
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Electrical & Computer Engineering Faculty
Publications Electrical & Computer Engineering

2021

Logical Modeling of Adiabatic Logic Circuits Using VHDL Logical Modeling of Adiabatic Logic Circuits Using VHDL

Lee Belfore
Old Dominion University, lbelfore@odu.edu

Follow this and additional works at: https://digitalcommons.odu.edu/ece_fac_pubs

 Part of the Power and Energy Commons, and the VLSI and Circuits, Embedded and Hardware Systems

Commons

Original Publication Citation Original Publication Citation
Belfore, L. (2021). Logical modeling of adiabatic logic circuits using VHDL. In Y. Shan, G. Hu, Q. Yan, & T.
Goto, Proceedings of ISCA 34th International Conference on Computer Applications in Industry and
Engineering (pp. 30-39). EasyChair. https://doi.org/10.29007/6wln

This Conference Paper is brought to you for free and open access by the Electrical & Computer Engineering at ODU
Digital Commons. It has been accepted for inclusion in Electrical & Computer Engineering Faculty Publications by
an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/ece_fac_pubs
https://digitalcommons.odu.edu/ece_fac_pubs
https://digitalcommons.odu.edu/ece
https://digitalcommons.odu.edu/ece_fac_pubs?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F314&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F314&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F314&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F314&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.29007/6wln
mailto:digitalcommons@odu.edu

EPiC Series in Computing
Volume 79, 2021, Pages 30–39

Proceedings of ISCA 34th International Conference on
Computer Applications in Industry and Engineering

Logical Modeling of Adiabatic Logic Circuits using VHDL
Lee A. Belfore II

Old Dominion University, Norfolk, Virginia, U.S.A.
lbelfore@odu.edu

Abstract

The underlying nature of adiabatic circuits is most accurately characterized at the circuit level as
it is for traditional technologies. In order to scale system designs for adiabatic logic technologies,
modeling of adiabatic circuits at the logic level is necessary. Logic level models of adiabatic logic
circuits can facilitate the design, development, and verification of large scale digital systems that may
be infeasible using circuit simulators. Adiabatic logic circuits can be powered with a four stage power
clock consisting of idle, charge, hold, and recover stages that provides for adiabatic charging and
charge recovery to give adiabatic circuits their low power operation. By both discretizing the temporal
aspects of the power clock and the logic values, a logical model of adiabatic circuit operation is
proposed. Using the expressive capabilities of Very High Speed Integrated Circuit (VHSIC) Hardware
Description Language (VHDL), the salient aspects of adiabatic circuit models can be captured. In this
work, a VHDL framework is defined for modeling adiabatic logic circuits & systems and its use is
demonstrated in several example adiabatic logic circuits.

1 Introduction
Adiabatic logic circuit technology offers lower power consumption compared with CMOS

technologies by energizing circuits adiabatically energized and then adiabatically recovering stored
energy from the circuit for later use [7, 3, 8, 10]. The efficiency and behavior is established by the
circuit level behaviors that are quantified in circuit simulations and measured in actual circuits. Once the
circuits are suitably characterized, the overall operation can be described symbolically. This description
of their operation is the basis for logical models of adiabatic circuits.

With current digital system design requirements and modeling practices, it is impractical to rely
solely on circuit simulations to validate a design because the circuit simulations require substantial
computational resources. As a result, the design process employs conservative models with conservative
margins, including reduced fidelity, to enable the verification of circuit operation while substituting high
fidelity circuit level models for vetted approximation methodologies or limiting circuit simulation to
special cases requiring circuit level fidelity. The fidelity is not reduced in an arbitrary fashion, but rather
aspects of the circuit operation are modeled symbolically. Circuit level properties associated with the
symbolic representations can be included using a circuit extraction step to improve the fidelity of the
model. Such is what is done with circuit delays, for example.

Approaches for modeling adiabatic and partially adiabatic circuits appear in the literature [11, 12].
In Varga et al., the adiabatic pipeline is modeled using the IEEE std_logic type for logic values and
guarded blocks to manifest the timing of the power clock [11]. The motivation is to model the pipeline

Y. Shi, G. Hu, Q. Yuan and T. Goto (eds.), CAINE 2021 (EPiC Series in Computing, vol. 79), pp. 30–39

Adiabatic Modeling using VHDL Belfore

structure in anticipation of synthesis. Finally, approaches for modeling in Verilog are developed [12]
with the observation that VHDL is similarly capable. The clear intent of these approaches is to facilitate
modeling larger scale models and facilitate synthesis based on the logical behavior of the models.

