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STABLE AND CONVERGENT DIFFERENCE SCHEMES
FOR WEAKLY SINGULAR CONVOLUTION INTEGRALS

WESLEY DAVIS AND RICHARD NOREN

We obtain new numerical schemes for weakly singular integrals of convolution type called Caputo frac-
tional order integrals using Taylor and fractional Taylor series expansions and grouping terms in a novel
manner. A fractional Taylor series expansion argument is utilized to provide fractional-order approxi-
mations for functions with minimal regularity. The resulting schemes allow for the approximation of
functions in CY[0, T], where 0 < y < 5. A mild invertibility criterion is provided for the implicit
schemes. Consistency and stability are proven separately for the whole-number-order approximations
and the fractional-order approximations. The rate of convergence in the time variable is shown to be
O(7),0 <y <5foru e C”[0, T], where t is the size of the partition of the time mesh. Crucially,
the assumption of the integral kernel K being decreasing is not required for the scheme to converge in
second-order and below approximations. Optimal convergence results are then proven for both sets of ap-
proximations, where fractional-order approximations can obtain up to whole-number rate of convergence
in certain scenarios. Finally, numerical examples are provided that illustrate our findings.

1. Introduction

We begin by recalling the Caputo fractional time-derivative [9; 10] of a given function f () is

(1) Epef(r) = o )/df(s) ) %ds, O<a<l,

which is a fractional derivative of order «. In [3], the Laplace transform was applied to the fractional
order diffusion initial-boundary value problem

2) S Du(x, t) = aa—;u(x,t)—i-g(x,t), x€[0,1],1 €0, T,
3) u(x,0) =¢(x), u@,t)=u(l,t)=0
to obtain the integral equation
@ u(x,t) —¢(x)+/ (=97 ( ” u(x,s)+g(x, s))

(o) dx?2
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Equation (4) was then studied numerically and convergent schemes were developed for this integral
equation inspired by the works presented in [8; 11; 12; 15; 17; 20]. The regularity of (2) has been
considered in [3; 11; 15]. Our discussion of the regularity of these schemes is motivated by the findings
in [5; 4; 7]. We will derive and examine numerical schemes to discretize integrals of the form (4),
motivated by the principles in [4; 6; 13; 14; 16]. Equations of the form (4) have numerous engineering
and physics applications; see [15; 17; 20]. One of the major advantages of applying the Laplace transform
to a fractional derivative term, as seen in [3], is the ability to relax the regularity assumption for fractional
derivative discretizations in the time variable while preserving an optimal convergence rate. Namely, we
now have the ability to relax the regularity assumption from requiring the objective function u(t) €
C?[0, T] under the well known L1-method (see [20]) to u(¢) € CY[0, T], where 0 < y < 2. Further,
we can strengthen this assumption to u(¢) € C”[0, T'], where 2 < y < 5 while obtaining optimal rate
of convergence. This is achieved by a Taylor series expansion to obtain convergence results for whole
number values of y, and by using a fractional Taylor series expansion to approximate functions with a
fractional order of regularity, see [19]. By requiring more regularity than u(¢) € C2[0, T] in the usual
L1-method, we are able to obtain a higher order of convergence, as seen in Theorems 3.6 and 3.7. This
method naturally generalizes to any convolution type-quadrature where the kernel function K is positive,
nonincreasing, and satisfies K € L'[0, T, as seen in Theorems 3.4 and 3.5. The space variable can be
discretized by a stable finite difference operator presented in [3] and [20] to obtain a rate of convergence
in the space variable of O (h*), where / denotes the size of the partition of the space variable interval.
This ultimately yields a rate of convergence in both space and time for u(x,t) € C¥ ([0, T']; 0, 1])
of O(t” + h*), where 7 is the size of the partition of the time variable interval. We remark that a
standard finite difference operator in the space variable can relax the regularity in space to u(x,t) €
C ([0, T1; C*[0, 1]), where special consideration must be taken to ensure stability in the space variable.
The remainder of the paper is organized as follows. Section 2 will provide discretizations for frac-
tional integrals of the form found in (4), and a general scheme is established for convolution integrals
based on the integral kernel. We obtain general schemes of orders up to fifth order of accuracy in time.
Section 3 establishes all of the necessary consistency, stability, and convergence results for each of these
schemes, in addition to a discussion of the implementation of the schemes. We also prove optimal order
of convergence of our stable schemes, and the instability of schemes of order 6 and above are presented
as well. The main results are featured in Theorems 3.4-3.7. Section 4 presents numerical solutions of
fractional integral equations demonstrating orders of convergence predicted by our theoretical results.

