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STABLE AND CONVERGENT DIFFERENCE SCHEMES
FOR WEAKLY SINGULAR CONVOLUTION INTEGRALS

WESLEY DAVIS AND RICHARD NOREN

We obtain new numerical schemes for weakly singular integrals of convolution type called Caputo frac-
tional order integrals using Taylor and fractional Taylor series expansions and grouping terms in a novel
manner. A fractional Taylor series expansion argument is utilized to provide fractional-order approxi-
mations for functions with minimal regularity. The resulting schemes allow for the approximation of
functions in Cγ

[0, T ], where 0 < γ ≤ 5. A mild invertibility criterion is provided for the implicit
schemes. Consistency and stability are proven separately for the whole-number-order approximations
and the fractional-order approximations. The rate of convergence in the time variable is shown to be
O(τ γ ), 0 < γ ≤ 5 for u ∈ Cγ

[0, T ], where τ is the size of the partition of the time mesh. Crucially,
the assumption of the integral kernel K being decreasing is not required for the scheme to converge in
second-order and below approximations. Optimal convergence results are then proven for both sets of ap-
proximations, where fractional-order approximations can obtain up to whole-number rate of convergence
in certain scenarios. Finally, numerical examples are provided that illustrate our findings.

1. Introduction

We begin by recalling the Caputo fractional time-derivative [9; 10] of a given function f (t) is

(1) C
0 Dα

t f (t)=
1

0(1−α)

∫ t

0

d f (s)
ds

(t − s)−α ds, 0< α < 1,

which is a fractional derivative of order α. In [3], the Laplace transform was applied to the fractional
order diffusion initial-boundary value problem

C
0 Dα

t u(x, t)=
∂2

∂x2 u(x, t)+ g(x, t), x ∈ [0, 1], t ∈ [0, T ],(2)

u(x, 0)= φ(x), u(0, t)= u(1, t)= 0,(3)

to obtain the integral equation

(4) u(x, t)= φ(x)+
∫ t

0

(t − s)α−1

0(α)

(
∂2

∂x2 u(x, s)+ g(x, s)
)

ds.
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Equation (4) was then studied numerically and convergent schemes were developed for this integral
equation inspired by the works presented in [8; 11; 12; 15; 17; 20]. The regularity of (2) has been
considered in [3; 11; 15]. Our discussion of the regularity of these schemes is motivated by the findings
in [5; 4; 7]. We will derive and examine numerical schemes to discretize integrals of the form (4),
motivated by the principles in [4; 6; 13; 14; 16]. Equations of the form (4) have numerous engineering
and physics applications; see [15; 17; 20]. One of the major advantages of applying the Laplace transform
to a fractional derivative term, as seen in [3], is the ability to relax the regularity assumption for fractional
derivative discretizations in the time variable while preserving an optimal convergence rate. Namely, we
now have the ability to relax the regularity assumption from requiring the objective function u(t) ∈
C2
[0, T ] under the well known L1-method (see [20]) to u(t) ∈ Cγ

[0, T ], where 0 < γ ≤ 2. Further,
we can strengthen this assumption to u(t) ∈ Cγ

[0, T ], where 2 < γ ≤ 5 while obtaining optimal rate
of convergence. This is achieved by a Taylor series expansion to obtain convergence results for whole
number values of γ , and by using a fractional Taylor series expansion to approximate functions with a
fractional order of regularity, see [19]. By requiring more regularity than u(t) ∈ C2

[0, T ] in the usual
L1-method, we are able to obtain a higher order of convergence, as seen in Theorems 3.6 and 3.7. This
method naturally generalizes to any convolution type-quadrature where the kernel function K is positive,
nonincreasing, and satisfies K ∈ L1

[0, T ], as seen in Theorems 3.4 and 3.5. The space variable can be
discretized by a stable finite difference operator presented in [3] and [20] to obtain a rate of convergence
in the space variable of O(h4), where h denotes the size of the partition of the space variable interval.
This ultimately yields a rate of convergence in both space and time for u(x, t) ∈ Cγ ([0, T ];C6

[0, 1])
of O(τ γ + h4), where τ is the size of the partition of the time variable interval. We remark that a
standard finite difference operator in the space variable can relax the regularity in space to u(x, t) ∈
Cγ ([0, T ];C4

[0, 1]), where special consideration must be taken to ensure stability in the space variable.
The remainder of the paper is organized as follows. Section 2 will provide discretizations for frac-

tional integrals of the form found in (4), and a general scheme is established for convolution integrals
based on the integral kernel. We obtain general schemes of orders up to fifth order of accuracy in time.
Section 3 establishes all of the necessary consistency, stability, and convergence results for each of these
schemes, in addition to a discussion of the implementation of the schemes. We also prove optimal order
of convergence of our stable schemes, and the instability of schemes of order 6 and above are presented
as well. The main results are featured in Theorems 3.4–3.7. Section 4 presents numerical solutions of
fractional integral equations demonstrating orders of convergence predicted by our theoretical results.

2. Discretized numerical schemes

In order to discretize the Caputo fractional integral (4), let 0 = t0 < t1 < . . . < tN = T be a uniform
partition, define τ = T

N = tk− tk−1, k = 1, . . . , N where N is the number of partitions of the time interval
[0, T ] and let s ∈ (0, T ). Then,

(5) f (s)= f (tk)+ (s− tk) f ′(tk)+
(s− tk)2

2!
f ′′(tk)+

(s− tk)3

3!
f ′′′(tk)+ · · · .

