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Abstract 

Blockchain technology has gained prominence over the last decade. Numerous achievements have been made regarding 

how this technology can be utilized in different aspects of the industry, market, and governmental departments. Due to 

the safety-critical and security-critical nature of their uses, it is pivotal to model the dependability of blockchain-based 

systems. In this study, we focus on Bitcoin, a blockchain-based peer-to-peer cryptocurrency system. A continuous-time 

Markov chain-based analytical method is put forward to model and quantify the dependability of the Bitcoin system 

under selfish mining attacks. Numerical results are provided to examine the influences of several key parameters related 

to selfish miners’ computing power, attack triggering, and honest miners’ recovery capability. The conclusion made 

based on this research may contribute to the design of resilience algorithms to enhance the self-defense and robustness 

of cryptocurrency systems. 

 

Keywords- Bitcoin, Blockchain, Selfish mining, Continuous-time Markov chain, Dependability. 

 

 

 

1. Introduction 
Intensive research and development efforts from academia, industries and governments have been 

devoted to blockchain technology in the last decade (Ferrag et al., 2018; Kang et al., 2018; Dai et 

al., 2019; Bhushan et al., 2021). It has been applied to diverse applications, such as smart contracts, 

financial services, voting, supply chains, Internet of Things, energy trading, etc. (Akbari et al., 

2017; Frizzo-Barker et al., 2020; Wongthongtham et al., 2021; Xing, 2020, 2021). Due to the 

safety-critical and security-critical nature of these applications, it is crucial to model the 

dependability attribute of the blockchain-based systems. In this work, we focus on the dependability 

modeling and analysis of Bitcoin, a blockchain-based peer-to-peer cryptocurrency network 

(Nakamoto, 2008). 
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In contrast to the traditional fiat currency, Bitcoin is a decentralized system where individuals can 

freely trade without engaging banks (Tschorsch and Scheuermann, 2016). Bitcoin is now widely 

utilized in diverse fields with a market cap of over $1trillion (Best, 2021). Due to its business-

critical nature, the Bitcoin network has become the target of many cyber-attacks. For instance, a 

malicious attacker may compromise the blockchain data availability by generating illegal or 

incorrect access to the data through tracking correspondences of different addresses like the Bitcoin 

and IP addresses (Koshy et al., 2014). An attacker may also temper the data by attacking the 

blockchain’s consensus mechanism (Bag et al., 2016). Through tracking relationships between 

addresses of transactions in the Bitcoin open network, an attacker may access users’ personal 

information (Reid and Harrigan, 2013). Other examples of security attacks launched to the Bitcoin 

system include but are not limited to selfish mining attacks (Eyal and Sirer, 2014), sybil attacks 

(Zhang and Lee, 2019), mining pool attacks (Bahack, 2013; Qin et al., 2020), miner attacks 

(Rosenfeld, 2011), re-identification attacks (Meiklejohn et al., 2013), eclipse attacks (Zhou et al., 

2021a), and CryptoLocker-based attacks (Liao et al., 2016). 

 

Many research efforts have been dedicated to defending the Bitcoin system against those security 

attacks. For instance, a mitigation approach based on modifying the Bitcoin protocol was proposed 

in Eyal and Sirer (2014) to defend Bitcoin against colluding selfish mining attacks. Several 

countermeasures (updating block advertisements, dynamic timeouts, penalizing non-responding 

nodes) were investigated in Gervais et al. (2015) to improve the Bitcoin network security. A 

hardware token was suggested in Bamert et al. (2014) to secure Bitcoin transactions. The weakness 

of Bitcoin in protecting privacy was first studied and an anonymous, decentralized payment 

mechanism was then suggested for privacy protection in Monaco (2015). The threat to Bitcoin from 

the pool mining was first discussed and Markov chains were then applied for stochastic analysis of 

a two-phase proof-of-work in Bastiaan (2015). Markov chains were utilized in Göbel et al. (2016) 

for possibly detecting block-hiding attacks through monitoring orphan blocks’ production rate.  