2. Discretized numerical schemes

In order to discretize the Caputo fractional integral (4), let 0 =1y <t < ... <ty = T be a uniform
partition, define 7 = % =t —ty—1,k=1,..., N where N is the number of partitions of the time interval
[0, T]and let s € (0, T'). Then,

(s —t)?
2!

(s — 1)’

3 )+

) F&)=f@)+ (s —t) f (1) + ')+

From the above, similar Taylor expansions centered at any given #; can be constructed for each of the
previous points #_1, tx—2, ..., t, fo € [0, tx]. We will use the notation A = O(h) if A/h is bounded.
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‘We obtain
£t = £,
2 3
Flteon) = f0) —f () + ’—f”(m) = %f”%m +0(th,
2 3
©) F) = fao—2er' 0+ S 1w~ S a0 + o),
k kt)3
Fao) = fa) — ke o+ G D oy - ¢ L fa+ o,

We will use the following equations to find the J-th order approximation of f(s) for any point s € (0, T)
and eachk=0,..., N

j—1
(7) St f i) = f($)+ O (s — 1)),
i=0
— <s >
(®) o fly) = Z FOw)+0(s —n)).
i=0 i=0

We replace each f(#;_;) by its Taylor expansion about the point #;, neglect the higher order terms and
solve the system resulting from equating coefficients of f (), f'(tx), ..., f G=D(#,). For example, a
second order approximation of f(s) is obtained from

co f (0 + ¢} (f (@) = o f (1))i = (1) + (s — 1) f(10),
by equating the coefficients of f(#) and f’(#;) to obtain the system of equations

k k

k
- T =(5 — ).

Solving the above yields c’l‘ =(ty —9)/7, cé =1—(# —s)/7r. As an example, we may numerically
approximate the integral as seen in [3] using c’(§ and c’l‘ as solved for above:

_ a—1 _ a1
/ (tnF(S)) f(S)ds—Z/ s) f( )dSNZ/ F(s)) (e £+ F (1) ds.

We remark that under this construction, we satisfy the condition s € [#tx_1, #]. This directly implies that
the coefficients co and c| presented above are nonnegative. We now provide the values of the coefficients
for each scheme up to fourth order accuracy. Higher order schemes can be derived using (7). In this way,
the general method is outlined below. We remark that in general, ¢; = ¢;(s) foreachi =0,1,..., j — 1.
For fixedk=1,2,..., N:

First order accurate:
k=1
CO s

)= fw)+0(0).
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Second order accurate:
tk — S tk — S
ck=1- , K= , k=>1,
0 1
T T

F&) =t ft) + ko) +0@E?).

Third order accurate:
(S — lk)(f 45— lk)

k_(‘[—l—s—tk)(ZT—l-S—lk) k_(lk—S)(Z‘E-i-S—lk) K
0= 272 S 72 9T 272 . k=2,
F () =cff(t) 4+l ftim1) + 5 f(te2) + O(TY).
Fourth order accurate:

K (t+s—t)Rt+s—t)Bt+s5—1t;) Kk e —89)Rt4+s —1)BT+s5s — 1)

0= 613 e 273 ’

ok = (s—t)(T+s—t)3Tt+s —fk)’ ok = (tr—s)(T+s—1)2T +5 —tk)’ k>3

273 : 673

F(8) =k f ) + b fltemr) + & ftimr) + K f(13) + O(T).

As a generalization of the previous examples, after replacing each f(#;—;) with its Taylor series, we
equate the coefficients of f(t), ' (%), ..., fY~D(#) and neglect the higher order terms to obtain the
following system of equations from (7)

©) VITC.I,C' = Yf»
where
1 1 1 1 T
0 —T -2t —(j—Drt
(10) vi=]|0 (—0)?  (=20)? ... (—=(j—D1)?

0 (coy=! (<201 L (== DTy
— k —_— - .

Cy 1
k
. C}( . (S—tk)
k_| ¢ k_ —1)?
(11) G=| 2| v= (s ‘k)
¢ ] | (s — 1)/~

Notice that VtT is the transpose of the usual Vandermonde matrix [18] which has the determinant

det(V))=det(Vo)= [] w—x)= [] (m—i)r 0,

1<i<n<j I<i<n<j

because, recall x; = jT/N and t = T /N # 0. This directly implies that the matrix VIT is invertible
under this condition. The following lemma is immediate from the above considerations.

Lemma 2.1. Equation (9) has a unique solution, c_k foreachn < N,neNandeachk=1,...,N.
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We now compute the unique solution ensured by the previous lemma. From [18], we can establish
the generalized inverse of the Vandermonde matrix to solve (9).

