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Abstract

There are many issues regarding the technology used for fall detection gait analysis in the geriatric center
of senior patients. The fall detection system used should examine the privacy of the patients and the flexi-
bility of the system. Several researchers have developed fall detection using wearable sensors due to their
flexibility and nature of privacy. Most of those developed methods are supervised deep learning methods.
However, data annotation is expensive because we use camera video recording and playback of each par-
ticipant’s recorded video to label the data. Moreover, labelling using a camera recording limits the flexible
and private nature of wearable sensor-based fall detection. This paper presents how to use unlabelled data
to pre-train our models and use labelled data to fine-tune those pre-trained weights. We collected unlabelled
and labelled data and applied self-supervised learning to detect falls. First, we performed pre-training on the
unlabeled data using ResNet model. After that, fine-tune and train ResNet using the labelled dataset. The
experiment in this study suggested that the best performance can be achieved by using pre-trained weights
of unlabelled data from the accelerometer and gyroscope sensors. Furthermore, oversampling and modified
loss functions are used to handle the dataset’s imbalance classes. With the ResNet pre-trained weights and
re-training using the labelled data, the experiments achieved an F1-Score of 0.98.

Keywords: Gait Analysis, Fall Detection, Senior Subjects, Self-supervised Learning.



1 Introduction

The population of senior adults older than 65 years old is growing all over the world, and the US seniors
have shown rapid growth in population since 1950 (Statista 2021). In 2019, there was approximately 16
percent of adults aged 65 or over old, and this is expected to reach 22 percent in the next thirty years
(Statista 2021). One-third of the ageing population(age 65) fall each year, and all senior adults above 80
years fall annually. USA statistics show that about 36 million falls happen annually, and one-fourth (28%)
of the elders above 65 years old, the report falls yearly (Moreland et al. 2020). Of those falls, 37 percent of
them (8 million) were injured and needed medical treatment (Moreland et al. 2020). Due to these reasons,
there is a national imperative to develop a cost-effective real-time fall detection underpinned by new sensor
technologies and methods that are less expensive to develop.

Many researchers has developed classical machine learning based fall detection systems (Ramachandran and
Karuppiah 2020). Different classifiers methods are used with hand-crafted feature extractions for real time
fall detection systems, such as logistic regression (Putra et al. 2017), Naïve Bayes (Liu et al. 2018)(Putra
et al. 2017), decision tree (Putra et al. 2017) (Liu et al. 2018), support vector machines (Putra et al. 2017),
and k-nearest neighbors (Medrano et al. 2014)(Putra et al. 2017) (Liu et al. 2018). We need enough labelled
data to train the supervised deep learning methods that the above researchers propose.

Last year Meta’s Yann LeCun proposed self-supervised learning (LeCun 2021). Self-supervised learning
obtains supervisory signals from the data itself, often leveraging the underlying structure in the data. The
general technique of self-supervised learning is to predict any unobserved or hidden part (or property) of
the input from any observed or unhidden part of the input (LeCun 2021). Self-supervised learning can learn
complex patterns using unlabelled data, achieving many state-of-the-art results in different applications.
Inspired by the success of BERT: pre-training(self-supervised) for language understanding (Devlin et al.
2018) in natural language processing (NLP), this paper explores pre-trained-based fall detection systems on
wearable sensor datasets. A residual neural network (ResNet) (He et al. 2016) is used as a baseline model.
For balancing the data sampling of the minor classes, we use oversampling methods (duplicate the minor
classes).

2 Materials and Methods

We use Deep Residual Network (ResNet) for pre-training and fine-tuning wearable sensor signals. First,
we discuss about the data pre-processing and slide windowing steps and then explain the pre-training and
fine-tuning of the baseline deep learning model.

2.1 Data Pre-processing

First, the data points of each feature are normalized (FeatNorm) using the maximum and minimum value
of the features, as shown in the equation below. Most real-time fall detection applications should respond
within less than 1 second. Therefore, we segment into a 1-second (100 sample signal) for each label (labelled
data only) using a fixed-size overlapping sliding window. The size window overlapping (stride) is 0.5
seconds. If we got a single row of falls in this 1-second window signal, this window is labelled fall.