 

While existing works have mostly centered on studying impacts of the malicious behaviors or 

detecting and defending threats, some of the recent efforts have been expended in the quantitative 

performance evaluation of Bitcoin. For example, in Wang et al. (2020), a mathematical model was 

proposed to estimate the performance and effectiveness of selfish attacks quantitatively and 

investigated the relationship between the extra mining gain and computational power. In Motlagh 

et al. (2021), an analytical model was proposed for studying the effects of selfish mining on the 

Bitcoin network connectivity, node response time, block delivery time, and block arrival rate. In 

Zhou et al. (2021a), a continuous-time Markov Chain-based approach was suggested for assessing 

the dependability of a Bitcoin node subject to Eclipse attacks; this work was extended in Zhou et 

al. (2021b) through semi-Markov models for accommodating non-exponential state transition time 

distributions. In Yang et al. (2020), a Markov model was applied to evaluate the mining revenue, 

and potential risk of the Bitcoin system under selfish mining. In Xia et al. (2021), the impacts of 

multiple miners and propagation delay on selfish mining were studied, which found that the Bitcoin 

network with a higher orphan rate is more vulnerable. To the best of our knowledge, no works have 

been done to study the selfish mining behavior from the perspective of the Bitcoin network 

dependability and identify the attacking or defending parameters as well as their effects on the 

Bitcoin network dependability attribute. 

 

In this paper, we advance the state of the art by examining the selfish mining behavior and 

considering this attack behavior in the quantitative dependability analysis of the Bitcoin network. 

We also investigate the impacts of several key parameters related to selfish miners’ computing 
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power, attack triggering and honest miners’ recovery capability on the Bitcoin dependability 

through numerical results. 

 

The rest of the paper is structured as follows: Section 2 presents the functioning mechanism of the 

selfish mining attack. Section 3 presents the state transition diagram of the Bitcoin system under 

the selfish mining attack. Section 4 derives the state probabilities and the Bitcoin dependability 

using the continuous-time Markov chain (CTMC)-based approach. Section 5 carries out a 

numerical analysis of several key model parameters and discusses their impacts on the Bitcoin 

dependability. Section 6 concludes our study results and discusses future research plans. 

 

2. The Selfish Mining Attack 
In the selfish mining attack (also known as the block withholding attack), selfish miners 

intentionally withhold the newly mined blocks. Instead of broadcasting the new blocks 

immediately, the selfish miners keep these blocks secretly and build their own branches. At a 

certain point, the selfish miners publish their private branch and gain unfair revenue. 

 

In this research, we focus on the three-block strategy. Due to the limitation of computing power, it 

is often extremely hard to expand the lead. To realize the attack, an attacker always withholds the 

mined blocks and keeps mining on the private branch until the private branch is exactly three blocks 

longer than the main branch. When the honest miner finds the next block, the attacker publishes 

their private branch immediately. Because of the proof-of-work protocol, the attacker can 

successfully claim the rewards while the honest miner’s computing power is wasted. Figure 1 

shows the flowchart of a successful selfish mining attack. 

 

 
 

Figure 1. Flowchart of a successful selfish mining attack. 

0: Main chain 
with no branch 

l : Private branch 
is one block 

longer 

4: Attacker publishes 
private branch 

(Attack Success ) 

No O' :Two 
branches of 
length one 
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The realization of the selfish mining attack highly depends on the computing power. Some 

blockchain attacks like Eclipse attacks are capable of controlling the blockchain channels and 

information flows of more nearby nodes, and gradually controlling most of the blockchain network. 

Thus, a successful Eclipse attack can reinforce the selfish mining attack (Heilman et al., 2015). 

 

3. State-Transition Diagram 
Based on the working mechanism of the selfish attack presented in Section 2, we illustrate the state 

transition diagram of the Bitcoin system under the attack in Figure 2. Six major states are 

differentiated and defined: 0 (original or initial state), 0’ (double branches), 1 (one block lead), 2 

(two-block lead), 3 (three-block lead), and 4 (attack success). 