Theorem 2.2. Let T > 0. Then, (9) has a unique solution cz‘l foreach j=1,2,...,N, NeNandk > j,
with the solution

7 Zlf"ij(s_tk)n_l(_l)j_i (21§m1<...,m/_;§jx’”1"'xmjfi/n1§i<n§j(t(n_i))) 1 =< i< j,
(12) C{'cz Mi,..., mj,j;én

Zlgngj(s_tk)n_l1/n1§i<n§j(f(n_i)) 1 =j’
where x,, = nt.
Proof. From Lemma 2.1, we may invert the matrix V.! to obtain the solution
q Ty—1)
K=y,
which, from [18], each entry of (V[)™! ={[v;,], 1 <i, j <n is calculated by
(_l)j_i (Zlfml<---amj—ifj Xmy - - ~xmj,l-/]_[1§i<n§j(f(n — l))) 1 < I < j,
vin = mi,..., mj,l#n
1/H1§i<n§j(tn_i) l:J’

so we may solve component-wise to find each entry of ¢, from

VH ™= 3" vk

1<n<j
Thus,
(13) =)~
=3 vt
I<n<j
Zlgngj(s_tk)"_l(_l)j_i (215m1<...,mj,,-§jxml...xm/.ﬂ./H1§i<n§j(‘[(n—i))) 1<i<j,
— My, ,mj_17n
D otan<; =1 YT < oz (T(n—i)) i=j. 0O

Remark 2.3. By utilizing the fractional Taylor series expansion instead for f(s) on [0, T'], as discussed
in [19], we obtain similar results to those outlined in Theorem 2.2. This can further relax the regularity
assumption to f(s) € C*[0,T] for0 <o« < 1.

Using the fractional Taylor series expansion, we define an a-order scheme by the following:
« order accurate:
k
co=1,
f@)=ft)+ 0.
We now examine the consistency, stability, and convergence of these schemes based on the generalized
scheme

n—1

(14) &=k fltei) + O0((s —1)").

i=0
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3. Numerical consistency, stability, and convergence

Numerical consistency. We motivate our discussion of stability and convergence by examining the re-
sults presented in [1]. The main results of this paper are established in Theorems 3.3-3.7. The quadrature
studied in [1] is of the form

T N
(15) /0 ps)ds =1y wip(jT)+0("),
j=0

where R € N. From [1], if ¢ € CR[0, T] then there exists of a sequence of constants, {c;}, such that

T N R
/ ¢ ds—1Y wip(jy= Y Tl (1) - PO} + 05
0 =0 I=p+1

We will compare these results to the ones established in the previous section to prove stability and assert
convergence. Our goal is to rewrite the integrand ¢ (s) = K (t, — s) f (s) as a convolution integral, where
we may relax the continuity assumptions on the kernel function K. We begin by recalling some basic
definitions for quadrature methods. From (1.15) of [1], a quadrature method of the form (15) is said to
be consistent if it satisfies

N
ij:N'
Jj=0

We will relate (15) and our findings in the previous section. We use the notation [y ] = a, where a is the
smallest integer that satisfies a > y.

Lemma3.1. Lety >0, f € CY[0, T],and K € L'[0, T). Then, ifu)lj‘. is given by(18) for k > j and any

In
. 0 Tyl-1
(16) [RECLICERYTED 39 SRUFCER )
k=1 j=0

Proof. By utilizing the Taylor expansion for f(s) about the point #;, we may readily obtain a similar quad-
rature rule by using Theorem 2.2 and the definition of each c;(s) defined in (12). By further remarking
that for each s € [#¢—1, #¢], then we may write O ((tx —s)¥) = O(z?) to find

a7 fnf(S)K(tn—S)dS=Z/k FK (1 —s)ds
0 k=1 Yt

y1-1

- Z/ ( D GO )+ 0 _tk)y))K(tn —5)ds
k=1 Y k-1 =0

n [yl-1

=3 Y sy [ ARG = sds+ 0

k=1 j=0
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By letting
173
(18) w’;=/ KK (1, —s)ds,

Te—1

we arrive at the conclusion. [l

The following remark is a natural extension of the first lemma, which allows for direct comparison to
prove stability using Theorem 3.7 in [1].

Remark 3.2. By expanding the series

n [yl-1

DD wif )+ 0@,

k=1 j=0

y € Z*, and by collecting all of the repeating terms for each f(#—;), provided k > j, we may condense
the double summation into a single summation term

n [yl-1

(19) YN wh- ])—Z(wo—l—wk“—i—...—l—wjﬁt’fl)f(tk),

k=1 j=0 =0

where we define wg = 0 to satisfy the previous lemma. Further, by defining

(20) D] =wf+wit b

we arrive at a form identical to the generalized quadrature rule posed in [1], namely

n [yl-1

@1) Do whie J>+0<ry>—2w,ff(zk)+0<ﬂ)

k=1 j=0

In particular, from the results in Theorems 3.4 and 3.6, these schemes are only stable and hence conver-
gent for 0 < y <5.