More generally in the literature, adiabatic circuit dynamics can be modeled with VHDL by one of
two methods. First, VHDL libraries can be created with the specific capacity to model analog signals
[9]. In addition, the VHDL standard has been extended to support mixed analog/digital modeling in
VHDL-AMS [1]. In both of these approaches, the circuit is ultimately represented by a system of
differential equations. In these works, it would be necessary to develop libraries to support adiabatic
circuit models. The principle disadvantage in these approaches is the significant simulation time for
large circuits. During development, it is more pragmatic to focus on logical modeling, constrained by
conservative performance metrics, to facilitate iterative design. Once the design approaches the final
phase, then it may become necessary to shift to higher fidelity circuit simulations.

In this work, an approach is introduced for modeling adiabatic circuits. The model defines a
multivalued logic value definition consistent with adiabatic circuit operating modes. The logic values
facilitate developing adiabatic logic pipelines and troubleshooting of logic circuits. Importantly, the
model preserves the dual rail nature of adiabatic signals.

This paper is organized into five sections including an introduction, an overview of the operation of
adiabatic circuits, a presentation of adiabatic VHDL models, simulation results for several examples,
and a summary.

2 Adiabatic Logic Circuits Operation
In this section, a logical model for adiabatic circuit operation is presented. The intention is to create

a symbolic representation of adiabatic circuit operation and not model actual circuit level behaviors.
The interested reader can find the details of adiabatic circuit operation elsewhere [7, 3, 8, 10, 2].

Adiabatic circuit operation is both powered and coordinated by the power clock. The power clock is
a periodic signal that powers circuits performing logic operations, hold the values for a sufficient time
to propagate logic values to the next layer of logic, and then recovers as much energy from the circuit
to be recycled for future operations. From a logical modeling perspective, the power clock discretizes
time.

The power clock is structured into four segments reflecting the different stages adiabatic circuit
operation. In this paper, the segments will be designated as Charge (C), Hold (H), Recover (R), and Idle
(I). The first segment is the charge segment (often also called the evaluate). During the charge segment,
the circuit is adiabatically energized by gradually increasing the power clock voltage while its inputs
are held constant. At the end of the charge segment, the circuit is fully energized with the outputs at
full scale presenting the result of the gate’s logic function. During the hold segment, the power clock
is constant, holding the outputs constant for the duration of next layer of logic’s charge segment. In the
recover segment, the power clock voltage is gradually reduced while at concurrently, through the power
clock line, adiabatically recovering charge from the circuit. Finally, in the idle stage, the circuit is not
energized and the power clock is at its minimum. Further, the duration of the idle segment depends on
the number of power clock phases.

To simplify the discussions, a trapezoidal clock is assumed, although many adiabatic circuits operate
using sinusoidal or other periodic shapes that are more easily generated. Circuits generally require two
or more clock phases for operation with Figure 1 presenting an example logic circuit architecture with
its accompanying timing diagram. In this example, each logic layer is a buffer-inverter with signals
connected so logic values propagate in a non-inverting fashion. Logic values are propagated layer by
layer, synchronized by their respective power clock phases. For proper operation, the phases must
be consecutive, with the successive phases lagging by 90◦, assuming four power clock phases. As a

31

Adiabatic Modeling using VHDL Belfore

consequence of the power clocks organization, layers of logic form a pipeline of sorts, each powered
by the successive power clock phase. In Figure 1, the input that is applied alternates '1's and '0's on
successive power clock cycles.

L
a
y
e
r 3

L
a
y
e
r 2

L
a
y
e
r 1

φ
1

φ
2

φ
3

φ
4

L
a
y
e
r 4

Inputs Outputs

Power Clock
Phases

(a) Circuit architecture

A

A

φ
4

φ
3

φ
2

φ
1

F

F

Z

Z

Y

Y

X

X

(b) Buffer-inverter chain

φ1

φ2

φ3

φ4

t
0

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

t
9

t
10

t
11

C
I

 R

I
C

I

C

C C

C

C

C

I

II I

I

I

I II

I

H H H

HHH

H H H H

HHH

 R R

 R R R R

 R R R C

 R R RC C C C

X

Y

Z

A

’1’ ’0’ ’1’

’1’’0’’1’

’1’ ’0’ ’1’

’1’
’0’’1’

’1’ ’0’ ’1’

F

(c) Timing diagram for buffer-inverter chain.