 

 
 

Figure 2. State transition diagram of the bitcoin under the selfish mining attack. 

 

 

In the original state 0, there is only one main chain every miner is mining on. There is no branch. 

Under state 0, the malicious miner mines a block and keeps it secretly. As a result, a private branch 

is built and the system transits from state 0 to state 1 with transition rate of λ01. Under state 0, if the 

honest miner finds the block first, then the system remains in state 0 with µ00. 

 

Under state 1, if the malicious miner successfully finds the next block on their private branch, then 

the system transits to state 2 with transition rate of λ12. Under state 1, if the honest miner finds the 

next block before the malicious miner, then the system transits to state 0’ with transition rate of 

µ10’. 

 

Under state 0’ (the chain has two branches of length one), if the malicious miner finds the new 

block with rate λ0’1, the system transits to state 1 where the selfish miner’s private branch is one 

block longer. If the honest miner finds the new block first, the system can transit back to the initial 

state 0 with rate µ0’0 . 

 

Under state 2, the malicious miner can be the first one to find the next block with rate λ23, causing 

the system to transit to state 3. Under state 2, if the honest miner discovers the next block, the 

system can transit back to state 1 with rate µ21. 

 

Under state 3, when the honest miner successfully finds the next block with rate λ34, the system 

transits to state 4. Under state 4, the selfish miner broadcasts their private branch, which becomes 

the main branch. Consequently, the selfish mining attack completes. 

 

µ oo 

Al2 A23 

µo'o 2 3 
A 34 ·• 

µ21 
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Based on the state transition diagram, Section 4 derives the state probabilities and further the 

Bitcoin dependability based on the continuous-time Markov chain (CTMC) approach. Section 5 

investigates the effects of some representative state transition rates on the Bitcoin dependability. 
 

4. CTMC-based Dependability Evaluation 
Based on the state transition diagram of Figure 2, we present the state equations in Eq. (1), which 

consists of a transition rate matrix, a state probability vector, and a vector of the derivative of the 

state probability. Particularly, 𝑃𝑗(𝑡) denotes the probability that the Bitcoin is in state j (j = 0, 0’, 1, 

2, 3, 4), and 𝑃̇𝑗(𝑡) denotes the derivative of the state j probability. 

 

[
 
 
 
 
 
−𝜆01 𝜇0′0 0  

0 −(𝜇0′0 + 𝜆0′1) 𝜇10′
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0
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 0 
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[
 
 
 
 
 
 
𝑃0(𝑡)

𝑃0′(𝑡)

𝑃1(𝑡)

𝑃2(𝑡)

𝑃3(𝑡)

𝑃4(𝑡) ]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝑃̇0(𝑡)

𝑃̇0′(𝑡)

𝑃̇1(𝑡)

𝑃̇2(𝑡)

𝑃̇3(𝑡)

𝑃̇4(𝑡) ]
 
 
 
 
 
 

          (1) 

 

Eqs. (2)-(7) are separate differential equations based on Eq. (1). 

𝑃̇0(𝑡) = −𝜆01𝑃0(𝑡) + 𝜇0′0𝑃0′(𝑡),                                                                                                                                  () 

𝑃̇0′(𝑡) = 𝜇10′𝑃1(𝑡) − (𝜇0′0 + 𝜆0′1)𝑃0′(𝑡)                                                                                   () 

𝑃̇1(𝑡) = 𝜆01𝑃0(𝑡) + 𝜆0′1𝑃0′(𝑡) − (𝜇10′ + 𝜆12)𝑃1(𝑡) + 𝜇21𝑃2(𝑡),                                                               () 

𝑃̇2(𝑡) = 𝜆12𝑃1(𝑡) − (𝜇21 + 𝜆23)𝑃2(𝑡),                                                                                                                       () 