Theorem 3.3. The approximation scheme (21) is consistent for any 0 < y <5, where y is the order of
approximation.

Proof. From the consistency requirement in [1], we must show that the scheme (21) satisfies, for any
time step T > 0,

/ b ds =73 wejd (1) + O,
22) =0

n
E wj =n,
Jj=0
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for any fixed y. That is, we have from Remark 3.2, by combining (20) and (18),

n n
~Y k k+1 k+y—1
Dowp = wotwy T e w T
k=0 k=0
n [yl-1
_ k
=2 2
k=1 j=0
n [y1-1

Z /k c';(s)K(tn—s)ds

k=1 j=0

[y1-1

/k ( > c’;(s)>1((zn—s)ds.

j=0

n

k=1
From (9), the first equation in the Vandermonde matrix requires

fy1-1

Z Kis)y=1,

Jj=0

hence,
n n

w,{:Z/tk

t’l
K(tn—s)ds=f K(t, —s)ds.
k=0 k=1 Ytk 0

On the other hand, by relabelling the coefficients of (22) and by noting that kT = #,

(23) /0 FOK (ta=9)ds=tY wa_; FGOK (ta—=jO+0 =13 wa i f 1)K (t—t0)+0 ().
j=0

k=0

By equating (21) and (23), we have

Since each w,_; > 0 under this construction, we select {wy}};_, to satisfy ZZ:o wg = n. Thus, we have
for the scheme (21)

f" FOK@tn—s)ds =1y wy i f (0Kt — 1) + 0(")
0 k=0

n
D we=n.
k=0

hence the scheme (21) is consistent. For simplicity and for implementation, we take wy = 1 for each k

to trivially satisfy these conditions since wg =wo =0. ]
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Invertibility criteria. Given a Volterra integral equation of the second kind

u(t) = f(t)—}-/ K, s)u(s)ds,
0

the numerical approximation of order y to the integral is

" y1-1 y1-1 "
w1+ [ ke L doutn)as= s+ Y ue [ Kasdos,
i=0

i=0

which is solved foreach k =1, 2, ..., N. As aresult, we can rearrange the above to yield the approximate
equation

173
u(tk)<1—f K (1, s) c’g(s)ds)

tk—1
fy1-1

te y1-1 k=1 oy
= f) + / K(zk,s>(2 > c{f(s)uak_i)) ds+) / K(rk,s)( > cf(s)u(tj_,-)) ds,
j=1"t-1

Ti—1 i=1 i=0
hence,

v1-1

17 -1 174
u(ty) = (1—/ K (1, 5) c(’;(s)ds> |:f(tk)+/ K(tk,s)( > cff(s)u(tk_,»)> ds

i=1

k=1 oy, ry1-1
+2/ K(tk,s)( > c{f(s)u(tj_,-)) ds:|.
j=1"71-1 i=0

That is, for an implicit scheme, we must restrict

1—/k K(tk,s)cé(s)ds;éo,

Tk—1

or equivalently,

/k K (t, s) ch(s)ds # 1.

Te—1

In practice, since y is the predetermined order of approximation and K is given, we can select an
appropriate order of approximation or an appropriate choice of parameters for K.

Numerical stability and convergence. As a remark, the consistency results hold for any y > 0 using
this argument, but the stability results do not hold in general for y > 5. We must further satisfy stability
requirements in order to prove the convergence of these schemes for any order 0 < y < 5. From [1], we
have the following theorem asserting stability under arbitrary quadrature rules.
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Theorem [1, Theorem 3.7]. The stability polynomial
(24) S At) = (1 = AtwoK O —rtw K@V ' = - — Atwy K (n1)

is Schur, if |At| Z,ivzolwkl( (kt)| < 1. Assuming each wy > 0 and satisfy Z,ICVZO wi = N, the recurrence

for
y(t)=f(t)+)»/nTK(tn—s)y(s)ds
th—

when K(t) =1 fort € [0, T] is stable whenever |\T| < 1, given T > 0.