From the above, similar Taylor expansions centered at any given tk can be constructed for each of the
previous points tk−1, tk−2, . . . , t1, t0 ∈ [0, tk]. We will use the notation A = O(h) if A/h is bounded.
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We obtain

(6)

f (tk)= f (tk),

f (tk−1)= f (tk)− τ f ′(tk)+
τ 2

2!
f ′′(tk)−

τ 3

3!
f ′′′(tk)+ O(τ 4),

f (tk−2)= f (tk)− 2τ f ′(tk)+
(2τ)2

2!
f ′′(tk)−

(2τ)3

3!
f ′′′(tk)+ O(τ 4),

...

f (t0)= f (tk)− kτ f ′(tk)+
(kτ)2

2!
f ′′(tk)−

(kτ)3

3!
f ′′′(tk)+ O(τ 4).

We will use the following equations to find the j -th order approximation of f (s) for any point s ∈ (0, T )
and each k = 0, . . . , N :

j−1∑
i=0

ck
i f (tk−i )= f (s)+ O((s− tk) j ),(7)

j−1∑
i=0

ck
i f (tk−i )=

j−1∑
i=0

(s− tk)i

i !
f (i)(tk)+ O((s− tk) j ).(8)

We replace each f (tk−i ) by its Taylor expansion about the point tk , neglect the higher order terms and
solve the system resulting from equating coefficients of f (tk), f ′(tk), . . . , f ( j−1)(tk). For example, a
second order approximation of f (s) is obtained from

ck
0 f (tk)+ ck

1( f (tk)− τ f ′(tk))i = f (tk)+ (s− tk) f ′(tk),

by equating the coefficients of f (tk) and f ′(tk) to obtain the system of equations

ck
0 + ck

1 = 1,

−ck
1τ = (s− tk).

Solving the above yields ck
1 = (tk − s)/τ , ck

0 = 1− (tk − s)/τ . As an example, we may numerically
approximate the integral as seen in [3] using ck

0 and ck
1 as solved for above:∫ tn

0

(tn − s)α−1

0(α)
f (s) ds =

n∑
k=1

∫ tk

tk−1

(tn − s)α−1

0(α)
f (s) ds ≈

n∑
k=1

∫ tk

tk−1

(tn − s)α−1

0(α)
(ck

0 f (tk)+ ck
1 f (tk−1)) ds.

We remark that under this construction, we satisfy the condition s ∈ [tk−1, tk]. This directly implies that
the coefficients c0 and c1 presented above are nonnegative. We now provide the values of the coefficients
for each scheme up to fourth order accuracy. Higher order schemes can be derived using (7). In this way,
the general method is outlined below. We remark that in general, ci = ci (s) for each i = 0, 1, . . . , j − 1.
For fixed k = 1, 2, . . . , N :

First order accurate:
ck

0 = 1,

f (s)= f (tk)+ O(τ ).
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Second order accurate:

ck
0 = 1−

tk − s
τ

, ck
1 =

tk − s
τ

, k ≥ 1,

f (s)= ck
0 f (tk)+ ck

1 f (tk−1)+ O(τ 2).

Third order accurate:

ck
0 =

(τ + s− tk)(2τ + s− tk)
2τ 2 , ck

1 =
(tk − s)(2τ + s− tk)

τ 2 , ck
2 =

(s− tk)(τ + s− tk)
2τ 2 , k ≥ 2,

f (s)= ck
0 f (tk)+ ck

1 f (tk−1)+ ck
2 f (tk−2)+ O(τ 3).

Fourth order accurate:

ck
0 =

(τ + s− tk)(2τ + s− tk)(3τ + s− tk)
6τ 3 , ck

1 =
(tk − s)(2τ + s− tk)(3τ + s− tk)

2τ 3 ,

ck
2 =

(s− tk)(τ + s− tk)(3τ + s− tk)
2τ 3 , ck

3 =
(tk − s)(τ + s− tk)(2τ + s− tk)

6τ 3 , k ≥ 3,

f (s)= ck
0 f (tk)+ ck

1 f (tk−1)+ ck
2 f (tk−2)+ ck

3 f (tk−3)+ O(τ 4).

As a generalization of the previous examples, after replacing each f (tk−i ) with its Taylor series, we
equate the coefficients of f (tk), f ′(tk), . . ., f ( j−1)(tk) and neglect the higher order terms to obtain the
following system of equations from (7)

(9) V T
τ
Eck
j =
Eyk
j ,

where

V T
τ =


1 1 1 . . . 1
0 −τ −2τ . . . −( j − 1)τ
0 (−τ)2 (−2τ)2 . . . (−( j − 1)τ )2

...

0 (−τ) j−1 (−2τ) j−1 . . . (−( j − 1)τ ) j−1

(10)

Eck
j =


ck

0
ck

1
ck

2
...

ck
j−1

 , Eyk
j =


1

(s− tk)
(s− tk)2

...

(s− tk) j−1

 .(11)

Notice that V T
τ is the transpose of the usual Vandermonde matrix [18] which has the determinant

det(V T
τ )= det(Vτ )=

∏
1≤i<n≤ j

(xn − xi )=
∏

1≤i<n≤ j

(n− i)τ 6= 0,

because, recall x j = jT/N and τ = T/N 6= 0. This directly implies that the matrix V T
τ is invertible

under this condition. The following lemma is immediate from the above considerations.

Lemma 2.1. Equation (9) has a unique solution, Eck
n for each n ≤ N , n ∈ N and each k = 1, . . . , N.
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We now compute the unique solution ensured by the previous lemma. From [18], we can establish
the generalized inverse of the Vandermonde matrix to solve (9).

