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ABSTRACT  Use of copula for statistical classification is recent and gaining popularity. 
For example, statistical classification using copula has been proposed for automatic 
character recognition, medical diagnostic and most recently in data mining. Classical 
discrimination rules assume normality. But in this data age time, this assumption is often 
questionable. In fact features of data could be a mixture of discrete and continues random 
variables. In this paper, mixture copula densities are used to model class conditional 
distributions. Such types of densities are useful when the marginal densities of the vector 
of features are not normally distributed and are of a mixed kind of variables. Authors have 
shown that such mixture models are very useful for uncovering hidden structures in the 
data, and used them for clustering in data mining. Under such mixture models, maximum 
likelihood estimation methods are not suitable and regular expectation maximization 
algorithm is inefficient and may not converge. A new estimation method is proposed to 
estimate such densities and build the classifier based on mixture finite Gaussian densities. 
Simulations are used to compare the performance of the copula based classifier with 
classical normal distribution based models, logistic regression based model and indepen- 
dent model cases. The method is also applied to a real data. 

 
Keywords  Clayton copula; Copula; Finite mixture model; Gaussian copula; Logistic 
regression; Statistical Classifier. 

 

1.  Introduction 
 

Significant research has been done in classification areas such as automatic character 

recognition, medical diagnostic and data mining. Unsupervised processings have been pro- 

posed by authors such as Derrode and Pieczynski [3]. However, in this data age time, we can 

partition the data and build reliable estimates. In recent years, there have been many exciting 

developments both in the methodology and applications point of views. These developments   
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include Kernel-based methods pattern recognition and Bayesian classification methods. Stan-

dard methods for classifications are based on linear discriminant analysis (LDA), quadratic dis-

criminant analysis (QDA) and regularized discriminant analysis (RDA) [5]. These methods are

well described in the literature. Robustness of the discrimination rules to outliers is discussed

by Todorov et al. [19]. Aeberhard et al. [1] showed that RDA performs better compare to LDA

only when the class covariance matrices were identical and if a large training set was chosen.

Alternative approaches to the problem of discriminant analysis with singular covariance matri-

ces are described by Krzanowski [10] and they showed the ways to solve the problem of LDA

when the covariance matrix is singular. Extensions of linear and quadratic discriminant analysis

to data sets, where the patterns are curves or functions, are developed by James and Hastie [7].

All these approaches assume multivariate normal distribution of the features of the data.

However, there are cases where the features are not normal. For such cases, the features could

be discrete only or mixture of discrete and continuous. Modeling data with copulas still allows

one to build classifier [16]. In this paper, mixture copula based multivariate models are used to

parameterized the class conditional densities. Our main contribution in this paper is to extend

classification method using finite mixture of copula models. We present the finite mixture

copula, its estimation algorithm of parameters along with simulated example in Section 2. In

Section 3, we used mixture copula to build probabilistic classifier. In Section 4, examples of

classification from simulated and real life data are presented and we end with some conclusions.

2. Copula and Finite Mixture Copula

One modern approach to derive a multivariate distribution with specified margin is through

copula [8, 18]. Copula is a multivariate distribution with univariate margins that are uniform

on the unit interval. The basic idea behind the construction of a multivariate distribution using

copula to capture dependence structure of a random variables whose marginals are specified.

Definition. A p-dimensional copula is a function C W Œ0; 1�p ! Œ0; 1� with the following prop-

erties:

1. C.1; : : : ; ai ; : : : ; 1/ D ai ; 8i D 1; 2; : : : ; p and ai 2 Œ0; 1�.

2. C.a1; a2; : : : ; ap/ D 0 if at least one ai D 0 for i D 1; 2; : : : ; p:

3. For any ai1; ai2 2 Œ0; 1� with ai1 � ai2 ; for i D 1; 2; : : : ; p;

2
X

j1D1

2
X

j2D1

: : :

2
X

jpD1

.�1/j1Cj2C:::CjpC.a1j1
; a2j2

: : : ; anjp
/ � 0:

The most fundamental theorem related to copula is Sklar’s theorem [17], which allows us

to glue the known marginal densities through a copula. Sklar’s Theorem is given below:

Theorem. Let X1; X2; : : : ; Xp be random variables with marginal distribution functions F1,