FeatNorm =
Feat −min(Feat)

max(Feat)−min(Feat)
(1)

The labelled dataset collected has 13% of the fall dataset and 87% of non-fall activities; it is highly imbal-
anced data. The main problem of not considering such imbalanced datasets is that our deep learning models



make our minor label classes suffer from low results. However, the accuracy of those minority classes is
the most important one. Common approaches to resolving this problem are data-centric and model-centric.
The most common and straightforward data-centric sampling methods are random over-sampling, which
duplicates random sequences of window signals from the minority class in the training datasets and random
under-sampling, which remove the random sample signals from the majority class. We use over-sampling
rather than under-sampling because under-sampling for the majority class loses some information, whereas
oversampling for the minority class does not lose any data. We use a modified loss function- a weighted
focal loss for the model-centric.

2.2 Baseline Models

We ResNet deep learning models as base models for pre-training and fine-tuning our dataset.

Deep Residual Network (ResNet)
The second baseline model used for our self-supervised learning is called deep Residual Network (ResNet)
(Wang et al. 2017). The ResNet model has eleven layers- of these layers nine of them are convolution
followed by global average pooling that calculates the average of the input sensor signal dimension. The
main difference of ResNet from other convolution-based deep learning models are they introduce a residual
connection between successive convolutional layers. In addition to that, the ResNet makes the deep learning
training fast by decreasing the vanishing gradient problem. ResNet achieves this fast training by using a
linear shortcut between the successive residual blocks that make the flow of the gradient directly through
these residual connections (He et al. 2016). The ResNet model has three stacked residual blocks and each
residual block has three convolutions. The result of each residual block is added to the input of each residual
block to be inputted to the next layer. The output of the last residual block is then followed by a global
average pooling layer and then a softmax classifier with two neurons as our number of classes are two (fall
and non-fall). In all the residual blocks, the three convolutions have kernel lengths of 8,8, and 5 with 64
filters for three of the convolution. The convolution layers are followed by batch normalization and ReLu
operations.

Figure 1: ResNet model architecture (Wang et al. 2017) with respective filter sizes to be used for pre-training
and fine-tuning

2.3 Pre-Training (Training on unlabeled data)

Transfer learning from a pre-trained model is a common type of self-supervised learning-based method.
Self-supervised learning aims to extract the useful underlying representation of unlabeled data, and the
learned data representations can be transferred to downstream tasks. In this way, the problem of label data
shortage can be solved. With our work, we exploit ResNet base model, which solve the self-supervised task



by forcing the models to learn filters to solve the gait analysis of fall and non-fall activities. The pre-trained
model will be automatically saved and fine-tuned or trained in the same architecture using datasets with
labels when training is finished.

We use pre-trained weights of unlabelled datasets to establish a self-supervised critical feature extraction
method that helps us get the best results. This process avoids recording the subjects using cameras for
manual annotations and does not require any prior knowledge. We obtain pre-training data from a large
volume of unlabelled fall detection datasets. We get pre-training weights for fine-tuning with small labelled
data and train a linear classifier on top of the model’s trained layers. The details of pre-training are as shown
in Algorithm 1.

Algorithm 1: Function [P]=Pre-training
input : Unlabelled acc(t) = [accx(t),accy(t),accz(t)] and gyro(t) = [gyrox(t),gyroy(t),gyroz(t)]
output: Pre-trained ResNet model weights

for all data sequence activities of the dataset do
Normalize all feature columns using equation 4;
Perform overlapping slide window with 100 samples window size and 50 samples stride ;

Transform the input data in to 3D format of Keras(num of samples * num of features * num steps)
Pre-train the unlabelled data using the two models.
Save the pre-trained weights

2.4 Fine-Tuning and Training (Training on labeled data)

In this case, there are two options for using the pre-trained weights: fine-tuning and training. In fine-tuning,
we train the last layer of the model, freeze the other layers, and train for half of the epochs used during pre-
training (50/100 epochs). However, we train the whole network in "training" as we did the same strategy
during pre-training, except we use the labelled data.