Theorem 2.2. Let τ > 0. Then, (9) has a unique solution Eck
n for each j = 1, 2, . . . , N , N ∈ N and k ≥ j ,

with the solution

(12) Eck
i =


∑

1≤n≤ j (s−tk)n−1(−1) j−i
(∑

1≤m1<...,m j−i≤ j
m1,...,m j−1 6=n

xm1 ...xm j−i /
∏

1≤i<n≤ j (τ (n−i))
)

1≤ i < j,∑
1≤n≤ j (s−tk)n−11/

∏
1≤i<n≤ j (τ (n−i)) i = j,

where xn = nτ .

Proof. From Lemma 2.1, we may invert the matrix V T
τ to obtain the solution

Eck
j = (V

T
τ )
−1 Eyk

j ,

which, from [18], each entry of (V T
τ )
−1
= [vin], 1≤ i, j ≤ n is calculated by

vin =

{
(−1) j−i

(∑
1≤m1<...,m j−i≤ j

m1,...,m j−1 6=n
xm1 . . . xm j−i /

∏
1≤i<n≤ j (τ (n− i))

)
1≤ i < j,

1/
∏

1≤i<n≤ j (τn− i) i = j,

so we may solve component-wise to find each entry of Ec j , from

(V T
τ )
−1 Eyk

j =
∑

1≤n≤ j

vin yk
n .

Thus,

(13) Eck
i =(V

T
τ )
−1 Eyk

j

=

∑
1≤n≤ j

vin yk
n

=

{∑
1≤n≤ j (s−tk)n−1(−1) j−i

(∑
1≤m1<...,m j−i≤ j

m1,...,m j−1 6=n
xm1 ...xm j−i /

∏
1≤i<n≤ j (τ (n−i))

)
1≤i< j,∑

1≤n≤ j (s−tk)n−11/
∏

1≤i<n≤ j (τ (n−i)) i= j. �

Remark 2.3. By utilizing the fractional Taylor series expansion instead for f (s) on [0, T ], as discussed
in [19], we obtain similar results to those outlined in Theorem 2.2. This can further relax the regularity
assumption to f (s) ∈ Cα

[0, T ] for 0< α < 1.

Using the fractional Taylor series expansion, we define an α-order scheme by the following:

α order accurate:
ck

0 = 1,

f (s)= f (tk)+ O(τα).

We now examine the consistency, stability, and convergence of these schemes based on the generalized
scheme

(14) f (s)=
n−1∑
i=0

ck
i f (tk−i )+ O((s− tk)n).
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3. Numerical consistency, stability, and convergence

Numerical consistency. We motivate our discussion of stability and convergence by examining the re-
sults presented in [1]. The main results of this paper are established in Theorems 3.3–3.7. The quadrature
studied in [1] is of the form

(15)
∫ T

0
φ(s) ds = τ

N∑
j=0

w jφ( jτ)+ O(τ R),

where R ∈ N. From [1], if φ ∈ C R
[0, T ] then there exists of a sequence of constants, {cl}, such that∫ T

0
φ(s) ds− τ

N∑
j=0

w jφ( jτ)=
R∑

l=ρ+1

τ l(r lcl){φ
(l−1)(T )−φ(l−1)(0)}+ O(τ R).

We will compare these results to the ones established in the previous section to prove stability and assert
convergence. Our goal is to rewrite the integrand φ(s)= K (tn − s) f (s) as a convolution integral, where
we may relax the continuity assumptions on the kernel function K . We begin by recalling some basic
definitions for quadrature methods. From (1.15) of [1], a quadrature method of the form (15) is said to
be consistent if it satisfies

N∑
j=0

w j = N .

We will relate (15) and our findings in the previous section. We use the notation dγ e = a, where a is the
smallest integer that satisfies a ≥ γ .

Lemma 3.1. Let γ > 0, f ∈ Cγ
[0, T ], and K ∈ L1

[0, T ]. Then, if wk
j is given by(18) for k ≥ j and any

tn

(16)
∫ tn

0
f (s)K (tn − s) ds =

n∑
k=1

dγ e−1∑
j=0

wk
j f (tk− j )+ O(τ γ ).

Proof. By utilizing the Taylor expansion for f (s) about the point tk , we may readily obtain a similar quad-
rature rule by using Theorem 2.2 and the definition of each c j (s) defined in (12). By further remarking
that for each s ∈ [tk−1, tk], then we may write O((tk − s)γ )= O(τ γ ) to find

(17)
∫ tn

0
f (s)K (tn − s) ds =

n∑
k=1

∫ tk

tk−1

f (s)K (tn − s) ds

=

n∑
k=1

∫ tk

tk−1

(dγ e−1∑
j=0

ck
j (s) f (tk− j )+ O((s− tk)γ )

)
K (tn − s) ds

=

n∑
k=1

dγ e−1∑
j=0

f (tk− j )

∫ tk

tk−1

ck
j (s)K (tn − s) ds+ O(τ γ ).
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By letting

(18) wk
j =

∫ tk

tk−1

ck
j (s)K (tn − s) ds,

we arrive at the conclusion. �

The following remark is a natural extension of the first lemma, which allows for direct comparison to
prove stability using Theorem 3.7 in [1].