The Schur polynomial 8(u) in [1] is said to satisfy the requirement that the zeros of § lie inside the
complex unit disc, namely |u,| <1 foralln=0, 1, ..., N. This proof is achieved by the use of Rouche’s
theorem (see [2, Theorem 3.8]), which requires that for « and § analytic functions in p inside and on
the contour I' C C, we have |B(u)| < |a(w)]| for each p € I'. This proof is completed by letting I" be the
unit disc such that || = 1, a(n) = 1, and B(rn) = —Ah(wek Q)Y + wik(W)u™N =1+ - - - + wyk(7)).
We remark that under these results, we must simply satisfy the requirement that each ﬁ)}: >0in (21) to
satisfy a similar stability criterion for this generalized quadrature. This immediately leads to two stability
results.

Theorem 3.4. Let K be a positive function in L'[0, T and let T > 0. Then, the approximation scheme
(21) is stable for O < y <2, where y is the order of approximation.

Proof. The case where y = 1 is immediate since c’é = 1, hence 11)’1‘ > (. For y = 2, recall that since
ck(s) > 0 on [tg—_1, ], i1 (s) > 0 on [t tx41], and K (s) > 0, then

~k _ k+1
W, = w0 + w;

:fk ch()K (s) alerfk+l KTU($)K (5) ds

Tk—1 143

> min (K(s))(/k cé(s) ds-|-/k+l k+l(s)ds>

selt,T] fet %

tet1 Tk+1
= min (K(s))(/ k+1(s) ds—l—/ k+1(s) a’s)
se(n,T] e I

Tk+1
— min (K(s))(/ "“(s)+c"+1(s)ds)
Tk

seln,T]
= mm (K(s))r > 0.

selty, T

Using similar analysis we are able to come to the same conclusion for y =« and y = 1 4 «, given
0 < @ < 1. Therefore, when y € [1, 2], the scheme (21) is stable. |

We require additional assumptions on the integral kernel K to ensure that the scheme is stable in the
case where the order of approximation to (21) is any order 2 < y <5.
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Theorem 3.5. Let K be a positive, nonincreasing function in L'[0, T and let T > 0. The approximation
scheme (21) is stable for any 2 < y <5 order of accuracy.

Proof. We begin by showing that lI)Z >0 foreach k = 1,2, ...,n. That is, we use the relationship
established in Remark 3.2. We will present the argument for the cases where y = 3, 4, 5 and deduce the
pattern from there. We remark that under the construction found in Theorem 2.2 that for j =2, 4,6, ...
then c'j‘. (s) <O, provided s € [#;_1, tx]. Therefore, when y = 3, we have

~k

B = wh + w4kt

Tk Tit1 trt2
:/, cg(s)K(s)ds—i—/l c’;+1(s)1<(s)ds+/ AT2(s)K (s) ds

Ti41
)

Tk Ti41 Tk+2
> K(tk+1)(/ ck(s) ds+/ c’;+1(s)ds+/ "+2(s)ds)
Tk—1 Tk Tk+1

Tk+2 Tk+2 k+2
=K(tk+1)( / kT2 (s)ds + / KT (s)ds + / k+2(s)ds)
tet1 Ti+1 Ti+1

Tk+2
= K (tr11) ( / KT2(s) + K2 (s) + A2 (s) ds)
Tk+1

= K (tx+1)7
> 0.

Hence, when y = 3, the scheme (21) is stable. When y = 4, the argument is similar but we must account
for the extra positive term in w;r3 That is, by recalling from (20) that w* 4= w3 + war3 where

17 tkt1 tey2
Wk > K(tk+1)(/ c(’g(s)ds+f k+1(s)ds+/ A2 (s) ds)
k-1 1k Ti41

k+1

Here,

~k

wk = + wt k+2 + wk+3

+ wj

trt1 Tk+3
zK(rkH)( / A1 () 4 K (5) A () ds) + / AP K (143) ds
7% 173

+2

I3 3 k43 3
= K(tk+1)<f 1—c5" (S)dS) +/ A3 (9)K (1r13) ds
17 1,

+2 k+2

_ / " K(tee) + (K (1) — K ()P (s) ds

+2

> 0.

Since K is nonincreasing, K (fx+1) > K (#¢+3), and since c]2‘+3 (s) < 0 where s € [txy2, tr+3] by translating

over to the correct interval, we then require —1 < c/;r3 (s), § € [tky2, tr+3] to ensure that

tky3 k43 T3
f K (ts) + (K (1) — K (t152))c53(5) ds = / K (t143) ds, = 0.
173

+2 42
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To satisfy the requirement, we find that the minimum attained on the interval s € [f¢2, fx43] for the

function c§+3 (s) is found at s = 343 + 4+ﬁ‘17 by the extreme value theorem and by evaluating the
derivative of clﬁq (s) on the interval s € [tk+2, tx+3]. Hence, the minimum value for c§+3 (s) is

(s itty - CEDO B4 =) 201447
272 54

~ —0.31> —1.