Figure 1: Adiabatic circuit operation.

3 Adiabatic VHDL Models
Refining the ideas introduced in §2, VHDL models for adiabatic circuits are presented here. Recall,

hardware description languages (HDLs) are programming languages that model complex digital systems
and serve as the source for hardware synthesis. HDLs facilitate specification of digital systems by
modeling systems logically rather than at the circuit level. In addition, HDLs include familiar high-level
language (HLL) programming capabilities for computing static constants, to support system modeling,
and to create desired modeling capabilities. For adiabatic logic circuits modeled at a temporal resolution
where the influence of the power clock is important, the HLL features will be used to implement the
logical behaviors of adiabatic logic circuits.

3.1 Anatomy of a VHDL Model
A VHDL model consists of an entity and an architecture [5]. The entity defines the model interface

including the entity’s signals, signal types, and signal modes (input, output, etc.). Further, model meta-
information can be passed through optional generic parameters. Not unexpectedly, VHDL built-in
types include the bit and bit_vector types. In addition, IEEE Standard 1164 [4] defines the more
comprehensive std_logic type that better models use cases that occur in traditional digital circuits.
For example, the std_logic type handles high impedance connections and wired logic connections
for passive logic that are circuit level effects that extend to logic circuits. Considering the operation
of adiabatic circuits described in §2, neither bit nor std_logic provide suitable models for adiabatic
logic circuits.

Figure 2 shows an example of a VHDL model for a two-input AND gate using the std_logic type.
The AND gate model shows declarations of has two inputs & one output and includes the behavioral
model code for a two-input AND gate. Delays, extracted using a separate circuit analysis process, can
be inserted consistent with the synthesized circuit.

32

I
I 'j-----tl ----+-+-t-----f

Adiabatic Modeling using VHDL Belfore

entity and2 is

port(a,b: in std_logic;z:out std_logic);

end entity and2;

architecture behavioral of and2 is

begin

if a='0' or b='0' then z<='1' after 500 ps;

elsif a='1' and b='1' then z<='0' after 200 ps;

else z<='X' after 350 ps;

end if;

end architecture behavioral;

Figure 2: Example VHDL model

3.2 Adiabatic Logic Values

At the circuit level, adiabatic logic values are more complicated than traditional logic values for
several reasons. First, in adiabatic circuits, gate outputs are “dual railed” where a circuit structure
generates both the true and complementary output values. Second, due to the effect of the power clock,
the circuit output value is only valid at certain times as previously shown in Figure 1. Indeed, a logic
one is a pulse that coincides with the circuit’s power clock on the true sense gate output and a logic zero
is a pulse on the complementary sense gate output while the circuit’s power clock is active. While this
operation is inherently analog, the circuit outputs can be categorized as logic one and logic zero. Taking
a broader view of timing and circuit state, a suitable discretization of the behavior can be proposed
in a manner that is consistent with adiabatic circuit operation. What follows is a discussion of the
discretizing of the timing and circuit logic values.

The nature of the power clock provides straightforward guidance for discretizing time. With the
dynamics of adiabatic circuits naturally falling into four distinct operating modes, it makes sense
to discretize the phase into four segments. The following type declaration reflects the discretization
suitable for adiabatic VHDL models.

type simplePhaseSegment is ('I','C','H','R');

The simplePhaseSegment type specifies the values 'I', 'C', 'H', and 'R', representing idle,
charge, hold, and recover respectively. For segments where the power clock is changing (in 'C'
and 'R'), no circuit dynamics are modeled, rather the logical result reflecting the values at the end
of the segment are reported. Any varying circuit level quantities will be represented symbolically
in that segment. Extending simplePhaseSegment is phaseGeneral which is a record including a
simplePhaseSegment and phase index fields.

A new basic type, aBitSimple, is an eleven valued logic system defined to represent the range
of adiabatic signal values that reflect the logic value, nature of the circuit, and value in relation to the
phase. In this work, we have chosen to not differentiate the signal strengths during the charge and hold
phases to facilitate interpretation of timing diagrams. Including these is straightforward and results in
five additional signal values covering respective activities during the charge phase. The permissible
values for this type are summarized in Table 1.