Remark 3.2. By expanding the series

n∑
k=1

dγ e−1∑
j=0

wk
j f (tk− j )+ O(τ γ ),

γ ∈ Z+, and by collecting all of the repeating terms for each f (tk− j ), provided k ≥ j , we may condense
the double summation into a single summation term

(19)
n∑

k=1

dγ e−1∑
j=0

wk
j f (tk− j )=

n∑
k=0

(wk
0 +w

k+1
1 + . . .+w

k+γ−1
γ−1 ) f (tk),

where we define w0
0 = 0 to satisfy the previous lemma. Further, by defining

(20) w̃
γ

k = w
k
0 +w

k+1
1 + · · ·+w

k+γ−1
γ−1 ,

we arrive at a form identical to the generalized quadrature rule posed in [1], namely

(21)
n∑

k=1

dγ e−1∑
j=0

wk
j f (tk− j )+ O(τ γ )=

n∑
k=0

w̃
γ

k f (tk)+ O(τ γ ).

In particular, from the results in Theorems 3.4 and 3.6, these schemes are only stable and hence conver-
gent for 0< γ ≤ 5.

Theorem 3.3. The approximation scheme (21) is consistent for any 0< γ ≤ 5, where γ is the order of
approximation.

Proof. From the consistency requirement in [1], we must show that the scheme (21) satisfies, for any
time step τ > 0,

(22)

∫ tn

0
φ(s) ds = τ

n∑
j=0

wn− jφ( jτ)+ O(τ R),

n∑
j=0

w j = n,
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for any fixed γ . That is, we have from Remark 3.2, by combining (20) and (18),

n∑
k=0

w̃
γ

k =

n∑
k=0

wk
0 +w

k+1
1 + · · ·+w

k+γ−1
γ−1

=

n∑
k=1

dγ e−1∑
j=0

wk
j

=

n∑
k=1

dγ e−1∑
j=0

∫ tk

tk−1

ck
j (s)K (tn − s) ds

=

n∑
k=1

∫ tk

tk−1

(dγ e−1∑
j=0

ck
j (s)

)
K (tn − s) ds.

From (9), the first equation in the Vandermonde matrix requires

dγ e−1∑
j=0

ck
j (s)= 1,

hence,
n∑

k=0

w̃
γ

k =

n∑
k=1

∫ tk

tk−1

K (tn − s) ds =
∫ tn

0
K (tn − s) ds.

On the other hand, by relabelling the coefficients of (22) and by noting that kτ = tk ,

(23)
∫ tn

0
f (s)K (tn−s)ds=τ

n∑
j=0

wn− j f ( jτ)K (tn− jτ)+O(τ R)=τ

n∑
k=0

wn−k f (tk)K (tn−tk)+O(τ R).

By equating (21) and (23), we have

τ

n∑
k=0

wn−k K (tn − tk)=
n∑

k=0

w̃
γ

k =

∫ tn

0
K (tn − s) ds.

Since each wn−k ≥ 0 under this construction, we select {wk}
n
k=0 to satisfy

∑n
k=0wk = n. Thus, we have

for the scheme (21) ∫ tn

0
f (s)K (tn − s) ds = τ

n∑
k=0

wn−k f (tk)K (tn − tk)+ O(τ R)

n∑
k=0

wk = n,

hence the scheme (21) is consistent. For simplicity and for implementation, we take wk = 1 for each k
to trivially satisfy these conditions since w0

0 = w0 = 0. �
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Invertibility criteria. Given a Volterra integral equation of the second kind

u(t)= f (t)+
∫ t

0
K (t, s)u(s) ds,

the numerical approximation of order γ to the integral is

u(tk)≈ f (tk)+
∫ tk

0
K (t, s)

(dγ e−1∑
i=0

ck
i (s)u(tk−i )

)
ds = f (tk)+

dγ e−1∑
i=0

u(tk−i )

∫ tk

0
K (t, s)ck

i (s) ds,

which is solved for each k = 1, 2, . . . , N . As a result, we can rearrange the above to yield the approximate
equation

u(tk)
(

1−
∫ tk

tk−1

K (tk, s) ck
0(s) ds

)

= f (tk)+
∫ tk

tk−1

K (tk, s)
(

2
dγ e−1∑

i=1

ck
i (s)u(tk−i )

)
ds+

k−1∑
j=1

∫ t j

t j−1

K (tk, s)
(dγ e−1∑

i=0

ck
i (s)u(t j−i )

)
ds,

hence,

u(tk)=
(

1−
∫ tk

tk−1

K (tk, s) ck
0(s) ds

)−1[
f (tk)+

∫ tk

tk−1

K (tk, s)
(dγ e−1∑

i=1

ck
i (s)u(tk−i )

)
ds

+

k−1∑
j=1

∫ t j

t j−1

K (tk, s)
(dγ e−1∑

i=0

ck
i (s)u(t j−i )

)
ds
]
.

That is, for an implicit scheme, we must restrict

1−
∫ tk

tk−1

K (tk, s) ck
0(s) ds 6= 0,

or equivalently, ∫ tk

tk−1

K (tk, s) ck
0(s) ds 6= 1.

In practice, since γ is the predetermined order of approximation and K is given, we can select an
appropriate order of approximation or an appropriate choice of parameters for K .

Numerical stability and convergence. As a remark, the consistency results hold for any γ > 0 using
this argument, but the stability results do not hold in general for γ > 5. We must further satisfy stability
requirements in order to prove the convergence of these schemes for any order 0< γ ≤ 5. From [1], we
have the following theorem asserting stability under arbitrary quadrature rules.
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Theorem [1, Theorem 3.7]. The stability polynomial

(24) 6(µ; λτ)= (1− λτw0K (0))µN
− λτw1K (τ )µN−1

− · · ·− λτwN K (nτ)

is Schur, if |λτ |
∑N

k=0|wk K (kτ)|< 1. Assuming each wk ≥ 0 and satisfy
∑N

k=0wk = N , the recurrence
for

y(t)= f (t)+ λ
∫ tn

tn−T
K (tn − s)y(s) ds

when K (t)≡ 1 for t ∈ [0, T ] is stable whenever |λT |< 1, given τ > 0.