F2, : : : ; Fp and joint cumulative distribution function F then the followings hold:
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1. There exists a p dimensional copula C such that for all x1; x2; : : : ; xp 2 R

F.x1; x2; : : : ; xp/ D C
�

F1.x1/; F2.x2/; : : : ; Fp.xp/
�

:

2. IfX1; X2 : : : ; Xp are continuous then the copula C is unique. Otherwise, C can be uniquely

determined on p dimensional rectangle Range.F1/ � Range.F2/ � : : : � Range.Fp/:

Such representation show how copula function link jointly marginal distributions regard-

less of their forms. Joe [8], Nelsen [13] present complete discussion of copulas and associated

properties.

Although there are other copulas available, the Gaussian copula is very popular in the

literature. This copula has same dependence structure as multivariate normal. It’s defined next.

Definition. The copula associated with standard multivariate Gaussian distribution called

Gaussian copula, is a function given by

C.u1; u2; : : : up/ D ˆR

�

ˆ�1.u1/;ˆ
�1.u2/; : : : ; ˆ

�1.up/
�

; (1)

where ˆ�1 is the inverse CDF of a standard normal and ˆR is the joint cumulative distribution

function of a standard multivariate normal distribution with covariance matrix equal to the

correlation matrix R. The Gaussian copula density defined as:

c.u1; u2; : : : ; up/ D
1

p

jRj
exp

h

�
1

2
U t .R�1 � Ip/U

i

; (2)

where U D .ˆ�1.u1/;ˆ
�1.u2/; : : : ; ˆ

�1.up//
t :

A mixture model is a powerful tool to investigate the hidden structure in the data and

representing complex probability density functions. It is a standard approach in many modeling

scenarios [6]. The mixture model is semi parametric in that it does not put much structure to the

data, unlike a fully parametric density, and does not produce model estimates highly dependent

on the observed data, as opposed to a fully non-parametric model [11, 12, 2]. In this section,

we introduced the finite mixture copula model and its estimation algorithm methods.

2.1 Finite Mixture Copula

A p-dimensional random vector X D .X1; : : : ;Xp/ is said to be generated from a finite

mixture of M-component densities if its density function can be written as:

fmix.xj‚/ D

M
X

j D1

�jfj

�

xj�j ; Rj .r/
�

; (3)

where ‚ D .�1;�2; : : : ;�M /, �j D .�1j ;�2j ; :::;�pj /; R
j .r/ is the correlation matrix of j th

mixture component, �j is the mixing proportion of the j th component satisfying 0 < �j < 1
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and
PM

j D1 �j D 1. Consider the finite continuous copula mixture model where all the margins

are continuous and assume that each fj .xj�j ; Rj .r// defined as:

fj

�

xj�j ; Rj .r/
�

D cˆ

�

F1.x1j�1j /; F2.x2j�2j /; : : : ; Fp.xpj�pj /jR
j .r/

�

p
Y

kD1

fk.xkj�kj /;

(4)

where c.u/ D @C.u/=@u is the copula density function, as defined in (2). To simplify the

notations we will write fj .xj�j ; Rj .r// as fj .xj� j /. Our goal is to build a likelihood function

so that estimation of parameters can be performed for the mixture of M classes.

2.2 Estimation Method for Finite Mixture Copula

Estimation is performed through the use of the likelihood function. In this section, we

develop the likelihood function using a latent variable and also provide brief discussion about

proposed estimation process. And one way to build a likelihood function based on a random

sample of n observations, is to introduce a latent unobserved variable zij defined as:

zij D

8

<

:

1 if xi 2 j thclass j D 1; 2; :::;M; i D 1; 2; : : : ; n:

0 otherwise; with xi D .x1i ; x2i ; : : : ; xpi / 2 Rp:
(5)