Algorithm 2: Function [F]=Fine-tuning or re-training
input : Pre-trained weights and Labelled acc(t) = [accx(t),accy(t),accz(t)] and

gyro(t) = [gyrox(t),gyroy(t),gyroz(t)]
output: Classes of Fall and ADL

for all data sequence activities of the dataset do
Normalize all feature columns using equation 4;
Perform overlapping slide window with 100 samples window size and 50 samples stride ;
if there is a single sample out of the 100 samples labelled as fall then

Label the whole observation window as Fall;
else

Label ADL;

Perform over-sampling by duplicating the minor classes
Transform the input data in to 3D format of Keras(num of samples * num of features * num steps)
Apply the weighted focal loss function of equation 2
Classify using Sigmoid classifier
Get the classes of Fall and ADL



Using the labelled dataset, we test both training and fine-tuning using the algorithm shown in 2. To train or
fine-tune the labelled datasets, we modify the focal loss presented by (Lin, Tsung-Yi and Goyal, Priya and
Girshick, Ross and He, Kaiming and Dollár, Piotr 2017). During supervised training of the labelled dataset,
ResNet network are optimized end-to-end using a modified weighted focal loss in Eq. 2:

LFocalLoss =
c=2

∑
i=1

wi(1− pi)
γ log(pi), (2)

where
wi =

n0 +n1

2∗ni

and n0 is number of non-fall class, n1 is number of fall class, and γ is a focusing parameter who value is
γ >= 0. γ is the focusing parameter that specifies to reduce the influence of higher-confidence classified
samples in the loss. The higher the , the higher the rate at which easy-to-classify examples are down-
weighted. If γ = 0, weighted focal loss is equivalent to weighted binary cross entropy loss.

3 Results and Discussion

We use balanced accuracy and F1 score performance metrics for comparing the different methods. Balanced
accuracy is raw accuracy where each sample is weighted according to the inverse prevalence of its actual
class, and it is calculated by the average of recall obtained on each class. The balanced accuracy helps us
deal with imbalanced datasets by avoiding inflated performance estimates on the datasets. If the classifier
performs equally well on either class, this term reduces to the standard accuracy. In contrast, if the standard
accuracy is above chance only because the classifier takes advantage of an imbalanced test set, then the
balanced accuracy, as appropriate, will drop to 1

n_classes .

F1 Score =
2∗ (precision∗ recall)

precision+ recall
(3)

Balanced Accuracy =
speci f icity+ sensitivity

2
, (4)

where Precision = T P
T P+FP , Speci f icity = T N

T N+FP and Sensitivity(Recall) = T P
T P+FN . In addition, the experi-

ments have been implemented using the Keras framework and the labelled datasets used for re-training and
fine-tuning are divided into training, validation and testing with 50%, 20%, and 30% respectively. We run
the training twenty times to get the average results with a learning rate of 0.001, a batch size of 64, and 100
epochs.

This paper evaluated self-supervised learning for fall detection based on acceleration and angular velocity
sensors. Random over-sampling for balancing the fall dataset is used. The performance of those different
classifiers is shown in table 1, the self-supervised methods performed better than supervised learning.

Regarding the self-supervised methods, training the pre-trained baseline models from scratch provides better
performance in most of the results than fine-tuning the pre-trained baseline model. Even though random
oversampling does not add new datasets as it simply duplicates some of the examples, the results are slightly
better. When considering the obtained performance results, as we can see in table 1, over-sampling with
training the pre-trained ResNet baseline model outperformed other combinations of methods in both of the
performance metrics- F1-score and balanced accuracy.



Table 1: Comparing the different methods of ResNet models for fall detection.

Metrics Supervised ResNet Self-supervised ResNet Self-supervised ResNet + Over-sampling
Balanced Accuracy 0.91 0.98 0.99

F1-score 0.83 0.96 0.98

4 Conclusion

This work proposed a fall detection study using self-supervised learning that pre-trains unlabeled data and
fine-tunes using small labelled data. We use overlapping sliding windows for feature extraction and mod-
ified weighted focal loss function and data augmentation methods for balancing class data samples. The
proposed ResNet self-supervised deep learning method with over-sampling identified the falls against the
non-fall activity with an average F-1 score of 0.98. The performance clearly shows that our proposed ap-
proach improves the results by using pre-trained models and modified loss function with over-sampling for
balancing the datasets.

We examine that ResNet learned weights have a strong correlation due to an over-parameterized model.
In our future work, we are planning to use de-correlation of filters regularization for both networks. We
are going to calculate the total loss which is the summation of the weighted focal loss and de-correlation
loss. Moreover, we will further explore and improve the experimental data, model architecture, and hyper-
parameters.
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