The Schur polynomial β(µ) in [1] is said to satisfy the requirement that the zeros of β lie inside the
complex unit disc, namely |µn|< 1 for all n = 0, 1, . . . , N . This proof is achieved by the use of Rouche’s
theorem (see [2, Theorem 3.8]), which requires that for α and β analytic functions in µ inside and on
the contour 0 ⊂ C, we have |β(µ)|< |α(µ)| for each µ ∈ 0. This proof is completed by letting 0 be the
unit disc such that |µ| = 1, α(µ) = µN , and β(µ) = −λh(w0k(0)µN

+w1k(h)µN−1
+ · · · +wN k(τ )).

We remark that under these results, we must simply satisfy the requirement that each w̃γk ≥ 0 in (21) to
satisfy a similar stability criterion for this generalized quadrature. This immediately leads to two stability
results.

Theorem 3.4. Let K be a positive function in L1
[0, T ] and let τ > 0. Then, the approximation scheme

(21) is stable for 0< γ ≤ 2, where γ is the order of approximation.

Proof. The case where γ = 1 is immediate since ck
0 = 1, hence w̃k

1 ≥ 0. For γ = 2, recall that since
ck

0(s) > 0 on [tk−1, tk], ck+1
1 (s) > 0 on [tk, tk+1], and K (s) > 0, then

w̃k
2 = w

k
0 +w

k+1
1

=

∫ tk

tk−1

ck
0(s)K (s) ds+

∫ tk+1

tk
ck+1

1 (s)K (s) ds

≥ min
s∈[t1,T ]

(K (s))
(∫ tk

tk−1

ck
0(s) ds+

∫ tk+1

tk
ck+1

1 (s) ds
)

= min
s∈[t1,T ]

(K (s))
(∫ tk+1

tk
ck+1

0 (s) ds+
∫ tk+1

tk
ck+1

1 (s) ds
)

= min
s∈[t1,T ]

(K (s))
(∫ tk+1

tk
ck+1

0 (s)+ ck+1
1 (s) ds

)
= min

s∈[t1,T ]
(K (s))τ ≥ 0.

Using similar analysis we are able to come to the same conclusion for γ = α and γ = 1+ α, given
0< α < 1. Therefore, when γ ∈ [1, 2], the scheme (21) is stable. �

We require additional assumptions on the integral kernel K to ensure that the scheme is stable in the
case where the order of approximation to (21) is any order 2< γ ≤ 5.
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Theorem 3.5. Let K be a positive, nonincreasing function in L1
[0, T ] and let τ > 0. The approximation

scheme (21) is stable for any 2< γ ≤ 5 order of accuracy.

Proof. We begin by showing that w̃γk ≥ 0 for each k = 1, 2, . . . , n. That is, we use the relationship
established in Remark 3.2. We will present the argument for the cases where γ = 3, 4, 5 and deduce the
pattern from there. We remark that under the construction found in Theorem 2.2 that for j = 2, 4, 6, . . .
then ck

j (s) < 0, provided s ∈ [tk−1, tk]. Therefore, when γ = 3, we have

w̃k
3 = w

k
0 +w

k+1
1 +wk+2

2

=

∫ tk

tk−1

ck
0(s)K (s) ds+

∫ tk+1

tk
ck+1

1 (s)K (s) ds+
∫ tk+2

tk+1

ck+2
2 (s)K (s) ds

≥ K (tk+1)

(∫ tk

tk−1

ck
0(s) ds+

∫ tk+1

tk
ck+1

1 (s) ds+
∫ tk+2

tk+1

ck+2
2 (s) ds

)
= K (tk+1)

(∫ tk+2

tk+1

ck+2
0 (s) ds+

∫ tk+2

tk+1

ck+2
1 (s) ds+

∫ tk+2

tk+1

ck+2
2 (s) ds

)
= K (tk+1)

(∫ tk+2

tk+1

ck+2
0 (s)+ ck+2

1 (s)+ ck+2
2 (s) ds

)
= K (tk+1)τ

≥ 0.

Hence, when γ = 3, the scheme (21) is stable. When γ = 4, the argument is similar, but we must account
for the extra positive term in wk+3

3 . That is, by recalling from (20) that w̃k
4 = w̃

k
3 +w

k+3
3 , where

w̃k
3 ≥ K (tk+1)

(∫ tk

tk−1

ck
0(s) ds+

∫ tk+1

tk
ck+1

1 (s) ds+
∫ tk+2

tk+1

ck+2
2 (s) ds

)
.

Here,

w̃k
4 = w

k
0 +w

k+1
1 +wk+2

2 +wk+3
3

≥K (tk+1)

(∫ tk+1

tk
ck+1

0 (s)+ ck+1
1 (s)+ ck+1

2 (s) ds
)
+

∫ tk+3

tk+2

ck+3
3 (s)K (tk+3) ds

= K (tk+1)

(∫ tk+3

tk+2

1− ck+3
2 (s) ds

)
+

∫ tk+3

tk+2

ck+3
2 (s)K (tk+3) ds

=

∫ tk+3

tk+2

K (tk+1)+ (K (tk+1)− K (tk+3))ck+3
2 (s) ds

≥ 0.