Then, the random variable Zi D .zi1; : : : ; ziM / is a multinomial random variable with parame-

ter � D .�1; : : : ; �M ) as in (3). Using such discrete latent variables, the log-likelihood function

of the complete data can be written as:

l.‚jx/ D

n
X

iD1

M
X

j D1

zij

˚

log�j C logfj .xi j�
j /
	

D

n
X

iD1

M
X

j D1

zij

˚

log�j C

p
X

kD1

logfk.xki j�kj /
	

C

n
X

iD1

M
X

j D1

zij log
˚

cˆ

�

F1.x1i j�1j /; F2.x2i j�2j /; : : : ; Fp.xpi j�pj /jR
j .r/

� 	

D

n
X

iD1

M
X

j D1

zij

˚

log�j C logf1.x1i j�1j /
	

C

n
X

iD1

M
X

j D1

zij

˚

log�j C logf2.x2i j�2j /
	

C � � � C

n
X

iD1

M
X

j D1

zij

˚

log�j C logfp.xpi j�pj /
	

C

n
X

iD1

M
X

j D1

zij

˚

.1 � p/log�j

	

C

n
X

iD1

M
X

j D1

zij log
˚

cˆ

�

F1.x1i j�1j /; F2.x2i j�2j /; : : : ; Fp.xpi j�pj /jR
j .r/

� 	

D l1 C l2 C ::: C lp C Lc C

n
X

iD1

M
X

j D1

zij

˚

.1� p/log�j

	

; (6)

where

lk D lk.�
j

k
/ D

n
X

iD1

M
X

j D1

zij

˚

log�j C logfk.xki j�kj /
	

; k D 1; 2; :::; p; (7)
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and Lc is give by the equation below :

Lc DLc.�
j ; R.rj //D

n
X

iD1

M
X

j D1

zij log
˚

cˆ

�

F1.x1i j�1j /; F2.x2i j�2j /; : : : ; Fp.xpi j�pj /jR
j .r/

�	

;

(8)

with the parameter set ‚ D f�j ; Rj .r/j1 � j � M g, �j D f�1j ;�2j ; :::;�pj g, and � D

.�1; �2; : : : ; �M / 2 Œ0; 1�M . The log likelihood is derived as:

l.‚; jx/ D

n
X

iD1

log
h

M
X

j D1

�jfj .xj j�j ; Rj .r//
i

; (9)

where fj .:/’s are given by (4). Due to the complexity of the density and likelihood function

obtaining estimates by maximizing the likelihood function is very difficult. Quasi Newton

method does not converge for these type of complex functions. To estimate the parameters

‚ D f�j ;�; Rj .r/g we propose a two stage estimation process, using the EM algorithm.

Algorithm for this two stage algorithm method is given below.

2.2.1 Two Stage Algorithm

1. Maximize each likelihood lk given in (7), to obtain O�
j

an estimate of the set of parameter

�j . Use EM algorithm to obtain O�kj for k D 1; 2; :::; p and j D 1; 2; :::;M . For each

k D 1; 2; :::; p, at l th iteration step start with initial values �kj
.l/ and �

.l/

k
. At E step, using

Bayes’ rule, calculate:

E.zij jxki / D T
.l/

ijk

�

xki j�kj
.l/
�

D
�

.l/
j fk

�

xki j�kj
.l/
�

PM
j D1 �

.l/
j fk

�

xki j�kj
.l/
�
; at each i D 1; 2; : : : ; n:

(10)

Now, in M step find the parameters that maximize the function:

n
X

iD1

M
X

j D1

T
.l/

ijk

�

xki j�kj
.l/
�˚

log�j C logfk.xki j�kj /
	

(11)

and set

O�
.lC1/

kj D argmax
h

n
X

iD1

M
X

j D1

T
.l/

ijk

�

xki j�kj
.l/
�˚

log�j C logfk.xki j�kj /
	

i

: (12)

Repeat the process until convergence, to obtain O�
j

D . O�1j ; O�2j ; :::; O�pj /:

2. Now use O�
j

and maximize the likelihood function given below:

.R̂j .r/; O�/ D argmax
n

n
X

iD1

log

M
X

j D1

�jfj

�

xj j O�
j
; Rj .r/

�

o

: (13)

After estimating the first set of parameters and obtaining O�
j
, we choose to use the like-

lihood given by (9) instead of using the likelihood function given by (6). Such a two stage
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algorithm is a novel method of iterative procedure to estimate parameters. We next propose a

systematic simulation example under the mixture gamma model.