The fully qualified signal VHDL model is defined record type that includes both the signal value
and the phase:

type aBit is record

val : aBitSimple;

myPhase : phaseGeneral;

end record;

33

Adiabatic Modeling using VHDL Belfore

Table 1: Summary of Adiabatic Signal Values for the aBitSimple type

Value Description
'U' driving uninitialized value
'X' driving unknown value
'0' driving logic zero
'1' driving logic one
'Z' high impedance
'u' recovery uninitialized value
'x' recovery unknown value
'L' recovery logic zero
'H' recovery logic one
'z' recovery high impedance
'*' fully discharged

Including the phase in the signal definition enables run time checking to confirm the aBit phase is
consistent with the assigned phase of the gate’s power clock.

Several utility routines have been created to help manage signal values and phases. Some routines
facilitate the conversion between standard signal types (bit and std_logic) and the new aBit type.
Furthermore, operator overloading for the new logic type has been implemented to permit the natural
composition of logic expressions. In the event indeterminate inputs or phase errors occur, the logic
operations evaluate to an unknown value to facilitate troubleshooting. Finally, the logic values 'Z' and
'z', along with the requisite bus resolution functions, permit high impedance bus modeling.

3.3 Logical Adiabatic Gate Model
The logical adiabatic gate model requires changes both to the gate entity and to the behavior defined

in its architecture. The adiabatic gates perform logic functions, so one reasonable approach would
be to adopt traditional logic values in the gate model. In this approach, phase information would be
lost. Furthermore, adiabatic gates are dual rail, whose representation not as important as the power
clock phase in logical modeling, their explicit inclusion provides an opportunity to have visibility for
all signals in the circuit. Apropos, the entity for the AND gate shown in Figure 3 will require dual rail
input & output logic signals and the clock phase driving the gate.

entity adbAnd2 is

port(

phi : in generalPhase;

a,an: in aBit;

b,bn: in aBit;

z,zn:out aBit

);

end entity adbAnd2;

Figure 3: Entity for two-input adiabatic AND gate

Determining the gate outputs is no longer a simple matter of evaluating the gate’s logic function
based in the circuit inputs because of the dependence on the power clock segment. The model presented
in Figure 4 implements the behavior for the two-input adiabatic AND gate that accounts for the power
clock. When the clock phase changes, input phase segments are verified to be the same and also one

34

Adiabatic Modeling using VHDL Belfore

segment preceding the gate’s power clock phase segment where the output value is determined in the
charge segment. A phase error results in the output signal being assigned an 'X' value. Since logical
operations have been overloaded, the gate logic function is expressed in a natural fashion, permitting
logic equations to model the respective MOS switching networks. Logic operations are evaluated in
their respective common phase, facilitating the composition of complex logic functions. The resulting
value is stored in a temporary variable so that the phase can be correctly updated to be consistent with
the power clock for the gate. In transitioning to and during the hold segment, the logic gate outputs
remain constant in the model.

process(phi)

variable zInt ,znInt:aBit;

begin

-- check for valid input and output

-- phase segments

if(isCharging(phi)) then

zInt <= a AND b;

zIntn <= an OR bn;

elsif isHolding(phi) then

-- by VHDL semantics ,

-- no update -no signal change

elsif isRecovering(phi) then

zInt := deenergize(zInt);

znInt := deenergize(znInt);

else -- idle

zInt.val := '*';
znInt.val := '*';

end if;

assignToPhase(zInt , phi);

assignToPhase(znInt , phi);

z <= zInt;

zn <= znInt;

end process;

Figure 4: Behavioral model for two-input adiabatic AND gate

Table 2: Utility functions and Procedures

Name Purpose
isCharging function, returns true when power clock is charging
isHolding function, returns true when power clock is maximal
isRecovering function, returns true when power clock is discharging
isIdle function, returns true when power clock is off
deenergize procedure, reduces the strength of signal while retaining logic value
assignToPhase procedure, assigns a phase to a signal

3.4 Extending to Other Logic Gates
The dual rail nature of the logic gates simplifies creating families of logic gates. Signal inversion

is accomplished simply by swapping the true and complementary signal rails requiring no additional
circuitry. Indeed, with DeMorgan’s Theorem, it is easy to show that by swapping dual rail signals to
complement inputs & outputs, the two-input AND gate can also serve as an OR, NAND, or NOR gate.