Since K is nonincreasing, K (tk+1)≥ K (tk+3), and since ck+3
2 (s) < 0 where s ∈ [tk+2, tk+3] by translating

over to the correct interval, we then require −1≤ ck+3
2 (s), s ∈ [tk+2, tk+3] to ensure that∫ tk+3

tk+2

K (tk+1)+ (K (tk+1)− K (tk+3))ck+3
2 (s) ds ≥

∫ tk+3

tk+2

K (tk+3) ds,≥ 0.
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To satisfy the requirement, we find that the minimum attained on the interval s ∈ [tk+2, tk+3] for the
function ck+3

2 (s) is found at s = tk+3 +
−4+
√

7
3 τ by the extreme value theorem and by evaluating the

derivative of ck+3
2 (s) on the interval s ∈ [tk+2, tk+3]. Hence, the minimum value for ck+3

2 (s) is

ck+3
2

(
tk+3+

−4+
√

7
3 τ

)
=

(
−4+
√

7
3

)(
1+ −4+

√
7

3

)(
3+ −4+

√
7

3

)
2τ 2 =

20− 14
√

7
54

≈−0.31≥−1.

Therefore, when γ = 4, the scheme is stable. We now consider the case where γ = 5. In this case,
we have a similar argument where γ = 4, but we add an additional negative term in wk+4

4 (s) < 0 for
s ∈ [tk+3, tk+4]. Thus, by recalling that

w̃k
5 = w̃

k
3 +w

k+3
3 +wk+4

4 ,

we have

w̃k
5 = w

k
0 +w

k+1
1 +wk+2

2 +wk+3
3 +wk+4

4

≥ K (tk+1)

(∫ tk+2

tk+1

ck+2
0 (s)+ ck+2

1 (s)+ ck+2
3 (s) ds

)
+ K (tk+3)

(∫ tk+2

tk+1

ck+3
2 (s)+ ck+2

4 (s) ds
)

= K (tk+1)

(∫ tk+2

tk+1

1− ck+2
2 (s)− ck+2

4 (s) ds
)
+ K (tk+3)

(∫ tk+2

tk+1

ck+3
2 (s)+ ck+2

4 (s) ds
)

=

∫ tk+2

tk+1

K (tk+1)+ (K (tk+1)− K (tk+3))(ck+2
2 (s)+ ck+2

4 (s)) ds.

We must restrict −1≤ ck+2
2 (s)+ ck+2

4 (s) < 0 to ensure the stability of the scheme. We remark that under
the construction of the coefficients ck+2

2 and ck+2
4 , there is a common factor of (s− tk+2) and (s− tk+2+τ),

hence ck+2
2 (s)+ck+2

4 (s)=0 when s= tk+2 and s= tk+2−τ = tk+1. Since ck+2
2 , ck+2

4 <0 for s∈ (tk+1, tk+2),
then we may apply the extreme value theorem again to assert that ck+2

2 (s)+ ck+2
4 (s) attains a minimum

value on [tk+1, tk+2]. Hence, the minimum of ck+2
2 (s)+ ck+2

4 (s) is attained at s ≈ tk+2− 0.416τ , with a
minimum value of

ck+2
2 (tk+2− 0.416τ)+ ck+2

4 (tk+2− 0.416τ)≈−0.603912≥−1.

Therefore, the scheme is stable when γ = 5.
We will now show that the above condition no longer holds when γ = 6. By repeating the same

argument for when γ = 6, we have

w̃k
6 = w

k
0 +w

k+1
1 +wk+2

2 +wk+3
3 +wk+4

4 +wk+5
5

≥ K (tk+1)

(∫ tk+2

tk+1

ck+2
0 (s)+ ck+2

1 (s)+ ck+2
3 (s)+ ck+2

5 ds
)
+ K (tk+3)

(∫ tk+2

tk+1

ck+3
2 (s)+ ck+2

4 (s) ds
)

= K (tk+1)

(∫ tk+2

tk+1

1− ck+2
2 (s)− ck+2

4 (s) ds
)
+ K (tk+3)

(∫ tk+2

tk+1

ck+3
2 (s)+ ck+2

4 (s) ds
)

=

∫ tk+2

tk+1

K (tk+1)+ (K (tk+1)− K (tk+3))(ck+2
2 (s)+ ck+2

4 (s)) ds,
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where we again must satisfy −1≤ ck+2
2 (s)+ ck+2

4 (s) < 0 to ensure the stability of the scheme. Using the
same argument as before, we find that there exists a minimum for s ∈ (tk+1, tk+2), then we may apply
the extreme value theorem again to assert that ck+2

2 (s)+ ck+2
4 (s) attains a minimum value on [tk+1, tk+2].

Using the definition of the coefficients ck+2
2 and ck+2

4 as defined by (12), we find that the minimum exists
at the point s = tk+2−0.38843τ with the minimum value ck+2

2 (s)+ck+2
4 (s)=−1.05315 �−1. A similar

analysis holds for each of the fractional order schemes and is therefore omitted. Hence, the condition is
no longer satisfied and thus the scheme fails to be stable for when γ = 6, which completes the proof. �

With the consistency and stability results, we are now ready to present the convergence analysis. We
first define the infinity norm by ‖·‖∞ =max{·}.

Numerical convergence. We now consider an arbitrary stable scheme of the form (21) up to order γ
where 0< γ ≤ 5. We present the convergence results for the usual Taylor series expansion first, followed
by the fractional Taylor series expansion results.

Theorem 3.6. Let 0 ≤ s ≤ tn for any prescribed tn ∈ [0, T ]. Let K ∈ L1
[0, T ] be positive and nonin-

creasing on [0, T ] and let τ > 0. Let f (s) ∈ Cγ
[0, T ] satisfy the stable scheme (21) up to some order

γ = 1, 2, 3, 4, 5, where γ is the order of approximation. Then, for some C > 0,

(25)
∥∥∥∥∫ tn

0
f (s)K (tn − s) ds−

n∑
k=0

w̃
γ

k f (tk)
∥∥∥∥
∞

≤ Cτ γ .