Therefore, when y = 4, the scheme is stable. We now consider the case where y = 5. In this case,

we have a similar argument where y = 4, but we add an additional negative term in wk+4 (s) < 0O for
s € [tx+3, trr4]. Thus, by recalling that

~k

Bk = k4 wh S 4kt

’

we have

K = wf w2 k3 gkt

> K(m)( f R () 4 () 4 R () ds) + K(tk+3)< f
tk Tk

Ike+2

+1

+3 (s)+ ck+2(s) ds)

+1

- K(tk+1)( / T — A2 (s) — () ds) +K(tk+3)( / - A3 (s) +ck+2(s)ds)
tx Tk

41 +1

= / ' K (trs1) + (K (1) — K (t03)) (5 T2 () + A T2(5)) ds.

+1

We must restrict —1 < c”‘+2 (s)+ ck+2 (s) < 0 to ensure the stability of the scheme. We remark that under
the construction of the coefﬁ01ents ckJr2 and ckJr2 there is a common factor of (s —#;42) and (s —tx42+7),
hence ckJr2 (s)+ckJr2 (s)=0whens =11, and S =tgy2—T =1Ig41. Since c§+2, ]frz <Ofors e (tgr1, trr2),
then we may apply the extreme value theorem again to assert that ckJr2 (s)+ ck+2 (s) attains a minimum

value on [#441, tx4+2]. Hence, the minimum of ckJr2 (s)+ ck+2(s) is attalned ats ~ 42 —0.4167, with a
minimum value of

AT (g2 — 0.4167) + AT (f1 12 — 0.4167) &~ —0.603912 > —1.

Therefore, the scheme is stable when y = 5.
We will now show that the above condition no longer holds when y = 6. By repeating the same
argument for when y = 6, we have

11)]6( + wk+1 + wk+2 + wk+3 + wk+4 + wk+5

ti42 T2
> K(¢k+1)< / co () + () + 5 (s) + 652 ds> + K(rk+3>( f A s) +¢5 () ds)
1k Ie+1

+1

=K<rk+1>( / k() — k() ds>+1<(tk+3>< / "+3<s>+c"+2<s>ds)

k+1 +1

_ / P K (n) + (K (1) — K (1) (72(5) + E2()) ds,

+1
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where we again must satisfy —1 < ckJr2 (s)+ ckJr2 (s) < 0 to ensure the stability of the scheme. Using the
same argument as before, we find that there exists a minimum for s € (#41, fx+2), then we may apply
the extreme value theorem again to assert that ck+2 (s)+ ckJr2 (s) attains a minimum value on [#x11, tx+2]-
Using the definition of the coefficients ckJr2 and c§+2 as deﬁned by (12), we find that the minimum exists
at the point s = f4» — 0.388437 with the minimum value c5 ™2 (s) +ctT2(s) = —1.05315 # —1. A similar
analysis holds for each of the fractional order schemes and is therefore omitted. Hence, the condition is

no longer satisfied and thus the scheme fails to be stable for when y = 6, which completes the proof. [

With the consistency and stability results, we are now ready to present the convergence analysis. We
first define the infinity norm by ||-||oc = max{-}.

Numerical convergence. We now consider an arbitrary stable scheme of the form (21) up to order y
where 0 < y < 5. We present the convergence results for the usual Taylor series expansion first, followed
by the fractional Taylor series expansion results.

Theorem 3.6. Let 0 < s < t, for any prescribed t, € [0, T]. Let K € L0, T] be positive and nonin-
creasing on [0, T] and let T > 0. Let f(s) € C?[0, T] satisfy the stable scheme (21) up to some order
y=1,2,3,4,5, where y is the order of approximation. Then, for some C > 0,

<Crt’.

25) H /0 FOK@G -9 ds = @] f @)
k=0

Proof. We fix y > 1 such that for some C > 0 by utilizing (16) and (21),

H /0 FOKU—syds— i) fw)|
k=1

(— max If(”)(t)l(tk _S)V>K(tn —s)ds

[y1! o<t 0
< L max | f 7 (1)|t” iftk |K (1, — )| ds
[y o=i=s, f %
1 If(y)(t)lry / |K (tn — )| ds
o T 0212 %
<ct”,
where
1
|K(t, —s)|ds|| =——=—]|k| < 00. O
w / NENATR

For the fractional order regularity assumption, we have the following convergence rate result.

