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Introduction

Many developing applications demand perception of 3D environments or inter-
action with 3D objects.
The most common and promising 3D visual representation models in many het-
erogeneous fields is ”point clouds” (from raw sensor input).
What is point cloud?
The data in its rawest form is known as a ”point cloud”. It is a set of data points
in space, and these points represent a 3D shape or object as shown in Figure,1.
Each point has its own set of X, Y, and Z coordinates.
The Point cloud is being utilized in a variety of applications, such as robotics.
Our application of point cloud-based is in physics, mapping event level to param-
eter level.

Figure 1. 3D point cloud representaধon

Challenges with point cloud: Irregularity, unstruc-
turedness, and unorderdness. A deep learning neural
network model that can directly address point clouds’
issues is called ”PointNet”.

PointNet Approach (Architecture and Application)

The key to the PointNet approach for adopting this architecture for our ap-
plication in physics is the use of a symmetric function and a multi-layered
transformation-alignment network (T-Net)
A symmetric function is used to aggregate global information from all the points
in the point cloud, which is embedded with local and global information to cap-
ture relationships between points at the low-level and high-level structure of the
object
The T-Net is used to help make the network invariant to rigid transformations
such as rotations, which do not modify the structure of the object.

ML-based Optimization in Nuclear Femtography

At the Electron-Ion Collider (EIC), we constructed a toy scenario as a simplistic
proxy for lepton-proton collisions to demonstrate the possibility of integrating
event-based learning for nuclear femtography.
Two QCFs presenting up and down parton distribution functions (PDFs):

u(x) = xau(1− x)bu

d(x) = 0.1xad(1− x)bd

And two toy physical observables have been made to simulate inclusive DIS on
the proton and neutron, respectively:

σ1 = 4u(x) + d(x)

σ2 = 4d(x) + u(x)

The pdfs can be created as:

p1,2(x) =
σ1,2(x)∫ 1

0 dx σ1,2(z)

The event samples are determined by the specified parameter values, and we
construct ”true” event samples by using a certain value for the parameter as
the ground ”truth”. Consequently, the aim is to estimate parameter values from
these event samples and quantify an uncertainty quantification for the associated
toy (up and down) PDFs.

Method of Point Cloud-based Mapper for QCD Analysis

Figure. 2 shows that the Point Cloud-based Variational Autoencoder adopts the
architecture of PointNet and Variational Autoencoder.

Figure 2. Point cloud-based Mapper architecture

Combined architectures are selected to learn the mapping from event space to
parameter space ( σ1 and σ2).
A set of events is represented as a point cloud,which retains the permutation
invariant property and geometric correlations of the events while being flexible
with the amount of events in the input.
The point cloud-based neural network is made up of two main components:

(A) Convolutional neural networks to generate/select the orderless features.
(B) Transformer networks to learn the representations of the geometry of the

events.
The PointNet network in our application accepts n points as input, executes
input and feature transformations.
By average pooling, it aggregates point features. After average pooling,

Multi-layer perceptron is used to enable the learning of a spatial encoding for each
point.

The first phase of the PointNet network involves a sub-network that is named
T-Net for ”transformation network”. T-Net attempts to learn an affine transfor-
mation matrix from its own mini network.
T-Net in our application is applied twice and trained alongside PointNet.
Its first job is to transform the input features (n, 1000,1) into a canonical rep-
resentation and then as an affine transformation for alignment in feature space
(n, 1000,1). As a second job, the transformation is constrained to be near to an
orthogonal matrix, i.e. || XXT − I|| = 0.

A latent layer is included between the PointNet neural network and the Dense
Layer neural network, which is deeply connected with its preceding layer, to learn
the features of data and simplify data representations for the purpose of finding
patterns.

Result

Figure 3. Point cloud-based Mapper Result

Our results show that σtrue1 and σtrue2 are respectively within one standard division of
predicted σ

pc
1 and σ

pc
2 using point cloud-based variational autoencoder.

Our trained point cloud-based variational autoencoder model acts as an effective
inverse function from detector level events to parameter space which can be used as
the final step to infer the QCFs model parameters from the experimental detector
level events.

The point cloud model can be extended to high-dimensional events with permutation-
invariant features.
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