification 

featured only a 3% difference in seagrass area mapped in each image. While other studies have 

shown good performance of the DOS method for inland and coastal water applications using one 

sensor, including for seagrass mapping (Wicaksono and Hafizt, 2017; Wicaksono and Lazuardi, 

2018; Traganos et al. 2018; Thalib et al. 2019; Kohlus et al. 2020), results from our study 

indicated that the classification algorithm performed similarly across different sensors given their 

similar spectral shapes (Fig. S2), reinforcing the suitability of the DOS method to correct both 

medium-(L8) and high-(WV2) resolution satellite imagery to spectrally distinguish seagrass in 

the Bay.  

 

 



 

Figure S2. Comparison of the spectral signatures of A. sand, B. seagrass, C. deep water, D. 

intertidal and E. land for a L8 image (26 October 2013) and a WV2 image (24 October 2013), 

corrected using the DOS approach. Each plot represents the mean remote sensing reflectance for 

the class, with the error bars representing 1 standard deviation (SD) for each band. The mean 
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reflectance for each class was derived from a ROI drawn for that class at the same location in 

both images. 

 

S3. Detailed description of the deep convolutional neural network 

A DCNN with six sequential layers was trained with the ROI training sets using the Keras 

package in Python 3.5 (Python Core Team, 2015). The final layer of the DCNN leveraged a 

SoftMax activation function to produce a pixel-wise conditional probability estimate for each 

class. Each pixel was then assigned to the class with the highest probability estimate.  The 

model was trained for 500 epochs with cross-entropy loss and adaptive moment optimization 

and applied to the imagery to produce pixel-wise classification maps, based on our sensitivity 

analysis using filter dimensions of 1x1 and 3x3.  

The DCNN model used in this study consists of two convolutional layers, two dropout layers, 

one flatten layer and one SoftMax layer. The first convolutional layer uses 32 filters with 

1*1*7 (number of bands of Landsat) kernel size followed by a dropout layer with 0.01 

probability. The next convolutional layer has 16 filters with 3*3*32 kernel size. Then, we use 

a dropout layer with 0.01 probability and a flatten layer to make it a vector of size 16. 

Finally, we applied a SoftMax layer to perform classification in the last layer. 



 
Figure S3. SHAP values for each of (a) Landsat 5 band’s contribution and (b) Landsat 8 

band’s contribution to the DCNN classification of optically-deep water, sand, seagrass, land 

and intertidal class. The green, the red and the NIR band appear to have a greater impact on 

each of the five classes classification. 
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Figure S4. Time series of chlorophyll a (Chl a) and turbidity retrieved from the Virtual Buoy 

System (VBS) and Kd(560) and KLu calculated from the GrassLight model (Zimmerman et al. 

2015) based on these optical conditions between 2002 and 2020. Chl a and turbidity oscillate out 

of phase to stabilize Kd(560) throughout the 18-year period. This demonstrated stability in 

Kd(560)  and KLu over time allowed us to apply a mean Kd(560) and KLu in leaf area index (LAI) 

retrieval using the method outlined in Hill et al. (2014). 
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Figure S5. Seagrass surface area as a function of tidal height during image acquisition time for 

the Landsat 5 (L5), Landsat 7 (L7) and Landsat 8 (L8) scenes.  
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Figure S6. Relationship between Landsat-derived leaf area index (LAI) from a satellite image 

acquired on 19 Nov 2010 and WorldView-2 (WV2)-derived LAI from a satellite image acquired 

on (14 Nov 2010). Dotted line represents the 1:1 line. 
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Figure S7. Seagrass surface area as a function of mean sea surface temperature for L5, L7, and 

L8. The dotted line represents the intercept and the slope was not significantly different from 0. 
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S4. Sensitivity of seagrass detection to epochs and filter dimensions 

The stochastic learning process required to train a DCNN is controlled by hyperparameters. 

The values of these hyperparameters can impact the accuracy, parsimony and generality of a 

model, but their optimization is specific to each modeling task. As such, a sensitivity analysis 

was performed to determine the effects of two hyperparameters—number of epochs and filter 

dimensions—on predictions of seagrass area within ten Landsat 8 scenes in St. Joseph Bay. 

The number of epochs defines the number of times the training data (i.e., ROIs) are exposed 

to the DCNN and the filter dimensions dictate the size of the receptive field where 

information from the training data are extracted through convolution. In addition to their 

impact on the aforementioned aspects of model performance, these hyperparameters were 

chosen for further analysis because they have a large effect on the time required to train a 

DCNN.  

We tested ten combinations of epochs and filter dimensions: epochs of 100, 200, 300, 400 

and 500 with filter dimensions of 1x1 and 3x3. The level of uncertainty resulting from 

stochastic training was also quantified by training ten separate models for each combination 

of epochs and filter dimensions. The same ROIs were used as training data for each model 

permutation to ensure that the results highlight variation due to hyperparameters and 

stochastic training rather than the selection of ROIs. Once the models were trained, they were 

applied to each of the ten Landsat 8 scenes to produce pixel-wise classifications. In total, 

there were ten classifications of each scene for each unique combination of epochs and filter 

dimensions (i.e., 10 combinations of epochs and filter dimensions x 10 permutations x 10 

Landsat 8 scenes=1000 classifications) and the pixel-based area of the seagrass pixels was 

converted to square kilometers. 



Fig. S8 shows three classifications of the same scene that were produced by three separate 

models trained with the same ROIs, filter dimensions and number of epochs. This Figure 

highlights that when all else is the same, stochastic training can produce variability in results. 

Variation in predicted seagrass area due to hyperparameters and stochastic training has the 

potential to obscure a meaningful analysis of how seagrass area varies over time. Fig. S9 

provides a time series of predicted seagrass area, averaged across ten permutations with 95% 

confidence intervals, for each scene and each combination of epochs and filter dimensions. 

The confidence intervals are small enough, that they are part of the markers on Figure S9. 

Aside from two scenes, 25 September 2019 and 14 March 2018, the standard deviation of 

predicted seagrass area for each epoch and filter dimension ranged between 0.5-1.5 km2. 

While the predicted seagrass area does vary between combinations of epochs and filter 

dimensions, this variation is minimal enough that the trends remain similar. 

 



   

Figure S8. A., B., and C. represent three classifications of a Landsat 8 scene from 10 October 

2013. Each classification was produced by a separate model trained with the same training data, 

epochs, and filter dimensions. 
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Figure S9. Time series of predicted seagrass area averaged across ten permutations with 95% 

confidence interval for each scene using a 1×1 filter dimension (A-E) and 3×3 filter dimension 

(F-J) across five different epochs (100-500). 
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