𝑃̇3(𝑡) = 𝜆23𝑃2(𝑡) − 𝜆34𝑃3(𝑡)                                                                                                                                          () 

𝑃̇4(𝑡) = 𝜆34𝑃3(𝑡)                                                                                                                                                                   () 

 

Applying the Laplace transform-based method, we solve Eqs. (2)-(7) to obtain the system state 

probabilities (Xing et al., 2019). The initial state probabilities used are  𝑃0(0) = 1  and 

∑ 𝑃𝑖(𝑡)
4
𝑖=0,0′ = 1. Specifically, the Laplace transforms of the six Bitcoin system state probabilities 

𝑃𝑖
∗(𝑠) (j = 0, 0’, 1, 2, 3, 4), are 

𝑃0′
∗ (𝑠) = (

1

𝑠
−

1

𝑠+𝜆01
)/(1 +

µ0’0

s+𝜆01
+

A

µ10’
+

𝜆01∗A

µ10’∗B
+

𝜆23∗𝜆12∗A

µ10’∗B∗(s+𝜆34)
+

𝜆23∗𝜆12∗𝜆34∗A

µ10’∗B∗(s+𝜆34)∗𝑠
),                            (8) 

𝑃0
∗(𝑠) =

µ0’0∗𝑃0′
∗ (𝑠)+1

𝑠+𝜆01
,                                                                                                                         (9) 

𝑃1
∗(𝑠) =

𝐴∗𝑃0′
∗ (𝑠)

µ10’
,                                                                                                                               (10) 

𝑃2
∗(𝑠) =

𝜆12∗A∗𝑃0′
∗ (𝑠)

µ10’∗B
,                                                                                                                       (11) 

𝑃3
∗(𝑠) =

𝜆23∗𝜆12∗A∗𝑃0′
∗ (𝑠)

µ10’∗B∗(s+𝜆34)
,                                                                                                                    (12) 

𝑃4
∗(𝑠) =

𝜆23∗𝜆12∗𝜆34∗A∗𝑃0′
∗ (𝑠)

µ10’∗B∗(s+𝜆34)∗s
,                                                                                                                      (13) 

 

-- -----
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where, A = s + µ0’0 + λ0’1, and B = s + µ21   + λ23. 

 

Applying the inverse Laplace transform to 𝑃𝑖
∗(𝑠) in Eqs. (8)-(13) (conducted by MATLAB in our 

work), we obtain the Bitcoin system state probabilities Pj(t) (j = 0, 0’, 1, 2, 3, 4) in the time domain. 

Further, the Bitcoin dependability (the probability that the Bitcoin system performs correctly) is 

evaluated as D(t) = P0(t) + P0’(t) + P1(t) + P2(t) + P3(t). Thus, 𝐷̅(𝑡) = P4(t) (the Bitcoin is not 

dependable since the selfish mining attack is successful under state 4). 

 

5. Numerical Results and Impacts of Model Parameters 
In this section, the effects of several key parameters on the Bitcoin dependability are investigated 

through numerical results. These results could help us gain a better understanding of the selfish 

mining mechanism. 

 

Based on statistics and survey from Sapirshtein et al. (2016), seven sets of parameter values are 

designed in Table 1 for the transition rates in Figure 2, including rates related to the selfish miner’s 

attacking behavior or power (λ01 , λ0’1 , λ12 , λ23 , λ34), and rates related to the honest miner’s recovery 

capability (𝜇0′0, 𝜇10′, and 𝜇21 ). 

 

In particular, we study the impacts of parameters λ01 ,  λ12 ,  λ34, 𝜇10′,  and 𝜇21  on the Bitcoin 

dependability using parameter sets of Table 1. Specifically, (λ01 , λ12) reflect the selfish miner’s 

computing power; their impacts are studied via parameter sets a, b, and c in Table 1. λ34 models the 

Bitcoin system’s trigger rate; its impacts are examined via parameter sets d, b and e. (𝜇10′, 𝜇21 ) 

reflect the honest miner’s recovery capability; their impacts are examined using sets f, b, and g in 

Table 1. 