35

Adiabatic Modeling using VHDL Belfore

In addition, more complex logic functions can be modeled using the logic equation for the true input
values and the dual logic equation for the complementary input values.

For example, the logic equations for a full adder are

S = A⊕B⊕Ci
Co = A ·B+A ·Ci +B ·Ci

(1)

With traditional CMOS logic, the full adder can be implemented with several gates. In adiabatic
logic, each logic function can be implemented with a MOS switching network, so the full adder can be
implemented with two adiabatic logic gates. The logic equations for the complementary networks are

S = A⊕B⊕Ci
Co = (A+B) · (A+Ci) · (B+Ci)

(2)

The second example is a multiplexer with dedicated, mutually exclusive select lines. The general
true and complementary logic equations are

Z =
N−1

∑
i=0

SiDi Z =
N−1

∏
i=0

(Si +Di), (3)

where N is the number of data inputs. It is also easy to show that, for N = 2, (3) can specify two-input
XOR and XNOR gates.

3.5 Test Bench

A test bench is a special VHDL model which is used to test the model. Figure 5 gives the VHDL
process that generates the ith power clock. For four power clock phases, each power clock phase i has
the same period T and is delayed by (i−1)×90◦, or T(i−1)/4 with respect to a reference time at the
start of the simulation. This can be easily generalized for a different number of power clock phases.
In Figure 5, the power clock process includes one full clock period interval at the beginning of the
simulation with no activity among all clocks. The first wait statement ensures that all power clocks are
inactive for at least one full period of the power clock and the start of each is delayed to ensure each
clock will be in the appropriate relative phase.

...

constant T: time := 100 ns;

...

process

-- generate the ith power clock phase

-- i in {1,2,3,4}

begin

Phi_i <= ('I',i-1);
wait for T*(3+i)/4; -- See narrative

loop

Phi_i.segment <='C'; wait for T/4;

Phi_i.segment <='H'; wait for T/4;

Phi_i.segment <='R'; wait for T/4;

Phi_i.segment <='I'; wait for T/4;

end loop;

end process;

Figure 5: Generating the ith phase of the power clock

36

Adiabatic Modeling using VHDL Belfore

In order for outputs to conform to proper adiabatic operation, inputs must be set in the appropriate
manner to ensure the adiabatic operation of the gate receiving the input. In addition, it is possible that
different inputs may be required at different logic layers, hence must be synchronized to different power
clock phases. This can be accommodated in one of two ways. First, the inputs can be provided at the
same time and always on the same phase. In this case, buffers will need to be inserted to delay the
signal until it has the required phase for its respective input layer. Second, the inputs can be provided
and synchronized to the required phase. The modeling presented works for either method.

4 Examples
Two examples of adiabatic logic circuit models are presented here. In the first, a full adder model

is presented. In the second, a Kogge-Stone adder model is presented. The models were verified using
GHDL Version 0.33 under the IEEE-1164 1993 release of the VHDL standard on Ubuntu 16.04. In
addition, while the modeling is based on the 1993 standard, no issues are anticipated for later VHDL
standard releases. Waveforms are displayed using the GTKWave V3.3 waveform viewer.

A simple but useful example to consider is the full adder. The full adder is a key building block
used to implement computer arithmetic hardware. The full adder model consists of two logic gates and
operates using one power clock phase using the logic functions defined in (1) and (2). The behavior is
modeled by modifying the code in Figure 4 by substituting the logic equations for the sum and carry
functions respectively in place of the AND gate logic equations. The simulation results are presented
in Figure 6. The inputs provided to the full adder sequence through all eight input combinations in
successive power clock cycles, noted with cursors A-H.