Proof. We fix γ ≥ 1 such that for some C > 0 by utilizing (16) and (21),∥∥∥∥∫ tn

0
f (s)K (tn − s) ds−

n∑
k=1

w̃
γ

k f (tk)
∥∥∥∥
∞

≤

∥∥∥∥ n∑
k=1

∫ tk

tk−1

(
1
dγ e!

max
0≤t≤tn

| f (γ )(t)|(tk − s)γ
)

K (tn − s) ds
∥∥∥∥
∞

≤
1
dγ e!

max
0≤t≤tn

| f (γ )(t)|τ γ
∥∥∥∥ n∑

k=1

∫ tk

tk−1

|K (tn − s)| ds
∥∥∥∥
∞

=
1
dγ e!

max
0≤t≤tn

| f (γ )(t)|τ γ
∥∥∥∥∫ tn

0
|K (tn − s)| ds

∥∥∥∥
∞

≤ cτ γ ,

where

c =
1
dγ e!

∥∥∥∥∫ tn

0
|K (tn − s)| ds

∥∥∥∥
∞

=
1
dγ e!
‖k‖l1[0,t] <∞. �

For the fractional order regularity assumption, we have the following convergence rate result.

Theorem 3.7. Let 0≤ s ≤ tn for any prescribed tn ∈ [0, t]. Let K ∈ l1
[0, t] be positive and nonincreasing

on [0, t] and let τ > 0. let f (s) ∈ Cγ
[0, t] satisfy the stable scheme (21) for any γ ∈ (0, 5)−{1, 2, 3, 4},

where γ is the order of approximation. Let γ = n+α, where n = 0, 1, 2, 3, 4 and 0< α < 1. Then, for
some c > 0,

(26)
∥∥∥∥∫ tn

0
f (s)K (tn − s) ds−

n∑
k=0

w̃
γ

k f (tk)
∥∥∥∥
∞

≤ c max(τ γ , τ n+1).
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Proof. By fixing γ = n+α where γ ∈ (0, 5)−{1, 2, 3, 4} and 0< α < 1, we have for some c1 > 0,∥∥∥∥∫ tn

0
f (s)K (tn − s) ds−

n∑
k=1

w̃
γ

k f (tk)
∥∥∥∥
∞

=

∥∥∥∥ n∑
k=1

∫ tk

tk−1

(
f (s)−

dγ e−1∑
j=0

ck
j (s) f (tk− j )

)
K (tn − s) ds

∥∥∥∥
∞

≤ c max(τ γ , τ n+1)

∥∥∥∥ n∑
k=1

∫ tk

tk−1

K (tn − s) ds
∥∥∥∥
∞

= c max(τ γ , τ n+1)

∥∥∥∥∫ tn

0
|K (tn − s)| ds

∥∥∥∥
∞

≤ c‖K‖l1[0,t]max(τ γ , τ n+1),

where ‖K‖l1[0,t] <∞. �

We present an example demonstrating that the kernel K improves this estimate accordingly.

Example 3.8. Let K (t)= tα−1 for 0< α < 1 and consider an order α approximation to f (s) from the
scheme (21). then, we define

|rn|:=
∫ tn

0
(tn − s)α−1

| f (s)− f (tk)| ds

=

n∑
k=1

∫ tk

tk−1

|(s− tk−1)
α
− τα + o(c0d2α

t f )|(tn − s)α−1 ds

≤

n∑
k=1

∫ tk

tk−1

τα(tn − s)α−1 ds

≤
τα

α
max

1≤k≤n
τα

= cτ 2α,

which is attained under a uniform mesh size. however, if 2α > 1, we obtain the secondary estimate of
cτ , since then it is the maximum of that and cτ 2α.

4. Numerical examples

Our first example is a Volterra equation of the second kind with kernel K (t)= tα−1

u(t)= f (t)+
∫ t

0
u(s)(t − s)α−1 ds(27)

u(0)= 0, ∀t ∈ [0, T ],(28)

where we consider the exact solution u(t)= t6+α
− t9/2. We define N to be the number of intervals in

a uniform partition of the time domain [0, T ], E3,∞(N ) to be the maximum error attained over the total
mesh for a third order accurate scheme, and

rate3 = log2(E3,∞(N/2)/E3,∞(N )).