Theorem 3.7. Let 0 <s <t, for any prescribed t, € [0, t]. Let K €l 110, 7] be positive and nonincreasing
on [0, t] and let T > 0. let f(s) € CY|0, t] satisfy the stable scheme (21) for any y € (0, 5) — {1, 2, 3, 4},
where y is the order of approximation. Let y =n+a, wheren =0,1,2,3,4 and 0 < o < 1. Then, for
some ¢ > 0,

1
< cmax(z?, "),

(26) ” fo FOK @ —s)ds = @) Ft)
k=0
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Proof. By fixing y =n +«a where y € (0,5) — {1, 2, 3,4} and 0 < « < 1, we have for some c; > 0,

y1-1

n te
> / (f(s)— > cﬁ(s)fak_,»))K(rn—s)ds
k=1 M- Jj=0

/O"f(s)K(rn—s) ds =Y iy f (%)
k=1

[e.8] o0

n e

< cmax(t?, o) Z/ K (ty, —s)ds
k=1 Y k-1 e
n

= cmax(t’, "1 / |K (t, — s)| ds

0 oo
< cllK Iy, max(z?, "),

where || K ||;1., < 00. U

We present an example demonstrating that the kernel K improves this estimate accordingly.

Example 3.8. Let K (t) = %! for 0 < « < 1 and consider an order o approximation to f(s) from the
scheme (21). then, we define

|rn|:=f0"<tn—s)“1|f<s>—f<rk)|ds

n tk
=3 [ 6= e = oG Pl ) ds
k=17 k=1

Tk

which is attained under a uniform mesh size. however, if 2« > 1, we obtain the secondary estimate of
¢, since then it is the maximum of that and c72*.

4. Numerical examples

Our first example is a Volterra equation of the second kind with kernel K (¢) = 1!

(27) ut) = f(t)+ / u(s)(t —s)* Lds
0
(28) u@©)=0, Vrel0,T],

where we consider the exact solution u(¢) = %% — t%/2. We define N to be the number of intervals in
a uniform partition of the time domain [0, T'], E3, 5 (/N) to be the maximum error attained over the total
mesh for a third order accurate scheme, and

rate; = 10g, (E3,00(N/2)/E3,00(N)).
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o N E3 o (N) | rates o N E4o(N) | ratey
10 | 0.0010 * 10 | 0.0003 *
20 | 0.0002 2.6369 20 | 2.2041e-5 | 3.6373
0.1 | 40 | 2.4729e-5 | 2.7585 0.1 |40 | 1.6168e—6 | 3.769
80 | 3.4911e-6 | 2.8245 80 | 1.1313e-7 | 3.8371
160 | 4.7969e—7 | 2.8635 160 | 7.6929e-9 | 3.8783
10 | 0.1148 * 10 | 0.0362 *
20 | 0.0144 2.992 20 | 0.0028 3.7128
0.4 | 40 | 0.0020 2.8689 0.4 | 40 | 0.0002 3.7667
80 | 0.0003 2.9013 80 | 1.3999¢-5 | 3.8564
160 | 3.4531e-5 | 2.9364 160 | 9.2778e-7 | 3.9154
10 | 0.0049 * 10 | 0.0021 *
20 | 0.0008 2.6731 20 | 0.0002 3.5777
0.5 | 40 | 0.0001 2.8254 0.5 |40 | 1.2673e-5 | 3.7898
80 | 1.4432e-5 | 2.9052 80 | 8.537e-7 | 3.8919
160 | 1.8719e—6 | 2.9468 160 | 5.5542e-8 | 3.9421
10 | 0.0022 * 10 | 0.0008 *
20 | 0.0003 2.7754 20 | 6.2265e-5 | 3.691
0.7 | 40 | 4.3309e-5 | 2.8883 0.7 |40 | 4.3148e-6 | 3.8511
80 | 5.6279¢—6 | 2.944 80 | 2.8369e—7 | 3.9269
160 | 7.1747e-7 | 2.9716 160 | 1.822¢-8 | 3.9607
10 | 0.0012 * 10 | 0.0004 *
20 | 0.0002 2.8067 20 | 3.417e-5 | 3.7087
0.9 | 40 | 2.2852e-5 | 2.905 0.9 | 40 | 2.3549¢-6 | 3.859
80 | 2.9506e-6 | 2.9532 80 | 1.5441e-7 | 3.9308
160 | 3.7479e-7 | 2.9769 160 | 9.8935e-9 | 3.9642

Table 1. Numerical error for u(r) = 07 — 92, T =1 using a third order scheme on
the left and numerical error for u(t) = t97% — t°/2, T =1 using a fourth order scheme
on the right.