0ns 100ns 200ns 300ns 400ns 500ns 600ns 700ns 800ns 900ns

phi1 ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’

A ’0’ ’1’

An ’1’ ’0’

B ’0’ ’1’ ’0’ ’1’

Bn ’1’ ’0’ ’1’ ’0’

Ci ’0’ ’1’ ’0’ ’1’ ’0’ ’1’ ’0’ ’1’

Cin ’1’ ’0’ ’1’ ’0’ ’1’ ’0’ ’1’ ’0’

Co ’*’ ’0’ ’L’ ’*’ ’0’ ’L’ ’*’ ’0’ ’L’ ’*’ ’1’ ’H’ ’*’ ’0’ ’L’ ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’

Con ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’0’ ’L’ ’*’ ’1’ ’H’ ’*’ ’0’ ’L’ ’*’ ’0’ ’L’ ’*’ ’0’ ’L’ ’*’

S ’*’ ’0’ ’L’ ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’0’ ’L’ ’*’ ’1’ ’H’ ’*’ ’0’ ’L’ ’*’ ’0’ ’L’ ’*’ ’1’ ’H’ ’*’

Sn ’*’ ’1’ ’H’ ’*’ ’0’ ’L’ ’*’ ’0’ ’L’ ’*’ ’1’ ’H’ ’*’ ’0’ ’L’ ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’0’ ’L’ ’*’

A B C D E F G H

Figure 6: Full adder simulation results

The next example is a Kogge-Stone adder (KSA)[6] and demonstrates the operation of a more
complex multilayered combinational circuit. The KSA adds two binary integers and is among the fastest
combinational adders, whose implementation requires log2N + 1 layers of adiabatic logic. In addition
to basic gates (AND & XOR), the implementation includes four special cells to manage carry generates
& propagates and their respective functions are summarized in Table 3. Note that the Buffer cell is not
a part of the traditional KSA adder. Rather, the Buffer cell is included in this model to support proper
adiabatic circuit operation to match the power clock phase for the values propagating from layer to layer
in the adder. Note also that subscripts on gate input values are nominal and are related to the local
interconnections required to implement the KSA adder.

The VHDL model for the KSA adder has been implemented in a generic fashion so that the same
architecture can implement any power-of-2 sized KSA adder. Figure 7 gives the entity used to model
the KSA adder. In order to simplify the presentation of results, a four-bit KSA adder is demonstrated.

37

Adiabatic Modeling using VHDL Belfore

Table 3: Kogge-Stone logic cells

Cell Logic Equation
Black cell Gout = (P1 ·G0)+G1 Pout = P1 ·P0
Gray cell Gout = (P0 ·G0)+G1
White cell Gout = P1 ·P0 Pout = P1 ⊕P0
Buffer cell Gout = G0 Pout = P0

entity KsaGeneric is

generic(order : integer := 2); -- width =2**2=4

port (

phi1 ,phi2 ,phi3 ,phi4 : in phaseGeneral;

adbCin , adbCinN : in aBit;

adbOp1 , adbOp1n : in aBit_vector (2** order -1 downto 0);

adbOp2 , adbOp2n : in aBit_vector (2** order -1 downto 0);

adbSum , adbSumN : out aBit_vector (2** order -1 downto 0);

adbCout , adbCoutN : out aBit

);

end KsaGeneric;

Figure 7: Entity for Kogge-Stone adder. Note that ** has been overloaded for integer types

Specifically, the VHDL model for the four-bit adiabatic KSA adder modeled here requires log2N+1= 4
layers of logic to implement. Figure 8 shows the simulation beginning at 4 µs for a circuit powered by
power clocks with 100 ns periods. Note that signal complements have been omitted. At cursor A
(4.0875 µs), the input Op1A=0101, Op2A=1001 and CinA=1. The output layer is charging at cursor
C (4.1875 µs) and CoutC=0, and SumC=1111. In addition, at cursor C, the inputs are changed to
Op1C=1010, Op2C=0101 and CinC=0 resulting in CoutF=0, and SumF=1111 at 4.2875 µs.

4us 4.1us 4.2us 4.3us 4.4us 4.5us

Phi1 ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’

Phi2 ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’

Phi3 ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’

Phi4 ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’

Op1(3) ’1’ ’0’ ’1’ ’0’ ’1’ ’0’

Op1(2) ’0’ ’1’ ’0’ ’1’ ’0’ ’1’

Op1(1) ’0’ ’1’ ’0’ ’1’ ’0’

Op1(0) ’1’ ’0’ ’1’ ’0’ ’1’

Op2(3) ’0’ ’1’ ’0’ ’1’ ’0’ ’1’

Op2(2) ’1’ ’0’ ’1’ ’0’ ’1’ ’0’

Op2(1) ’0’ ’1’ ’0’ ’1’

Op2(0) ’1’ ’0’ ’1’ ’0’