 

 
Table 1. State transition rate (per hour) values used for numerical analysis. 

 

Rate Set a Set b Set c Set d Set e Set f Set g 

𝜆01 0.03 0.12 0.34 0.12 0.12 0.12 0.12 

𝜆0′1 0.11 0.11 0.11 0.11 0.11 0.11 0.11 

𝜆12 0.06 0.18 0.56 0.18 0.18 0.18 0.18 

𝜆23 0.04 0.04 0.04 0.04 0.04 0.04 0.04 

𝜆34 0.36 0.36 0.36 0.14 0.58 0.36 0.36 

𝜇0′0 0.24 0.24 0.24 0.24 0.24 0.24 0.24 

𝜇10′ 0.12 0.12 0.12 0.12 0.12 0.06 0.24 

𝜇21 0.31 0.31 0.31 0.31 0.31 0.15 0.48 

 

5.1 Impacts of Selfish Miner’s Computing Power Parameters 𝝀𝟎𝟏, 𝝀𝟏𝟐 
The impacts of the selfish attacker’s computing power are examined via parameter sets a, b, and c 

in Table 1, which model the selfish miner who has relatively low, medium, and high computing 

power, respectively. These malicious miners sometimes incorporate other attack methods like 

Eclipse attacks to reinforce their computing power dramatically. Table 2 presents the Bitcoin 

dependability under sets a, b, and c for several values of mission time. Figure 3 demonstrates the 

dependability results graphically. 

 

It can be observed from Figure 3 that the Bitcoin dependability decreases with time. The Bitcoin 

system under set a (low computing power of the selfish miner) has the highest dependability D and 

the lowest decreasing speed. The Bitcoin system under set c (high computing power of the selfish 
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miner) has the lowest dependability D and decreases with the highest speed. The Bitcoin 

dependability D under set b (average computing power of the selfish miner) has values between 

the former two cases. The above results are intuitive since it is more difficulty for the Bitcoin 

system to stay in the dependable state when the selfish attacker has a higher computing power. As 

time proceeds, the difference in the Bitcoin dependability between the low and high computing 

power cases becomes more significant due to the different declination speeds under these two cases. 

 

 
Table 2. The bitcoin dependability under sets a, b, c. 

 

t (hrs) Set a Set b Set c 

6 0.999486 0.995046 0.974593 

12 0.996382 0.970478 0.888651 

18 0.990735 0.933354 0.791052 

24 0.983527 0.892441 0.700741 

30 0.975478 0.851532 0.620233 

36 0.967005 0.811891 0.548892 

 

 

 
 

Figure 3. Impacts of parameters 𝜆01, 𝜆12 on the Bitcoin dependability. 

 

 

5.2 Impacts of Trigger Parameter 𝝀𝟑𝟒 
In Table 1, the impacts of the attack trigger parameter 𝜆34 are examined via parameter sets d, b, 

and e with low, medium, and high trigger rates, respectively. Table 3 presents the Bitcoin 

dependability results computed using those three parameter sets. Figure 4 demonstrates the Bitcoin 

dependability results graphically. 

 

 
Table 3. The bitcoin dependability under sets d, b, and e. 

 

t (hrs) Set d Set b Set e 

6 0.997539 0.995046 0.993512 

12 0.982237 0.970478 0.965505 

18 0.953978 0.933354 0.926607 

24 0.918293 0.892442 0.885231 

30 0.879581 0.851531 0.844381 

36 0.840341 0.811892 0.804993 

0

0.2

0.4

0.6

0.8

1

0 6 12 18 24 30 36
T

a b c-· ----b --c 
1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 
0 6 12 18 24 30 36 



Zhou et al.: Bitcoin Selfish Mining Modeling and Dependability Analysis 
 

 

23 | Vol. 7, No. 1, 2022 

 
 

Figure 4. Impacts of parameters 𝜆34 on the Bitcoin dependability. 