2.2.2 Application in Mixture Gamma Model

In this example, we consider marginal distribution to be gamma. Mixture density is given

as:

fmix.xj‚/ D

M
X

j D1

�jfj

�

xj˛j ;ˇj ; Rj .r/
�

; (14)

where ‚ D .˛j ;ˇj ; Rj .r/;�/, ˛j D f˛kj jj D 1; 2; : : : ;M and k D 1; 2; : : : ; pg, ˇj D

fˇkj jj D 1; 2; : : : ;M and k D 1; 2; : : : ; pg, R.rj / is the p � p association matrix, and

fj

�

xj˛j ;ˇj ; R.rj /
�

D

p
Y

kD1

nˇkj
�˛kj

�.˛kj /
x

˛kj �1

k

on

e
Pp

kD1
�

xk
ˇkj

o

cˆ

�

F.x1j˛1j ; ˇ1j /; � � �

� � � ; F .xpj p̨j ; p̌j /jR
j .r/

�

; (15)

where cˆ.:/ denotes the p-variate Gaussian copula density and F(.) is gamma distribution func-

tion. Plot of the density given by Figure 1. As the density is complicated obtaining MLE’s are

very difficult. Two step estimation method, described in previous section, was implemented to

obtain the estimates. Simulation results are given in Table 1.

x1
0

5

10

x2

0

5

10

D
e

n
s
ity

0.00

0.02

0.04

0.06

Figure 1 Bivariate gamma mixture density using Gaussian copula

As the sample size increases, the estimates become more robust as their standard errors

decrease. This simulation provides a justification that the estimation model is accurate and can

be used to build a process for predicting classification.

3. Probabilistic Classifier

Just as in regular model building, based on the data X, we have a training set that we use to

build a classifier under the copula or mixture copula based densities for supervised classifica-

tion. We use a Bayes decision rule criteria to obtain a probabilistic classifier. Assume we haveG
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classes, !1; !2; :::::; !G with a prior probability for each class p.!1/; p.!2/; ::::; p.!G /. Then

the Bayes’ minimum error rule is to assign the unknown pattern vector x to !k if:

p.!k/p.xj!k/ > p.!l/p.xj!l/ for all k; l D 1; 2::::G and k ¤ l: (16)

Table 1 Tri-variate gamma mixture density, with unstructured correlation

Simulation (p=3,M=2)

Sample Size=500 Sample size=1000

Parameters Estimates SE Estimates SE

˛11=2.3 2.2825 0.2031 2.2945 0.0756

ˇ11=3.2 3.2718 0.3535 3.2218 0.1330

˛12=12.2 12.1802 1.0728 11.9768 1.0493

ˇ12=13.3 13.4178 1.2736 13.6659 1.0271

˛21=5.9 5.8371 0.4792 5.8305 0.3147

ˇ21=1.2 1.2209 0.0958 1.2197 0.0623

˛22=10.5 10.6501 0.9398 10.6447 0.6551

ˇ22=11.3 11.2384 1.0139 11.2097 0.7106

˛31=8.9 8.9600 0.9211 9.0320 0.6605

ˇ31=4.2 4.2264 0.4531 4.1573 0.3457

˛32=16.5 17.8474 2.7001 16.6805 1.4286

ˇ32=7.2 6.8295 1.0694 7.1861 0.6408

r1
12=0.60 0.6048 0.0431 0.5978 0.0317

r1
13=0.40 0.3965 0.0468 0.3966 0.0297

r1
23=0.50 0.5091 0.0497 0.5047 0.0292

r2
12=0.20 0.1981 0.0718 0.1934 0.0446

r2
13=0.15 0.1484 0.0773 0.1513 0.0527

r2
23=0.33 0.3371 0.0588 0.3226 0.0467

�1=0.72 0.7198 0.0028 0.7201 0.0011

The probability of making an error, p.error/, may be expressed as:

p.error/ D

G
X

kD1

p.errorj!k/p.!k/:

In the above expression, p.errorj!k/ is the probability of the misclassifying pattern from the

class !k. Assuming the prior probabilities p.!k/ are known, then in order to make a decision,

we need to estimate the class conditional densities p.xj!k/. Estimation of the density is based

on a sample of observations fxk
1 ;x

k
2 ; : : : ;x

k
nk

g .xk
i 2 Rp/ from class !k, with !k 2 N.

