Old Dominion University ODU Digital Commons

Undergraduate Research Symposium

2022 Undergraduate Research Symposium

Mar 19th, 9:00 AM - 11:00 AM

Objective Measure of Working Memory Capacity Using Eye Movements

James Owens Old Dominion University

Gavindya Jayawardena Old Dominion University

Yasasi Abeysinghe Old Dominion University

Vikas G. Ashok Old Dominion University

Sampath Jayarathna Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/undergradsymposium

Part of the Artificial Intelligence and Robotics Commons, Cognitive Psychology Commons, and the Data Science Commons

Owens, James; Jayawardena, Gavindya; Abeysinghe, Yasasi; Ashok, Vikas G.; and Jayarathna, Sampath, "Objective Measure of Working Memory Capacity Using Eye Movements" (2022). *Undergraduate Research Symposium*. 22.

https://digitalcommons.odu.edu/undergradsymposium/2022/posters/22

This Poster is brought to you for free and open access by the Undergraduate Student Events at ODU Digital Commons. It has been accepted for inclusion in Undergraduate Research Symposium by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

Objective Measure of Working Memory Capacity Using Eye Movements James Owens, Gavindya Jayawardena, Yasasi Abeysinghe, Vikas G. Ashok, and Sampath Jayarathna Department of Computer Science, Old Dominion University, Norfolk, VA ABSTRACT Raw X- , Ycoordinates

important Working capacity memory an İS measurement in the development of autonomous systems that require human supervision. Currently, there is no direct method of determining working memory capacity. This study utilizes a publicly dataset, containing multiple response available measurements to tasks requiring various levels of cognitive load, to generate machine learning models that infer a relationship between participant eye their subjective measurement and tracking responses to the cognitive workload of each task. The focus of the study is to analyze the relationship between eye-tracking measurements and working memory capacity.

BACKGROUND

- Working memory capacity is the measurement for how information is being stored for a short time and interacting with long term memory with a capacity limit that is dependent on attention and other executive functions.
- Working memory capacity is crucial for human autonomy teaming (humans and autonomous systems working together) because the human operator's working memory capacity must be kept at appropriate levels to monitor the system.
- The dataset contained data on each participant for two levels: single (without DRT, three trials) and dual (with DRT, four trials including a control).

METHODOLOGY

Participants

 28 participants aged between 18-30 years (16 M, 12 F)

Task Measurements

- N-back task (recalling numbers read aloud from an audio file)
- DRT task (vibrotactile stimulus response time)

This work was supported in part by NSF CAREER-2045523 and the Department of Computer Science, Old Dominion University

Fig. 1: Processing Pipeline including RAEMAP for Advance Eye Movement Analysis.

- Eye Tracking Measurements (participants were told to look at a "+" on a monitor while doing the other tasks and an eye tracker took gaze and pupil measurement
- NASATLX (NASA Task Load Index, a retrospective questionnaire that measures subjective workload)

Data Processing

- The eye tracking files for each participant we concatenated and the invalid entries and irreleva columns were deleted.
- RAEMAP was used to compute positional gaze metrics
- The resulting metrics were concatenated with respective machine learning classes that had been applied to the NASATLX scores.
- Finally, the dataset was run through selected maching learning classifiers.

RESULTS

- The Random Forest classifier yielded the highest • accuracy at 97.37% for the physical demand measurement using the dual machine learning classification.
- The physical demand was the only measurement the could be predicted at an accuracy greater than 75% by any classifier.

	Classification	ML Approach	Mental	Physical	Temporal	Performance	Effort	Frustration
e metrics	Binary	Random Forest	68.53	97.37	67.22	70.94	53.87	69.6
	Binary	K Neighbors	53.39	96.83	61.62	69.27	51.04	66.47
Features	Binary	Logistic Regression	69.04	96.46	69.76	/1.85	62.5	/4.04
	Binary	Linear SVC	55.4 <i>2</i>	95.59 05.55	59.87	59.57 70.22	51.90	62.75
	Binary	Decision Tree Didge Classifier	01.82 66.15	95.55	59.79	70.25	50.12	02.37
ino	Three	Noïve Bayes	61 20	95.10	62.36	70.45 66.15	55 35	50.60
IIIe	Three	Gaussian	60 74	94.04	59.13	63.43	50.55	56.43
		Lincor Discriminant	00.74	74.1	57.15	03.43	50.54	50.45
↓	Three	Analysis	64 54	93.02	65 57	69 88	58 04	63 99
	Three	Logistic Regression	67.77	90.31	66.12	66.12	54.84	66.67
e metrics	Five	Random Forest	29.05	77.79	30.48	47.51	34.99	40.57
		Extra Trees						
	Five	Classifier	29.29	77.78	33.8	47.01	31.11	39.93
g class	Five	Neural Network	27.43	65.56	29.57	34.42	25.11	30.36
	Five	Decision Tree	23.51	63.27	25.97	37.51	24.45	27.45
t	Five	Logistic Regression	26	50.75	32.11	38.58	27.07	28.71
	Seven	Random Forest	26.67	70.65	30.96	35.14	26.34	31.94
C		Extra Trees						
5	Seven	Classifier	24.9	69.23	26.66	33.29	27.08	31.54
ts)	Seven	Ridge Classifier	25.95	67.94	26.75	34.93	25.64	33.74
	C	Linear Discriminant	$\mathcal{D} \mathcal{C} \mathcal{C} \mathcal{T}$	(2)	02.7	26.02	24.02	20.27
	Seven	Analysis	26.67	02.30	23.1	30.93	24.93	28.37
	Seven	Gaussian Naive Bayes	21	55.98	21 75	30.7	23 5	26 33
			2 1					20.33
	Fig. 2: Accuracy results for all the categorizations for different ML							
ere	approaches.							
ant	CC	DNCLUSIC	DN 8	§ Fl	JTUF	RE MO	RK	
	 The results suggest that it possible to use eye 							
S.	tracking metrics to predict working memory							
he	capacity, but more research must be done to							
on	improve accuracy.							
			alea				DRI	
ne	and N-back measurements in predicting the							
	 working memory capacity. NASATLX scores should be made less subjective by being placed on a scale that is normalized for each participant based on the mean and variance of 							
	their	responses.						
		PI	FEF	PFN	CFS			
	1 Drowbe	na Dillai Drothamach				nom Kovin Mil		
	 Prartnana Pillai, Prathamesh Ayare, Balakumar Balasingam, Kevin Milne, and Francesco Biondi. 2020. Response time and eye tracking datasets for 							
at	activitie	es demanding varying	cognitiv	e load. D	oata in Brie	f 33 (2020), 10	6389.	
,	2. Gavino analysi	iya Jayawardena. 202 is pipeline. In ACM Svi	0. Raem	nap: Rea n on Eve	I-time adva	nced eye mov	ements Applicat	tions.
J	1-4.						11.000	