 

 

It can be observed from Figure 4 that the Bitcoin system under set d (low trigger rate) has the 

highest dependability D and the lowest decreasing speed as time proceeds; the Bitcoin under set e 

(high trigger rate) has the lowest dependability D and the highest decreasing speed as time proceeds; 

the values of D under set b (medium trigger rate) are between the former two cases. These numerical 

results are intuitive since the higher trigger rate means it is more likely to realize the last attack step, 

which eventually leads to the successful selfish mining attack, and hence lower the system 

dependability. As time proceeds, the difference in the Bitcoin dependability between the low and 

high trigger rate cases becomes more noticeable at the beginning and then tends to become stable 

for the considered parameter settings. 

 

5.3 Impacts of Recovery Capability Parameters 𝝁𝟏𝟎′, 𝝁𝟐𝟏 
The impacts of the recovery capability parameters 𝜇10′, 𝜇21 on the Bitcoin dependability are 

examined via parameter sets f, b, and g in Table 1, where an honest miner has low, average/medium, 

and high recovery capability, respectively. Table 4 presents the Bitcoin system dependability 

results under sets f, b and g. Figure 5 demonstrates the results graphically. 

 

 

Table 4. The Bitcoin dependability under sets f, b, and g. 
 

t (hrs) Set f Set b Set g 

6 0.993886 0.995046 0.996187 

12 0.958601 0.970478 0.980332 

18 0.899313 0.933354 0.959003 

24 0.830612 0.892441 0.936624 

30 0.761233 0.851531 0.914432 

36 0.695032 0.811892 0.892744 
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Figure 5. Effects of parameters 𝜇10′, 𝜇21 on the Bitcoin dependability. 

 

 

It can be observed from Figure 5 that the Bitcoin system under set f  (honest miner with low 

recovery capability) has the lowest system dependability D and the highest decreasing speed as 

time proceeds; the Bitcoin under set g (honest miner with high recovery capability)  has the highest 

values of D and the lowest decreasing speed among the three cases; the Bitcoin under set b (honest 

miner with average recovery capability) has values of D between the former two cases. From the 

above intuitive results, we can conclude that the Bitcoin system with honest miners having higher 

recovery capability is more dependable. Moreover, as time proceeds, the difference in the Bitcoin 

dependability between the low and high recovery capability cases becomes more notable due to 

the different declination speeds under these two cases. 

 

6. Conclusion and Future Directions 
The Bitcoin network is vulnerable to selfish mining attacks, during which a malicious miner 

withholds the mined block and mines on its own private chain secretly. The existing studies on 

selfish mining have mostly focused on cryptography and protocol designs, risk detection and 

damage estimation caused by the adversaries. To defend against selfish mining, it is crucial to study 

the behavior of selfish mining from the Bitcoin network dependability’s perspective. This paper 

makes contributions to the state of the art by building an analytical dependability model based on 

the CTMC for the Bitcoin system subject to the selfish mining attack. Numerical results are 

provided to assess the impacts of several model factors (including selfish miners’ computing power, 

the attack triggering parameter, and honest miners’ recovery capability) on the overall Bitcoin 

dependability. The findings include 1) it is more unlikely that the Bitcoin system stays in the 

dependable state when the selfish attacker has a higher computing power; 2) the Bitcoin system 

tends to fail more quickly as the trigger rate increases; and 3) the Bitcoin system tends to be more 

dependable when its honest miners have better recovery capability. 

 

While the findings from this research are mostly intuitive, the quantitative results and comparisons 

will provide effective guidance for us to develop resilience algorithms and protocols. Such 

algorithms can enhance the robustness of the current blockchain-based cryptocurrency network 

models, improving their self-defense capability against various malicious attacks. In the future 
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study, we are also interested in extending our dependability analysis to non-exponential state 

transition times through exploring methods such as semi-Markov models (Zhou et al., 2021b) and 

multi-integral-based analytical methods (Zeng et al., 2019). 
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