Analogously, we will define E4 o(N), Ey 00(IN), rates, and rate, for the fourth-order accurate and o-
order accurate schemes. We will take « = 0.1, 0.4, 0.5, 0.7, 0.9 in this example. The numerical results
are given in the left of Table 1. By applying the fourth order scheme to the first example, we have the
results recorded in the right side of Table 1.

When we have o = 0.25, we have spurious and large blowup for small values of N, but as N — oo,
we still exhibit the appropriate order of convergence, and hence still preserve the stability condition. For
example, using the fourth order scheme for the second example, with @ = 0.25, we have the for up to
N = 10240, following rate of convergence listed in Table 2.

Another consequence of the a-order accurate scheme is that we can also numerically approximate
u(t) when the exact function is not known. Consider (27) where f(¢) = 2% and u(¢) is unknown. Since
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o N ratey
10 *
20 —9.1682
40 —53.279
80 —300.81
160 127.59
0.25 | 320 11.223
640 4.3639
1280 | 3.8026
2560 | 3.8409
5120 | 3.8947
10240 | 4.223

Table 2. Numerical rate for u () = 197 —t%/2, T = 1 using a fourth order scheme.

the exact solution is not known explicitly, we instead compute the error using the two mesh principle as
outlined in [15] and the references therein. Given a uniform time mesh, we define u” to be the numerical
approximation to u at time ¢ =t, for N total grid points, and z" to be the numerical approximation to u
at time ¢t = 1, for 2N total grid points. Then, the maximum error considered between the two meshes is
computed by

Eqoo(N) = max |u" —z?"|.
1<n<N

We then define the rate of convergence in this case by

Ea,oo(N/2)>

ratea=10g2< E, (V)
a,00

When « = 0.05, 0.25, 0.5, 0.75, 0.95, the results given in the left of Table 3.

Our second example is the Volterra equation of the second kind that is motivated by the findings in
[20] and [3]. This particular equation is obtained by applying the Laplace transform to (1.2) of [20] to
obtain

(29) (1) = () + [(< 4 2 ))“‘s)a_]d
ulx,t)=¢x /0 glx,s @x,s Ta)s’

(30) ux,0)=¢(x), u@ 0 =u(1)=0

on the interval x € [0, 1], ¢ € [0, 1], which has the initial condition ¢ (x) = 0 and the exact solution

u(x, 1) =sin(wx)r' .

We apply a fixed fourth order discrete Laplacian operator in space ¥, as in [3] and in [20], combined
with the o order scheme presented in Section 3 to analyze the problem. By fixing M = 25 space steps and
using o = 0.05, 0.25, 0.5, 0.75, 0.75, 0.95, we have the results show in the right of Table 3. Of particular
interest is the cases where o > %, which validate the findings in Example 3.8.
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o N E, x(N) | rate, o N Eyo0(N) | rate,
10 | % * 10 | 0.0078 *
20 | 5.0445e-5 | = 20 | 0.0046 0.7578
0.05 | 40 | 4.8623e-5 | 0.0531 0.05 | 40 | 0.0026 0.8156
80 | 4.6863e-5 | 0.0532 80 | 0.0015 0.8490
160 | 4.5163e-5 | 0.0533 160 | 0.0008 0.8713
10 | * 10 | 0.0226 *
20 | 0.0025 * 20 | 0.0132 0.7730
0.25 | 40 | 0.0019 0.3858 0.25 | 40 | 0.0077 0.7767
80 | 0.0014 0.4054 80 | 0.0045 0.7806
160 | 0.0011 0.4263 160 | 0.0026 0.7856
10 | % * 10 | 0.0385 *
20 | 0.0053 * 20 | 0.0249 0.6265
0.5 |40 | 0.0029 0.8886 0.5 |40 |0.0158 0.6618
80 | 0.0015 0.9193 80 | 0.0097 0.7017
160 | 0.0008 0.9422 160 | 0.0058 0.7443
10 | = * 10 | 0.1757 *
20 | 0.0100 * 20 | 0.1197 0.5537
0.75 | 40 | 0.0052 0.9566 0.75 |40 | 0.0763 0.6497
80 | 0.0026 0.9753 80 | 0.0456 0.7426
160 | 0.0013 0.9859 160 | 0.0258 0.8219
10 | % * 10 | 0.4118 *
20 | 0.0126 * 20 | 0.2767 0.5735
0.95 | 40 | 0.0064 0.9797 0.95 |40 | 0.1683 0.7172
80 | 0.0032 0.9893 80 | 0.0948 0.8284
160 | 0.0016 0.9944 160 | 0.0507 0.9025

Table 3. Numerical error for (28), f (1) = t** using an «-order scheme, # unknown on
the left and for u(x, t) = sin(rx)t' =%, using an a-order scheme on the right.
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