3.1 Finite Mixture Copula Models

Finite copula mixture models can also be used to model the class conditional densities. It

is implemented for models of continuous and mixed types of data features. We model the class
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conditional density as:

p.xgj!g/ D

M
X

j D1

�jfj

�

xg j�j
g ; R

j
g.r/

�

: (17)

The form of fj .x
g j�j

g ; R
j
g

�

r/
�

is given by (4). To estimate the parameters two stage estimation,

proposed in previous section, is used.

3.2 Probabilistic Classifier under Independent Model

Under the independent model (IM) setting, we assumes a conditional independence among

the features. This model can be considered as a special case of the copula models when the

correlation matrix is the identity matrix.

Because of its structure, this model is easy to implement. This model is very useful even

the features are highly uncorrelated [20]. In this model, the class conditional density is written

as:

p.xj!k/ D

p
Y

iD1

f k
i .xi/: (18)

3.3 Logistic Regression

Consider the case where the response has only two possible categories. The Logistic re-

gression model can be considered as a classification tool when the features are discrete, and

some authors used them in the case where the outcome is mixed type. The following authors

(Efron [4], Pohar et al. [14]) have compared the classification power of logistic regression (LR)

with LDA, QDA. We will use a similar approach and present our findings to compare with the

copula model under simulated and real data.

4. Applications and Supervised Classifications

In this section, applications of the mixture copula for classification are provided. The

proposed estimation method is used to evaluate the effectiveness of copula compared to other

methods. In the simulations, finite mixture copula models are used for continuous features and

mixed features. We assume we have two groups (G D 2), two mixture components (M D

2), and a bivariate dimensional data p D 2, according to some priori probabilities and given

margins. For each simulation, 1000 samples are generated from each group, and randomly

800 sample observations are chosen for training and the rest 200 samples are used to estimate

misclassification error. This process were repeated 20 times to obtain average misclassification

error rate.

4.1 Simulations

We present three simulations cases where the data has features that are continuous, discrete

and mixed types.
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4.1.1 Simulations Using Continuous Features

Assume all the features are continuous. Data were generated from the mixture density for

two sets of parameters and given as:

fmix.xj‚/ D

2
X

j D1

�jfj

�

xj˛j ;ˇj ; Rj .r/
�

; (19)

where ‚ D
�

˛j ;ˇj ; Rj .r/;�
�

, ˛j D f˛kj jj D 1; 2 and k D 1; 2g, ˇj D fˇkj jj D

1; 2 and k D 1; 2g, Rj .r/ is the 2 � 2 association matrix, and

fj

�

xj˛j ;ˇj ; Rj .r/
�

D

2
Y

kD1

nˇkj
�˛kj

�.˛kj /
x

˛kj �1

k

on

e
P2

kD1 �
xk

ˇkj

o

c
�

F.x1j˛1j ; ˇ1j /;

F .x2j˛2j ; ˇ2j /jR
j .r/

�

: (19)

Chosen parameters are given in Table 2.

Table 2 Parameter sets for simulation.

Sample size=1000 (p=2, M=2)

Class-1 Class-2

˛11=2.3 ˛11=5.1

ˇ11=3.4 ˇ11=1.2

˛12=12.2 ˛12=17.3

ˇ12=1.3 ˇ12=4.3

˛21=5.9 ˛21=3.9

ˇ21=1.2 ˇ21=2.2

˛22=10.5 ˛22=13.5

ˇ22=4.3 ˇ22=7.3

r1=0.65 r1=0.25

r2=0.55 r2=0.35

�1=0.57 �1=0.57

For each class model, the class conditional density, p.xj!g/, as a mixture copula density

as given in (19). Results are given below:

Table 3 Misclassification errors of mixture copula, QDA, LDA and IM model

Mixture Copula QDA LDA IM

0.1996 0.3057 0.3260 0.5369

In the above, Table 3, we can see mixture copula model outperforms the classical methods.

This is justifiable in the sense that the Gaussian assumptions needed in the QDA or in the LDA

are not met. In the IM, the correlation is not negligible.
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4.1.2 Simulations Using Discrete Features

In this simulation, all the marginal distributions are assumed to be discrete. Data from the

mixture copula density is generated, assuming all the margins are Poisson. Simulation setup for

two classes are given in Table 4, and misclassification errors are given in Table 5.