Cin ’0’ ’1’ ’0’ ’1’ ’0’ ’1’

Cout ’0’ ’L’ ’*’ ’0’ ’L’ ’*’ ’0’ ’L’ ’*’ ’0’ ’L’ ’*’ ’1’ ’H’ ’*’ ’0’

Sum(3) ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’0’ ’L’ ’*’ ’1’

Sum(2) ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’0’ ’L’ ’*’ ’1’

Sum(1) ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’0’ ’L’ ’*’ ’1’

Sum(0) ’1’ ’H’ ’*’ ’0’ ’L’ ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’0’ ’L’ ’*’ ’1’

A B C D E

Figure 8: KSA Simulation results at 4us

38

I I I I I I

I I I I

I I I
I I I

I I I
I I I

I

I I I
I I I

I

I I I
I I I

I

I I I I

Adiabatic Modeling using VHDL Belfore

5 Summary and Future Work
A modeling framework has been presented that is consistent with the logical operation of adiabatic

logic circuits. A new type, aBit, was defined that captures the main modes of operation for adiabatic
circuits. The type models the principle adiabatic signal features and ties the operation of the logic
circuits to the power clock. The framework for defining logic functions was presented. Finally, three
examples simulation results were presented for a full adder and a Kogge-Stone adder.

Future work will include verifying the operation of the modeling framework on a wider variety of
adiabatic and reversible circuits. In addition, applicability to different clocking schemes & timing and
energy modeling will be investigated as well.

References
[1] Ernst Christen and Kenneth Bakalar. VHDL-AMS – a hardware description language for analog and mixed-

signal applications. IEEE Transactions on Circuits and Systems–II Analog and Digital Signal Processing,
46(10):1263–1272, October 1999.

[2] Mihail Cutitaru. IDPAL A Partially-Adiabatic Energy-Efficient Logic Family: Theory and Applications to
Secure Computing. PhD thesis, Old Dominion University, Norfolk, Virginia, USA, August 2014.

[3] J. S. Denker. A review of adiabatic computing. In IEEE Symposium on Low Power Electronics, pages 94–97,
San Diego, California, USA, September 1994.

[4] IEEE Computer Society. IEEE Standard Multivalue Logic System for VHDL Model Interoperability
(Std logic 1164), March 1993.

[5] IEEE Computer Society. IEEE Standard VHDL Language Reference Manual, January 2009. IEEE Std
1076TM-2008.

[6] Peter M. Kogge and Harold S. Stone. A parallel algorithm for the efficient solution of a general class of
recurrence equations. IEEE Transactions on Computers, C-22(8):783–791, August 1973.

[7] J.G. Koller and W.C. Athas. Adiabatic switching, low energy computing, and the physics of storing and erasing
information. In Workshop on Physics and Computation, 1992. PhysComp ’92, pages 267–270, Dallas, Texas,
USA, October 1992.

[8] A. Kramer, J. S. Denker, B. Flower, and J. Moroney. 2nd order adiabatic computation with 2n-2p and 2n-
2n2p logic circuits. In Proceedings of the International Symposium on Low Power Design ISLPD’95, pages
191–196, Dana Point, California, USA, 1995.

[9] Rosario Mita and Gaetano Palumbo. Modeling of analog blocks by using standard hardware description
language. Analog Integrated Circuits and Signal Processing, 48(2):107–120, August 2006.

[10] Yong Moon and Deog-Kyoon Jeong. An efficient charge recovery logic circuit. IEEE Journal of Solid-State
Circuits, 31(4):514–522, April 1996.

[11] László Varga, Gábor Hosszú, and Ferenc Kovács. Two-level pipeline scheduling of adiabatic logic. In
International Spring Seminar on Electronics Technology (ISSE 2006), pages 390–394, St. Marienthal,
Germany, May 2006.

[12] David John Willingham. Asynchrobatic logic for low-power VLSI design. PhD thesis, University of
Westminster, London, England, March 2010.

39

	Logical Modeling of Adiabatic Logic Circuits Using VHDL
	Original Publication Citation

	Introduction
	Adiabatic Logic Circuits Operation
	Adiabatic VHDL Models
	Anatomy of a VHDL Model
	Adiabatic Logic Values
	Logical Adiabatic Gate Model
	Extending to Other Logic Gates
	Test Bench

	Examples
	Summary and Future Work