-
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α N E3,∞(N ) rate3

10 0.0010 *
20 0.0002 2.6369

0.1 40 2.4729e–5 2.7585
80 3.4911e–6 2.8245
160 4.7969e–7 2.8635

10 0.1148 *
20 0.0144 2.992

0.4 40 0.0020 2.8689
80 0.0003 2.9013
160 3.4531e–5 2.9364

10 0.0049 *
20 0.0008 2.6731

0.5 40 0.0001 2.8254
80 1.4432e–5 2.9052
160 1.8719e–6 2.9468

10 0.0022 *
20 0.0003 2.7754

0.7 40 4.3309e–5 2.8883
80 5.6279e–6 2.944
160 7.1747e–7 2.9716

10 0.0012 *
20 0.0002 2.8067

0.9 40 2.2852e–5 2.905
80 2.9506e–6 2.9532
160 3.7479e–7 2.9769

α N E4,∞(N ) rate4

10 0.0003 *
20 2.2041e–5 3.6373

0.1 40 1.6168e–6 3.769
80 1.1313e–7 3.8371
160 7.6929e–9 3.8783

10 0.0362 *
20 0.0028 3.7128

0.4 40 0.0002 3.7667
80 1.3999e–5 3.8564
160 9.2778e–7 3.9154

10 0.0021 *
20 0.0002 3.5777

0.5 40 1.2673e–5 3.7898
80 8.537e–7 3.8919
160 5.5542e–8 3.9421

10 0.0008 *
20 6.2265e–5 3.691

0.7 40 4.3148e–6 3.8511
80 2.8369e–7 3.9269
160 1.822e–8 3.9607

10 0.0004 *
20 3.417e–5 3.7087

0.9 40 2.3549e–6 3.859
80 1.5441e–7 3.9308
160 9.8935e–9 3.9642

Table 1. Numerical error for u(t) = t6+α
− t9/2, T = 1 using a third order scheme on

the left and numerical error for u(t)= t6+α
− t9/2, T = 1 using a fourth order scheme

on the right.

Analogously, we will define E4,∞(N ), Eα,∞(N ), rate4, and rateα for the fourth-order accurate and α-
order accurate schemes. We will take α = 0.1, 0.4, 0.5, 0.7, 0.9 in this example. The numerical results
are given in the left of Table 1. By applying the fourth order scheme to the first example, we have the
results recorded in the right side of Table 1.

When we have α = 0.25, we have spurious and large blowup for small values of N , but as N →∞,
we still exhibit the appropriate order of convergence, and hence still preserve the stability condition. For
example, using the fourth order scheme for the second example, with α = 0.25, we have the for up to
N = 10240, following rate of convergence listed in Table 2.

Another consequence of the α-order accurate scheme is that we can also numerically approximate
u(t) when the exact function is not known. Consider (27) where f (t)= t2α and u(t) is unknown. Since
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α N rate4

10 *
20 −9.1682
40 −53.279
80 −300.81
160 127.59

0.25 320 11.223
640 4.3639
1280 3.8026
2560 3.8409
5120 3.8947
10240 4.223

Table 2. Numerical rate for u(t)= t6+α
− t9/2, T = 1 using a fourth order scheme.

the exact solution is not known explicitly, we instead compute the error using the two mesh principle as
outlined in [15] and the references therein. Given a uniform time mesh, we define un to be the numerical
approximation to u at time t = tn for N total grid points, and zn to be the numerical approximation to u
at time t = tn for 2N total grid points. Then, the maximum error considered between the two meshes is
computed by

Eα,∞(N )= max
1≤n≤N

|un
− z2n

|.

We then define the rate of convergence in this case by

rateα = log2

(
Eα,∞(N/2)
Eα,∞(N )

)
.

When α = 0.05, 0.25, 0.5, 0.75, 0.95, the results given in the left of Table 3.
Our second example is the Volterra equation of the second kind that is motivated by the findings in

[20] and [3]. This particular equation is obtained by applying the Laplace transform to (1.2) of [20] to
obtain

u(x, t)= φ(x)+
∫ t

0

(
g(x, s)+

∂2u
∂x2 (x, s)

)
(t − s)α−1

0(α)
ds,(29)

u(x, 0)= φ(x), u(t, 0)= u(t, 1)= 0(30)

on the interval x ∈ [0, 1], t ∈ [0, 1], which has the initial condition φ(x)= 0 and the exact solution

u(x, t)= sin(πx)t1−α.

We apply a fixed fourth order discrete Laplacian operator in space Hh as in [3] and in [20], combined
with the α order scheme presented in Section 3 to analyze the problem. By fixing M = 25 space steps and
using α = 0.05, 0.25, 0.5, 0.75, 0.75, 0.95, we have the results show in the right of Table 3. Of particular
interest is the cases where α ≥ 1

2 , which validate the findings in Example 3.8.
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α N Eα,∞(N ) rateα

10 ∗ *
20 5.0445e–5 ∗

0.05 40 4.8623e–5 0.0531
80 4.6863e–5 0.0532
160 4.5163e–5 0.0533

10 ∗ *
20 0.0025 ∗

0.25 40 0.0019 0.3858
80 0.0014 0.4054
160 0.0011 0.4263

10 ∗ *
20 0.0053 ∗

0.5 40 0.0029 0.8886
80 0.0015 0.9193
160 0.0008 0.9422

10 ∗ *
20 0.0100 ∗

0.75 40 0.0052 0.9566
80 0.0026 0.9753
160 0.0013 0.9859

10 ∗ *
20 0.0126 ∗

0.95 40 0.0064 0.9797
80 0.0032 0.9893
160 0.0016 0.9944

α N Eα,∞(N ) rateα

10 0.0078 *
20 0.0046 0.7578

0.05 40 0.0026 0.8156
80 0.0015 0.8490
160 0.0008 0.8713

10 0.0226 *
20 0.0132 0.7730

0.25 40 0.0077 0.7767
80 0.0045 0.7806
160 0.0026 0.7856

10 0.0385 *
20 0.0249 0.6265

0.5 40 0.0158 0.6618
80 0.0097 0.7017
160 0.0058 0.7443

10 0.1757 *
20 0.1197 0.5537

0.75 40 0.0763 0.6497
80 0.0456 0.7426
160 0.0258 0.8219

10 0.4118 *
20 0.2767 0.5735

0.95 40 0.1683 0.7172
80 0.0948 0.8284
160 0.0507 0.9025

Table 3. Numerical error for (28), f (t)= t2α using an α-order scheme, u unknown on
the left and for u(x, t)= sin(πx)t1−α, using an α-order scheme on the right.
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