Table 4 Parameter sets for simulation

Sample size=1000 (p D 2, M D 2)

Class-1 Class-2

�11=2 �11=15

�12=10 �12=3

�21=3 �21=12

�22=12 �22=4

r1=0.62 r1=0.55

r2=0.33 r2=0.25

�1=0.70 �1=0.60

Table 5 Misclassification errors of mixture copula, LR and IM model

Mixture Copula LR IM

0.2812 0.3315 0.4259

The logistic regression (LR) outperforms the independence model (IM), but the findings

illustrate the performance of the proposed method.

4.1.3 Simulation Using Mixed Type of Features

Finite mixture copula models can be applied on mixed type features. In this simulation,

data is generated from a mixture copula density assuming the margins are Poisson and gamma.

Simulation setup is given by the Table 6. Misclassification error rates for mixture copula, LR

and IM models are given in Table 7.

From the above simulation one can see that finite copula mixture models outperforms clas-

sical models. Unlike the classical models, copula models do not assume any normality or

independence. They can be applied for discrete and mixed type features of data. The pro-

posed classification method overcomes the limitations in the LR and the IM structures, without

ignoring the dependence about the observed variables.

4.2 Application to Real Data

In this subsection, we apply finite mixture copula model in to Wilt data set. The pine

sawyer beetle is primary causes of Japanese Pine Wilt (JPW) disease, and the oak platypodid

beetle is primary cause for Japanese Oak Wilt (JOW) disease. This data set contains training
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and testing data from the study done by Johnson et al. [9]. It involved detecting diseased trees

in Quickbird imagery. Rapid detection of newly infected trees are very important, as without

any treatment this disease can spread rapidly into the forest. This data set consists of image

segments, generated by segmenting the pansharpened image. Description of the data set can be

found in [9]. Training data set contains 4265 observations and test data set has 500 samples.

Table 6 Parameter sets for simulation

Sample size=1000 (p=2, M=2)

Class-1 Class-2

˛11=2.3 ˛11=12.3

ˇ11=0.2 ˇ11=0.3

˛12=10.2 ˛12=5.1

ˇ12=3.5 ˇ12=2.2

�12=2 �12=3

�22=7 �22=9

r1=0.60 r1=0.65

r2=0.45 r2=0.15

�1=0.65 �1=0.72

Table 7 Misclassification errors of mixture copula, LR and IM model

Mixture Copula LR IM

0.052 0.320 0.091

There are few training samples for the “diseased trees” class (74) and many for “other land

cover” class (4265). Attribute information for this data set is given below:

1. Class: “w” (diseased trees), “n” (all other land cover).

2. GLCM Pan: GLCM mean texture (Pan band).

3. Mean G: Mean green value.

4. Mean R: Mean red value.

5. Mean NIR: Mean NIR value.

6. SD Pan: Standard deviation (Pan band).

From above information, we can see there are five feature variables and one binary class

variable. We choose three feature variables Mean G, Mean R, and Mean NIR and model the

class conditional density, p.xj!j /, as in (14) and (15) with two mixture component .M D 2/.

As the training sample size for the “diseased trees” class is large we assume equi-correlation

structure for association martix R. Training data set was used for estimation and testing data

set was used to estimate misclassification error rate. Misclassification error rates for mixture

copula model, LDA and QDA are given in Table 8.
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Table 8 Misclassification error of mixture Copula, LDA and QDA methods

Mixture Copula (Equi) LDA QDA

0.19 0.37 0.23

The proposed finite mixture copula method of classification is more precise for dependent

relationships between the variables of mixed types data.

5. Conclusions

This paper describes a new parametric method for improved supervised pattern reorganiza-

tion. Copula based models are very useful for non-normal, continuous, and/or mixed (discrete

and continuous) data. Extensive simulations are carried out and they shows that copula methods

perform better than classical methods. The results are applied to real data set, and the misclassi-

fication rates are lowest under the new proposed method. The findings allow for bias correction

with traditional approaches needed to ensure higher accuracy in the probabilistic procedure

under the calibrated copula mixture.

However, since there are many copulas, one extension under work is to find the copula that

fits best, taking into account that over-fitting could occur in many biological data. An attractive

interest will be to aslo address the estimation of the number of clusters.
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